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ABSTRACT

ON THE FINITE PERIMETER SETS OF SUB-LORENTZIAN METRIC
SPACES

Çetin, Günseli

M.S., Department of Physics

Supervisor: Prof. Dr. Bahtiyar Özgür Sarıoğlu

August 2022, 56 pages

In this thesis, inspired by the recent progress on sub-Riemannian geometry, a method

of determining the finite perimeter sets of sub-Lorentzian manifolds independent of

the original metric structure is suggested and a possible version of Riesz Representa-

tion theorem is discussed.

Keywords: BV Spaces, sub-Lorentzian metric, Carnot-Carathéodory distance, finite

perimeter set
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ÖZ

ALT LORENTZ METRİK UZAYLARINDA SONLU ÇEVREYE SAHİP
KÜMELER ÜZERİNE

Çetin, Günseli

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Bahtiyar Özgür Sarıoğlu

Ağustos 2022 , 56 sayfa

Bu tezde, alt Riemann metrik uzayları üzerindeki çalışmalardan esinlenilerek, alt Lo-

rentz metrik uzaylarında sonlu çevresi olan kümelerin metrikten bağımsız olarak be-

lirlenmesi üzerine bir yöntem önerildi ve Riesz temsiliyet teoreminin olası bir alt

Lorentz eşleniğinin varlığı tartışıldı.

Anahtar Kelimeler: BV Uzayları, sub-Lorentzian metrik, Carnot-Carathéodory norm,

ölçülebilir çevre
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CHAPTER 1

INTRODUCTION

In this thesis we investigate the measure theoretic methods one might employ to de-

termine if a given set in a metric space is of finite perimeter, i.e. finitely measurable

by the given measure. The motivation of this thesis is to eventually determine certain

properties of boundaries in space-times in order to better understand the conditions

for Gauss-Green formulas to exist. We improve the ideas given by Battista et al [1].

A physics student is usually introduced to the concept of Gauss-Green theorems while

exploring the simple concepts that are precursors to field theories. Usually the inte-

gration of a function in a given closed volume is assumed to be related to another

integral formulation relating to the boundary of said volume as:

∫
Ω

fdV =

∮
∂Ω

~∇f · d~a. (1.1)

The fundamental question we examine is “what are the conditions on the domains of

integrations and their boundaries for Gauss-Green formulas to hold?”. Federer [2]

explores the properties of such domains in a measure theoretic setup.

From a physicist’s stand point, the most ambitious result desired is to make sure

that an analogue of Stokes’ Theorem holds for every bounded volume of spacetime.

Moreover, we want to make sure that the result extends to infinity as we enlarge the

volume or surface of integration. At first glance, this result not only seems desir-

able, it is crucial to prove the global conservation laws and determine the continuity

equations.

We know that the proof of Stokes’ theorem does not rely on the notion of metric.
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Therefore it is reasonable to expect analogous formulas in other metric spaces other

than strictly Euclidean or Riemannian. The higher dimensional Gauss-Green formu-

las are well understood in the Euclidean setting. It is safe to state that n-dimensional

Stokes’ Theorem holds in any Euclidean space of dimension n. According to the

research initiated by Federer, it is discovered that under certain conditions on the

domain of integration, Riemannian analogues certainly exist. Recent papers [3] [1]

also extend this result into sub-Riemannian spaces, i.e. Carnot-Carathéodory (C-C)

distance analogue of the Riemannian topological spaces.

In this thesis we investigate whether or not such results could be obtained in phys-

ical spacetimes. The method we used is to expand the methods proposed in recent

literature in sub-Riemannian metric to sub-Lorentzian case.

The results obtained heavily rely on local Poincaré inequality and a local doubling

assumption. It must be noted that it is not trivial to show that these conditions hold

physical spacetimes. We may refer to the works of Erlich and Gromov [4] [5] [6] to

ensure that these assumptions hold at least in some regions of Lorentzian manifolds.

Exploring local doubling property, one immediately realizes that it implies the exis-

tence of a volume form such that the volume of balls in the given space must have

an ordering between each other. It is to say that the volume measure must allow us

to state that the volume of balls of radii r0 and r1, where r0 < r1, might be ordered

such that we may find a real number C for Vol(Br1) 6 C(r1) Vol(Br0). It is as-

sumed throughout the paper [3] that we may assume this property for the balls of

sub-Riemannian metric spaces.

In order to write an analogous statement in Lorentzian case we must find regions for

which the above condition holds. One immediately realizes that finding such volumes

in Lorentzian manifolds is tricky. The volume of bounded sets of a Lorentz manifold

might not be finite just by the virtue of being bounded. This poses a challenge to

overcome. Hence, we resort to the corresponding CC distance function to restrict

our volumes. Sub-Lorentzian distance is a great candidate to overcome this issue.

It restricts the arcs on which a physical particle can travel to be the timelike future

directed geodesics. All the other possible arcs are said to be of infinite length, hence

non-rectifiable.
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In the generalized Gauss-Green setup, if the integrand obeys a local Lipschitz condi-

tion and if the domain of integration is bounded by a rectifiable curve, Gauss-Green

formulas are known to hold. In the case that the volume cannot be covered by a rec-

tifiable curve (loop), we might resort to the theory of integration over non-rectifiable

curves. To exemplify, these volumes might consist of regions bounded by fractals.

It is evident that the volume of such regions are bounded in the Euclidian case and

converge to some finite number. Recent literature suggests that Stokes’ theorem also

holds in such regions even for Riemannian metric spaces [7].

In Lorentzian (or pseudo-Riemannian) spaces, we may not compare the volumes of

such bounded regions. In this thesis we restrict our attention to relatively simple re-

gions of the manifold, namely balls and boxes. Then we may ask if they are contained

in one another.

Another point of interest is the point at infinity in Lorentzian manifolds. In order to

extend Stokes’ theorem to the infinite volume containing the whole spacetime, one

needs to determine if the space can be covered with balls of finite perimeter that are

bounded by rectifiable sets. That is indeed not the case as we know that a curve with

an end point outside the causal future is not rectifiable. Therefore we must carefully

dissect our spacetime into the largest possible volumes in which Stokes’ theorem

holds.

Consider the generalized Gauss-Green formula, in terms of distributional derivatives:

∫
E

Djf(x)dx =

∫
∂E

f(x)vj(E, x)dφ(x), (1.2)

where E is the open subset of M and vj(E, x) is the jth component of the exterior

normal v. Federer [8] states that (1.2) to hold, there must be a certain kind of regular-

ity between the set and its boundary. If a set E ⊂ M is of finite perimeter, then (1.2)

holds [2].

Let us assume that we have a certain volume in spacetime that is measurable and

bounded by the set ∂E. ∂E might contain uncountably many tentacles or spikes of

sorts. We might determine whether this boundary satisfies Gauss-Green formulas

by checking whether or not the set bounded by ∂E is of finite perimeter. Or as a
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physicist, we might be observing some part of the universe that has a rather tame

boundary and we might wish to eliminate all those not so well-behaved chunks.

Then we can define the reduced boundary FE ⊂ ∂E where ∂E is the topological

boundary of E in M that satisfies the following conditions

lim inf
r→0

min {m (Br(x) ∩ E) ,m (Br(x) \ E)}
m (Br(x))

> 0, (1.3)

lim sup
r→0

‖DχE‖ (Br(x))

m (Br(x)) /r
<∞, ∀x ∈ Ω, (1.4)

and

lim
r→0

1

‖DχE‖(Br(x))

∫
Br(x)

|ν∗E(y)− ν∗E(x)|2d‖DχE‖(y) = 0. (1.5)

This new boundary does not contain such spikes or tentacles, yet still covers the

volume of integration. Equivalently FE also satisfies the generalized Gauss-Green

formula. The properties of such boundaries are well understood in Riemannian man-

ifolds and they have remarkable properties, such as being rectifiable.

In this thesis we propose that some of this machinery can also be worked out in

Lorentzian setting. We claim that given a Lorentzian spacetime satisfying certain

properties, the convenience of reduced boundary and volumes of finite perimeter may

be exploited.

In the first chapter, we introduce the basic notions in physical spacetimes and give

some measure theoretic definitions along with simple theorems that are stated here

without proof. We also introduce the C-C distance d of Riemannian and dη of Lorentzian

manifolds, and using these we construct the corresponding sub-Riemannian and sub-

Lorentzian manifolds. We finally conclude that the topological structure of a Lorentzian

and sub-Lorentzian manifold is different (due to the latter having positive definite

metric) and introduce an Alexandrov basis for the latter case to deduce that our topol-

ogy is indeed Hausdorff if our manifold is strongly causal.

In the second chapter we define the total variation of a function on Riemannian and

sub-Riemannian manifolds and use the same definition to explore sub-Lorentzian
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ones. We also define the spaces of functions of bounded variation (BV ) on a given

open set of M with respect to the original metric g or η and the CC distance d or dη,

respectively. Also, in this chapter we give a theorem that was originally stated in [3]

proving equivalence of BV spaces in Riemannian and sub-Riemannian manifolds.

We also write a Lorentzian equivalent of the theorem and prove it, showing that BV

spaces of Lorentzian and sub-Lorentzian manifolds are indeed equivalent. We also

discuss the possibility of obtaining a Lorentzian version of the Riesz Representation

Theorem and investigate the regions in which such result can be achieved.

Eventually we define balls and boxes in sub-Riemannian manifold and state a Ball-

Box theorem given in [6]. We also discuss whether this result may be extended to

spacetimes. At the end of this thesis, we give some warnings for infinitely large

domains of integration and discuss the reason why Gauss-Green formula might fail

for volumes covering the entirety of the spacetime.

5
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CHAPTER 2

PRELIMINARIES

In this chapter some definitions and fundamental theorems exploited in the following

chapters are introduced. We first start by exploring the very fabric of spacetime in

a topological point of view. For ease of implementation to physical concepts, some

well known notations are altered appropriately.

2.1 Structure of Spacetimes

We first explore the topological fabric of physical spacetimes. The definitions and

theorems used in this first section are mainly based on the works of Hawking and

Ellis [9] and Penrose [10].

Throughout this section,M is an n-dimensional, smooth, simply connected manifold.

g or η is the intrinsic metric defined on M , depending on the Riemannian or the

Lorentzian structure, respectively.

M is said to be a spacetime if it is real, four-dimensional, connected and Hausdorff

and if for all x ∈ M , there exists a basis in TxM such that the metric at the point

x is ηx = diag(−1, 1, 1, 1) [10]. M is said to be time orientable if one can find a

non vanishing vector field T such that η(T, T ) < 0 everywhere, this vector is the

so called time orientation. Given a coordinate basis {xµ} at a point x ∈ M where

µ = 0, . . . , n−1, usually the vector x0 ≡ ∂/∂t undertakes the role of time orientation.

In fact the signature of time orientation is usually irrelevant as we can always find the

vector with the opposite sign. Moreover time orientation is not unique, but one may

always normalize it to find one that has unit length.
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A metric η on a manifold M is an symmetric tensor field of type (0, 2). A metric is an

inner product on TxM for all x ∈ M . Given a coordinate basis, η may be expanded

in terms of its components as [11]

η =
∑
µ,ν

ηµνdx
µ ⊗ dxν .

Equivalently ds2 may represent the metric tensor in the following manner,

ds2 =
∑
µ,ν

gµνdx
µdxν .

For example metric of Minkowski spacetime η, whose local coordinates are given as

{t, x, y, z}, is

ds2 = −dt2 + dx2 + dy2 + dz2.

As in [11] assuming that our manifold M is time orientable we now introduce the

concept of causality.

2.1.1 Causality Theory

A curve γ : R → M is a function that assigns points of interval I ⊂ R to points of

M . For all practical purposes we will restrict the interval I to the subinterval [0, τ ].

