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ABSTRACT

DEMONSTRATION OF QUANTUM CONTEXTUALITY VIA HARDY
PARADOX

Yolsever, Yankı
M.S., Department of Physics

Supervisor: Prof. Dr. Sadi Turgut

September 2022, 59 pages

Quantum contextuality is one of the most fundamental foundations of Quantum Me-

chanics. In this thesis, we have examined the Hardy-type proof of quantum con-

textuality which is first developed by Lucien Hardy for quantum non-locality and

later adapted to Quantum contextuality by Adan Cabello and his colleagues to 3-

dimensional systems with a minimum of 5 observables. We have reformulated their

method in terms of logical implications and adapted it to 4-dimensional and 5-dimensional

systems with using fewer observables.

Keywords: Quantum contextuality, Bell Kochen Specker theorem, Hardy paradox
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ÖZ

HARDY PARADOKSU YOLUYLA KUANTUM BAĞLAMSALLIĞININ
GÖSTERİMİ

Yolsever, Yankı
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Sadi Turgut

Eylül 2022 , 59 sayfa

Kuantum bağlamsallığı, kuantum mekaniğinin en temel özelliklerinden biridir. Bu

tezde, kuantum bağlamsallığının, ilk olarak Lucien Hardy tarafından kuantum ye-

relsizliği için geliştirilen ve daha sonra Adan Cabello ve meslektaşları tarafından 3

boyutlu ve en az 5 gözlemlenebilirli sistemlerde kuantum bağlamsallığına uyarlanan,

Hardy tipi kanıtını inceledik. Onların yöntemini mantıksal çıkarımlar cinsinden ifade

edip, bunu 4 boyutlu ve 5 boyutlu ve daha az gözlemlenebilir içeren sistemlere uyar-

ladık.

Anahtar Kelimeler: Kuantum bağlamsallığı, Bell Kochen Specker teoremi, Hardy pa-

radoksu
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CHAPTER 1

INTRODUCTION

1.1 Realism and Contextuality

Realism is the assumption that observables have well-defined values prior to obser-

vation and the process of measurement reveals these pre-existing values. Under the

realism assumption, two observables may not be co-measurable but yet can simulta-

neously have values as they exist before measurement. In contrast, observables do not

have values prior to measurement in quantum mechanics. They gain values after they

are measured and only co-measurable observables can simultaneously have values.

In theories with realism assumption (“realist theories” or “hidden variable theories”),

value of an observable is defined to depend on some hidden parameter, which may not

be accessible. As a result, full description of a physical system includes not only the

wavefunction as in quantum mechanics, but also the hidden parameters. Moreover,

aim of possible Realist Theories is not to replace quantum mechanics but to complete

it by introducing the hidden parameters.

Context is defined as the set of observables which can be jointly measured [1] and

non-contextuality is the assumption that the value of an observable is being indepen-

dent of in which context it is measured. Context can be interpreted physically as the

setup of the measurement apparatus [2]. As we change the context, we would need to

change the setup of the measurement.

Let us consider the case that we have three observables {A,B,C} such that A is co-

measurable with both B and C but B and C are not co-measurable with each other.

In this case, there are three contexts that A can be measured: {A,B},{A,C} and A
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alone. If a theory with realism also has non-contextuality assumption, A is considered

to have the same value whether it is measured along with B or with C or on its own.

[1]

The theories where the realism and non-contextuality are both assumed are referred

as non-contextual realist theories (NCR) or non-contextual hidden variable theories

(NCHV). We will not be dealing with a particular NCR theory and use the term to

refer the general class of theories with the realism and non-contextuality assumptions.

For an NCR theory to be valid, there must be a way to assign pre-existing and context-

independent values for observables in accordance with the constraints of the physical

system at hand while being self-consistent and compatible with the predictions of

quantum mechanics.

Quantum contextuality refers to the impossibility of reproducing quantum mechan-

ical results with realism and non-contextuality assumptions and it can be proven by

introducing a system where an NCR theory and quantum mechanics make different

predictions.

Quantum contextuality is first proven by John Bell in 1966 [2] and Simon Kochen and

Ernst Specker in 1967 [3] and named as Bell-Kochen-Specker Theorem or Kochen-

Specker Theorem

1.2 Hardy-Type Proof of Contextuality

In his papers in 1992 [4] and 1993 [5], Lucien Hardy showed a proof for quantum

contextuality by designing a system where a local realist theory makes the predic-

tion that a certain outcome is impossible while that outcome is possible in quantum

mechanics.

Adan Cabello and his colleagues adapted this method to the case of contextuality [6].

They have designed a system where a certain assignment of values to observables is

impossible in an NCR theory while it is possible in quantum mechanics.

The system they have designed is subjected to constraints where the value of an ob-
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servable implies that some other observable has a certain outcome. The source of

discrepancy between an NCR theory and quantum mechanics is that these constraints

are combined in the first but not in the latter.

They have worked in 3-dimensional Hilbert Space and showed that minimum 5 ob-

servables required to demonstrate quantum contextuality in 3-dimensions. We will

examine their method and apply it to higher dimensions in order to make the demon-

stration with fewer number of observables.

As there is a set of implication constraints and the constraints are ‘linked’ in an NCR

theory in the mentioned systems, we will call them Hardy-type Chains. Unlike the

original authors, we will make a distinction based on the strictness of the constraints

and name one type of systems as “Complete Hardy-type Chains” and the others as

“Incomplete Hardy-type Chains”.

1.3 Complete Hardy-Type Chain

Figure 1.1: Representation of Complete Hardy-Type Chain with 4 observables

We consider n dichotomic observables, {A1, A2, ...An} where only two succeeding

observables are co-measurable. In other words, Ai and Aj are co-measurable if and

only if j = i ± 1 mod n. We show one possible value of Ai as ai and use ai to

represent the other eigenvalue.

3



We construct a system which is subjected to implication constraints:

{I(1), I(2), ..., I(n)}

Implications from 1 to n− 1 are:

I(1) :
(
A1 = a1 =⇒ A2 = a2

)
I(2) :

(
A2 = a2 =⇒ A3 = a3

)
...

...

I(n− 1) :
(
An−1 = an−1 =⇒ An = an

)
Where the general term is,

I(i) :
(
Ai = ai =⇒ Ai+1 = ai+1

)
for 1 ≤ i ≤ n− 1 (1.3.1)

The nth implication is:

I(n) :
(
An = an =⇒ A1 = a1

)
(1.3.2)

These implications are equivalent to following statements in terms of probabilities:

I(i) ≡
(
p(Ai = ai, Ai+1 = ai+1) = 0

)
(1.3.3)

I(n) ≡
(
p(An = an, A1 = a1) = 0

)
(1.3.4)

These implications are combined in an NCR theory as it is assumed that each observ-

able has a pre-existing and context-independent value according to the realism and

non-contextuality assumptions. But they are not combined in quantum mechanics as

two implications refers to the values of non-subsequent observables and they cannot

simultaneously have values according to quantum mechanics.

When the implications from 1 to n − 1 are combined, we end up with the following

implication constraint:

I(1, n− 1) :
(
A1 = a1 =⇒ A2 = a2 =⇒ A3 = a3 =⇒ ... =⇒ An = an

)
(1.3.5)

:
(
A1 = a1 =⇒ An = an

)
(1.3.6)
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When this combined implication is combined with I(n), it gives a self-contradictory

implication:

I(1, n) :
(
A1 = a1 =⇒ A1 = a1

)
(1.3.7)

It means that, in a system where the constraints {I(1), I(2), ..., I(n)} and A1 = a1,

an NCR theory would lead to a self-contradictory statement I(1, n). Therefore, for

the theory to be logically consistent, value of A1 should never be a1. In other words,

we must have p(A1 = a1) = 0 according to an NCR theory in such a system.

To demonstrate quantum contextuality, we need construct a system where the con-

straints {I(1), I(2), ..., I(n)} hold but p(A1 = a1) > 0 using quantum mechanics.

We will refer systems with these properties as Complete Hardy-type Chain systems.

As an NCR theory and quantum mechanics differ over p(A1 = a1), we will refer this

probability as the critical probability.

Experimental demonstration of quantum contextuality becomes easier as the number

of observables (therefore constraints) gets fewer and the value of critical probability

gets higher.

1.4 Incomplete Hardy-Type Chain

Figure 1.2: Representation of Incomplete Hardy-Type Chain with 4 observables

Quantum contextuality can also be demonstrated with systems where the implication

constraints are relaxed. Considering a similar system as in the previous case with only

5



difference is that I(n) is now removed from the set of implications, an NCR theory

leads to the following implication again:

I(1, n− 1) :
(
A1 = a1 =⇒ An = an

)
(1.4.1)

It means that, in a system where the constraints {I(1), I(2), ..., I(n − 1)} hold, an

NCR theory makes the prediction that if A1 = a1, then we must have An = an. In

other words, p(A1 = a1, An = an) = 0 according to an NCR theory in such systems.

Quantum contextuality can be demonstrated by constructing a system where {I(1),
I(2), ..., I(n− 1)} hold but p(A1 = a1, An = an) > 0 using quantum mechanics. We

will refer this kind of systems as Incomplete Hardy-type Chain systems.

Similar to the previous case, an NCR theory and quantum mechanics differ on p(A1 =

a1, An = an) and an experimental demonstration would be easier as its value gets

higher. We will again refer to this probability as critical probability.

1.5 Relation Between Complete and Incomplete Chains

Complete Hardy-type Chain systems can be considered as a sub class of Incomplete

Hardy-type Chains systems as the former has a one more implication constraint.

The critical probability in this case is identical to the critical probability of the Incom-

plete case. First we note that,

p(A1 = a1) = p(A1 = a1, An = an) + p(A1 = a1, An = an) (1.5.1)

holds irrespective of any implication. The complete chain has the implication An =

an =⇒ A1 = a1 which is equivalent to p(A1 = a1, An = an) = 0. Therefore, the the

critical probability of the Complete case becomes

p(A1 = a1) = p(A1 = a1, An = an) (1.5.2)

which is the critical probability for the Incomplete case.

The above identity holds under the implications of a Complete case. In an Incomplete

Hardy-type Chain system, we would not have p(A1 = a1, An = an) = 0 as there is
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no An = an =⇒ A1 = a1 implication. Therefore,

p(A1 = a1, An = an) = p(A1 = a1)− p(A1 = a1, An = an) (1.5.3)

As p(A1 = a1)− p(A1 = a1, An = an) is a non-negative quantity,

p(A1 = a1, An = an) ≤ p(A1 = a1) (1.5.4)

Predictions of an NCR theory and quantum mechanics are summarized in the table

below:

Complete Incomplete

NCR p(A1 = a1) = 0 p(A1 = a1, An = an) = 0

QM p(A1 = a1) > 0 p(A1 = a1, An = an) > 0

Table 1.1: Critical probabilities in Complete and Incomplete cases

1.6 Probabilities

For the system to satisfy an implication, probability of an event which falsifies this

implication should be zero. The event falsifies the implication I(i) :
(
Ai = ai =⇒

Ai+1 = ai+1

)
can be deduced from the truth table (we denote "true" with "T" and

"false" with "F"):

Ai = ai Ai+1 = ai+1 Ai = ai =⇒ Ai+1 = ai+1

T T T

T F F

F T T

F F T

Table 1.2: Truth table for an implication

As the only event falsifies the implication is the value of Ai being ai and Ai+1 being

7



ai+1, it can be concluded that,(
Ai = ai =⇒ Ai+1 = ai+1

)
↔ p(Ai = ai, Ai+1 = ai+1) = 0 (1.6.1)

Similarly, for I(n) :
(
An = an =⇒ A1 = a1

)
,(

An = an =⇒ A1 = a1
)
↔ p(Ai = ai, A1 = a1) = 0 (1.6.2)

Probabilities of having Ai = ai and Ai+1 = ai+1 can be expanded as,

p(Ai = ai) = p(Ai = ai, Ai+1 = ai+1) + p(Ai = ai, Ai+1 = ai+1)︸ ︷︷ ︸
0

(1.6.3)

p(Ai+1 = ai+1) = p(Ai = ai, Ai+1 = ai+1) + p(Ai = ai, Ai+1 = ai+1) (1.6.4)

p(Ai = ai, Ai+1 = ai+1) is 0 due to implication I(i) (where 1 ≤ i ≤ n − 1). These

implication hold both for Complete and Incomplete cases.

