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ABSTRACT

DEVELOPMENT OF 2D TURBULENT NAVIER-STOKES SOLVER FOR
CARTESIAN GRIDS

Ata, Onur
M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Mehmet Haluk Aksel

Co-Supervisor: Assist. Prof. Dr. Özgür Uğraş Baran

September 2022, 81 pages

A computer code is developed for solving two-dimensional compressible Reynolds-

Averaged Navier-Stokes (RANS) equations. The compressible RANS equations are

closed with the negative version of the Spalart-Allmaras (SA) turbulence model.

Quad-tree-based Cartesian/Quad grids are used to discretize the solution domain.

Then, a cell-centered, finite-volume approach is applied to solve turbulent flows.

Solution-based mesh adaptivity is used to obtain mesh-free solutions. Since a quad-

tree-based data storage is used, mesh refinement and coarsening are done efficiently.

Flow variables are reconstructed by using the weighted and unweighted least squares

approach. Convective fluxes are formulated with the approximate solver of Roe and

limited with Venkatakrishnan’s limiter. Formulation of convective terms of the turbu-

lence model is achieved by using first-order upwinding. The gradients used in viscous

calculations are obtained using a modified average of the reconstructed variables.

Keywords: Hybrid Grids, Body conforming grids, Turbulence models
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ÖZ

KARTESYEN IZGARALAR İÇİN 2D TURBULENT NAVIER-STOKES
ÇÖZÜCÜNÜN GELİŞTİRİLMESİ

Ata, Onur
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Mehmet Haluk Aksel

Ortak Tez Yöneticisi: Dr. Öğr. Üyesi. Özgür Uğraş Baran

Eylül 2022, 81 sayfa

İki boyutlu sıkıştırılabilir Reynolds-Averaged Navier-Stokes (RANS) denklemlerini

çözmek için bir bilgisayar kodu geliştirilmiştir. Sıkıştırılabilir RANS denklemleri,

Spalart-Allmaras (SA) türbülans modelinin negatif versiyonu ile kapatılmıştır. Çö-

züm alanını ayrıklaştırmak için dörtlü ağaç tabanlı Kartezyen/Dörtlü ızgaralar kul-

lanılmıştır. Daha sonra türbülanslı akışları çözmek için hücre merkezli, sonlu hacim

yaklaşımı uygulanmıştır. Ağsız çözümler elde etmek için çözüm tabanlı ağ uyarla-

ması kullanılmıştır. Dörtlü ağaç tabanlı bir veri depolama kullanıldığından, ağ iyileş-

tirme ve kabalaştırma verimli bir şekilde yapılmıştır. Akış değişkenleri, ağırlıklı ve

ağırlıksız en küçük kareler yaklaşımı kullanılarak yeniden oluşturulmuştur. Konvek-

tif akılar, yaklaşık Roe çözücüsü ile formüle edilir ve Venkatakrishnan’ın sınırlayıcısı

ile sınırlandırılmıştır. Türbülans modelinin konvektif terimlerinin formülasyonu, bi-

rinci dereceden yukarı sarma kullanılarak elde edilmiştir. Viskoz hesaplamalarda kul-

lanılan gradyanlar, yeniden yapılandırılmış değişkenlerin değiştirilmiş bir ortalaması

kullanılarak elde edilmiştir.
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CHAPTER 1

INTRODUCTION

This thesis study presents a quad-tree-based Cartesian grid solver to solve steady,

compressible, high Reynolds number flows in a two-dimensional domain. The dis-

cretization method that the solver uses is a recursive algorithm that generates a com-

bination of different grid types. Quad-tree data structure is used to store generated

grids and handle the connectivity. In this method, after Cartesian grid generation is

done and cells are cut at the intersection of predetermined boundaries, the remaining

sections in the domain are filled with body-conforming quadrilaterals. Each quadri-

lateral at the outermost boundary of the boundary region has a matched edge with a

cut or split cell. The connectivity at the interface is provided by using this relation-

ship. The main aim of this thesis study is to solve fully turbulent flows by using this

approach and observe its accuracy and efficiency. After the solution domain is filled

with mixed grids, compressible Reynolds-Averaged Navier-Stokes (RANS) equations

are solved with a cell-based finite volume approach using a one-equation turbulence

model Spalart-Allmaras (SA).