The starting point of the curve shall be denoted γ(0) = p ∈M , and the endpoint will

be γ(τ) = q ∈ M . The curve is said to be Ck if it is k-differentiable. If γ is C∞

differentiable, then it is a smooth curve.

Let p and q be the starting and ending points of a piecewise smooth map γ. As-

sume that γ(εi−1, εi) is a smooth line segment, where εi ∈ (0, τ), if there exists such

limi→n γ(εi) = q such that n < ∞ and the velocity of the curve γ̇ is timelike (i.e.

g(γ̇, γ̇) < 0), then γ is a trip from event p to event q [10].

In M there might exist such points that does not have a trip between them, therefore

we must restrict the regions we use in this study away from those. Consider the

following definitions:

Definition 2.1.1 LetM be an n-dimensional manifold. The vector v ∈ TM is said to

be timelike if and only if g(v, v) < 0. Also it is said to be null if and only if g(v, v) = 0

and spacelike if and only if g(v, v) > 0.

8



Let γ be a curve such that γ[0, τ ] ⊂ M . If there exists a vector γ̇(t) such that

g(γ̇(t), γ̇(t)) < 0 for almost all t ∈ [0, τ ] then γ is also said to be timelike. A null or

spacelike curve admits velocities g(γ̇(t), γ̇(t)) = 0 or g(γ̇(t), γ̇(t)) > 0, respectively.

Definition 2.1.2 [12] Let T ∈ TM be a time orientation (i.e. g(T (x), T (x)) < 0,

∀x ∈ M ). A curve is said to be future directed if there exists a vector γ̇(t) for all

t ∈ [0, τ ], such that g(T (x), γ̇(t)) < 0. Equivalently it is said to be past directed if

g(T (x), γ̇(t)) > 0, for all t ∈ [0, τ ].

Definition 2.1.3 [10] It is customary to write p � q and say that p chronologically

preceeds q if there exists a smooth future directed timelike curve with endpoint q,

starting at p. The set of such q ∈M is denoted I+(p, g) = {q ∈M | p� q}.

It is denoted p ≺ q if there exists a smooth future directed non-spacelike curve joining

p and q, and said that p causally preceeds q. The set of such q is J+(p, q) = {q ∈
M | p ≺ q}.

The sets I+(p) and J+(p) are called the timelike and causal future of the given point,

respectively.

Penrose [10] shows that the relations� and ≺ are transitive on a time orientable M .

Proposition 2.1.1: [10]

(i) p < q ⇒ p ≺ q,

(ii) p� q, q � y ⇒ p� y,

(iii) p ≺ q, q ≺ y ⇒ p ≺ y.

Example: Let M be the Minkowski spacetime. Let {xµ} be the coordinate system

around the origin. Then the timelike future of the origin O is

I+ (O) =

(xµ) : x0 <

[
3∑
i=1

(
xi
)2

]1/2
 .

Whereas the causal future of the origin is

J+(O) =

(xµ) : x0 6

[
3∑
i=1

(
xi
)2

]1/2
 .

9



Notice that in this example I+(O) is open and J+(O) is closed with respect to the

manifold topology. In fact timelike future of any point p ∈ M is open by definition,

but it must be noted that not every causal future is closed.

Now we define the timelike future of a set U ∈M .

Definition 2.1.4 [10] Timelike future of a set U is

I+(U) =
⋃
p∈U

I+(p). (2.1)

Causal future, timelike past and causal past are also defined similarly.

Let’s tackle the following proposition on the structure of open and closed sets of M .

Proposition:[10] I+(U) is open in M with respect to manifold topology for any

U ⊂M .

Proof: Since the finite union of open sets is open,
⋃
i I

+ (Ui) is open. Consider

equation (2.1). Then:

⇒
⋃
i

I+(Ui) =
⋃
i

(⋃
p∈Ui

I+(p)

)
=

⋃
p∈

⋃
i Ui

(I+(p)) = I+

(⋃
i

Ui

)
(2.2)

is open. Thus we conclude that I+(U) is open regardless of U being open or closed.

Therefore we have a method of connecting the points with piecewise smooth future

directing curves, provided that Ui ∩ Uj 6= ∅.

2.1.2 Alexandrov Topology

Now we define the Alexandrov topology.

Definition 2.1.5 (Alexandrov topology) Given a chronologically open M , the basis

of Alexandrov topology is

B =
{
I+(p) ∩ I−(q) | p, q ∈M

}
.

10



Let p ∈ M , take the curve γ : [0, τ ] → M such that γ(τ/2) = p, γ(0) = p−,

γ(τ) = p+. This implies

p ∈ I+ (p−) ∩ I− (p+) ≡ O

Since p ∈ B,∃O such that p ∈ O ∈ B,∀p ∈M .

Now assume p ∈ O1 ∩O2 for two open sets Oi ∈ B. That is p ∈ I+ (p−)∩ I− (p+)∩
I+ (q−) ∩ I− (q+) ⇒ ∃γ1, γ2 : [0, τ ] → M such that γ1(0) = p−, γ1(τ) = p+ and

γ1(r) = p, γ2(0) = q−, γ2(τ) = q+ and γ2 (r′) = p for some r, r′ < τ . Without loss

of generality assume that

p− � p� q+

⇒ ∃γ3 such that γ3(0) = p−, γ3(τ) = q+

⇒ ∃t ∈ (0, τ), γ(t) = p⇒ ∃ε < τ such that , p− � γ3(t−ε)� p� γ3(t+ε)� q+

Then we conclude that ∃O3 ⊂ O1 ∩ O2. Then B = {I+(p) ∩ I−(q) | q, p ∈M} is a

basis of topology A. Usually A is coarser than the manifold topology for chronolog-

ically open spacetimes M [10]. Consider the following theorem:

Theorem 2.1.1 [10] Following statements are equivalent for a space-time M .

(i) M is strongly causal.

(ii) Alexandrov topology agrees with the manifold topology.

(iii) Alexandrov topology is Hausdorff.

2.2 Measure Theoretic Definitions

This section is dedicated to cite some basic definitions and elementary theorems that

will be exploited in the proceeding chapters. The definitions and theorems cited are

largely based on the classical textbook of H. Federer [2].

We start by defining the measure:

Definition 2.2.1 [2] (Measure) A measure is a set function φ : 2X → R∪{∞} such

11



that

φ(A) ≤
∑
B∈Ω

φ(B), (2.3)

where the countable set Ω ⊂ 2X and A ⊂
⋃

Ω. Then, it is said that φ is a measure

on X .

An immediate conclusion of this definition is that the measures of sets may be ordered

by the innate property φ(A) ≤ φ(B) whenever A ⊂ B ⊂ X . Naturally a measure

is also additive and one may actually determine the measurability of a set exploiting

this property as follows:

Definition 2.2.2 [2] (Measurable set) A is a measurable set (with respect to φ) if and

only if A ⊂ X and for any subset K ⊂ X , φ(K) = φ(K ∩ A) + φ(K \ A) holds.

As suggested by Federer [2], this fact can be exploited to determine whether or not a

set A is measurable, by showing that the inequality φ(K) ≥ φ(K ∩ A) + φ(K \ A)

holds for any finitely measurable set K, i.e. φ(K) <∞.

Definition 2.2.3 [2] (Regular Measure) φ is said to be a regular measure if and only

if for each A ⊂ X , there exists a measurable set B s.t. A ⊂ B implies φ(A) = φ(B).

Definition 2.2.4 [2] (Hull) Let X be a φ measurable set. We say that B is a hull of

A if and only if A ⊂ B ⊂ X , B is measurable and φ(T ∩ A) = φ(T ∩ B) for every

φ measurable set T .

Federer [2] deduces that for every regular φ, if the measure of the setA, φ(A) is finite,

the set A has a hull. Another property of a regular measure is that the sum of finite

measures of sets equals the measure of the union of the sets. This fact can be summed

up as shown in the following remark:

Remark 2.2.1 Let φ be a regular measure, and A be a finitely φ measurable set such

that A =
⋃
i∈I Ai. If φ(Ai) + φ(Aj) = φ(Ai ∪ Aj) < ∞ then Ai and Aj are finitely

φ measurable for ∀i, j ∈ I .
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For all practical purposes, all the measures discussed in this thesis are regular, yet it

is beneficial to note that for any given measure, it is possible to construct a regular

measure.

Remark 2.2.2 Let φ be any measure and A be a measurable set. Then one can con-

struct the regular measure µ(A) = infB⊃A {φ(B)|A ⊂ B} where infimum is taken

over φ measurable sets B.

Example: Let φ be the counting measure and A = {i ∈ I | ai} ⊂ R for a finite

index set i ∈ I . Observe that φ(A) = n. Then A is definitely φ measurable. Let

µ(A) = infB⊃A{φ(B) | A ⊂ B} = n, since A ⊂ A, and A is indeed φ measurable.

We define the Borel sets:

Definition 2.2.5 [2] (Borel family) A Borel family B of a given set X is a family of

subsets in 2X satisfying the following conditions:

(i) If A ∈ B, then X \ A ∈ B.

(ii) If B′ ⊂ B and B′ is countable, then
⋃
B′ ∈ B.

(iii)If ∅ 6= B′ ⊂ B and B′ is countable, then
⋂
B′ ∈ B.

For every S ⊂ 2X , there exists a smallest Borel family containing S, called the Borel

family generated by S. In the case thatX is a topological space and T is the topology,

the members of the Borel family generated by T are the Borel sets associated with T
[2].

Definition 2.2.6 [2] (Borel regular measure) The measure φ is said to be Borel reg-

ular on the topological spaceX if and only if all open sets ofX are φmeasurable and

∀A ⊂ X , there exists a Borel set B such that A ⊂ B ⊂ X for which φ(A) = φ(B).

Definition 2.2.7 (Support) [2] Let φ measure the topological space X . Let T be the

topology. Support of φ, denoted sptφ, is the set

sptφ = X \
⋃
{A|A ∈ T , φ(A) = 0} . (2.4)
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Another definition we will use throughout is the Radon measure which is defined over

a locally compact Haussdorf space.

Definition 2.2.8 Radon Measure: [2] A Radon measure φ over a locally compact

Hausdorff space X is a measure that satisfies the following:

(i) If K is a compact subset of X , φ(K) <∞,

(ii) If O is an open subset of X , then O is φ measurable and

φ(O) = sup{φ(K)|K is compact, K ⊂ O},

(iii) For all A ⊂ X ,

φ(A) = inf{φ(O)|O is open, A ⊂ O}.

Definition 2.2.9 (Lipschitz function)[2] The function f : X → Y is said to be Lip-

schitzian if and only if there exists a number M ∈ R+ such that dY (f(x), f(y)) ≤
MdX(x, y), where dX and dY are the metric on the metric spaces X and Y , respec-

tively, and M is said to be the Lipschitz constant.

This definition can be narrowed down to a locality condition, given that the vector

space X is a convex subspace of a V ⊂ TM with the inherited norm of the manifold

M . That is, in X ⊂ V ⊂ TM , any line segment γ: [0, τ ] → X joining any points

x, y ∈ X is also contained in X , i.e. γ = {γ[0, τ ] ∈ V |γ(0) = x, γ(τ) = y} ⊂ X .

The merit of this definition will be appreciated later in the upcoming discussions as

we concentrate our interest into Lorentzian vector spaces.

Definition 2.2.10 (Locally Lipschitz function)[2] Assume that V is the vector space

with the inherited norm. Let X be a convex subspace in V . Then, a function f : X →
Y is said to be locally Lipschitz if and only if

lim sup
y→x

dY (f(x), f(y))

|dX(x, y)|
≤M(x), ∀x ∈ X, (2.5)

where M(x) is a constant depending on the point x ∈ X . The infimum of such

constants is denoted by |∇f | (x) for a given x ∈ X and called the slope of f .
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Consider the following theorems.