When the difference of (1.6.3) and (1.6.4) is taken:

p(Ai+1 = ai+1)− p(Ai = ai) = p(Ai = ai, Ai+1 = ai+1) ≥ 0 (1.6.5)

which implies that

p(Ai = ai) ≤ p(Ai+1 = ai+1), (1.6.6)

in other words, the probability p(Ai = ai) is non-decreasing along the chain for

1 ≤ i ≤ n− 1. This relation is same for both Complete and Incomplete cases. In the

open form:

p(A1 = a1) ≤ p(A2 = a2) ≤ ... ≤ p(An = an) (1.6.7)

The probabilities for An = an and A1 = a1 can be expanded in a Complete Hardy-

type Chain system [where I(n) requires p(A1 = a1, An = an) = 0]:

p(An = an) = p(A1 = a1, An = an)︸ ︷︷ ︸
0

+p(A1 = a1, An = an) (1.6.8)

p(A1 = a1) = p(A1 = a1, An = an) + p(A1 = a1, An = an) (1.6.9)

Again taking the difference of two equations,

p(A1 = a1)− p(An = an) = p(A1 = a1, An = an) ≥ 0 (1.6.10)

→ p(An = an) ≤ p(A1 = a1) (1.6.11)
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Since p(A1 = a1) = 1− p(A1 = a1),

p(An = an) ≤ 1− p(A1 = a1) (1.6.12)

Using the recursive relation (1.6.7) and (1.6.7), probability of having Ai = ai for

successive observables has the inequality:

p(A1 = a1) ≤ p(A2 = a2) ≤ ... ≤ p(An = an) ≤ 1− p(A1 = a1) (1.6.13)

In Complete Hardy-type chain systems, critical probability p(A1 = a1) must be

greater than 0 to demonstrate quantum contextuality. Therefore the above inequal-

ity is bounded by 0 and 1 from left-hand and right-hand sides.

Hence, for Complete Hardy-type chain systems:

0 < p(A1 = a1) ≤ p(A2 = a2) ≤ ... ≤ p(An = an) ≤ 1− p(A1 = a1) < 1

(1.6.14)

1.7 Conditions

To construct a Hardy-type Chain System with quantum mechanics, we demand the

following conditions to hold. We first list them and then explaing the motivations

behind them in the following subsections:

• Compatibility condition: Two observables must be compatible if and only if

they are subsequent.

[Ai, Aj] = 0 ↔ j = i± 1 (1.7.1)

• Eigenstate condition: State vector of the system must not be an eigenstate of

any of the observables.

• Implication conditions:

We denote the projection to the joint eigen-subspace of observable Ai and Ai+1

corresponding to their eigenvalues ai and ai+1 as Pai,ai+1
.

For the implication Ai = ai =⇒ Ai+1 = ai+1 to hold, the system must satisfy:

Pai,ai+1
|Ψ⟩ = 0 (1.7.2)
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These conditions are identical for both Complete and Incomplete Hardy-type Chains

systems. Only difference between them is that, there are one less implication condi-

tion which the system requires to satisfy compared to the former case.

1.7.1 Compatibility Conditions

Each implication puts a constraint over the values of two subsequent observables. For

them to be realizable according to quantum mechanics, subsequent observables must

be compatible with each other:

[Ai, Ai+1] = 0 (1.7.3)

All of the observables would simultaneously have values if all observables are com-

patible with each other. In that case, all the implications are combined also in quan-

tum mechanics as in NCR theory and two theories cannot give different predictions

for critical probabilities.

Also, some of the observables becomes uncessary to be defined if some of the non-

subsequent observables are compatible.

Let us consider three observables: Ai, Ai+1 and Ai+2. All of them becomes mutu-

ally compatible if non-subsequent observables Ai and Ai+2 are compatible and the

following two implication can be replaced by the one on the right-hand side:

Ai = ai =⇒ Ai+1 = ai+1

Ai+1 = ai+1 =⇒ Ai+2 = ai+2

Ai = ai =⇒ Ai+2 = ai+2 (1.7.4)

Hence, the observable Ai+1 becomes obsolete.

We demand none of the non-subsequent observables to be compatible in order for a

minimum number of observables to be defined.

1.7.2 Eigenstate Condition

Repeating the result derived in the Probabilities section (1.6.14),

0 < p(A1 = a1) ≤ p(A2 = a2) ≤ ... ≤ p(An = an) ≤ 1− p(A1 = a1) < 1 (1.7.5)
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This inequality requires that,

0 < p(Ai = ai) < 1 (1.7.6)

This requirement cannot be satisfied if the state vector |Ψ⟩ is an eigenstate of any of

the observables Ai with either eigenvalue ai or ai:

Ai |Ψ⟩ = ai |Ψ⟩ → p(Ai = ai) = 1 (1.7.7)

Ai |Ψ⟩ = ai |Ψ⟩ → p(Ai = ai) = 0 (1.7.8)

1.7.3 Implication Conditions

We will denote the eigen-subspace of observable Ai with the eigenvalue ai as Vai

and the projection onto that subspaces as Pai . Also, we will denote the joint eigen-

subspace of observables Ai and Ai+1 corresponding to their ai and ai+1 eigenvalues

as Vai,ai+1
and the projections onto that joint subspace as Pai,ai+1

.

Considering two subsequent observables Ai and Ai+1, the full Hilbert Space can be

decomposed in terms of the eigen-subspaces corresponding to the eigenvalues of the

two observable:

Vfull = Vai,ai+1
+ Vai,ai+1

+ Vai,ai+1
+ Vai,ai+1

(1.7.9)

Sum of the projections onto these eigen-subspaces is the identity:

Pai,ai+1
+ Pai,ai+1

+ Pai,ai+1
+ Pai,ai+1

= 1 (1.7.10)

Equivalence of implication I(i) :
(
Ai = ai =⇒ Ai+1 = ai+1

)
is:

p(Ai = ai, Ai+1 = ai+1) =
∣∣PVai,ai+1

|Ψ⟩
∣∣2 = 0 (1.7.11)

The implication is satisfied either when the eigen-subspace being empty (i.e.,

Vai,ai+1
= {0}, which is equivalent to PVai,ai+1

= 0) or the state vector |Ψ⟩ being

orthogonal to that subspace.

Once that implication holds, there will be limitations on other kind of implications to

be defined:
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• Ai = ai → Ai+1 = ai+1:

This implication requires that PVai,ai+1
|Ψ⟩ = 0. Combining it with the require-

ment of the original implication (1.7.11),

|Ψ⟩ =
(

Pai,ai+1︸ ︷︷ ︸
0

+Pai,ai+1︸ ︷︷ ︸
0

+Pai,ai+1
+ Pai,ai+1

)
|Ψ⟩ (1.7.12)

Since the both projections on the last row are projections to the eigen-subspace

corresponding to the ai+1 eigenvalue of Ai+1, it can be re-stated as:

|Ψ⟩ = Pa |Ψ⟩ (1.7.13)

Thus, the state vector is an eigenstate of Ai with eigenvalue a and it violates the

eigenstate condition. Hence, the implication cannot hold.

• Ai = ai → Ai+1 = ai+1 implication requires that PVai,ai+1
|Ψ⟩ = 0. Simi-

lar to what we have done for the previous implication, combining it with the

requirement of the original implication (1.7.11),

|Ψ⟩ = 1 |Ψ⟩ =
(
PVai,ai+1

+ PVai,ai+1︸ ︷︷ ︸
0

+PVai,ai+1
+ PVai,ai+1︸ ︷︷ ︸

0

)
|Ψ⟩ (1.7.14)

→ |Ψ⟩ =
(
PVai,ai+1

+ PVai,ai+1

)
|Ψ⟩ (1.7.15)

As both projections on the last row are projections to the eigen-subspace corre-

sponding to the ai+1 eigenvalue of Ai+1,

|Ψ⟩ = Pai+1
|Ψ⟩ (1.7.16)

Thus, the state vector is an eigenstate of Ai+1 with eigenvalue ai+1 and it too

violates the eigenstate condition. Hence, this implication also cannot hold.

• Ai = ai =⇒ Ai+1 = ai+1 implication remains as the only other possible

implication

To sum up, if a system satifies the implication

Ai = ai =⇒ Ai+1 = ai+1 (1.7.17)
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Then, only other possible implication that system can satisfy is:

Ai = ai =⇒ Ai+1 = ai+1 (1.7.18)

It means that there is a two-sided implication:

Ai = ai ⇐⇒ Ai = ai+1 (1.7.19)

1.8 Limitations

1.8.1 Critical Probability

In Complete Hardy-type Chain, due to the inequality (1.6.14),

p(A1 = a1) ≤ 1− p(A1 = a1) (1.8.1)

→ 2 p(A1 = a1) ≤ 1 (1.8.2)

From that, we can conclude that the critical probability in a Complete Hardy-type

Chain cannot exceed 1
2
:

p(A1 = a1) ≤
1

2
(1.8.3)

For the Incomplete Hardy-type Chain, using the inequality (1.6.7) which is common

for both the Complete and Incomplete cases and the inequality (1.5.4) which holds in

the Incomplete case:

p(A1 = a1, An = an) ≤ p(A1 = a1) = p(An = an) = 1− p(An = an) (1.8.4)

Expanding p(An = an) as
[
p(A1 = a1, An = an) + p(A1 = a1, An = an)

]
,

p(A1 = a1, An = an) ≤ 1− p(A1 = a1, An = an)− p(A1 = a1, An = an) (1.8.5)

→ 2 p(A1 = a1, An = an) ≤ 1− p(A1 = a1, An = an) (1.8.6)

→ p(A1 = a1, An = an) ≤
1

2
− 1

2
p(A1 = a1, An = an) (1.8.7)

Therefore, the critical probability in an Incomplete Hardy-type Chain system also

cannot exceed 1
2
:

p(A1 = a1, An = an) ≤
1

2
(1.8.8)
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1.8.2 Number of Observables

For an NCR theory and quantum mechanics to give different predictions, observables

should not be all compatible. It is trivial that a Hardy-type Chain system cannot be

constructed with 1 or 2 observables. It also cannot be constructed with 3 observables

as compatibility condition demands the subsequent observables to be compatible. But

all observables become mutually compatible as all of them are subsequent to each

other.

Therefore, minimum number of observables required to be used is 4 to construct a

Hardy-type chain system.
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CHAPTER 2

3-DIMENSIONS

In this chapter, we will restate the method of Cabello and his colleagues [6] for 3-

Dimensional systems in terms of Hardy-Type Chains.