In this section, a general explanation of different grid-generating strategies is given.

Then, turbulence models are discussed from a large perspective. Lastly, a brief review

is presented of Cartesian cell-based solution approaches.
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1.1 Structured and Unstructured Grids

1.1.1 Structured Grids

Structured grids are generated with an ordered index notation according to boundaries

presented in the solution domain. It provides implicit connectivity information and

no extra effort is required, with simplicity in the solution phase. Mainly there are two

different ways to generate structured grids. In the first case, generation is done using

a function to compute the coordinates of grids in the solution domain. It is called

algebraic grid generation. The second way is solving partial differential equations

(PDEs), generally elliptic or hyperbolic, to generate grids. When hyperbolic PDEs

are used, mesh generation is accomplished by starting from a given surface mesh and

solving PDEs explicitly for each layer. If there is no strict requirement for control-

ling the shape of the outer layers, this type of PDE can be used for structured mesh

generation.

Figure 1.1: Structured grids generated around a rotor blade

1.1.2 Unstructured Grids

Unstructured grids are generally constructed by triangles and tetrahedra in 2 and 3-

dimensional domains, respectively. Unlike structured grids, they are not connected

by predetermined index definitions. Thus, it is required to make an additional identi-

fication procedure to determine the order of the unstructured grid. While it leads to
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an extra effort compared to structured ones, it also gives unstructured grid generation

flexibility. Domains with complex geometries can be discretized with much less ef-

fort by using unstructured grids. Although, traditional unstructured methods require

the discretization of body surfaces. To obtain a good match between cells and the

surface, users sometimes need to apply grid generation several times, especially for

complex geometries. It limits the true automation of the grid generation process.

Figure 1.2: Unstructured grids generated around a multi-body airfoil

1.1.3 Cartesian Grids

Cartesian grids are a type of unstructured grid that contains axis-aligned squares in

two-dimensional and cubes in a three-dimensional domain. The Cartesian grid ap-

proach is applied by recursively dividing the domain according to defined boundaries

as a function or discrete points. All the information desired to provide grid com-

munication can be stored by using a data tree. The grid generation process can be

automated by cutting the cells at the boundary intersections. Also, with the data struc-

ture’s help, solution adaptivity and multi-grid methods become favorable for Carte-

sian grids. Solution adaptions provide mesh-free solutions and automate the mesh

refinement process. All in all, Cartesian grids provide robustness and minimize user

intervention for the grid generation process, making them a dependable alternative.
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Figure 1.3: Cartesian grids

1.2 Turbulence Modeling

Turbulent flows are one of the most common flow cases in many engineering applica-

tions since laminar flows transform into turbulent ones if parameters like the Reynolds

Number exceed the critical limit. Therefore, there had been excessive effort to under-

stand and estimate turbulence flows experimentally and numerically.

Experiments are an essential part of understanding the behavior of turbulent flows.

Crucial experimental techniques have been developed thanks to researchers in this

field, like advanced flow visualization, hot wires, laser-Doppler systems, and many

others.

Navier-Stokes (NS) equations can describe turbulent flow by themselves. However,

it requires excessive computational power to solve all turbulence flow scales using

only NS equations, even for low Reynolds Numbers. Direct Numerical Simulation

(DNS) describes the solutions of turbulent flows only using the NS equations. A

detailed review of DNS can be found in Moin’s [1] study. Although even today’s

computer power is still a limiting factor for DNS applications, many applications

which were thought to be impossible to solve once can be solved by DNS today. For

instance, incompressible turbulent pipe flow is solved by Wu and Moin [2] by using

640 million grid points for Re = 44000.

Other than DNS, many methodologies are developed to model the turbulent flows by

4



considering what type of properties need to be estimated. Principally there are five

main branches of modeling turbulence which are

• algebraic,

• one-equation,

• multiple-equation,

• second-order closures (Reynolds-stress models),

• large-eddy simulation (LES).

The first three approaches are mostly based on the eddy-viscosity hypothesis offered

by Boussinesq. These main approaches have advantages and disadvantages according

to relevant problems where turbulence occurs. Thus, there are no distinct criteria that

make one better than another.