Theorem 2.2.1 [2] If X is φ measurable metric space such that all open subsets

O ⊂ X are also φ measurable, the following statements hold:

(i) Given a Borel set O such that φ(O) < ∞ and a real number ε > 0, there exists a

closed set C, satisfying C ⊂ O and φ(O \ C) < ε.

(ii) Let the Borel set O be a subset of the countable union
⋃
i∈F Oi, φ(Oi) < ∞ and

ε > 0. Then there exists an open set Õ such that φ(Õ \O) < ε.

Definition 2.2.11 (Characteristic function) Characteristic function of a set A ∈ X
is defined to be the step function χA : X → {0, 1} such that χA(x) = 1 if x ∈ A and

χA(x) = 0 otherwise.

Note that we changed the widely used notation 1A for characteristic function to χA

so that the former notation is reserved for the identity map over the set A.

Definition 2.2.12 (Measurable functions) Let X be a φ measurable space and Y be

a topological space. Let f : D → Y where D ⊂ X . f is said to be φ measurable if

and only if φ(X \D) = 0 (i.e. domain of f contains φ-almost all of X), f(D) ⊂ Y

and f−1(B) is φ-measurable for all open B ⊂ Y .

Now we must note an important result for metric spaces called the “Carathéodory’s

Criterion”. Consider the identity mapping over X , (1A : X → X). Assume that 1A

is φ-measurable. Then, by the definition f−1(B) = B is φ-measurable, requiring that

all the open subsets B ⊂ X are φ-measurable. If our measurable space is inherently

a metric space, one obtains another fundamental result:

Remark 2.2.3 (Carathéodory’s Criterion:)[2] Given any open subset O, Õ ⊂ X is

φ measurable if and only if φ(O ∪ Õ) ≥ φ(O) + φ(Õ) whenever inf{d(x, y)|x ∈
O, y ∈ Õ} > 0 which is the distance between sets O and Õ, i.e. dist(O, Õ).
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2.3 Distributions and Geodesics

Let M be an n dimensional manifold. A distribution is a linear sub-bundle of the

tangent bundle TM of the manifold. The distribution is referred to as the horizontal

space or a horizontal distribution. Curves tangent to this space is said to be horizontal

curves [13].

A k dimensional distribution where k 6 n can be visualized as a functionD such that

for any p ∈ M , D(p) ⊂ TpM . A distribution D is of class C∞ at p ∈ M , if there

exists a set of vector fields {X1, . . . , Xk} of class C∞ defined on a neighborhood U

of p, p ∈ U ⊂M , such that for all q ∈ U , {X1(q), . . . , Xk(q)} spans D(q) [14].

A vector field X is in the distribution D if for every p in the domain of X , X(p) ∈
D(p). Then we define the involutive distribution.

If two vector fields belong to the involutive distributionD, then the Lie bracket [X, Y ]

belongs to D as well. A distribution having this property could also be considered a

bracket generating distribution. Let us define it formally below.

2.3.1 Bracket Generating Distributions

Let D be a subbundle of TM such that [3]

D(p) = {v ∈ TpM | gp(v, v) <∞}. (2.6)

Assume that there exists a sequence {Di} of vector fields in D, which is closed under

Lie bracket, i.e. [Di, Dj] ∈ {Di}.

Define the elements of {Dj} using the following setup: [14]

D2 = D + [D,D], . . . , Di = Di−1 +
[
D,Di−1

]
Then {

Dj
}

=
{
D,D + [D,D], . . . ·Di−1 +

[
D,Di−1

]
, . . . , TM

}
D ⊂ D2 ⊂ . . . ⊂ Di ⊂ · · · ⊂ TM

This implies that every horizontal vector may be expressed in terms of iterated Lie

brackets [D, [D2, [D3 . . .]]] [15].
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Definition 2.3.1 (Bracket generating distribution): [15] [13] Let D ⊂ TM . If

there exists o sequence {Dj}, such that Dj ⊂ TM where j ∈ Z+, D1 = D and,

Dj = Dj−1 + [D,Dj−1]. The last term indicates Lie bracket and for some k ∈
{j}, Dk = TM , then D is said to be bracket generating (or equivalently, completely

non -integrable).

Here are some examples of how to construct bracket generating distributions.

Example: (Heisenberg Distribution)[14]

LetM = R3, and letD = span{D1, D2} = span{ ∂
∂x1
− 1

2
x2 ∂

∂t
, ∂
∂x2

+ 1
2
x1 ∂

∂t
}. One can

easily see that
[
∂
∂x1
− 1

2
x2 ∂

∂t
, ∂
∂x2

+ 1
2
x1 ∂

∂t

]
= D3 = ∂

∂t
. Notice that span{D1, D2, D3} =

R3. Then Heisenberg distribution is bracket generating.

Example: (Lie Group)[3] Let G be a connected Lie group and g be the associated

Lie algebra. Let g1 = span{Xµ}, where g = g1 + g2. To exemplify, we let X1 =

cos θ ∂
∂x

+ sin θ ∂
∂y

and X2 = ∂
∂θ

. Then,
[
cos θ ∂

∂x
+ sin θ ∂

∂y
, cos θ ∂

∂x
+ sin θ ∂

∂y

]
=

∂2
x + ∂2

y = ∂θ = X2. The Lie group associated is R2 × S1.

2.3.2 Geodesics

Consider the following theorem:

Theorem 2.3.1 (Ball-Box Theorem)[13][6] Let M be a Riemannian manifold with

coordinates {xµ} at the point p and Bρ(p) be the ball of radius ρ around p ∈ M .

Define the box Boxρ(p) = {y ∈ M | | yµ − xµ |≤ ρ}. Then there exists constants

c, C ∈ R+, ρ0 > 0 such that for all ρ < ρ0, the following holds

Boxcρ(p) ⊂ Bρ(p) ⊂ BoxCρ(p). (2.7)

A direct consequence of this theorem is the existence of finite length curves connect-

ing the points enclosed by Bρ(p).

For a Lorentzian manifold Ball-Box theorem does not necessarily hold. Under the

assumption of the existence of bracket generating distributions, we may state a weaker

result than the original ball box theorem, called Chow-Rashevskii theorem.
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Theorem 2.3.2 (Chow - Rashevskii)[13] A bracket generating distribution D ⊂
TM of a connected manifold M implies that a set of points in M can be connected

by a horizontal curve.

Theorem (2.3.2) holds for Riemannian manifolds. It also has local and global impli-

cations, namely a local doubling assumption and a local Poincaré inequality. If the-

orem (2.3.2) holds, we say that these assumptions are satisfied automatically. In the

Lorentzian case, we may not be able to have such a strong result. Therefore through-

out this thesis the assumptions on the metric space is generalized to somewhat weaker

conditions that will later be discussed (see (A1) (4.25) and (A2) (4.26)).
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CHAPTER 3

SUB-METRIC MANIFOLDS

In this chapter we define the sub-Riemannian and sub-Lorentzian manifolds. These

manifolds are endowed with a Riemannian or a Lorentzian metric, respectively.

3.1 Sub-Riemannian Manifolds

A sub-Riemannian manifold, i.e the manifold endowed with the distance d, is the

generalization of a Riemannian manifold via Carnot-Carathéodory metric. In this

setting, extraordinarily, the distance function is defined by the help of so-called length

minimizer. This property is especially worth investigating from a physicist’s point of

view as this condition may simplify a plethora of problems concerning how to define

trajectories of some particles moving under constraints.

A sub-Riemannian manifold is a a manifold M of dimension n, endowed with a

distribution defined in the preceding chapter and an accompanying fiber inner product

[13]. On M we might define the distance between the two points p, q ∈ M as the

usual Riemannian distance if they are connected by a horizontal curve previously

defined. If such a curve does not exist, we say that points p and q have infinite

distance between them.

Consider the Riemannian manifold M . The metric g : TpM × TpM → R on the

tangent bundle TM is positive definite. The definition of Riemannian norm ‖.‖ :

TpM → R is ‖v‖ =
√
gp(v, v). We might realize this norm as a measure over the

metric space.

Consider the points p, q ∈M . Let γ : [0, τ ]→M be the curve connecting these two.
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Therefore we have γ(0) = p, γ(τ) = q. A vector v ∈ TzM , tangent to the curve γ at

the point γ(t) ∈M will be denoted γ̇t ∈ Tγ(t)M as usual. The associated Riemannian

norm ‖γ̇t‖ =
∫ τ

0

√
gγ(s)(γ̇(s), γ̇(s))ds is nonnegative by definition. This translates to

inf
γ

∫ τ

0

√
gγ(s)(γ̇(s), γ̇(s))ds > 0.

Now, restrict the curves γ to be the horizontal curves, i.e. curves whose tangent

vectors belong to a bracket generating distribution D. The resulting distance function

inf{γ:γ̇∈D}
∫ τ

0

√
gγ(s)(γ̇(s), γ̇(s))ds, is said to be the Carnot-Carathéodory distance.

This distance can be realized as a metric on a Riemannian manifold, and historically

is called as the C-C metric [6].

3.1.1 Definition and Construction

Now we are ready to give the formal definition of sub-Riemannian norm.

Let M be an n-dimensional Riemannian manifold. Choose any Euclidean bundle U

over TM , and let the inclusion map u : U → TM be smooth. Assume that under

such map u, the fiber Up is mapped linearly to TpM , u(Up) ⊂ TpM . Then we

construct the so called horizontal, bracket generating distribution

D = {u ◦ σ | σ ∈ C∞(M,U), σ(p) ∈ Up}. (3.1)

Here C∞(M,U) denotes the infinitely differentiable functions from M to U ⊂ TM .

A great candidate for σ is the exponential function over M . A fiber D(p) is given as:

D(p) = u(Up) ⊂ TpM. (3.2)

Sub-Riemannian distance at the point p ∈ M is the following function dp(v) :

TpM →M ,

dp(v) =

 min
{
‖ν‖p : ν ∈ Up, u(ν) = v, v ∈ D(p)

∞, v /∈ D(p)
(3.3)

where ‖.‖p is the usual Riemann norm at the point p.

As an example, let {σi} where i = 1, . . . , n be the orthonormal frame at some UΩ

where Ω ⊂M is open and σi ≡ σi(x
µ) is a function of {xµ}, i.e. the usual coordinate
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basis. Let Xi = u ◦ σi. We observe that span{Xi} is a local frame of UΩ ⊂ TM .

We may write any vector v ∈ UΩ in component form v =
∑n

i=1 ciXi(p), then the

sub-Riemannian norm is given as

dp(v) = min
{ci:v=ciXi(p)}

[
n∑
i=1

c2
i

]1/2

. (3.4)

We established the sub-Riemannian norm of a vector. Now, we need to write down

the sub-Riemannian distance between two points. Let {Xi} be the orthonormal basis

with respect to the metric g, and D = span{X1, . . . , Xn} be the distribution. Let

γ(t) ∈ M . Then u ◦ σ(γ) =
∑n

i=1 ci(t)Xi(γ). Therefore the sub-Riemannian length

of a curve γ is

d(p, q) = min

{∫ τ

0

‖γ̇(t)‖dt | γ(0) = p, γ(τ) = q, γ̇(t) ∈ D(γ(t))

}
. (3.5)

Recall theorem (2.3.2) that definitely holds for Riemannian manifolds, thus justifying

the choice of sub-Riemannian distance via the existence of geodesics.

3.1.2 Sub-Riemannian Distance as a Solution of the Optimal Control Problem

Definition 3.1.1 (Admissible Pair) [15] Let M be an n-dimensional, smooth, sub-

Riemannian manifold, and V be a subspace in M . Let π : V → M be a submersion.

Notice that π induces a fiber bundle. We denote U = π−1(q) for a chosen point

q ∈M . (u, γu) : [0, τ ]→ V is said to be an admissible pair where γu is a Lipschitzian

curve on M and γ̇u = f (u, γu) where f : V → TM is a morphism of vector bundles.