2.1 Conditions in 3-Dimensional Hilbert Space

In terms of degeneracy, there is only one type of dichotomic observables in 3 - Di-

mensional Hilbert Space: single-degenerate observables where one eigenvalue has

no degeneracy and the other has 2-fold degeneracy. We will take the non-degenerate

eigenvalue as +1 (or simply as +) and the 2-fold degenerate eigenvalue as −1 (or

simply as −) as a convention

We will denote the eigenvector corresponding to the + eigenvalue of observable Ai

as |i⟩. These vectors should be distinct in order for observables to be distinct. We will

also denote the projection to the ± eigen-subspace of Ai as Pi
±.

Projections to + eigen-subspace of Ai is |i⟩ ⟨i| and the observable can be expressed

as:

Ai = 2Pi
+ − 1 = 2 |i⟩ ⟨i| − 1 (2.1.1)

With all observables being singly-degenerate, conditions for constructing Hardy-Type

Chains can be manifested as the following:

• Compatibility Condition:

Compatibility of two observables is equivalent to the orthogonality of their
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eigen-vectors:

[Ai, Aj] = 0 ↔ ⟨i|j⟩ = 0 (2.1.2)

Then, compatbility condition of observables can be re-stated in terms of their

eigen-vectors: Two eigen-vectors must be orthogonal if and only if they are

subsequent:

⟨i|j⟩ = 0 ↔ j = i± 1 (2.1.3)

• Eigenstate Condition:

For the state vector not being an eigenstate of an observable Ai with eigenvalue

+ and −, it should not be equal or orthogonal to |i⟩:

|Ψ⟩ ≠ |i⟩ (2.1.4)

|Ψ⟩ ̸⊥ |i⟩ (2.1.5)

More compactly:

| ⟨Ψ|i⟩ | ̸= 0, 1 (2.1.6)

• Implication Conditions:

We denote the the joint eigen-subspace of Ai and Ai+1 corresponding to +

eigenvalues for both observables as Pi,i+1
++ . This projection can be expressed as

the product of the individual projections to the eigen-subspaces of Ai and Ai+1:

Pi,i+1
++ = Pi

+Pi+1
+ = |i⟩ ⟨i|i+ 1⟩︸ ︷︷ ︸

0

⟨i+ 1| = 0 (2.1.7)

The projection is zero due to the orthogonality condition and the implication

condition for implication Ai = + =⇒ Ai+1 = − is automatically satisfied for

all observables independently of the state vector (It can be deduced by replacing

ai with + and ai+1 with − in (1.7.17) and (1.7.18) ):

Pi,i+1
++ |Ψ⟩ = 0 (2.1.8)

→ p(Ai = +, Ai+1 = +) = 0 (2.1.9)

→
(
Ai = + → Ai+1 = −

)
(2.1.10)
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Using the result derived previously (1.7.18), only other possible implication

that can be defined without violating the Eigenstate Condition is:

Ai = − =⇒ Ai+1 = + (2.1.11)

With the requirement of Pi,i+1
−− |Ψ⟩ = 0

Unlike the previous one, it cannot be satisfied independently of the state vector

as the projection in this case cannot vanish:

Pi,i+1
−− = (1 − Pi

+)(1 − Pi+1
+ ) (2.1.12)

= 1 − Pi
+ − Pi+1

+ + Pi
+Pi+1

+︸ ︷︷ ︸
0

̸= 0 (2.1.13)

As Pi
+ + Pi+1

+ = |i⟩ ⟨i|+ |i+ 1⟩ ⟨i+ 1| ̸= 1. Therefore, the condition must be

satisfied state-dependently:

Pi,i+1
−− |Ψ⟩ =

(
1 − Pi

+ − Pi+1
+

)
|Ψ⟩ = 0 (2.1.14)

→ |Ψ⟩ =
(
Pi
+ + Pi+1

+

)
|Ψ⟩ (2.1.15)

→ |Ψ⟩ =
(
|i⟩ ⟨i|+ |i+ 1⟩ ⟨i+ 1|

)
|Ψ⟩ (2.1.16)

The condition is equivalent of |Ψ⟩ lying within the 2D subspace spanned by |i⟩
and |i+ 1⟩:

|Ψ⟩ ∈ span(|i⟩ , |i+ 1⟩) (2.1.17)

2.2 4-Observable System

As we have concluded previously, the Hardy-Type Chains require at least 4 observ-

ables. In this section, we will show that they also cannot be constructed with 4 ob-

servables in 3-dimensions due to the compatibility conditions.

When we have four observables

{A1, A2, A3, A4}

with their + eigenvectors

{|1⟩ , |2⟩ , |3⟩ , |4⟩}
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Compatibility conditions requires subsequent vectors to be orthogonal. Hence, |1⟩
must be orthogonal to both |2⟩ and |4⟩:

⟨1|2⟩ = ⟨1|4⟩ = 0 (2.2.1)

Also, |3⟩ must be orthogonal to both |2⟩ and |4⟩:

⟨3|2⟩ = ⟨3|4⟩ = 0 (2.2.2)

But in 3-dimensions, a vector which is orthogonal to two vectors is unique (up to

a phase constant) and |1⟩ and |3⟩ cannot be chosen as independent vectors (as the

vectors are 3-dimensional, we can treat them analogous to geometric vectors and use

cross products to express them):

|1⟩ = eiθ1 |3⟩ = c1 |2⟩ × |4⟩ where θ1 and c1 are constants (2.2.3)

Similarly, |2⟩ and |4⟩ also would be identical up to a phase constant:

|2⟩ = eiθ2 |4⟩ = c2 |1⟩ × |3⟩ where θ2 and c2 are constants (2.2.4)

Therefore, it is not possible to define 4 different observables in 3-dimensions in ac-

cordance with the compatibility conditions.

2.3 5-Observable System

Figure 2.1: Representation of Complete Hardy Type Chain with 5 observables in 3D
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As shown by Cabello and his colleagues, it is possible to construct Hardy-Type Chain

systems in 3-dimensional Hilbert Space with a minimum number of 5 observables.

We will quote the system they have designed [6] (and also experimentally verified

[7]). Although they have not made this categorization, the system they have designed

falls into the Complete Hardy-Type Chain category that we have proposed.

The state-vector they have defined is:

|Ψ⟩ = 1√
3


1

1

1

 (2.3.1)

And the + eigenvectors of the observables are:

|1⟩ = 1√
3


1

−1

1

 , |2⟩ = 1√
2


1

1

0

 , |3⟩ =


0

0

1

 , |4⟩ =


1

0

0

 , |5⟩ = 1√
2


0

1

1


(2.3.2)

As all the subsequent vectors are orthogonal, Ai = + → Ai+1 = − implication

holds for each observables. Also, A2−A3 and A4−A5 pairs satisfies the implication

conditions:

|Ψ⟩ ∈ span(|2⟩ , |3⟩) (2.3.3)

|Ψ⟩ ∈ span(|4⟩ , |5⟩) (2.3.4)

Therefore, we have the following implication constraints for the system:

A1 = + =⇒ A2 = − (2.3.5)

A2 = − =⇒ A3 = + (2.3.6)

A3 = + =⇒ A4 = − (2.3.7)

A4 = − =⇒ A5 = + (2.3.8)

A5 = + =⇒ A1 = − (2.3.9)

The critical probability is:

p(A1 = +) = | ⟨Ψ|ϕ1⟩ |2 =
1

9
(2.3.10)
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2.4 n-Observable Complete Hardy-Type Chain System

In this section, we will generalize this method and construct a Complete Hardy-Type

Chain system with n number of observables in order to maximize the critical proba-

bility. We again follow the method of Cabello and his colleagues [6] with a slightly

different approach.

As concluded previously, there are two types of possible type of implications and they

must follow each other by alternating:

Ai = + =⇒ Ai+1 = − which is automatically satisfied due to compatibility

(2.4.1)

Ai = − =⇒ Ai+1 = + which requires state-dependent condition (2.1.17) (2.4.2)

An odd number of implications are needed in order for the last implication to imply

the opposite of the initial value of A1. We set the total number of observables as

n = 2m + 1 where m is an integer (m ≥ 2). Also, we start with the first type of the

implications above. By that, there will be m + 1 number of implications of the first

type and m type of the latter:

I(1) :
(
A1 = + =⇒ A2 = −

)
(2.4.3)

I(2) :
(
A2 = − =⇒ A3 = +

)
(2.4.4)

...

I(2m) :
(
A2m = − =⇒ A2m+1 = +

)
(2.4.5)

I(2m+ 1) :
(
A2m+1 = + =⇒ A1 = −

)
(2.4.6)

For even-numbered implications to hold, even-numbered and the subsequent odd-

numbered vectors must satisfy (2.1.17):

|Ψ⟩ ∈ span(|2i⟩ , |2i+ 1⟩) (2.4.7)

We set the state-vector as:

|Ψ⟩ =


0

0

1

 (2.4.8)
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Then, we set the first vector using the general expression for 3-D geometrical vectors

using spherical polar coordinates:

|1⟩ =


sin θ0 cosϕ0

sin θ0 sinϕ0

cos θ0

 (2.4.9)

Then, we set the even-numbered vectors as:

|2i⟩ =


sin θi cosϕi

sin θi sinϕi

cos θi

 (2.4.10)

Subsequent odd-numbered vector must be orthogonal to it. For (2.1.17) to be sat-

isfied, it must be chosen such that the state vector lies in the plane spanned by the

even-numbered vector and the subsequent odd-numbered vector. Two conditions si-

multaneously can hold only if the odd-vector is generated from the even-vector by

transforming the coordinates as θi → π
2
− θi and ϕi → π + ϕi

|2i+ 1⟩ =


sin (π

2
− θi) cos (π + ϕi)

sin (π
2
− θi) sin (π + ϕi)

cos (π
2
− θi)

 =


− cos θi sinϕi

− cos θi sinϕi

sin θi

 (2.4.11)

Parameters must be defined in a way to make the rest of the subsequent vectors or-

thogonal. First, even-vectors should be orthogonal to the previous odd-vectors:

⟨2i+ 1|2(i+ 1)⟩ =
(
− cos θi sinϕi − cos θi sinϕi sin θi

)

sin (θi+1) cos (ϕi+1)

sin (θi+1) sin (ϕi+1)

cos (θi+1)


(2.4.12)

= − cos θi sin θi+1 (cosϕi cosϕi+1 + sinϕi sinϕi+1)︸ ︷︷ ︸
cos (ϕi+1−ϕi)

+sin θi cos θi+1

(2.4.13)

→ tan θi+1 cos (ϕi+1 − ϕi) = tan θi for i > 1 (2.4.14)

As |1⟩ has the same form of even-vectors, (2.4.14) also provides that ⟨2m+ 1|1⟩ = 0,

therefore hold for i = m. But providing the orthogonality of |1⟩ and |2⟩ requires a
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different relation as the both vectors has the form of even-vectors:

⟨1|2⟩ =
(
sin θ0 cosϕ0 sin θ0 sinϕ0 cos θ0

)
sin θ1 cosϕ1

sin θ1 sinϕ1

cos θ1

 (2.4.15)

= sin θ1 sin θ0 (cosϕ1 cosϕ0 + sinϕ1 sinϕ0)︸ ︷︷ ︸
cos (ϕ1−ϕ0)

+cos θ1 cos θ0 = 0 (2.4.16)

→ tan θ0 tan θ1 cos (ϕ1 − ϕ0) = −1 (2.4.17)

2.4.1 Maximizing the Critical Probability

We will try to determine the parameters θi and ϕi such that the critical probability is

maximum while the relations (2.4.14) and (2.4.17) are satisfied.