Algebraic models, also called zero-equation models, calculate the turbulent eddy vis-

cosity using empirical relations. They do not require the solution of any additional

equations. The convection and diffusion of eddy viscosity are not taken into account.

Thus, they cannot predict complex flows reliably like separated flows. Baldwin and

Lomax developed one of the most popular algebraic models, which is still used for

simpler flow cases [3].

Diffusive and convective effects are considered in one and two-equation models. In

one-equations models, an additional transport equation is used, which is generally

for the turbulent kinetic energy. Prandtl’s one-equation model is the first example of

one-equation models [4].

Two-equation models have two additional transport equations. These models consider

not just the turbulent kinetic energy but also the turbulent length scale. K-epsilon and

K-omega models are most preferred once among two-equation models.

LES is an approach in which large eddies are solved, and the smallest subgrid-scale

(SGS) eddies are modeled. The idea is that the main contribution to Reynolds Stresses

comes from the large eddies, while smaller ones have a small contribution. In addi-

tion, small eddies have more universal characteristics, which is more appropriate for

5



modeling. While DNS aims to solve whole scales of turbulence, LES solves larger

scales. It reduces the required computational power in comparison with DNS.

In this study, a well-known one-equation model is selected to predict features of tur-

bulent problems. The model was first suggested by Spalart and Allmaras [5], named

after their surnames. It is based on the Boussinesq approach. The model is selected

because of its proven robustness for aerodynamic applications and lower computa-

tional requirement with solving only one more equation.

1.3 A Review of Cartesian Cut-Cell and Mixed Grid Approaches

De Zeeuw [6] used a quadtree-based adaptively-refined Cartesian-grid algorithm to

solve Euler equations. His application showed the flexibility of the cut-cell approach

with the help of an achievable solution-based refinement approach. He showed that

using Cartesian grids to solve Euler equations makes it easier to generate grids, for-

mulate fluxes, and simplify the data structure. Besides its advantages, some disad-

vantages of using Cartesian cut-cells are mentioned in this study also. For instance,

trailing and leading edge cut-cell representations may have poor resolution.

Coirier [7] has applied a similar approach and developed a Navier-Stokes solver. One

of the focuses of his study was to investigate several viscous gradient schemes by

inspecting their accuracy and positivity.

Delanaye et al.[8] pointed out that the Cartesian grids may cause problems for the sim-

ulations of viscous flows. Isotropic refinements may lead to an excessive number of

cells near the wall boundaries. Thus, he alleviated this problem by using two different

grid types; a body-fitted grid close to the body and a Cartesian grid for the rest of the

domain. The study aimed to solve High-Reynold number flows in a two-dimensional

domain. They presented a robust viscous term discretization approach for the pres-

ence of mesh irregularities. One of their conclusions is that solution adaptive grids

may be used to solve wake regions better. A similar method has been applied by

Wang [9]. He included adaptive refinement in his approach and used a simple process

to calculate viscous fluxes to avoid computational expense. In his later study [10],

he implemented a nested multi-grid strategy to increase the convergence rate. Wang
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and Chen [11] tried to solve turbulent flows by directly using cartesian grids with

anisotropic refinement. They showed the efficiency of their approach in terms of the

total number of cells used against isotropic approaches.

Karman [12] proposed an approach that resolves geometry with Cartesian-aligned

hexahedrons. Then body-conforming meshes are generated to resolve the viscous

boundary layer. He also developed a mesh smoothing strategy to cure skewed cells

produced at corner regions.

Several kinds of research are done to use Cartesian cut-cells directly with wall func-

tions to solve turbulent boundary layers efficiently. Berger and Aftosmis [13] ad-

dressed the inefficiency of Cartesian meshes while solving boundary layers and tried

to mitigate that problem by developing a wall model based on the Spalart-Allmaras

turbulence model. They indicate that their wall model cannot approximate the outside

of the log-layer region and still needs further development. More recently, they pre-

sented a new wall model [14], which can approximate the turbulent boundary layer

even for the first point y+ value corresponding to the wake region.

Dawes et al. [15] used octree Cartesian cut-cells with the viscous layer generated with

a Level Set approach. The approach first uses Cartesian cut-cells to obtain the best

integer representation of the body shape. Then, the real representation of the body is

achieved by using conformal grids down to the body.