A given τ ∈ R is a parameter that determines the domain of admissible pairs. As in

[15], we denote Vτ as the space of such admissible pairs. Moreover, Vτ is a smooth

Banach submanifold of L∞([0, τ ], V ) [15]. Note that if any points p, q ∈ V ⊂ M

admits at least one admissible pair connecting them, then (V, f) is said to be a con-

trollable system [15].

As given in [13], a direct corrolary for theorem (2.3.2) is the following:

Theorem 3.1.1 [13] Let M be a connected manifold, and D ⊂ TM be a bracket-

qenerating distribution, and V ⊂M be a subset.
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(i) Then ∀p ∈ V , ∃U ∈ V such that U is a neighborhood of p, every q ∈ U admits a

pair (u, γu) ∈ Vτ such that γu(0) = p, γu(τ) = q, hence a minimizing geodesic.

(ii) LetM be a complete manifold relative to the Carnot - Carathédory distance. Then

any p, q,∈M can be connected by a minimizing geodesic.

Now, we not only know that in a Riemannian manifold, a pair of points can be con-

nected by a curve admitting sub-Riemannian distance, but we also know that such a

curve is indeed a geodesic of the initial Riemannian manifold. Therefore we give the

definition below:

Definition 3.1.2 C-C distance on sub-Riemannian manifolds

The corresponding Carnot - Carathéodory distance between two points p, q ∈ M is

the following:

d (p, q) = inf
γ
l(γ),

where the infimum is over horizontal curves such that γ(0) = q0, γ(τ) = q1 . More

precisely

d (p, q) =

 infγ l(γ) if ∃γ s.t. γ(0) = p, γ(τ) = q

∞ otherwise.

Let I : Vτ → R be the functional minimizing the length l(γ). Then for an admissible

pair (u, γu), we need to minimize the functional

1

2

∫ τ

0

n∑
j=1

u2
jdt, where u ∈ {u ∈ Rn | ‖u‖ < 1} , (3.6)

in order to obtain C-C distance between two points connected by γ, where ‖.‖ denotes

the Riemannian norm as usual.

3.1.3 Existence of Geodesics (Ball-Box Theorem)

We established that minimizing geodesics exist for Riemannian manifolds. We need

to discuss their existence in sub-Riemannian setting as well. It is somewhat easy to

conclude that the existence in Riemannian case translates into the sub-Riemannian

counterpart.
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We need to find the sub-Riemannian equivalent of the Ball-Box theorem. In [13], the

following theorem is stated:

Theorem 3.1.2 [13] If D is a bracket generating distribution on a connected mani-

fold M then any p, q ∈M can be connected by a horizontal curve.

A horizontal curve, as defined before, is a curve whose tangent vectors is in the hor-

izontal (bracket generating) distribution. If D ⊂ TM is a bracket generating distri-

bution, then we know that for any point p, q ∈ M , there exists a curve γ such that

γ̇t ∈ D, γ(0) = p, γ(τ) = q. Therefore we are justified in choosing the distance

between two points as the infimum of length of the curves connecting those given

that we may write a bracket generating distribution for the base Riemannian manifold

M . In general sub-Riemannian distance is the metric distance between the points of

the manifold.

3.2 Sub-Lorentzian Manifolds

A sub-Lorentzian manifold is also a topological manifold endowed with a distance

metric. Structurally it resembles its sub-Riemannian counterpart.

3.2.1 Definition

We choose a horizontal distributionD ⊂ TM of the Lorentzian manifoldM endowed

with the Lorentzian metric η.

LetM be an n-dimensional Lorentzian manifold, with the metric signature (−1, 1, . . . , 1).

Consider the vector v ∈ D ⊂ TM . Vectors are classified in the usual sense as time-

like, spacelike or null with respect to η.

Timelike and causal pasts of the point x ∈ M is also determined similarly with the

condition η(T, γ̇) > 0. Finally the Carnot-Carathéodory distance is given as

dη (p, q) =

 supγ(l(γ)) if q ∈ J+ (p, η)

0 otherwise ,
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where l(γ) =
∫ τ

0
| η(γ̇(t), γ̇(t)) |1/2 dt. As opposed to the sub-Riemannian case, the

distance between two points of M is determined by a maximizing curve, rather than

a minimizing one. Similar to the previous case

dη(p, q) = max

{∫ τ

0

| η(γ̇(t), γ̇(t)) |1/2 dt
∣∣γ(0) = p, γ(τ) = q, γ̇(t) ∈ D(γ(t))

}
.

(3.7)

Consider the following theorem.

Theorem 3.2.1 [16] Following statements are equivalent for a sub-Lorentzian M .

(i) M is strongly causal, i.e. given an open neighborhood U = I+(p) ∩ I−(q), the

timelike future directed curve which leaves U never returns to U .

(ii) Open topology A is equal to the manifold topology T , T = A.

(iii) A is Hausdorff.

Rephrasing the above theorem, we state that the curves γ are restricted to be the time-

like curves whose velocity vector γ̇ are included in a bracket generating distribution.

This prevents γ to constitute a loop. Therefore the curve connecting p ∈M to p ∈M
has length 0; i.e. dη(p, p) = 0 as usual. Whether or not dη constitutes a metric over

M is an open problem and not necessarily trivial for most η. However, we do not

require M to be a metric space under dη in our thesis since we exploit this function

as a measure rather than a metric.

Let’s consider a horizontal smooth distribution D ⊂ TM . Consider any point p ∈
M , and a neighborhood Up around it. ∀q ∈ Up, there exists a set of vector fields

{Xi} , i ∈ {0, 1, . . . , k} such that Dq = span {X0(q), . . . , Xk(q)}.

As given in the preceding section, an admissible pair (u, γu) is the control u, and an

admissible curve γ : [0, τ ] → M with γ̇(t) ∈ Dγ(t) almost everywhere. Existence of

admissible pairs is determined via the bracket generating property of D.

One must realize that admissible pairs might not exist for a sub-Lorentzian M for all

p, q ∈ M . Therefore, we may only define admissible pairs if q ∈ M is reachable by

a timelike curve.

In the case that D is bracket generating, and T ⊂ D is a time orientation the distance
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between p, q ∈M is given by

dη (p, q) = sup
γ
l(γ) for q ∈ J+ (p, η) .

To find the admissible pair (u∗, γu∗) whose length equals to the distance, one needs

to maximize the following functional J , for the set U [15]

J =

∫ [
u2

0 −
n−1∑
j=1

u2
j

]1/2

dt, U =

u ∈ Rn | u0 =

(
1 +

n−1∑
j=1

u2
j

)1/2


Notice that the integrand of J appears as if we changed the signature of the metric,

but remember that the u the so called control function where u(p) ∈ Rn for a point p

on the curve γ, not a Lorentzian vector.

Compared to the sub-Riemannian case, determining the maximum of J is usually

more cumbersome since J is a non-convex functional.

3.2.2 Existence of Geodesics

If M is a spacetime, the curves γ whose length is equal to dη (p, q) = supγ l(γ)

are said to be the geodesics of the Lorentzian manifold. We may state that in sub-

Lorentzian manifold the distance between two points is the length of the geodesic

curve connecting them. Given a sub-Lorentzian M , the particles moving towards

the point q ∈ M may only travel along the geodesics. Also the particles are not

allowed to loop, therefore they may never travel back in time. This automatically

satisfies the causality condition imposed on a spacetime. Therefore we may carry

out our physical calculations in the corresponding sub-Lorentzian manifold instead

of working in the original manifold where we cannot get rid of spacelike regions and

timelike loops. This allows us to carry out calculations without possibly violating

causality or considering spacelike regions of the spacetime.
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CHAPTER 4

SETS OF FINITE PERIMETER

Throughout this section it is assumed that M is an n dimensional sub-Riemannian

manifold and ω ∈ Λn(M) is a top form. Hence, we define the volume measure over

a Borel set E ⊂M as:

m(E) =

∫
E

ω. (4.1)

As discussed in the preliminaries, the characteristic function of the set E ⊂ M ,

χE(x), is the following:

χE =

1, x ∈ E

0, x /∈ E
.

The volume form in the local coordinates is

ω = ρdx1 ∧ · · · ∧ dxn (4.2)

for some ρ(x) > 0 [17]. Let us consider the Lie derivative of the volume form with

respect to the vector field X , LXω. By Cartan’s formula:

LXω = ιX(dω) + d(ιXω). (4.3)

Since ω is a top form dω = 0. Therefore we have

LXω = d(ιXω). (4.4)
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Writing explicitly

LXω = d(ιXω)

= d
∑
k

(−1)k−1ρdx1 ∧ · · · ∧ ιXdxk ∧ · · · ∧ dxn

= d
∑
k

(−1)k−1(ρXk)ρdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

=
∑
k

(−1)k−1

{
∂

∂xk
(ρXk)dxk

}
∧ dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn

=
∑
k

{
∂

∂xk
(ρXk)

}
∧ dx1 ∧ · · · ∧ dxk ∧ · · · ∧ dxn

=

{
1

ρ

∑
k

∂

∂xk
(ρXk)

}
ρdx1 ∧ · · · ∧ dxn.

(4.5)

As in [17]

divX =
1

ρ

n∑
k=1

∂

∂xk
(ρXk). (4.6)

Therefore we write

LXω = (divX)ω. (4.7)

Take a test function ϕ ∈ C∞c (M). We will integrate ϕLXω over the manifold M .

Consider the identity given in [3]∫
M

ϕLXω =

∫
M

ϕ(divX)ω = −
∫
M

(Xϕ)ω. (4.8)

Now consider a function f ∈ C1(M). Applying the above identity to fϕ, we obtain∫
M

fϕ(divX)ω = −
∫
M

(X(fϕ))ω. (4.9)

Applying Leibniz rule∫
M

fϕ(divX)ω = −
∫
M

f(Xϕ)ω −
∫
M

ϕ(Xf)ω. (4.10)

Then

−
∫
M

ϕ(Xf)ω =

∫
M

fϕ(divX)ω +

∫
M

f(Xϕ)ω. (4.11)

Assume that X is a subset of the horizontal distribution D defined in the preceding

chapters. Then for an open subset Ω ⊂M , (Xf) may also be realized as a distribution

[3]. Consider the following definition:
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Definition 4.0.1 [3] Given an open set Ω ⊂ M , a measure with finite total variation

in Ω is the derivative of f in the sense of distributions, along X in Ω. We denote this

measure by DXf . If f ∈ C1(M), then DXf = (Xf)m.

Therefore we write

(Xf)m =

∫
Ω

(Xf)ω =

∫
Ω

d(DXf) (4.12)

Rewriting (4.11) in Ω, we obtain

−
∫

Ω

ϕd(DXf) =

∫
Ω

fϕ(divX)ω +

∫
Ω

f(Xϕ)ω. (4.13)

Total variation of the measureDXf over Ω is denoted by |DXf |(Ω), or simply |DXf |.
We use the following proposition to determine and define the variation of a measure

DXf .

Proposition 4.0.2 [3] Given Ω ⊂M, f ∈ L1
loc(Ω,m), DXf has finite total variation

in Ω if and only if

sup
ϕ

{∫
Ω

f div(ϕX)(ω) | ϕ ∈ C∞c (Ω), | ϕ |6 1

}
<∞ (4.14)

In this case we denote |DXf | as the total variation of the measure DXf .

Therefore we write the following definition:

Definition 4.0.2 The total variation of the measure DXf over Ω ⊂M is

sup
ϕ

{∫
Ω

f div(ϕX)(ω) | ϕ ∈ C∞c (Ω), | ϕ |6 1

}
≡ |DXf |, (4.15)

where f ∈ L1
loc(Ω,m).

We have established how to determine whether f has finite total variation. Now we

can define the space of functions of bounded variation.
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4.1 Space of Functions of Bounded Variation

In this thesis, we define two spaces of functions of bounded variation, namelyBV (Ω, g, ω)

and BV (Ω, d,m) where Ω is an open subset of the manifold M .