p(A1 = +) = | ⟨1|Ψ⟩ |2 =

∣∣∣∣∣ (sin θ0 cosϕ0 sin θ0 sinϕ0 cos θ0

)
0

0

1


∣∣∣∣∣
2

= cos2 θ0 =
1

1 + tan2 θ0
(2.4.18)

Using the relation (2.4.14) repeatedly, tan θ0 can be expressed as:

tan θ0 =
tan θm

cos (ϕ0 − ϕm)
=

tan θm−1

cos (ϕ0 − ϕm) cos (ϕm − ϕm−1)

=
tan θ1

cos (ϕ0 − ϕm) cos (ϕm − ϕm−1)... cos (ϕ2 − ϕ1)
(2.4.19)

Using also (2.4.17),

tan θ0 =
−1

cos (ϕ0 − ϕm) cos (ϕm − ϕm−1)... cos (ϕ2 − ϕ1) cos (ϕ1 − ϕ0) tan θ0

(2.4.20)

→ tan2 θ0 =
−1∏m

i cos (ϕi+1 − ϕi)
(2.4.21)

When this expression for tan θ0 is inserted in the expression for the critical probabil-

ity:

p(A1 = +) = | ⟨1|Ψ⟩ |2 = 1

1 +
(

−1∏m
i cos (ϕi+1−ϕi)

) (2.4.22)
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To shorten the notation, we will define:

αi = ϕi+1 − ϕi (2.4.23)

In this notation,

p(A1 = +) = | ⟨1|Ψ⟩ |2 = 1

1 +
(

−1∏m
i=1 cosαi

) (2.4.24)

There are two properties regarding the α’s:

• As tan2 θ0 is a positive quantity, the product in (2.4.21) must be negative

m∏
i=0

cosαi < 0 (2.4.25)

• Since the each ϕ term appears once with + sign and once with − sign, sum of

the arguments of the cosines is 0 in modulo 2π

m∑
i=0

(ϕi+1 − ϕi) =
m∑
i=0

αi = 2πk, where k is an integer (2.4.26)

The critical probability has the form:

y =
1

1− x
(2.4.27)

Since the absolute value of product of cosines cannot be greater than 1 and it must be

negative due to the first property above, the range of x is:

−1 ≤ x ≤ 0 (2.4.28)

In this domain, x must get close to −1 as much as possible to maximize y. Then, we

need to minimize
∏m

i=1 cosαi. Using the method of Lagrange multiplier to find its

minima:

∇f = λ∇g → ∂f

∂αj

= λ
∂g

∂αj

(2.4.29)
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Where f =
∏n

i cosαi and g =
∑m

i=0 αi − 2πk = 0

Lagrange multiplier method gives:

∂

∂αj

n∏
i=1

cosαi = λ
∂

∂αj

( m∑
i=0

αi − 2πk

)
(2.4.30)

→ sinαj︸ ︷︷ ︸
tanαj cosαj

n∏
i=1,i ̸=j

cosαi = λ (2.4.31)

→
n∏
i

cosαi =
λ

tanαj

(2.4.32)

It means that tanαi is same for all i, which means that αi is identical for all i with

±π difference:

αi = α± π (2.4.33)

Also, product of the cosines must be minimized while keeping it negative (due to

(2.4.25)) and sum of the αi’s must be 0 mod 2π (due to (2.4.26)).

The solution for m even is:

αi = α =
mπ

m+ 1
(2.4.34)

Maximum critical probability for n = 2m+ 1 obversables becomes:

p(A1 = +)max =
1

1 +

[
−1

cos(n+1)
(

nπ
n+1

)] (2.4.35)

Its value approaches to 1
2
, the value we have concluded as the maximum possible

value, as m (therefore n = 2m+ 1) approaches infinity:

lim
m→∞

p(A1 = +)max =
1

2
(2.4.36)
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CHAPTER 3

4-DIMENSIONS

In this chapter, we will apply the method of Cabello and his colleagues [6] to 4-

dimensional Hilbert Space and try to construct Hardy-Type Chain systems.

Unlike the case of 3-dimensional Hilbert Space, there are two kind of dichotomic

observables in 4-dimensions, in terms of degeneracy: single-degenerate and double-

degenerate.

In single-degenerate observables (we will denote them as S), one eigenvalue is non-

degenerate and the other is 3-fold degenerate. We again set the non-degenerate eigen-

value as + and show the corresponding eigenvector as |s⟩.

In double-degenerate observables (we will denote them as D), each eigenvalue has 2-

fold degeneracy. We will denote the corresponding eigen-subspaces for these eigen-

values as VD+ and VD− . We will take + as the generic eigenvalue in discussions

whenever there is no loss of generality.

3.1 Conditions

3.1.1 Compatibility

• Two single-degenerate observables:

Compatibility conditions are same as in the case of 3-dimensions. Let S and S ′

be two singly-degenerate observables with + eigenvectors |s⟩ and |s′⟩. S and

S ′ are compatible if |s⟩ and |s′⟩ are orthogonal. Therefore the compatibility
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condition is:

⟨s|s′⟩ = 0 if and only if S and S ′ are consecutive (3.1.1)

• A single-degenerate and a double-degenerate observables:

Let S be the single-degenerate and D be the double-degenerate observables.

Two observables are compatible if and only if:

|s⟩ ∈ VD+ or |s⟩ ∈ VD− (3.1.2)

In terms of projections,

PD+ |s⟩ = |s⟩ or PD− |s⟩ = |s⟩ (3.1.3)

The two eigen-subspaces are complete and orthogonal:

PD+ + PD+ = 1 and PD+PD− = 0 (3.1.4)

Therefore, if |s⟩ is orthogonal to one of the eigen-subspaces, then it means it is

inside the other eigen-subspace:

PD± |s⟩ = 0 → PD∓ |s⟩ = |s⟩ (3.1.5)

When S and D are compatible, it can also be thought as the two observables

have a common orthonormal eigen-basis. If we call this basis {|1⟩ , |2⟩ , |3⟩ , |4⟩},

eigenvalue correspondances for these basis would be:

S D

|1⟩ + +

|2⟩ − +

|3⟩ − −
|4⟩ − −

Table 3.1: Common eigen-basis of a single-degenerate and a double-degenerate ob-

servable
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• Two double-degenerate observables:

Let D and D′ be two double-degenerate observables. For them to be compat-

ible, there must exist a common orthonormal eigen-basis for them. But basis

vectors must correspond to different eigenvalues in each observables if the two

observables are distinct. Let {|d1⟩ , |d2⟩ , |d3⟩ , |d4⟩} be such a basis. We show

the eigenvalue correspondance with a table:

D D′

|d1⟩ + +

|d2⟩ + −
|d3⟩ − +

|d4⟩ − −

Table 3.2: Common eigen-basis of two double-degenerate observables

D and D′ would be compatible if and only if such a common basis exists.

3.1.2 Eigenstate

• Single-Degenerate Observables:

Similar to the case of 3-dimensions, for the state-vector |Ψ⟩ to not be an eigen-

state of a single-degenerate observable S, it must not be same or ortogonal to

|s⟩:

⟨Ψ|s⟩ ≠ {0, 1} (3.1.6)

• Double-Degenerate Observables:

For the state-vector |Ψ⟩ to not be an eigen-state of a double-degenerate observ-

able D:

PD± |Ψ⟩ ≠ |Ψ⟩ (3.1.7)

The condition can be re-stated in terms of one of the projections:

PD+ |Ψ⟩ ≠ {0, 1} (3.1.8)
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3.1.3 Implications

The possible implications and required conditions are:

•
(
S = + =⇒ S ′ = −

)
: Similar to the 3-dimensional case, this implication is

automatically satisfied due to compatibility of the observables.

•
(
S = − =⇒ S ′ = +

)
: Similar to the 3-dimensional case, it is the only other

possible implication once two consecutive single-degenerate observables are

compatible and satisfies the above implication. It requires that,

Ψ ∈ span(|s⟩ , |s′⟩) (3.1.9)

•
(
S = + =⇒ D = +

)
: As |s⟩ ∈ VD+ due to compatability condition, this

condition is automatically satisfied.

•
(
S = − =⇒ D = +

)
and

(
D = ± =⇒ S = ±

)
: Considering the common

eigen-basis as in table (3.1), these conditions require that the state-vector being

orthogonal to the vector corresponding to − eigenvalue of S and + eigenvalue

of D:

⟨Ψ|2⟩ = 0 (3.1.10)

•
(
D = α =⇒ D′ = β

)
: Considering a common eigen-basis for D and D′ as in

table (3.2),

⟨Ψ|d1⟩ = 0 ↔
(
D = + =⇒ D′ = −

)
(3.1.11)

⟨Ψ|d2⟩ = 0 ↔
(
D = + =⇒ D′ = +

)
(3.1.12)

⟨Ψ|d3⟩ = 0 ↔
(
D = − =⇒ D′ = −

)
(3.1.13)

⟨Ψ|d4⟩ = 0 ↔
(
D = − =⇒ D′ = +

)
(3.1.14)

3.2 Configurations

In this section, we will investigate the possibility of constructing Hardy-Type Chain

systems with 4 observables in different combinations of single and double degen-

erate observables and show that only eligible configuration is the one where all the

observables are double degenerate.
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3.2.1 SSSS

Figure 3.1: Hardy-Type Chain with 4 single-degenerate observables

Let us call the single-degenerate observables {A1, A2, A3, A4} and their eigen-vectors

with + eigen-values as {|1⟩ , |2⟩ , |3⟩ , |4⟩}. Similar to the 3-dimensional case, follow-

ing implication holds due to the compatibility conditions regardless of what the state

vector is:

Ai = + =⇒ Ai+1 = − (3.2.1)

Using the result derived earlier (1.7.17) (1.7.18), only other possible implication be-

tween the subsequent observables is:

Ai = − =⇒ Ai+1 = + (3.2.2)

Again similar to the 3-dimensional case, it is not possible to construct a Complete

Hardy-Type Chain system with 4 single-degenerate observables as the value of the

observables alternates in each implication and odd number of observables needed in

order for the last implication to imply the negative of the inital value of A1.

In the case of Incomplete Hardy-Type Chain case, implication chain can start with

either A1 = + or A1 = −.

When it is started with A1 = +, the implication will be:

A1 = + =⇒ A2 = − (3.2.3)

A2 = − =⇒ A3 = + (3.2.4)

A3 = + =⇒ A4 = − (3.2.5)

When these are combined, NCR Theory leads to the prediction:(
A1 = + =⇒ A4 = −

)
↔ p(A1 = +, A4 = +) = 0 (3.2.6)
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But it is not possible to design a system with quantum mechanics which p(A1 =

+, A4 = +) > 0. Thus, an Incomplete Hardy-Type Chain cannot be constructed in

this case.

When the chain starts with A1 = −, the implications will be:

A1 = − =⇒ A2 = + (3.2.7)

A2 = + =⇒ A3 = − (3.2.8)

A3 = − =⇒ A4 = + (3.2.9)

The first and the third implication requires a condition regarding the state vector

(2.1.17):

|Ψ⟩ ∈ span(|1⟩ , |2⟩) (3.2.10)

|Ψ⟩ ∈ span(|3⟩ , |4⟩) (3.2.11)

It requires that the intersection of the two span spaces not being empty:

span(|1⟩ , |2⟩) ∩ span(|3⟩ , |4⟩) ̸= 0 (3.2.12)

It means that, for arbitrary coefficients x, y, z and w, there should be a relation as:

x |1⟩+ y |2⟩ = z |3⟩+ w |4⟩ (3.2.13)

As in the section where 4-Observable systems in 3-dimensions discussed, compati-

bility conditions require subsequent vectors being orthogonal and inner products of

the non-subsequent vectors can be taken as real.