Katz et al. [16] applied a meshless grid communication between off-body Cartesian

cells and near-body quad cells to simulate viscous flows. In their approach, the inter-

face is filled up with a point cloud. Then, an edge-based meshless scheme is applied

in which NS equations are discretized based on a least-squares approach.

Luo et al. [17] illustrated a two-dimensional hybrid grid approach that combines the

advantages of three different grid approaches. They used the unstructured triangular

cells as a buffer layer between near-body quadrilateral cells and Cartesian cells, which

fills the rest of the domain of interest.

Park et al. [18] proposed a similar hybrid grid approach to alleviating the inaccuracies

generated by cut-cells near the body. As the first step of the approach, a body-fitted

layer of quads is created by extruding frontal nodes with a function depending on
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the minimum normal curvature. The level set method is used to find colliding cells.

Secondly, the Cartesian grid fills the rest of the domain. Then, the gap between them

is filled with triangles. Özkan’s thesis [19] is another example. Her study aimed to

combine the orthogonality and directionality of a structured grid, the efficiency and

simplicity of a Cartesian grid, and the flexibility and ease of an unstructured grid in

an attempt to develop an automatic, robust, and fast hybrid mesh generation method.

Hartmann et al. [20] treated small cut-cell problems using a cell-merging procedure.

Their research is the first example of a strictly conservative cut-cell method for three-

dimensional cases.

Schneiders et al. [21] presented a conservative Cartesian grid method for viscous

flows interacting with moving bodies. They developed a new approach to treat small

cut cells based on a weighted Taylor series approach.

The overset-grid approach is another solution alternative for using different types of

grids together. The basic idea here is, at first, to generate the grids separately around

each geometrical entity in the domain. After that, the grids are combined so that they

overlap each other where they meet. Oversetting techniques do not require common

boundaries between subdomains; instead, a common or overlapped region is required

to match the solutions across boundary interfaces. This makes it easier to generate

grids, especially for complex geometries, since each grid can be generated indepen-

dently from the other grids. The usual procedure uses an interpolation of embedded

boundaries to provide the necessary communication among the grids. Benek repre-

sented one of the earliest studies about overset grids [22]. The interpolation between

the different grids is a crucial stage for a higher-order Chimera method. It is shown

that the use of linear interpolation schemes in conjunction with high-order methods

leads to a decrease in the global accuracy of the solution[23]. More recently, Ramírez

[24] published a study in which higher-order accuracy is achieved by using a moving

least squares approach to communicate between overlapping regions.

Additionally, several studies have been conducted about Quad-tree-based Cartesian

grid solvers in the Department of Mechanical Engineering at METU. Firstly, Siyah-

han [25] used the approach to solve two-dimensional compressible Euler equations.

Çakmak [26] took forward the research by implementing the solution adaption pro-
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cedure and multi-grid method for two and three-dimensional domains. Lastly, Şahin

[27] developed a laminar flow solver and implemented the body-conforming grids

into the grid generation process.

1.4 The Main Objective and Outline

The approaches that were presented in the previous section have advantages and hand-

icaps. First of all, although the direct usage of cut-cells increases the ability to obtain

a solution with a minimum user intervention, the solution of turbulent flows by using

this technique is generally quite inefficient and inaccurate, especially for complex ge-

ometries. On the other hand, hybrid grid approaches can handle this problem by using

body-fitted orthogonal grids. However, it requires a more complex data structure and

unique treatments at the interface of the different grid types.

The grid generation approach used in this study is based on Şahin’s thesis study [27].

Cartesian cut-cells first resolve user-defined discrete points of geometries. Then, re-

solved points are translated in the normal directions of defined line segments. The

outer area of the boundary defined by translated points is discretized using a Carte-

sian cut-cell. The near-body area is filled with quadrilaterals to solve the turbulent

boundary layer. Quadrilaterals and cut-cells have a perfect match at the intersec-

tion. This idea retains the simplicity of data structure and solution adaptive mesh

refinement procedure. Thus, it still provides a highly automatic mesh generation and

solution procedure. However, it decreases the flexibility of generation body conform-

ing quadrilaterals. This study investigates this approach’s efficiency in solving high

Reynolds number flows.