The space BV (Ω, g, ω) is defined with respect to the metric g of M and the volume

form ω whereas BV (Ω, d,m) is defined with respect to the C-C distance d and the

volume measure m.

4.1.1 BV (Ω, g, ω) of Riemannian Manifolds

Remembering the definition given in the previous chapters, we pick a smooth section

Γg(Ω, D) of the distribution D, where Γ(Ω, D) is the set of smooth vector fields

X ∈ TM such that X(p) ∈ D(p) for all p ∈ Ω:

Γg(Ω, D) ≡ {X ∈ Γ(Ω, D) | gp(X(p), X(p)) 6 1,∀p ∈ Ω} . (4.16)

Consider the following definition:

Definition 4.1.1 [3] The space BV (Ω, g, ω): Let Ω ⊂ M be an open set and f ∈
L1(Ω,m). f is said to have bounded variation in Ω if DXf exists for all X ∈
Γg(Ω, D) and

sup
X∈Γg(Ω,D)

{|DXf |(Ω) : X ∈ Γg(Ω, D)} <∞.

Then it is said that f belongs to the space of functions of bounded variation, f ∈
BV (Ω, g, ω).

Observe that

sup
X∈Γg(Ω,D)

{|DXf | (Ω) | X ∈ Γg(Ω, D)}

= sup
X∈Γg(Ω,D)

{
sup

ϕ∈C∞c (Ω)

{∫
Ω

f div(ϕX)ω | ϕ ∈ C∞c (Ω), |ϕ| 6 1

} ∣∣∣X ∈ Γg(Ω, D)

}

= sup
X∈Γg(Ω,D)

{
sup

ϕ∈C∞c (Ω)

{∫
Ω

fL(ϕX)ω | ϕ ∈ C∞c (Ω), |ϕ| 6 1, X ∈ Γg(Ω, D)

}}
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Since ϕX can also be realized as an element of the distribution D, we write

= sup
ϕX∈Γg(Ω,D)

{∫
Ω

fL(ϕX)ω | ϕ ∈ C∞c (Ω), |ϕ| 6 1, X ∈ Γg(Ω, D)

}
.

Therefore we define

|Df | = sup
ϕX∈Γg(Ω,D)

{∫
Ω

fL(ϕX)ω | ϕ ∈ C∞c (Ω), |ϕ| 6 1, X ∈ Γg(Ω, D)

}
. (4.17)

Since ϕ is only a test function we might as well consider ϕX ≡ X ∈ Γg(Ω, D). Then

we say that following holds if f ∈ BV (Ω, g, ω):

|Df | = sup
X∈Γg(Ω,D)

{∫
Ω

fL(ϕX)ω | ϕ ∈ C∞c (Ω), |ϕ| 6 1, X ∈ Γg(Ω, D)

}
<∞.

(4.18)

Example: Let M = Rn. In this case a function f is said to be of bounded variation,

i.e. f ∈ BV (Ω, g, ω), where Ω ⊂ Rn is an open set with the metric g and the

volume form ω ∈ Λn(M) if its distributional gradient is a finite Rn vector valued

Radon measure over Ω [18]. Notice that the supremum given in (4.18) may be written

equivalently for this case as

|Df |(Ω) ≡ sup
ϕ

{∫
Ω

f divϕdV
∣∣ϕ ∈ C1

c (Ω;Rn) ,
∣∣ϕ |6 1

}
<∞. (4.19)

Divergence of the “test function” ϕ is given by:

divϕ =
n∑
j=1

Xjϕj, (4.20)

where Xj = Xµ
j

∂
∂xµ

. Equivalently if ϕ ∈ C∞c (Ω)∫
Ω

f
∂ϕ

∂xi
dV = −

∫
Ω

ϕd(Dif). (4.21)

Here we state a theorem given in [3] that will be of use in the proceeding chapters.

Theorem 4.1.1 Let Ω ⊂ M be open and f ∈ L1(Ω,m). Let X be a smooth vector

field in Γ(Ω, D) and φXt be the flow generated by X on M . If DXf is a signed

measure with finite total variation, then in Ω, the following holds

|DXf |(Ω) = sup
Ω′bΩ

{
lim inf
t→0

∫
Ω′

f(φXt )− f
|t|

ω |Ω′ b Ω

}
. (4.22)
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4.1.2 BV (Ω, d,m) of sub-Riemannian Manifolds

We have defined the space BV (Ω, g, ω) above. An equivalent space of functions of

bounded variation can be defined as:

Definition 4.1.2 [18] Let Ω ⊂ M be open and f ∈ L1(Ω,m). f ∈ BV (Ω, d,m) if

there exists a set {fn} ⊂ L1(Ω,m) such that

lim sup
n→∞

∫
Ω

|∇fn|dm <∞. (4.23)

Then we define

‖Df‖(Ω) ≡ inf
fn

{
lim inf
n→∞

∫
Ω

|∇fn| dm : fn ∈ Liploc(Ω), lim
n→∞

∫
Ω

|fn − f | dm = 0

}
,

(4.24)

where infimum is taken over fn that satisfies limn→∞
∫

Ω
|fn − f | dm = 0.

‖Df‖(Ω) is the total variation of f in Ω ⊂ M where M is a sub-Riemannian man-

ifold. In case ‖Df‖(Ω) is finite, f is a function of bounded variation, i.e. f ∈
BV (Ω, d,m). This is understood as f is a function of bounded variation with respect

to the distance measure d instead of the metric g.

Hence we have defined a space BV (Ω, d,m) which is the analogue of the space

BV (Ω, g, ω).

4.1.3 Equivalence of BV (Ω, g, ω) and BV (Ω, d,m)

In this section we give a theorem proven in [3] that shows the equivalence of the

spaces BV (Ω, g, ω) and BV (Ω, d,m). In order for the following theorem to hold,

we must impose two conditions on the metric space and the metric measure structure.

These are stated as the following.

(A1) (Local doubling assumption)

Let M be a sub-Riemannian manifold and U be an open set, U ⊂ M . ∀K ⊂ U

compact, ∃l > 0, C > 0 such that ∀p ∈ K, r ∈ (0, l)

m (B2r(p)) 6 Cm (Br(p)) . (4.25)
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(A2) (Local Poincaré inequality)

for all compact K ⊂ U , ∃l, c, λ > 0 such that∫
Br(p)

|f − fp,r| dm 6 cr

∫
Bλr(p)

|∇f |dm, (4.26)

where f is a locally Lipschitz function, p ∈ K and r ∈ (0, l) and fp,r is the mean

value of f on the ball Br(p). Here∇f is the slope of f as in (2.2.10).

Remark 4.1.1 LetM be a metric space, endowed with the distance function d. Given

a local Lipschitz function f : M → R, |∇f | at the point p ∈M is defined as

|∇f |(p) = lim sup
q→p

d(f(q)− f(p))

d(q, p)
.

Although skipped in [3], we may show that (A1) implies (A2).

Proposition 4.1.2 Let U be the sub-Riemannian manifold and U ⊂M be open. Then

the condition (A1) (4.25) stated above implies (A2) (4.26) for sufficiently small r > 0.

Proof

(i) (A1) holds in sub-Riemannian M .

The proof of this follows from the Ball-Box theorem (2.3.1).

(ii) (A1) implies (A2) for sufficiently small r.

Let K ⊂ X be a compact subset of X . If f is locally Lipschitz, then ∀y ∈ Br(p),

|f(x)− f(p)| 6 kd(p, x) for some k > 0, k ∈ R. Then∫
Br(p)

d(f(x), f(p))dm 6 k

∫
Br(p)

d(x, p)dm. (4.27)

Now use the mean value inequality

d(f(x), f(p)) 6 d(x, p) sup
y∈Bd(x,p)(p)

|f ′(y)| . (4.28)

Since fp,r is the mean value of the function in some domain, without loss of generality,

we write fp,r = f(x̃) for some fixed x̃ ∈ Br(p). p is the center of the ballBr(p). Then

there exists some x ∈ Br(p) that satisfies |f(x)− f(x̃)| 6 |f(x)− f(p)|.

d(f, fp,r) ≡ d(f(x)− f(x̃)) 6 sup
x∈Br(p)

d(f(x), f(p)). (4.29)
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⇒
∫
Br(x)

(.f, fp,r)dm 6
∫
Br(x)

sup
x∈Br(p)

d(f(x), f(p))dm

6
∫
Br(p)

sup
x∈Br(p)

{
d(x, p) sup

y∈Bd(x,p)(p)
|f ′(y)|

}
dm.

Note that supy∈Br(x){d(y, x)} 6 r. Then we write:

⇒
∫
Br(x)

sup
x∈Br(p)

{
d(x, p) sup

y∈Bd(x,p)(p)
|f ′(y)|

}
dm 6

∫
Br(p)

r sup
x∈Br(p)

|f ′(x)| dm

=r

∫
Br(p)

sup
x∈Br(p)

|f ′(x)| dm.

(4.30)

Using the definition of f ′(z) and |∇f |(z)

r

∫
Br(p)

sup
x∈Br(p)

|f ′(x)| dm = r

∫
Br(p)

sup
x∈Br(p)

{
lim
y→x

d(f(y)− f(x))

d(y, x)

}
dm

= r

∫
Br(p)

lim sup
y→x∈Br(p)

d(f(y)− f(x))

d(y, x)
dm

= r

∫
Br(p)

|∇f |(x)dm.

(4.31)

Therefore we obtain∫
Br(p)

d(f − fp,r)dm 6 r

∫
Br(p)

|∇f |(x)dm. (4.32)

This resembles Poincaré inequality somehow. We will manipulate the radius of the

ball to satisfy the local Poincaré inequality.

Now we use equation (4.27)

∫
Br(p)

d(f(x), f(p))dm 6
∫
Br(p)

sup
x∈Br(p)

d(f(x), f(p))dm

6 k

∫
Br(p)

sup
x∈Br(p)

d(x, p)dm

6 kr

∫
Br(p)

dm.
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Here k = k(p) is a real constant determined by p ∈ M . Now, let us use the local

doubling property (A1) (4.25)

∫
Br(p)

dm 6 C

∫
B r

2
(p)

dm, (4.33)

which can also be extended in the following manner for some finite c ∈ R:

∫
Br(p)

dm 6 C

∫
B r

2
(p)

dm 6 C ′
∫
B r

4
(p)

dm 6 · · · 6 c

∫
Bλr(p)

dm. (4.34)

Then we have

kr

∫
Br(p)

dm 6 c̃r

∫
Bλr(p)

dm, (4.35)

for some c̃ ∈ R.

If r > 0 is sufficiently small region of the domain such that supx∈Bλr(p) |f
′(x)| =

supx∈Br(p) |f ′(x)| is constant, we have

kr

∫
Br(p)

sup
x
|f ′(x)|dm 6 c̃r

∫
Bλr(p)

sup
x
|f ′(x)|dm, (4.36)

for some finite constant c̃ > 0. Then we obtain

r

∫
Br(p)

sup
x
|f ′(x)| dm 6 c̃r

∫
Bλr(p)

sup
x
|f ′(x)|dm. (4.37)

Working out the equation (4.31) for this case, and combining with the equation (4.30),

we obtain ∫
Br(x)

d(f − fx,r)dm 6 c̃r

∫
Bλr(p)

|∇f |(x)dm. (4.38)

�

Hence we conclude that sufficiently small compact neighborhoods ofM satisfies local

Poincaré inequality. Therefore we may state that the results given in this thesis hold

for small neighborhoods automatically.
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This result cannot be extended to an arbitrary r such that Br(p) ⊂ U , where p ∈
K ⊂ U lies in a compact K. Therefore local doubling (A1) (4.25) is not a sufficient

condition for regions of arbitrary volume. Therefore our results are valid for volumes

that satisfy (A1) (4.25) and (A2) (4.26) separately. We can state other properties of

such regions. Consider the following theorem:

Theorem 4.1.3 ((A1) and (A2) implies rectifiability:)[19] Let M be locally compact

and m be a locally doubling measure. Assume that in M a local Poincaré inequality

holds. Then M is locally rectifiably path-connected. This means that ∀p ∈ M there

exists finite constants r0, k(p) > 0 such that every p, q ∈ Br0(p) can be connected by

a curve γ whose length is l(γ) 6 supk{k(p)d(p, q)}.