When both sides of (3.2.13) multiplied with ⟨1|:

x ⟨1|1⟩︸︷︷︸
1

+y ⟨1|2⟩︸︷︷︸
0

= z ⟨1|3⟩+ w ⟨1|4⟩︸︷︷︸
0

(3.2.14)

→ x = z ⟨1|3⟩ (3.2.15)

And when both sides multiplied with ⟨3|:

x ⟨3|1⟩+ y ⟨3|2⟩︸︷︷︸
0

= z ⟨3|3⟩︸︷︷︸
1

+w ⟨3|4⟩︸︷︷︸
0

(3.2.16)
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→ x ⟨3|1⟩ = z (3.2.17)

Combining (3.2.15) and (3.2.17),

⟨1|3⟩ = ⟨3|1⟩ = x

z
=

z

x
(3.2.18)

Above equation hold only when ⟨1|3⟩ = ±1. But it it would mean that A1 = ±A3

(Similarly, it can be shown that ⟨2|4⟩ = ±1 by multiplying (3.2.13) with ⟨2| and ⟨4|
combining their result).

Therefore, it is not possible to define 4 distinct observables which satisfies both the

compatibility and the implication conditions.

3.2.2 SSSD

Figure 3.2: Hardy-Type Chain with 3 single-degenerate and a double-degenerate ob-

servables

Let us call the single-degenerate observables as {S, S ′, S ′′} and their + eigen-vectors

as {|s⟩ , |s′⟩ , |s′′⟩} and the double-degenerate observables as D.

For S and to D to be compatible:

|s⟩ ∈ VD+ (3.2.19)

As S and S ′′ must not be compatible,

⟨s|s′′⟩ ≠ 0 (3.2.20)

For S ′′ and to D to be compatible, |s′′⟩ should be inside one of the eigen-subspaces of

D. But it cannot be inside VD− as it is orthogonal to VD+ and being inside VD− makes
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|s′′⟩ orthogonal to |s⟩. So the two vectors must be inside the same eigen-subspace:

|s⟩ ∈ VD+ (3.2.21)

As |s⟩ and |s′′⟩ are two distinct vectors inside the subspace VD+ , they span the sub-

space:

VD+ = span(|s⟩ , |s′′⟩) (3.2.22)

For S ′ to be compatible with both S and S ′′,

⟨s′|s⟩ = ⟨s′|s′′⟩ = 0 (3.2.23)

But since |s′⟩ is orthogonal to both |s⟩ and |s′′⟩, it is also orthogonal to the subspace

VD+ . Hence, it means it is inside VD−

|s′⟩ ⊥ span(|s⟩ , |s′′⟩) = VD+ → |s′⟩ ∈ VD− (3.2.24)

It makes S ′ compatible to the non-subsquent D and violates the compatibility condi-

tion.

3.2.3 SDSD

Figure 3.3: Hardy-Type Chain with 2 single-degenerate and 2 double-degenerate ob-

servables distributed evenly

Similar to the previous case, S and S ′ must be inside the same eigen-subspace of D

in order for not being compatible:

|s⟩ ∈ VD+ and |s′⟩ ∈ VD+ (3.2.25)

Again, like the previous case,

VD+ = span(|s⟩ , |s′⟩) (3.2.26)
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Similarly, |s⟩ and |s′⟩ must also be inside the same eigen-subspace of D′:

|s⟩ ∈ VD′
γ

and |s′⟩ ∈ VDγ (3.2.27)

→ VD′
γ
= span(|s⟩ , |s′⟩) (3.2.28)

It makes the eigen-subspaces of D and D′ either identical or orthogonal:

γ = + → VD+ = VD′
+
→ D = D′ (3.2.29)

γ = − → VD+ = VD′
−
→ D = −D′ (3.2.30)

In both cases, observables D and D′ would be identical (up to multiplicative constant)

and two distinct double-degenerate observables cannot be defined while keeping the

compatibility conditions.

3.2.4 SSDD

Figure 3.4: Hardy-Type Chain with 2 single-degenerate and 2 double-degenerate ob-

servables distributed unevenly

For D and D′ to be compatible, there must exists a common orthonormal eigen-basis

with the corresponding eigenvalues as:

D D′

|1⟩ + +

|2⟩ + −
|3⟩ − +

|4⟩ − −

Table 3.3: Common eigen-basis of two double-degenerate observables
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For S to be compatible with D and for S ′ to be compatible with D′ (eigenvalue of the

both eigen-subspaces can be taken as + without loss of generality):

|s⟩ ∈ VD+ = span(|1⟩ , |2⟩) (3.2.31)

|s′⟩ ∈ VD′
+
= span(|1⟩ , |3⟩) (3.2.32)

|s⟩ and |s′⟩ can be expressed as a linear combination of the vectors which spans the

subspaces they are in where a, b, c and d are constants:

|s⟩ = a |1⟩+ b |2⟩ (3.2.33)

|s⟩ = c |1⟩+ d |3⟩ (3.2.34)

For S and S ′ to be compatible,

⟨s|s′⟩ = a∗c ⟨1|1⟩+ a∗d ⟨1|3⟩+ b∗c ⟨2|1⟩+ b∗d ⟨2|3⟩ = 0 (3.2.35)

Due to orthonormality of the basis vectors:

⟨s|s′⟩ = a∗c = 0 (3.2.36)

In order for the equality to hold, either a or c should be 0.

a = 0 → |s⟩ = |2⟩ → |s⟩ ∈ VD′
+

(3.2.37)

c = 0 → |s′⟩ = |3⟩ → |s′⟩ ∈ VD+ (3.2.38)

In both cases, one of the single-degenerate observables becomes compatible with the

non-subsequent double-degenerate observables and hence, the compatibility condi-

tion is violated.

3.2.5 SDDD

Figure 3.5: Hardy-Type Chain with 3 double-degenerate observables and a single-

degenerate observable

34



For D to be compatible with D′ and for D′ to be compatible D′′, there must exists a

two common orthonormal eigen-basis for the two pairs:

D D′ D′ D′′

|1⟩ + + |1′⟩ + +

|2⟩ + − |2′⟩ + −
|3⟩ − + |3′⟩ − +

|4⟩ − − |4′⟩ − −

Table 3.4: Common eigen-basis sets for two pairs of double-degenerate observables

Since the |1⟩ and |3⟩ pair and the |1′⟩ and |2′⟩ pair both span the + eigen-space of D’,

their span spaces must be equal to each other:

span(|1⟩ , |3⟩) = span(|1′⟩ , |2′⟩) (3.2.39)

Due to this span relation, |1′⟩ and |2′⟩ can be expressed in terms of |1⟩ and |3⟩. But

we can also express |3⟩ and |2′⟩ in terms of |1⟩ and |1′⟩. If we define ⟨1|1′⟩ = a and

considering the orthogonality of |3⟩ to |1⟩ and |2′⟩ to |1′⟩

|3⟩ = a |1⟩ − |1′⟩ (3.2.40)

|2′⟩ = |1⟩ − a |1′⟩ (3.2.41)

With these values inserted, common basis sets become:

D D′ D′ D′′

|1⟩ + + |1′⟩ + +

|2⟩ + − |1⟩ − a |1′⟩ + −
a |1⟩ − |1′⟩ − + |3′⟩ − +

|4⟩ − − |4′⟩ − −

Table 3.5: Common eigen-basis sets for two pairs of double-degenerate observables
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Due to the orthogonality relations of the remaining vectors in each basis set:

⟨2|3⟩ = 0 = ⟨2|
(
a |1⟩ − |1′⟩

)
= a ⟨2|1⟩︸︷︷︸

0

+ ⟨2|1′⟩ (3.2.42)

→ ⟨2|1′⟩ = 0 (3.2.43)

⟨3′|2′⟩ = 0 = ⟨3′|
(
|1⟩ − a |1′⟩

)
= ⟨3′|1⟩+ a ⟨3′|1′⟩︸ ︷︷ ︸

0

(3.2.44)

→ ⟨3′|1⟩ = 0 (3.2.45)

For S to be compatible with D and D′′, it must be inside one of the eigen-subspaces of

D and D′′ (They can be set as the + eigenvalued subspaces without loss of generality):

|s⟩ ∈ VD+ = span(|1⟩ , |2⟩) (3.2.46)

|s⟩ ∈ VD′
+
= span(|1′⟩ , |3′⟩) (3.2.47)

|s⟩ can be expressed as the linear combination of the vectors in the spans:

|s⟩ = x |1⟩+ y |2⟩ (3.2.48)

|s⟩ = z |1′⟩+ w |3′⟩ (3.2.49)

→ x |1⟩+ y |2⟩ = z |1′⟩+ w |3′⟩ (3.2.50)

When each side of (3.2.50) is multiplied by ⟨1|,

x ⟨1|1⟩︸︷︷︸
1

+y ⟨1|2⟩︸︷︷︸
0

= z ⟨1|1′⟩︸ ︷︷ ︸
a

+w ⟨1|3′⟩︸ ︷︷ ︸
0

→ x = za (3.2.51)

And when each side is multiplied by ⟨1′|,

x ⟨1′|1⟩︸ ︷︷ ︸
a

+y ⟨1′|2⟩︸ ︷︷ ︸
0

= z ⟨1′|1′⟩︸ ︷︷ ︸
1

+w ⟨1′|3′⟩︸ ︷︷ ︸
0

→ xa = z (3.2.52)

Combining (3.2.51) and (3.2.52):

a =
z

x
=

x

z
→ a = ±1 (3.2.53)

The value of a = ⟨1|1′⟩ being ±1 makes it impossible for two distinct eigen-basis and

makes it impossible for defining 3 distinct double-degenerate observables satisfying

compatibility conditions.
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3.3 System with 4 Double-Degenerate Observables

We will denote the observables as {A1, A2, A3, A4}. For consecutive observables to

be compatible, there must exist four sets of common orthonormal eigen-basis for the

pair of consecutive observables as:

A1 A2 A2 A3 A3 A4 A4 A1

|a1⟩ + + |b1⟩ + + |c1⟩ + + |d1⟩ + +

|a2⟩ + − |b2⟩ + − |c2⟩ + − |d2⟩ + −
|a3⟩ − + |b3⟩ − + |c3⟩ − + |d3⟩ − +

|a4⟩ − − |b4⟩ − − |c4⟩ − − |d4⟩ − −

Table 3.6: Common eigen-basis sets for 4 pairs of double-degenerate observables

Following set of vectors span the same eigen-subspaces. So, their spans should be

equal:

V(A2=+) = span(|a1⟩ , |a3⟩) = span(|b1⟩ , |b2⟩) (3.3.1)

V(A3=+) = span(|b1⟩ , |b3⟩) = span(|c1⟩ , |c2⟩) (3.3.2)

V(A4=+) = span(|c1⟩ , |c3⟩) = span(|d1⟩ , |d2⟩) (3.3.3)

V(A1=+) = span(|d1⟩ , |d3⟩) = span(|a1⟩ , |a2⟩) (3.3.4)

Using this span and ortogonality relations, all vectors can be defined in terms of the

first vectors in each set and their inner products. We change the notation of these

vectors to simplfy the notation:

|a1⟩ ≡ |1⟩ (3.3.5)

|b1⟩ ≡ |2⟩ (3.3.6)

|c1⟩ ≡ |3⟩ (3.3.7)

|d1⟩ ≡ |4⟩ (3.3.8)
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We define their inner products as:

⟨1|2⟩ = a (3.3.9)

⟨2|3⟩ = b (3.3.10)

⟨3|4⟩ = c (3.3.11)

⟨4|1⟩ = d (3.3.12)

Values of a, b and c can be taken as real and positive as |1⟩, |2⟩ and |3⟩ can be

multiplied by a phase constant to make a, b and c real and positive. d cannot be taken

as real-positive by multiplying |4⟩ by a phase constant since it could make a negative

or complex. But it will turn out that d is also real as once the other inner products

taken as real due to the orthogonality relations.