It can be deduced from the above proof also that for sufficiently small r0, local dou-

bling and rectifiability also imply local Poincaré inequality. However, it must be noted

that rectifiability itself does not necessarily imply (A1) and (A2) if larger neighbor-

hoods are considered.

Also it must be noted that conditions (A1) and (A2) imply rectifiability ifM is locally

compact. Therefore even if we take a region Ω of the Lorentzian manifold M , which

satisfies (A1) and (A2), it might fail to be locally path-connected. If we are integrating

some function over Ω, we might need to consider the integration techniques on non-

rectifiable domains.

We might visualize the problem at hand assuming that we integrate a Lipschitz func-

tion over some non-rectifiable Ω and we wish to make use of the divergence theorem.

Tackling this problem without ensuring path connectivity and rectifiablity might result

in failure of the divergence theorem. For the time being, our framework is rescticted

to Riemannian manifolds and we do not encounter this issue. Therefore we might

consider the following theorem.

Theorem 4.1.4 [3] Let Ω ⊂ M be an open set. Assume that f ∈ L1(Ω). Let X be

a local orthonormal frame such that Xi = u ◦ σi, and {σi} is a local orthonormal

frame of U ∈ TM where i = 1, . . . , n. Then the following conditions are equivalent:

(i) sup{|DXf |(Ω)
∣∣X = u ◦ σ, σ ∈ Γg(UΩ), |σ| 6 1} <∞;
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(ii) f ∈ BV (Ω, d,m);

(iii) f ∈ BV (Ω, g, ω).

A corollary of this theorem can be stated as below:

Corollary 1 Let Ω ⊂ M be an open set. Assume that f ∈ L1(Ω). If the conditions

given in (4.1.4) hold, then we write

‖Df‖(Ω) = sup
X
{|DXf |(Ω) : X = u ◦ σ, σ ∈ Γ(U|Ω), |σ| 6 1} <∞. (4.39)

We state the proof of this corollary as given in [3] since we will modify this to the

sub-Lorentzian case later on.

Proof: [3]

Define the following:

s(Ω) = sup
X
{|DXf |(Ω) : X = u ◦ σ, σ ∈ Γ(U |Ω), |σ| 6 1}. (4.40)

In order to show the equality in (4.39), we show s(Ω) 6 ‖Df‖(Ω) and ‖Df‖(Ω) 6

s(Ω).

In [3] s(Ω) 6 ‖Df‖(Ω) is cited without proof, given that the class of vector fields

considered in the definition of ‖Df‖(Ω) is larger. We may write this result more

openly. Remember the definitions of ‖Df‖(Ω) and |DXf |.

‖Df‖(Ω) ≡ inf
fn

{
lim inf
n→∞

∫
Ω

|∇fn| dm : fn ∈ Liploc(Ω), lim
n→∞

∫
Ω

|fn − f | dm = 0

}
.

(4.41)

|DXf | = sup
ϕ

{∫
Ω

f div(ϕX)(ω) | ϕ ∈ C∞c (Ω), | ϕ |6 1

}
,

= sup
ϕ

{∫
Ω

fLϕX(ω) | ϕ ∈ C∞c (Ω), | ϕ |6 1

}
,

(4.42)

where X ∈ Γ(U |Ω, D). Let ϕX = Y ∈ Γ(U |Ω, D). Then Y induces curves γ with

speed g(γ̇, γ̇) < 1 via the flow φYt , t ∈ [0, τ ]. Then LY ω is, by using the theorem
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(4.1.1),

|DY f |(Ω) = sup
Ω′bΩ

{
lim inf
t→0

∫
Ω′

|f(φYt )− f |
|t|

ω |Ω′ b Ω

}
,

6 sup
Ω′bΩ

{
lim sup
t→0

∫
Ω′

|f(φYt )− f |
|t|

ω |Ω′ b Ω

}
,

(4.43)

where |.| is realized as the distance in the image of f .

We know that f is a Lipschitz function, therefore |f(φYt )(x)−f(x)|
|t| is uniformly bounded

on a compact K ⊂ Ω, then lim supt→0
|f(φYt )(x)−f(x)|

|t| 6 |∇f |(x) [3].

∫
Ω

lim sup
t→0

|f(φYt )(x)− f(x)|
|t|

dm 6
∫

Ω

|∇f |dm. (4.44)

Hence, it is concluded that |DXf |(Ω) 6 ‖Df‖(Ω). So that s(Ω) 6 ‖Df‖(Ω). So

now, we must prove that ‖Df‖(Ω) 6 s(Ω) holds.

Assume that in Ω, Xi = u ◦ σi, where Xi =
∑n

µ=1X
µ
i

∂
∂xµ
≡ Xµ

i ∂µ. Let f ∈ C1(Ω).

In this case, the measure |∇f | is the slope of f and DXf = (Xf)m. Then it sufices

to prove ∫
Ω

|∇f |dm 6 |Xf |(Ω),

where

|Xf |(Ω) =

√√√√ n∑
i=1

(Xif)2m,

since √√√√ n∑
i=1

(Xif)2

is the Riemannian norm of Xf .

f is a C1(Ω) function. Assume further that there exists a curve γ such that γ̇ =∑n
i=1 ciXi(γ) where c ∈ L2([0, τ ];Rm) and γ(0) = x, γ(τ) = y. In [3], |.| denote

the distance in Y , where f(Ω) ⊂ Y . Let us write the distance |f(x) − f(y)| as

in [3] which is actually the distance between f(x) and f(y) in the sub-Riemannian
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manifold, i.e. |f(x)− f(y)| = d(f(x), f(y)).

|f(x)− f(y)| = d(f(x), f(y)) =

∣∣∣∣∫ τ

0

dγ(t)f(γ̇t)dt

∣∣∣∣ ,
=

∣∣∣∣∣
∫ τ

0

n∑
i=1

ci(t)Xif(γt)dt

∣∣∣∣∣ ,
6 c2 sup

t∈[0,τ ]

√√√√ n∑
i=1

(Xif(γt))2.

(4.45)

Since Xi is arbitrary we might normalize c2.

d(f(x), f(y)) 6 sup
t∈[0,τ ]

√√√√ n∑
i=1

(Xif(γt))2. (4.46)

By the definition of∇f ,

|∇f | = lim
y→x

d(f(x), f(y))

d(x, y)
6 lim

y→x

 sup
z∈Bd(x,y)x


√√√√ n∑

i=1

(Xif(z))2


 . (4.47)

Integrating over the limit Ω we must consider every little ball Bd(x,y)x in Ω, then

∫
Ω

|∇f |dm 6
∫

Ω

sup
z∈Ω


√√√√ n∑

i=1

(Xif(z))2

 dm. (4.48)

The following result is stated in [3] as the supremum becomes redundant for contin-

uous Xf , ∫
Ω

|∇f |dm 6
∫

Ω


√√√√ n∑

i=1

(Xif(z))2

 dm. (4.49)

Hence we conclude

‖Df‖(Ω) 6 |Xf |(Ω). (4.50)

Therefore s(Ω) = ‖Df‖. �

This implies that if a function f is determined to be of bounded variation in the

manifold endowed by the sub-Riemannian distance, then it is certainly a function

of bounded variation in the original Riemannian manifold.
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4.1.4 BV (Ω, η, ω) of Lorentzian Manifolds

As defined in the previous sections, we might as well define the set BV (Ω, g, ω) for

a Lorentzian manifold.

Let M be a Lorentzian manifold of dimension n. Here X ∈ TM is a smooth vector

field as usual. The definition of total variation does not necessarily require the metric

to be positive definite. Remember the definition (4.0.2)

sup
ϕ

{∫
Ω

f div(ϕX)(ω) | ϕ ∈ C∞c (Ω), | ϕ |6 1

}
≡ |DXf |η.

If this supremum exists, we will use it as |DXf |η. If it does not exist, it is said that

the total variation of DXf is not finite.

We repeat the given definitions of BV spaces for the Lorentzian and sub-Lorentzian

cases.

Definition 4.1.3 The space BV (Ω, η, ω): Let Ω ⊂ M be an open set and f ∈
L1(Ω,m). If DXf exists for all X ∈ Γη(Ω, D) and

sup
X∈Γη(Ω,D)

{|DXf |η(Ω) : X ∈ Γg(Ω, D)} <∞,

then f ∈ BV (Ω, η, ω).

The Lorentzian nature of the metric does not pose any constraint over this definition.

4.1.5 BV (Ω, dη,m) of sub-Lorentzian Manifolds

In order to define BV (Ω, dη,m) for the sub-Lorentzian manifold, we use the defini-

tion (4.1.2). Remember for a function to be in BV (Ω, d,m)

inf
fn

{
lim inf
n→∞

∫
Ω

|∇fn| dm : fn ∈ Liploc(Ω), lim
n→∞

∫
Ω

|fn − f | dm = 0

}
6∞

must hold for the sequence {fn} ⊂ L1(Ω,m) that satisfies lim supn→∞
∫

Ω
|∇fn|dm <

∞ and limn→∞
∫

Ω
|fn − f | dm = 0.
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Similar to the Lorentzian case, as sub-Lorentzian distance is already positive definite

there is virtually no reason for this definition not to hold. Then we will denote the

total variation of f in a sub-Lorentzian manifold with respect to C-C distance dη as,

‖Df‖η.

4.1.6 Equivalence of BV (Ω, η, ω) and BV (Ω, dη,m)

In this section we must show that spaces BV (Ω, η, ω) and BV (Ω, dη,m) are equiva-

lent for the spacetime M . To achieve this result we prove a theorem similar to (4.1.4)

Theorem 4.1.5 Let Ω ⊂ M be an open set. Assume that (A1) (4.25) and (A2) (4.26)

hold in Ω. Also assume that f ∈ L1(Ω). LetX be a local orthonormal frame such that

X i = u◦σi (i = 0, . . . , n−1) and {σi} is a local orthonormal frame of U ∈ TM and

u : U → TM is a smooth map, linear over vector bundles such that f(Ux) ⊂ TxM ,

for all x ∈M . Then the following conditions are equivalent for Minkowski metric η:

(i) f ∈ BV (Ω, dη,m);

(ii) f ∈ BV (Ω, η, ω).

Moreover, if one of the above holds

‖Df‖η(Ω) = sup
X
{|DXf |η(Ω) : X = u ◦ σ, σ ∈ Γ(U|Ω), |σ| 6 1} <∞. (4.51)

Proof: Define

s(Ω) = sup
X
{|DXf |η(Ω) : X = u ◦ σ, σ ∈ Γ(U|Ω), |σ| 6 1} <∞. (4.52)

We must show ‖Df‖η(Ω) 6 s(Ω) and s(Ω) 6 ‖Df‖η(Ω).

s(Ω) 6 ‖Df‖η(Ω) follows from the proof given for (4.1.4) and the theorem (4.1.1).

Notice that theorem (4.1.1) does not depend on the Riemannian nature of the metric

but rather on the assumption that Ω′ ⊂ K ⊂ Ω such that

|DXf |η(Ω) = sup
ϕ

{∫
Ω

f div(ϕX)(ω) | ϕ ∈ C∞c (Ω), | ϕ |6 1

}
,

= sup
Ω′bΩ

{
lim inf
t→0

∫
Ω′

|f(φXt )− f |
|t|

ω |Ω′ b Ω

}
,

(4.53)
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which follows from Meyers-Serrin theorem as stated in [3]. So, we expect that func-

tions of bounded variation of a sub-Lorentzian M with respect to dη to be also of

bounded variation of a Lorentzian metric space.