Using the span relations and the orthogonality between the first vector and the other

vectors in each set, the other vectors can be expressed in terms of {|1⟩ , |2⟩ , |3⟩ , |4⟩}
and their inner products (Last vectors are omitted as they can be identified uniquely

once the other 3 vectors are determined. Normalization factors are also omitted to

keep the tables simple):

A1 A2 A2 A3 A3 A4 A4 A1

|1⟩ + + |2⟩ + + |3⟩ + + |4⟩ + +

|4⟩ − d∗ |1⟩ + − |1⟩ − a |2⟩ + − |2⟩ − b |3⟩ + − |3⟩ − c |4⟩ + −
a |1⟩ − |2⟩ − + b |2⟩ − |3⟩ − + c |3⟩ − |4⟩ − + d |4⟩ − |1⟩ − +

Table 3.7: Common eigen-basis sets for 4 pairs of double-degenerate observables

From the orthogonality between the second and the third vectors of each set:

• (
⟨4| − d∗ ⟨1|

)
|
(
a |1⟩ − |2⟩

)
= 0 (3.3.13)

→ a ⟨4|1⟩︸︷︷︸
d

−⟨4|2⟩ − ad∗ ⟨1|1⟩︸︷︷︸
1

+d∗ ⟨1|2⟩︸︷︷︸
a

= 0 (3.3.14)

→ ⟨4|2⟩ = ad → ⟨2|4⟩ = ad∗ (3.3.15)
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•

(
⟨1| − a ⟨2|

)
|
(
b |2⟩ − |3⟩

)
= 0 (3.3.16)

→ b ⟨1|2⟩︸︷︷︸
a

−⟨1|3⟩ − ab ⟨2|2⟩︸︷︷︸
1

+a ⟨2|3⟩︸︷︷︸
b

= 0 (3.3.17)

→ ⟨1|3⟩ = ab (3.3.18)

•

(
⟨2| − b ⟨3|

)
|
(
c |3⟩ − |4⟩

)
= 0 (3.3.19)

→ c ⟨2|3⟩︸︷︷︸
b

−⟨2|4⟩ − bc ⟨3|3⟩︸︷︷︸
1

+b ⟨3|4⟩︸︷︷︸
c

= 0 (3.3.20)

→ ⟨2|4⟩ = cb (3.3.21)

•

(
⟨3| − c ⟨4|

)
|
(
d |4⟩ − |1⟩

)
= 0 (3.3.22)

→ d ⟨3|4⟩︸︷︷︸
c

−⟨3|1⟩ − cd ⟨4|4⟩︸︷︷︸
1

+c ⟨4|1⟩︸︷︷︸
d

= 0 (3.3.23)

→ ⟨3|1⟩ = bd → ⟨1|3⟩ = bd∗ (3.3.24)

From (3.3.18) and (3.3.24),

⟨1|3⟩ = ab = cd∗ → a

c
=

d∗

b
(3.3.25)

And from (3.3.15) and (3.3.21),

⟨2|4⟩ = ad∗ = cb → a

c
=

b

d∗
(3.3.26)

Only solution to satisfy the two equations is a = c and b = d (Also it means that d

is real since it is equal to b). Plugging these values in and adding the normalization

factors to the table (3.7), the final form of the set of basis vectors are (again the fourth

vectors are omitted) :
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A1 A2 A2 A3 A3 A4 A4 A1

|1⟩ + + |2⟩ + + |3⟩ + + |4⟩ + +
|4⟩−b|1⟩√

1−b2
+ − |1⟩−a|2⟩√

1−a2
+ − |2⟩−b|3⟩√

1−b2
+ − |3⟩−a|4⟩√

1−a2
+ −

a|1⟩−|2⟩√
1−a2

− + b|2⟩−|3⟩√
1−b2

− + a|3⟩−|4⟩√
1−a2

− + b|4⟩−|1⟩√
1−b2

− +

Table 3.8: Common eigen-basis sets for 4 pairs of double-degenerate observables

In summary, given any two real parameters a and b such that 0 < a < 1 and 0 <

b < 1; we can find four double-degenerate dichotomic observables having common

eigen-basis sets described on table (3.8)

3.3.1 Complete Hardy-Type Chain

Figure 3.6: Complete Hardy-Type Chain with 4 observables

In this subsection, we will show that a system with 4 double-degenerate observables

are not eligible for Complete Hardy Chain case.

In Complete Hardy-Type Chain system, the implications and the condition for them
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are: (
A1 = + =⇒ A2 = +

)
↔ ⟨Ψ|

(
|4⟩ − b |1⟩

)
= 0 (3.3.27)(

A2 = + =⇒ A3 = +
)
↔ ⟨Ψ|

(
|1⟩ − a |2⟩

)
= 0 (3.3.28)(

A3 = + =⇒ A4 = +
)
↔ ⟨Ψ|

(
|2⟩ − b |3⟩

)
= 0 (3.3.29)(

A4 = + =⇒ A1 = −
)
↔ ⟨Ψ|4⟩ = 0 (3.3.30)

In order for the state-vector being orthogonal to all of these 4 vectors, these 4 vectors

should be linearly dependent and not span the whole 4-dimensional Hilbert Space.

To investigate this, we will calculate their Gram matrix. We re-define the vectors for

ease of notation:

|1′⟩ = |4⟩ − b |1⟩ (3.3.31)

|2′⟩ = |1⟩ − a |2⟩ (3.3.32)

|3′⟩ = |2⟩ − b |3⟩ (3.3.33)

|4′⟩ = |4⟩ (3.3.34)

Elements of the Gram matrix are:

G1′1′ =
(
⟨4| − b ⟨1|

)(
|4⟩ − b |1⟩

)
= ⟨4|4⟩︸︷︷︸

1

−b ⟨4|1⟩︸︷︷︸
b

−b ⟨1|4⟩︸︷︷︸
b

+b2 ⟨1|1⟩︸︷︷︸
1

= 1− b2

(3.3.35)

G2′2′ =
(
⟨1| − a ⟨2|

)(
|1⟩ − a |2⟩

)
= ⟨1|1⟩︸︷︷︸

1

−a ⟨1|2⟩︸︷︷︸
a

−a ⟨2|1⟩︸︷︷︸
a

+a2 ⟨2|2⟩︸︷︷︸
1

= 1− a2

(3.3.36)

G3′3′ =
(
⟨2| − b ⟨3|

)(
|2⟩ − b |3⟩

)
= ⟨2|2⟩︸︷︷︸

1

−b ⟨2|3⟩︸︷︷︸
b

−b ⟨3|2⟩︸︷︷︸
b

+b2 ⟨3|3⟩︸︷︷︸
1

= 1− b2

(3.3.37)

G4′4′ = ⟨4|4⟩ = 1 (3.3.38)

G1′2′ = G2′1′ =
(
⟨4| − b ⟨1|

)(
|1⟩ − a |2⟩

)
(3.3.39)

= ⟨4|1⟩︸︷︷︸
b

−a ⟨4|2⟩︸︷︷︸
ab

−b ⟨1|1⟩︸︷︷︸
1

+ab ⟨1|2⟩︸︷︷︸
a

= 0 (3.3.40)
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G1′3′ = G3′1′ =
(
⟨4| − b ⟨1|

)(
|2⟩ − b |3⟩

)
(3.3.41)

= ⟨4|2⟩︸︷︷︸
ab

−b ⟨4|3⟩︸︷︷︸
a

−b ⟨1|2⟩︸︷︷︸
a

+b2 ⟨1|3⟩︸︷︷︸
ab

= −ab(1− b2) (3.3.42)

G1′4′ = G4′1′ =
(
⟨4| − b ⟨1|

)
|4⟩ = ⟨4|4⟩︸︷︷︸

1

−b ⟨1|4⟩︸︷︷︸
b

= 1− b2 (3.3.43)

G2′3′ = G3′2′ =
(
⟨1| − a ⟨2|

)(
|2⟩ − b |3⟩

)
(3.3.44)

= ⟨1|2⟩︸︷︷︸
a

−b ⟨1|3⟩︸︷︷︸
ab

−a ⟨2|2⟩︸︷︷︸
1

+ab ⟨2|3⟩︸︷︷︸
b

= 0 (3.3.45)

G2′4′ = G4′2′ =
(
⟨1| − a ⟨2|

)
|4⟩ = ⟨1|4⟩︸︷︷︸

b

−a ⟨2|4⟩︸︷︷︸
ab

= b(1− a2) (3.3.46)

G3′4′ = G4′3′ =
(
⟨2| − b ⟨3|

)
|4⟩ = ⟨2|4⟩︸︷︷︸

ab

−b ⟨3|4⟩︸︷︷︸
a

= 0 (3.3.47)

With these elements,

G =


1− b2 0 −ab(1− b2) 1− b2

0 1− a2 0 b(1− a2)

−ab(1− b2) 0 1− b2 0

1− b2 b(1− a2) 0 1

 (3.3.48)

For the vectors {|1′⟩ , |2′⟩ , |3′⟩ , |4′⟩} being linearly dependent, determinant of the

Gram matrix should be 0 [8]:

det(G) = a2(1− a2)2 b4(1− b2)2 = 0 (3.3.49)

As a and b are inner products of two normalized vectors, their value is less than 1.

For the determinant to vanish, a or b should be 0. Each case leads to the basis vectors

to have the form (now we also include the fourth vector in each set):

• When a=0:
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A1 A2 A2 A3 A3 A4 A4 A1

|1⟩ + + |2⟩ + + |3⟩ + + |4⟩ + +

|4⟩ − b |1⟩ + − |1⟩ + − |2⟩ − b |3⟩ + − |3⟩ + −
|2⟩ − + b |2⟩ − |3⟩ − + |4⟩ − + b |4⟩ − |1⟩ − +

b |2⟩ − |3⟩ − − |4⟩ − b |1⟩ − − |4⟩ − b |1⟩ − − |2⟩ − b |3⟩ − −

Table 3.9: Common eigen-basis sets for 4 pairs of double-degenerate observables

when a = 0

• When b=0:

A1 A2 A2 A3 A3 A4 A4 A1

|1⟩ + + |2⟩ + + |3⟩ + + |4⟩ + +

|4⟩ + − |1⟩ − a |2⟩ + − |2⟩ + − |3⟩ − a |4⟩ + −
a |1⟩ − |2⟩ − + |3⟩ − + a |3⟩ − |4⟩ − + |1⟩ − +

|3⟩ − a |4⟩ − − a |3⟩ − |4⟩ − − |1⟩ − a |2⟩ − − a |1⟩ − |2⟩ − −

Table 3.10: Common eigen-basis sets for 4 pairs of double-degenerate observables

when b = 0

In each case, vectors in two sets are identical with the vectors in the two other sets.

It means that there exists a common eigen-basis for non-subsequent observables.

Hence, a Complete Hardy-Type Chain cannot be constructed due to compatibility

conditions.
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3.3.2 Incomplete Hardy-Type Chain

Figure 3.7: Incomplete Hardy-Type Chain with 4 observables

When the last implication is removed, the remaining implications and their require-

ments are:

(
A1 = + =⇒ A2 = +

)
↔ ⟨Ψ|

(
|4⟩ − b |1⟩

)
= 0(

A2 = + =⇒ A3 = +
)
↔ ⟨Ψ|

(
|1⟩ − a |2⟩

)
= 0(

A3 = + =⇒ A4 = +
)
↔ ⟨Ψ|

(
|2⟩ − b |3⟩

)
= 0 (3.3.50)

An NCR Theory would lead to the prediction:

(
A1 = + =⇒ A4 = +

)
↔ p(A1 = +, A4 = −) = 0 (3.3.51)

The critical probability, according to quantum mechanics:

p(A1 = +, A4 = −) =

∣∣∣∣ ⟨Ψ|
(
b |4⟩ − |1⟩√

1− b2

)∣∣∣∣2 (3.3.52)
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3.3.2.1 Expression of the Basis Vectors

To find the expressions of the vectors {|1⟩ , |2⟩ , |3⟩ , |4⟩} in terms of standard basis,

we calculate the Gram matrix, whose elements are Gij = ⟨i|j⟩:

G =


1 a ab b

a 1 b ab

ab b 1 a

b ab a 1

 (3.3.53)

It can be diagonalized in the form of G = U−1ΛU where,

U = U−1 =
1

2


1 −1 −1 1

−1 −1 1 1

−1 1 −1 1

1 1 1 1

 (3.3.54)

Λ =


(1− a)(1 + b) 0 0 0

0 (1 + a)(1− b) 0 0

0 0 (1− a)(1− b) 0

0 0 0 (1 + a)(1 + b)

 (3.3.55)

Its square root can be taken in the form of
√
G = U−1

√
ΛU where,

√
Λ =


√
(1− a)(1 + b) 0 0 0

0
√
(1 + a)(1− b) 0 0

0 0
√
(1− a)(1− b) 0

0 0 0
√
(1 + a)(1 + b)


(3.3.56)
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From the columns of U−1
√
Λ, expressions of the vectors are obtained as:

|1⟩ = 1

2


√

(1− a)(1 + b)

−
√
(1 + a)(1− b)

−
√
(1− a)(1− b)√
(1 + a)(1 + b)

 , |2⟩ = 1

2


−
√

(1− a)(1 + b)

−
√

(1 + a)(1− b)√
(1− a)(1− b)√
(1 + a)(1 + b)



|3⟩ = 1

2


−
√
(1− a)(1 + b)√
(1 + a)(1− b)

−
√
(1− a)(1− b)√
(1 + a)(1 + b)

 , |4⟩ = 1

2


√

(1− a)(1 + b)√
(1 + a)(1− b)√
(1− a)(1− b)√
(1 + a)(1 + b)

 (3.3.57)

3.3.2.2 Expression of the State Vector

Using the orthogonality relations (3.3.50), inner products between the state vector

and the basis vectors {|1⟩ , |2⟩ , |3⟩ , |4⟩} can be computed and they can be used to

decompose the state vector in terms of these vectors. But as they do not constitute an

orthogonal basis, we first define reciprocal basis (where Gij = ⟨i|j⟩):

|i′⟩ =
∑
j

G−1
ij |j⟩ (3.3.58)

When its inner product taken with the basis {|i⟩}:

⟨k|i′⟩ =
∑
j

G−1
ji ⟨k|j⟩︸︷︷︸

Gkj

=
∑
j

GkjG
−1
ji = (GG−1︸ ︷︷ ︸

1

)ki = δik (3.3.59)

Inner product of the state vector and {|i⟩} basis:

⟨k|Ψ⟩ = ⟨k|
(∑

i

ci |i′⟩
)

= ⟨k|
(∑

ij

ciG
−1
ji |j⟩

)
(3.3.60)

=
∑
ij

ciG
−1
ji ⟨k|j⟩︸︷︷︸

Gkj

=
∑
i

ci
∑
j

GkjGji︸ ︷︷ ︸
δik

(3.3.61)

→ ⟨k|Ψ⟩ = ck (3.3.62)
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Inner product between the vectors of |i′⟩ basis:

⟨i′|j′⟩ =
∑
k

(G−1
ki )

T
∑
l

G−1
lj |l⟩ (3.3.63)

=
∑
kl

(G−1
ki )

T︸ ︷︷ ︸
G−1

ik

G−1
lj ⟨k|l⟩︸︷︷︸

Gkl

=
∑
k

G−1
ki

∑
l

GklG
−1
lj︸ ︷︷ ︸

δkj

(3.3.64)

→ ⟨i′|j′⟩ = G−1
ij (3.3.65)

Where inverse of the Gram matrix is:

G−1 =
1

(1− a2)(1− b2)


1 −a ab −b

−a 1 −b ab

ab −b 1 −a

−b ab −a 1

 (3.3.66)

Using (3.3.62) and the orthogonality relations (3.3.50),

⟨Ψ|
(
|4⟩ − b |1⟩

)
= ⟨Ψ|4⟩ − b ⟨Ψ|1⟩ = 0 → c4 − bc1 = 0 (3.3.67)

⟨Ψ|
(
|1⟩ − a |2⟩

)
= ⟨Ψ|1⟩ − a ⟨Ψ|2⟩ = 0 → c1 − ac2 = 0 (3.3.68)

⟨Ψ|
(
|2⟩ − b |3⟩

)
= ⟨Ψ|2⟩ − b ⟨Ψ|3⟩ = 0 → c2 − bc3 = 0 (3.3.69)

When the other coefficients are expressed in terms of c4:

c1 =
1

b
c4, c2 =

1

ab
c4, c3 =

1

ab2
c4 (3.3.70)

Then, the state vector becomes:

|Ψ⟩ = c4

(
1

b
|1′⟩+ 1

ab
|2′⟩+ 1

ab2
|3′⟩+ |4′⟩

)
(3.3.71)

Using the relations (3.3.65) and the fact that the |Ψ⟩ is normalized to find c4:
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⟨Ψ|Ψ⟩ = c24

(
1

b2
⟨1′|1′⟩+ 1

a2b2
⟨2′|2′⟩+ 1

a2b4
⟨3′|3′⟩+ ⟨4′|4′⟩

+
2

ab2
⟨1′|2′⟩+ 2

ab3
⟨1′|3′⟩+ 2

b
⟨1′|4′⟩

+
2

a2b3
⟨2′|3′⟩++

2

ab
⟨2′|4′⟩++

2

ab2
⟨3′|4′⟩

)
(3.3.72)

=
c24

(1− a2)(1− b2)

[
1

b2
+

1

a2b2
+

1

a2b4
+ 1

2

ab2
(−a) +

2

ab3
ab+

2

b
(−b)

+
2

a2b3
(−b) +

2

ab
ab+

2

ab2
(−a)

]
(3.3.73)

=
c24

(1− a2)(1− b2)

(
1 +

1

a2b4
− 1

b2
− 1

a2b2

)
(3.3.74)

=
c24

(1− a2)(1− b2)

(1− b2)(1− a2b2)

a2b4
=

c24(1− a2b2)

(1− a2)a2b4
= 1 (3.3.75)

→ c4 = ab2
√

1− a2

1− a2b2
(3.3.76)

With that value inserted, state vector expressed in the reciprocal basis:

|Ψ⟩ = ab2
√

1− a2

1− a2b2

(
1

b
|1′⟩+ 1

ab
|2′⟩+ 1

ab2
|3′⟩+ |4′⟩

)
(3.3.77)

To express it in the standard basis, we use its Gram matrix. Its elements are: G′
ij =

⟨i′|j′⟩ = G−1
ij (3.3.66). It can be diagonalized in the form of G = U−1ΛU where,

U = U−1 =
1

2


1 −1 −1 1

−1 −1 1 1

−1 1 −1 1

1 1 1 1

 (3.3.78)

√
Λ =


1

(1−a)(1+b)
0 0 0

0 1
(1+a)(1−b)

0 0

0 0 1
(1−a)(1−b)

0

0 0 0 1
(1+a)(1+b)

 (3.3.79)
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Its square root can be taken in the form of
√
G = U−1

√
ΛU where,

√
Λ =



1√
(1−a)(1+b)

0 0 0

0 1√
(1+a)(1−b)

0 0

0 0 1√
(1−a)(1−b)

0

0 0 0 1√
(1+a)(1+b)


(3.3.80)

From the columns of U−1
√
Λ, reciprocal basis in terms of standard basis can be ob-

tained as:

|1′⟩ = 1

2



1√
(1−a)(1+b)

−1√
(1+a)(1−b)

−1√
(1−a)(1−b)

1√
(1+a)(1+b)


, |2′⟩ = 1

2



−1√
(1−a)(1+b)

−1√
(1+a)(1−b)

1√
(1−a)(1−b)

1√
(1+a)(1+b)



|3′⟩ = 1

2



−1√
(1−a)(1+b)

1√
(1+a)(1−b)

−1√
(1−a)(1−b)

1√
(1+a)(1+b)


, |4′⟩ = 1

2



1√
(1−a)(1+b)

1√
(1+a)(1−b)

1√
(1−a)(1−b)

1√
(1+a)(1+b)


(3.3.81)

When these expressions inserted in (3.3.77),

|Ψ⟩ = 1

2
√
1− a2b2


−(1− ab)

√
(1 + a)(1 + b)

(1− ab)
√
(1− a)(1− b)

−(1 + ab)
√

(1 + a)(1− b)

(1 + ab)
√
(1− a)(1 + b)

 (3.3.82)
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3.3.2.3 Maximizing the Critical Probability

Considering the expression of the state vector in reciprocal basis again, the critical

probability is:

p(A1 = +, A4 = −) =

∣∣∣∣ ⟨Ψ|
(
b |4⟩ − |1⟩√

1− b2

)∣∣∣∣2 = |bc4 − c1|2 (3.3.83)

=
1

1− b2

∣∣∣∣bc4 − 1

b
c4

∣∣∣∣2 = 1

1− b2

(
b2 − 1

b

)2

c24 (3.3.84)

=
1− b2

b2
a2b4

1− a2

1− a2b2
(3.3.85)

→ p(A1 = +, A4 = −) =
a2b2(1− a2)(1− b2)

1− a2b2
(3.3.86)

Numerical solution (obtained using Mathematica) which maximizes the value of the

critical probability is:

p(A1 = +, A4 = −) =
5
√
5− 11

2
∼= 9% (3.3.87)

For the values of a and b,

a = b =

√√
5− 1

2
∼= 0.79 (3.3.88)
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CHAPTER 4

5-DIMENSIONS

As it is shown that Complete Hardy-Type Chain system cannot be constructed in 4-

Dimensional Hilbert Space with 4 observables, we attempt to achieve it in higher

dimensions.

4.1 General Structure

We define a state vector |Ψ⟩ and 4 dichotomic observables with ±1 eigenvalues:

{A1, A2, A3, A4}. Unlike the previous cases in 3 and 4 Dimensions, we do not specify

their degeneracy.

With these observables, we would have the set of implications with their equivalances

in terms of probabilities:

A1 = + =⇒ A2 = + (4.1.1)

A2 = + =⇒ A3 = + (4.1.2)

A3 = + =⇒ A4 = + (4.1.3)

A4 = + =⇒ A1 = − (4.1.4)

Due to compatibility conditions, subsequent observables would have a common eigen-

subspaces. We will denote the projections onto the eigen-subspace corresponding to

the α eigenvalue of the observable Ai and the β eigenvalue of the observable Aj as

Pij
αβ .