We concentrate on whether or not ‖Df‖η(Ω) 6 s(Ω) holds.

Assume that for X ∈ Γ(U |Ω), Xi = u ◦ σi. Let γ be a timelike curve such that

γ̇(t) =
∑n−1

i=0 ci(t)Xi(γ(t)) for some c ∈ L2([0, τ ];Rn) and γ(0) = x, γ(τ) = y.

Let dη(f(x), f(y)) be denoted by |f(x) − f(y)|. Since γ is timelike, η(γ̇, γ̇) < 0.

Observe that

dη(f(x), f(y)) =

∣∣∣∣∫ τ

0

dγ(t)f(γ̇t)dt

∣∣∣∣ . (4.54)

We might square this equation to get

(dη(f(x), f(y)))2 =

[∫ τ

0

dγ(t)f(γ̇t)dt

]2

,

=

[∫ τ

0

n−1∑
i=0

ci(t)Xif(γ(t))dt

]2

,

6 sup
t∈[0,τ ]

∣∣∣∣∣
(
−(c0(t)X0f(γt))

2 +
n−1∑
i=1

(ci(t)Xif(γt))
2

)∣∣∣∣∣
t

t=0

∣∣∣∣∣
(4.55)

If dη(f(x), f(y)) and supt∈[0,τ ] ci(t) is finite, then we can find a real number c̃ such

that

(dη(f(x), f(y)))2 6 sup
t∈[0,τ ]

∣∣∣∣∣
(
−(c0(t)X0f(γt))

2 +
n−1∑
i=1

(ci(t)Xif(γt))
2

)∣∣∣∣∣
t

t=0

∣∣∣∣∣
6 c̃2 sup

t∈[0,τ ]

∣∣∣∣∣
(
−(X0f(γt))

2 +
n−1∑
i=1

(Xif(γt))
2

)∣∣∣∣∣
t

t=0

∣∣∣∣∣
(4.56)

Assume that there is another curve γ̃ such that ˙̃γ =
∑n

i=0Xi(f(γt)). Then above

equation becomes

⇒ (dη(f(x), f(y)))2 6 c̃2

[
sup
t∈[0,τ ]

∣∣∣∣∣
∫ τ

0

n∑
i=0

Xi(γ̃(t))dt

∣∣∣∣∣
]2

.
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Since X is arbitrary, we may choose Xi such that c̃ is set to 1. Therefore

⇒ (dη(f(x), f(y)))2 6 sup
t∈[0,τ ]

∣∣∣∣∣
(
−(X0γ̃(t))2 +

n−1∑
i=1

(Xiγ̃(t))2

)∣∣∣∣∣
t

t=0

∣∣∣∣∣ .
By the definition of∇f ,

|∇f |2 =

[
lim
y→x

dη(f(x), f(y))

dη(x, y)

]2

=

[
lim
y→x

dη(f(x), f(y))

supγ∈{γ|γ(0)=x,γ(τ)=y} l(γ)

]2

6

[
lim
t→0

{
supt∈[0,τ ]

∣∣∫ τ
0

∑n
i=0Xi(γ̃(t))dt

∣∣
supγ l(γ)

}]2

.

(4.57)

The right hand side of the equation (4.57) can also be written equivalently as

lim
y→x

supz∈Bd(x,y)x
{∣∣−(X0f(z))2 +

∑n−1
i=1 (Xif(z))2

∣∣}
(dη(x, y))2

.

Integrating the square root of both sides over Ω we obtain

∫
Ω

|∇f(x)|dm 6
∫

Ω

(
lim sup
z∈Br(x)⊂Ω

∣∣−(X0f(z))2 +
∑n−1

i=1 (Xif(z))2
∣∣

r2

)1/2

ω. (4.58)

We exploit the fact that X is arbitrary to manipulate the above equation to give

∫
Ω

|∇f(x)|dm 6
∫

Ω

(
lim sup
z∈Br(x)⊂Ω

∣∣∣∣∣−(X0f(z))2 +
n−1∑
i=1

(Xif(z))2

∣∣∣∣∣
)1/2

ω. (4.59)

Remember for f ∈ C1 we have DXf = (Xf)m = (
∑n−1

i=0 X
µ
i ∂µf)m. Moreover

s(Ω) = supX{|DXf |η(Ω)} = |Df |η(Ω). Exploiting the definition of |DXf |η we

rewrite the above equation∫
Ω

|∇f(x)|dm 6 |Xf |(Ω) ≡ s(Ω). (4.60)

The rest follows similarly to the proof of (4.1.4). Therefore we write

‖Df‖η(Ω) 6 |Xf |η(Ω). (4.61)

Hence s(Ω) = ‖Df‖. Thus (ii) implies (i). �
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The validity of BV (Ω, g, ω) ⊂ BV (Ω, d,m) is usually an open problem for a given

C-C distance dη. In [3] by theorem (4.1.4), it is shown that for a sub-Riemannian

theorem this inclusion is valid. Here in our thesis, we have shown that it is also valid

for the sub-Minkowski case. Therefore we conclude that if a function is of bounded

variation in sub-Lorentzian M where η is the Minkowski metric, it is also bounded

variation in the original Minkowski spacetime. Moreover if we can find such finite c̃

that satisfies

(dη(f(x), f(y)))2 6 c̃2 sup
t∈[0,τ ]

∣∣∣∣∣
n−1∑
i=0

Xif(γ(t))

∣∣∣∣∣
2

, (4.62)

for the given {Xi}, then the theorem holds independent of the metric η given.

4.2 Sets of Finite Perimeter

Let us give the following definition for a Riemannian manifold M .

Definition 4.2.1 [3] A set E ⊂ Ω is said to be of finite perimeter if its characteristic

function χE ∈ BV (Ω, g, ω), for a Riemannian manifold M ⊃ Ω.

Perimeter of E in a subset U ⊆ Ω is defined as the following

P (E,U) ≡ |DχE| (U), (4.63)

P (E,U) = sup

{∫
U

χE divϕdx
∣∣ϕ ∈ C1

c (U,Rn) ,
∣∣ϕ |6 1

}
<∞. (4.64)

Therefore if E is a finite perimeter set in Ω, P (E,Ω) is a finite Radon measure.

Given this case, it is not hard to see that the Sobolev space W 1,1(Ω) ⊂ BV (Ω) [18],

therefore the Poincaré inequality holds.

The |.| defines the variation of sets with respect to the measure ω, which is the volume

measure in our study, hence |Ω| simply denotes the volume of the open set Ω.

Assume that we have such a region E in Ω ⊂ M that has χE ∈ BV (Ω). Then DχE

is an Rn valued vector measure with finite total variation |DχE|.
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Example: Let M be R2, and Ω = B1(0) ⊂M , the unit ball. The basis X = {e1, e2}
is the usual { ∂

∂x
, ∂
∂y
}. Then the perimeter defined on the unit ball is:

P (B1(0),Ω) = sup

∫
B1(0)

χE div φ dx = sup

∫
B1(0)

X∗j φjdx = sup

∫
B1(0)

∂φj
∂x

dx,

(4.65)

since characteristic function equals 1 on the unit ball.

Note that φj ∈ C1
c (B1(0),R2) and ∂φj

∂xj
is continuous, and we have |φ| 6 1. Hence

it is evident that sup
∫
∂φj/∂x

jdx is bounded, therefore P (B1(0),Ω) < ∞. This

shows that the unit ball of R2 is a finite perimeter set.

4.3 Finite Perimeter sets of sub-Lorentzian Manifolds

In this section we explore the finite perimeter sets of Lorentzian manifolds. Sim-

ilar to the Riemannian case, a set E ⊂ M is said to be of finite perimeter if χE ∈
BV (Ω, η, ω), where η is the original Lorentz (Minkowski for the extend of this thesis)

metric and ω is the volume form on M .

Let D ⊂ TM be a bracket generating horizontal distribution. Let D = span{X i}.
Using the definition of the total variation of the measure DχE the perimeter of E in

Ω is defined as [3]

P (E,Ω) = sup
ϕX∈Γ(Ω,D)

∫
Ω

χE div(ϕX)(ω)dx,

= sup
ϕX∈Γ(Ω,D)

∫
E

Xj(ϕj)dx,

= sup

∫
E

n−1∑
i=0

∂ϕj
∂xi

dxi.

(4.66)

Then,

DχE = sup
ϕX∈Γ(Ω,D)

∫
E

n−1∑
i=0

∂ϕj
∂xi

dxi = sup

∫
E

d(DXϕ). (4.67)

If ϕ ∈ C∞C then ϕ is bounded and Lipschitzian on Ω ⊂ M . Therefore the measure

DχE is bounded if the directional derivative of ϕ along X does not blow up. In this

case, the set E ∈M is a finite perimeter set of the Lorentzian manifold M. That is, if

DχE is finite, then χE ∈ BV (Ω, η, ω).
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Since we have shown the equivalence of the spaces BV (Ω, η, ω) and BV (Ω, dη,m),

if χE ∈ BV (Ω, η, ω) then χE ∈ BV (Ω, dη,m) and vice versa. Therefore instead of

determining a volume being finite perimeter in the Lorentzian manifold, we might as

well use the sub-Lorentzian counterpart which is already endowed by a positive defi-

nite distance function. Using this method we might work out the perimeter measures

of our regions of interest as if they were already Riemannian volumes.
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CHAPTER 5

GAUSS-GREEN THEOREM

The motivation of this thesis is to discuss the validity of Gauss-Green theorem on

arbitrary volumes of physical spacetimes. It seems reasonable that Gauss-Green the-

orem must hold for any given volume as long as the volume is finite perimeter.

5.1 The Gauss-Green Formula

The generalized Gauss-Green formula given in [8] is∫
E

Djf(x)dx =

∫
∂E

f(x)νj(E, x)ds, (5.1)

where νj(E, x) is the jth component of the exterior normal ν(E, x). Our main prob-

lem is to establish a condition between E and ∂E such that 5.1 holds.

We know that if ∂E is a Gaussian surface 5.1 indeed holds. Since a spacetime in

general is not locally compact, we might not simply take ∂E to be a Gaussian surface

regardless of the local properties of the spacetime.

5.2 Riezs Representation Theorem

Consider the following lemma:

Lemma 5.2.1 Urysohn’s Lemma: [21] A space X is normal if and only if for all

closed A,B ⊂ X such that A ∩ B = ∅, there exists a continuous function f : X →
[0, 1] satisfying f(A) = 0, f(B) = 1.
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Remembering the fact that every metrizable or pseudo-metrizable space is normal

[21], then locally compact subspaces of a Lorentzian manifold satisfies (5.2.1).

Consider the sub-Lorentzian manifold M . The topology on M is Alexandrov topol-

ogy. Since it is finer than metric topology we may also state that (5.2.1) holds for

sub-Lorentzian case too.

Notice that this lemma suggests that we may approach the characteristic function χE

by a continuous f . In [21] f is explicitly stated. For a sequence of nested open sets

Uri such that

A ⊂ Ur1 · · · ⊂ Urk , Urk ∩B = ∅,

f(x) =

1 x /∈ Uri , ∀i ∈ {1, . . . , k},

infUri∈{Uri}{ri|x ∈ Uri} otherwise.
.

The continuity of this function is worked out in [21]. Realizing this function as a

measure we may construct its compact support as

spt f = X \
⋃
{O|O ∈ T , f(O) = 0} . (5.2)

Therefore the compact support of f contains all the sets that are not contained in the

set A, for which f(A) = 0.