For an implication to hold, projection of the state-vector corresponding the eigen-

subspace prohibited by that implication must be 0 (1.7.2). For example, for the im-

plication to
(
Ai = + =⇒ Aj = +

)
to hold, the system must satisfy P12

+− |Ψ⟩ = 0.
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Unlike what we have done in the 3-Dimensions and 4-Dimensions, we will not define

eigenvectors or common eigen-basis for the observables. Instead, we decompose the

state-vector in terms of its projections onto the eigen-subspaces of the observables

(To simplfy the notation, we will rename each projected state vector):

|Ψ⟩ = P12
++ |Ψ⟩︸ ︷︷ ︸
|a++⟩

+P12
+− |Ψ⟩︸ ︷︷ ︸

0

+P12
−+ |Ψ⟩︸ ︷︷ ︸
|a−+⟩

+P12
−− |Ψ⟩︸ ︷︷ ︸
|a−−⟩

(4.1.5)

|Ψ⟩ = P23
++ |Ψ⟩︸ ︷︷ ︸
|b++⟩

+P23
+− |Ψ⟩︸ ︷︷ ︸

0

+P23
−+ |Ψ⟩︸ ︷︷ ︸
|b−+⟩

+P23
−− |Ψ⟩︸ ︷︷ ︸
|b−−⟩

(4.1.6)

|Ψ⟩ = P32
++ |Ψ⟩︸ ︷︷ ︸
|c++⟩

+P32
+− |Ψ⟩︸ ︷︷ ︸

0

+P32
−+ |Ψ⟩︸ ︷︷ ︸
|c−+⟩

+P32
−− |Ψ⟩︸ ︷︷ ︸
|c−−⟩

(4.1.7)

|Ψ⟩ = P41
++ |Ψ⟩︸ ︷︷ ︸

0

+P41
+− |Ψ⟩︸ ︷︷ ︸
|d+−⟩

+P41
−+ |Ψ⟩︸ ︷︷ ︸
|d−+⟩

+P41
−− |Ψ⟩︸ ︷︷ ︸
|d−−⟩

(4.1.8)

In the simplified notation:

|Ψ⟩ = |a++⟩+ |a−+⟩+ |a−−⟩

= |b++⟩+ |b−+⟩+ |b−−⟩

= |c++⟩+ |c−+⟩+ |c−−⟩

= |d+−⟩+ |d−+⟩+ |d−−⟩ (4.1.9)

Projections to an eigen-subspace of observable Ai can be decomposed in terms of the

projections to the joint eigen-subspaces of Ai and the previous and next observable:

Pi
+ |Ψ⟩ = Pi−1,i

−+ |Ψ⟩+ Pi−1,i
−+ |Ψ⟩ (4.1.10)

Pi
+ |Ψ⟩ = Pi,i+1

++ |Ψ⟩+ Pi,i+1
+− |Ψ⟩ (4.1.11)

Using this relation and projections of the state-vector to some of the joint eigen-

subspaces being 0, relations between the vectors in (4.1.9) become (we again rename
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some of the vectors for further simplify the notation):

|a++⟩︸ ︷︷ ︸
|a⟩

+ |a−+⟩ = |b++⟩

|a−−⟩ = |b−+⟩+ |b−−⟩

|b++⟩︸ ︷︷ ︸
|b⟩

+ |b−+⟩ = |c++⟩

|b−−⟩ = |c−+⟩+ |c−−⟩

|c++⟩︸ ︷︷ ︸
|c⟩

+ |c−+⟩ = |d++⟩

|c−−⟩ = |d−+⟩+ |d−−⟩

|d−+⟩ = |a++⟩

|d+−⟩︸ ︷︷ ︸
|d⟩

+ |d−−⟩ = |a−+⟩+ |a−−⟩ (4.1.12)

Using the relations in (4.1.9) and in (4.1.12), all the vectors can be expressed in terms

of the five vectors {|a⟩ , |b⟩ , |c⟩ , |d⟩ , |Ψ⟩}:

|a++⟩ = |a⟩ (4.1.13)

|a−+⟩ = |b⟩ − |a⟩ (4.1.14)

|a−−⟩ = |Ψ⟩ − |b⟩ (4.1.15)

|b++⟩ = |b⟩ (4.1.16)

|b−+⟩ = |c⟩ − |b⟩ (4.1.17)

|b−−⟩ = |Ψ⟩ − |c⟩ (4.1.18)

|c++⟩ = |c⟩ (4.1.19)

|c−+⟩ = |d⟩ − |c⟩ (4.1.20)

|c−−⟩ = |Ψ⟩ − |d⟩ (4.1.21)

|d+−⟩ = |d⟩ (4.1.22)

|d−+⟩ = |a⟩ (4.1.23)

|d−−⟩ = |Ψ⟩ − |a⟩ − |d⟩ (4.1.24)
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As all the projections of the state-vector to the eigen-subspaces can be represented in

terms of 5 five vectors, a Complete Hardy-Type Chain system with 4 observables can

be constructed in 5-Dimensions if these 5 vectors can be independently chosen.

We set the norm of the vectors as (we assume the state-vector is normalized):

⟨a|a⟩ = a (4.1.25)

⟨b|b⟩ = b (4.1.26)

⟨c|c⟩ = c (4.1.27)

⟨d|d⟩ = d (4.1.28)

⟨Ψ|Ψ⟩ = 1 (4.1.29)

Using the orthogonality relations between the vectors, all the inner products between

them except ⟨c|a⟩ and ⟨d|b⟩ can be expressed in terms of a, b, c and d. We the value

of ⟨c|a⟩ as x and the value of ⟨d|b⟩ as y. With these inner products, the Gram matrix

can be computed as:

G =



⟨a|a⟩ ⟨b|a⟩ ⟨c|a⟩ ⟨d|a⟩ ⟨Ψ|a⟩
⟨a|b⟩ ⟨b|b⟩ ⟨c|b⟩ ⟨d|b⟩ ⟨Ψ|b⟩
⟨a|c⟩ ⟨b|c⟩ ⟨c|c⟩ ⟨d|c⟩ ⟨Ψ|c⟩
⟨a|d⟩ ⟨b|d⟩ ⟨c|d⟩ ⟨d|d⟩ ⟨Ψ|d⟩
⟨a|Ψ⟩ ⟨b|Ψ⟩ ⟨c|Ψ⟩ ⟨d|Ψ⟩ ⟨Ψ|Ψ⟩


=



a a x 0 a

a b b y b

x∗ b c c c

0 y∗ c d d

a b c d 1


(4.1.30)

Linearly independent 5 vectors {|a⟩ , |b⟩ , |c⟩ , |d⟩ , |Ψ⟩} exist if the Gram matrix is

positive definite.

According to Slyvester’s criterion [8] , the matrix G is positive definite if the deter-

minant of the following matrices are greater than 0:∣∣∣∣∣∣d d

d 1

∣∣∣∣∣∣ > 0 (4.1.31)

∣∣∣∣∣∣∣∣
c c c

c d d

c d 1

∣∣∣∣∣∣∣∣ > 0 (4.1.32)
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∣∣∣∣∣∣∣∣∣∣∣

b b y b

b c c c

y∗ c d d

b c d 1

∣∣∣∣∣∣∣∣∣∣∣
> 0 (4.1.33)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a a x 0 a

a b b y b

x∗ b c c c

0 y∗ c d d

a b c d 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0 (4.1.34)

The critical probability is:

p(A1 = +) = |P1
+ |Ψ⟩ |2 = |(P12

++ + P12
+−) |Ψ⟩ |2 (4.1.35)

= |P12
++ |Ψ⟩︸ ︷︷ ︸
|a⟩

+P12
+− |Ψ⟩︸ ︷︷ ︸

0

|2 (4.1.36)

= ⟨a|a⟩ = a (4.1.37)

4.2 Specific case: x = a and y = b

We attempt to find solutions for {a, b, c, d} which makes G a positive-definite matrix.

The Gram matrix in this case: 

a a a 0 a

a b b b b

a b c c c

0 b c d d

a b c d 1


(4.2.1)

The parameters should satisfy the following inequalities in order for the matrix to be

positive definite:

0 < b < c < d < 1 (4.2.2)

0 < a <
b(1− d)(d− c)

b(1− c) + (1− d)(d− c)
(4.2.3)
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Numerical solution (obtained using Mathematica) which maximizes the value of a

while the other variables approach to the limits are:

amax <
1

9
as b → 1

3
, c → 1

3
, d → 2

3
,

As the value of the critical probability is equal to a (4.1.37), upper bound for the

critical probability in this case is:

p(A1 = +) = a <
1

9
(4.2.4)

In summary, we have shown that, given four real parameters a, b, c and d and two

complex parameters x and y such that satisfying the determinant inequalities (4.1.31),

(4.1.32), (4.1.33) and (4.1.34); it is possible to define 4 dichotomic observables which

can be used to construct Complete Hardy-Type Chain system in 5-Dimensional Hilbert

Space. In the specific case of x = a and y = b, the problem reduces to finding 4 real

parameters a, b, c and d such that satisfies the inequalities (4.2.2) and (4.2.3). In that

case, a Complete Hardy-Type Chain can be constructed with 4 observables which has

a maximum critical probability 1
9
.
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CHAPTER 5

CONCLUSION

In this thesis, we have reformulated Hardy-Type proof of quantum contextuality in

terms of implication chains which we have called as Hardy-Type Chains. In the first

chapter, we have derived the conditions that a system must satisfy in order for Hardy-

Type Chains can be defined on it. We have derived the limitations for such systems:

Minimum number of observables required is 4 and maximum critical probability that

can be reached is 1
2
. In the following chapters, our aim was to construct systems with

using 4 observables and making the critical probability high as possible.

We also defined two subtypes for Hardy-Type Chain systems based on the strictness of

the conditions: Complete and Incomplete. Although we have not quantified and com-

pared the ’strength’ of the contextuality in these cases (for example, in the framework

of Abramsky and Brandenburger [9]), we think that the Complete case represents a

more effective demonstration of quantum contextuality and we have tried to construct

such systems whenever possible.

In the second chapter, we have reformulated the work of Cabello and his colleagues

[6] within our framework and reproduced their results in 3-Dimensional Hilbert Space

for systems with 5 observables and n observables.

In the third chapter, we have constructed Incomplete Hardy-Type Chain system with

4 observables by making use of double degenerate observables. We have defined

common eigen-basis sets for each consecutive observable pairs and showed that such

basis sets satisfying necessary conditions exist. The system we have designed can be

compared to the system designed in the original paper of Hardy [4]. But in contrast,

our system is not bipartite and its maximum critical probability is ∼ 9% instead of
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1
16

= 6.25%

We have also concluded that Complete Hardy-Type Chain system cannot be con-

structed with 4 observables in 4-Dimensions, hence we have attempted to achieve it

in 5-Dimensions in the fourth chapter. Instead of defining common eigen-basis sets

for observables as we have done in the previous chapters, we have decomposed the

state vectors in terms of its components in the eigen-subspaces of consecutive observ-

able pairs. In the end, we have showed that 4 observables can be defined for a specific

case of variables.

To sum up, we have presented a demonstration of quantum contextuality with us-

ing logical implication chains in various dimensional Hilbert Spaces and by using

the minimum number of observables and achieving a maximal critical probability for

each case. The systems we have designed in 4-Dimensions and 5-Dimensions con-

stitute simplest possible demonstration of quantum contextuality within this frame-

work.
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