Then we write the compact support of f as

spt f = {B|B ∈ T , f(B) 6= 0} = {x ∈ X|f(x) 6= 0} , (5.3)

assuming that f continuously exists everywhere on X . Notice that it might not be

trivial to show this for any given Lorentzian manifold.

Now, let us consider the Riesz’s representation theorem as stated in [2]:

Theorem 5.2.2 Riesz’s Representation Theorem [2] Let X be a locally compact

Hausdorff space. Let L be the set of all continuous maps f : X → R having the

following compact support in a Borel subset E ⊂ X

spt f = {x|x ∈ E, f(x) 6= 0}. (5.4)
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(This means that we take such f whose support is closed in E.) Let I be a positive

linear functional such that

sup
g∈L

I(L ∩ {g|0 6 g 6 f}) <∞, ∀f ∈ L. (5.5)

Then there exists a unique Radon measure µ such that

I(f) =

∫
E

fdµ, ∀f ∈ L. (5.6)

In [3], a version of 5.2.2 is written for the sub-Riemannian case. Let us examine this

in the following section.

5.2.1 Riezs Representation Theorem for sub-Riemannian Manifold

Theorem 5.2.3 [3] Riesz’s theorem in sub-Riemannian manifolds

Let f ∈ BV (Ω, g, ω). There exists a Borel vector field νf such that g(νf , νf ) = 1

satisfying

DXf = g(X, νf )‖Df‖, ∀X ∈ Γg(Ω, D) ⊂ TM (5.7)

where X is a smooth vector field and ‖Df‖ is the variation defined as before.

If χE ∈ BV (Ω, g, ω) for E ⊂ Ω, we denote νχE by νE . Let Xi = u ◦ σi be given. In

this case νE = u(
∑

i ν
∗
E,iσ

i) where ν∗E,i is the ith component of the dual of the vector

νE . νE and ν∗E are called geometric normal and dual normal of E, respectively [3].

We will soon conclude that this normal νE is the vector ν(A, x) of (5.1).

Notice that in theorem (5.2.2), the local compactness of X is required. However as

cited in [3], theorem (5.2.3) follows from the equivalence of BV sets. Therefore con-

ditions required to obtain this result are (A1) (4.25) and (A2) (4.26) only. We stated

that (A1) and (A2) combined implies rectifiability for locally compact M . Therefore

we know by (4.1.3) that a subset Ω in which theorem (5.2.3) holds is rectifiable. The

converse might not hold.

By Hopf-Rinow theorem, a closed and bounded subset C of the connected Rieman-

nian manifoldM is compact, therefore locally compact [6]. However, theorem (5.2.3)

does not require the open set Ω to be contained in such C. This is a strong indication

that one might deduce the same result for a Lorentzian manifold M .
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5.2.2 The sub-Lorentzian Case

We observe that theorem (5.2.3) does not require manifold M to be locally compact.

This is good news as a Lorentzian M is generally not locally compact. Given a

locally doubling region Ω ⊂ M that satisfies a local Poincaré inequality, we may

write an equivalent theorem for Ω. Although it is not stated and proven in this thesis,

we established a strong premise towards the existence of νf as given in (5.7). The

condition g(νf , νf ) = 1 might be replaced by η(νf , νf ) = −1 depending on the

signature of given Lorentz metric.

5.3 Reduced Boundary

We know that for a finite perimeter set E (5.1) holds [1]. The boundary satisfying

(5.1) need not be unique. To visualize, consider the caseBr(p) ⊂ Rn. Rn is evidently

a Riemannian manifold. The boundary ∂Br(p) satisfies (5.1) as well as ∂Br(p) ∪ γ
where γ is simply a line. Given such a boundary, we may eliminate this line as

∂Br(p) ∪ γ overcompensates for ∂Br(p).

Assume that we have a Borel set E ⊂ M , we might as well eliminate objects such

as hairs, tentacles, etc. attached to ∂E that does not contribute to the integral. The

boundary we obtain is said to be the reduced boundary. It is not always trivial to

determine this set. Let us give the formal definition below.

Let E be a finite perimeter set of M . As suggested in [3] the implications of (A1)

(4.25) and (A2) (4.26) on E are given in the following proposition.

Proposition 5.3.1 [3] : Under the assumption that (A1) and (A2) hold and E ⊂ Ω

with characteristic function χE ∈ BV (Ω, d,m), the following is true:

lim inf
r→0

min {m (Br(x) ∩ E) ,m (Br(x) \ E)}
m (Br(x))

> 0 (5.8)

and

lim sup
r→0

‖DχE‖ (Br(x))

m (Br(x)) /r
<∞, ∀x ∈ Ω. (5.9)
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Basically, as the ball shrinks at x ∈ E, the dual normals must approach each other. If

we have a region that does not satisfy this, then the region does not rectify properly.

Definition 5.3.1 [3][1] The Reduced Boundary: The reduced boundary FE of E ⊂
M is the set of points in the topological boundary x ∈ ∂E that satisfies the conditions

(5.8), (5.9) and

lim
r→0

1

‖DχE‖(Br(x))

∫
Br(x)

|ν∗E(y)− ν∗E(x)|2d‖DχE‖(y) = 0. (5.10)

The reduced boundary is especially useful in the study of General Relativity as the

reduced boundary is a rectifiable set that has a finite measure. This guarantees that

on these sets we can exploit Gauss-Green formulas. Using the reduced boundaries of

spacetime regions we can remarkably reduce our surfaces of integration from totally

unknown shapes with possibly uncountably many blow-up points, to relatively tame

and simple curves without imposing assumptions on the geometric properties of a

spacetime region.

5.3.1 C-C Balls and Boxes and Some Volumes of Interest

Let M be a Riemannian manifold and D ⊂ TM be a bracket generating distribution

spanned by {Xi}, where i = {1, . . . , n}. We define the number degXj as the number

of Xis involved in the successive commutation equivalent to Xj . For example, if

[X1, X2] = X3, degX3 = 2. As D is bracket generating, we must use all the vector

fields Xi in successive commutation to define TM , therefore deg TM = n [6].

Let φXit = exp(tXi) be the flow generated byXi. Then exp(t1, . . . , tn) = exp(t1X1+

· · ·+ tnXn) as in [6].

The Rn box is defined as

Box(r) = {|ti| 6 rdegXi |i = {1, . . . , n}}. (5.11)

By Hölder equivalence of C-C and Euclidean metrics stated in [6], we consider the

image of a box in Rn under exponential map as the C-C box. Therefore a version of

Ball-Box theorem holds for sufficiently small balls.
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Theorem 5.3.2 The sufficiently smallBr(p) satisfies the following condition for some

continuous function c(p) > 0 and a constant r0(p)

exp Box(c−1r) ⊂ Br(p) ⊂ exp Box(Cr); ∀p ∈M, r 6 r0(p). (5.12)

If M is not compact, exponential map need not be defined everywhere in its domain

Rn. This implies that the above Ball-Box theorem might not hold globally for a

Lorentzian M . As discussed before, this implies that a ball covering the spacetime

cannot be approximated by given C-C boxes. Therefore the integral of the volume

form need not be equivalent for balls and boxes covering larger regions of spacetime.

As a result, we might fail to have limr→∞
∫
Br
fdV = limr→∞

∫
Box(r)

fdV .

We have stated the conditions for finite perimeter sets of sub-Lorentzian and Lorentzian

manifolds to be equivalent. Therefore we propose the following method to determine

the largest domain on which Gauss-Green formulas hold and the integration is in-

dependent of the choice of local coordinates. Take a sequence of rectifiable, finite

perimeter sets E1 ⊂ . . . Ei ⊂ · · · ⊂ M , find its finite perimeter upper bound (if

exists) E, then construct the possibly infinite union
⋃
iBri ⊃ E such that χBri ∈

BV (M,d,m). For each sufficiently small Bri , find exp−1(Bri) ⊂ Rn and use the

union of such sets in Rn as the volume of integration.

Notice that exp is always defined in a sufficiently small neighborhood U of origin in

Rn. If M is a local doubling space we might cover a larger region with a possibly

infinite union of small neighborhoods exp(U). Therefore we might find the largest

volume of integration containing E that satisfies Gauss-Green theorem bypassing the

condition of local compactness.

As an example, we might be interested in calculating the total flux across the universe

by integrating the field over a surface covering the entirety of the physical spacetime.

Evidently, we must assume the surface of integration is locally compact to ensure

Gauss-Green formulas hold. However the local compactness of such an arbitrary

surface is not guaranteed, therefore we might be wrong in our assumption to begin

with. Therefore we propose to use sub-Lorentzian metric to define the volumes of

integration and make use of reduced boundaries to use as surfaces of integration to

eliminate such difficulties.
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CHAPTER 6

CONCLUSIONS

This thesis shows us how to define finite perimeter sets of Lorentzian spacetimes. We

have shown that if E ⊂ M is a finite perimeter set, then |χE| 6 ∞ and χE ∈
BV (Ω, η, ω) for the Minkowski metric η. Equivalently we have also shown that

whenever χE ∈ BV (Ω, η, ω), also χE ∈ BV (Ω, dη,m). Therefore we have estab-

lished how to define and measure the perimeter of a given set. We have also discussed

the conditions for BV (Ω, η, ω) and BV (Ω, dη,m) to be equivalent spaces.

It must be noted that if we, as physicists, wish to calculate the surface integral over

the whole spacetime, there are some “traps” we must be aware of. If we choose to

integrate over concentric spheres that cover the whole spacetime, we might not find

a box that will “fit” in between those spheres. Suppose we travel along a curve on

the box that covers the entirety of the spacetime, as we pass through the corners of

the box, velocity of the curve might fail to be a timelike vector. Hence we conclude

that this cube fails to be a finite perimeter set in sub-Lorentzian setting. Therefore we

cannot assume the boundary of the box to satisfy Gauss-Green formulas, whereas we

might not encounter the same issue while traveling on the boundary of a ball.

Another point of discussion is the works of Battista and Esposito [1]. They suggest

a method for determining the sets of finite perimeter of a Lorentzian manifold M by

relating a Riemannian metric to the original Lorentzian one and checking whether or

not the set is finite perimeter. Notice that this method fails to exclude the points that

are not reachable in Lorentzian setting, therefore does not map the physically not-so-

tame regions of Lorentzian manifold onto the light cone. It also fails to exclude the

curves that might not be tangent to the horizontal distribution, or the ones that might

pass through the regions that cannot be mapped onto regions of positive curvature.
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In [1], it is suggested that, one may find a metric g equivalent to the metric η such

that there exists a diffeomorphism between them. This is done by constructing the

equivalence class between infinitely many Riemannian metrics that correspond to

η and associate the set of points that form the reduced boundary of E. We have

shown that the use of sub-Lorentzian structure is just as efficient in determining the

perimeter of the given subset and it uses the natural choice of Carnot-Carathéodory

metric. Moreover choosing to use the sub-Lorentzian machinery, we need not assume

local compactness on the surfaces of integration. This result is important as most

Lorentzian spacetimes fail to be locally compact.

Schoen and Yau [22] state that there is a connection between the geometry of mini-

mal hypersurfaces and scalar curvature, exploited to prove the famous positive mass

conjecture. This proof mainly relies on choosing the hypersurfaces in an asymptoti-

cally flat manifold that can be mapped onto a Riemann surface of positive curvature.

We propose that this result can be generalized into the Lorentzian case with the use

of finite perimeter sets and reduced boundary. Also it can be extended to show that

the conjecture might fail in certain metric spaces due to the failure we might face in

mapping the boundaries of certain volumes onto a Riemannian surface.

We know that by Hopf-Rinow Theorem [6] the closed and bounded subsets of a com-

plete Riemannian manifold is compact, therefore locally compact. But for the space-

times we do not have the luxury of assuming compactness. Hence the generality of

positive mass theorem should be checked by choosing hypersurfaces in an asymptot-

ically flat manifold that can be mapped into a sub-Lorentzian manifold.
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