In this study, the introduced concept of mesh generation is used to solve fully turbu-

lent flows. The compressible Reynolds-Averaged Navier-Stokes (RANS) equations

are closed using the negative Spalart-Allmaras model. Flow variables are recon-

structed using Least Square Approach and limited with Venkatakrishnan’s limiter.

Viscous fluxes are calculated with a modified averaging approach for gradient terms

instead of an additional reconstruction technique. Solution adaptive mesh refinement

is used to have mesh-free solutions.

9



The data structure and mesh generation are explained in Chapter 2. Governing equa-

tions of the solution approach of this study are introduced in Chapter 3. In the next

chapter, each part of the solution procedure is discussed. In Chapter 5, results ob-

tained from several test cases are presented and discussed. The last chapter sum-

marizes the study presented with outcomes of the study and suggestions for future

work.
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CHAPTER 2

MESH GENERATION

This chapter explains the data structure used in the solver and the mesh generation

approach. A quadtree-based data structure is used to store information which is a

suitable selection for the mixed Cartesian-quadtree grid scheme used in this study. At

the beginning of this chapter, the data structure is explained. Then, the generation of

Cartesian grids and geometric adaptation methodologies are explained. Furthermore,

as this study contains the usage of hybrid grids, the generation of boundary layer grids

and their implementation into the data structure are also explained.

2.1 Data Structure

A quad-tree data structure is used to generate Cartesian grids. In this approach, the

domain is divided into four equal size regions for each refinement. The newly cre-

ated regions are called children of the split region. This data structure is suitable for

Cartesian grid generation. In this aspect, each part is a square Cartesian grid. The

first Cartesian grid, which contains the whole solution domain, is called the root cell.

Its level is 0. When it is divided into four equal size cells, these cells are stored as

children of the root cell. Their level is 1. The same refinement procedure continues

recursively until the desired resolution is obtained. For each refinement, the level

of generated cells increases by 1. Each cell contains information about its parent and

children, stored as pointers. A cell without any children is called a leaf cell. Leaf cells

are flagged as computational cells, and they are used in the solution procedure. The

location of each cell can be determined, and connectivity can be constructed using

the data structure. A simple representation of the quad-tree data structure is shown in
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Figure 2.1.

Figure 2.1: Quad-tree data structure

One of the advantages of using a quad-tree data structure is the refinement procedure.

Leaf cells can be flagged for refinement according to the given criteria. Then new

children are generated and stored by using pointers. Using the data tree, the neighbors

of new grids are determined. Similarly, the coarsening procedure can be applied

simply by removing the pointers that store children of related cells.

There is no need for another linked list to find a neighbor for each cell. The data tree

is used to discover neighbors. By using the tree, firstly, the parent of this cell and then

the neighbors of its parents are searched to determine neighbors in four directions. For

each refinement, neighbors of new cells are found and stored, whether computational

or not, beginning from the root cell. This procedure requires taking up more space

in memory. The advantage is that visiting grandparents of an examined cell is not

needed. Only its parent and their neighbors are enough to complete the neighbor-

finding procedure. An example tree traversal procedure for finding neighbors of a

grid is presented in Figure 2.2.

After constructing the data tree, one of the most critical steps is determining the type

of cells. Knowing whether cells are outside or inside or intersecting with the given

body geometry is crucial. First, all cells’ edges are queried to find if they are inside

or outside. Then, intersections are found if there are any. The cell type information is

stored and retrieved with the help of cell type pointers. Also, two different index val-

ues are recorded for each cell according to their types. These are cut and split indices.

With the help of these indices, the location of cut and split lines are determined and
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Figure 2.2: An example tree traversal on finding neighbors of cell J

stored.

When the solution procedure starts, the program needs some information about grids

like neighbors, their levels, and whether they are computational or not. They can

be computed and provided when they are required. Alternatively, they can be stored

before the solution begins and are provided when needed. This selection affects the

computational time of the same procedure. Thus, the time required may change sig-

nificantly depending on the preference. In this study, most geometric parameters

that are not altered during the solution procedure are computed and stored at the be-

ginning. While it increases memory usage, the advantage is that less computational

power is used while solving problems. The selection depends on memory and solu-

tion time consideration, which may change with developing hardware specifications.

These parameters are stored and accessed with the help of the pointers listed below.

• 9 pointers for geometric parameters (Corner Points, Area, Center, Centroid,

Faces, Wall Distance)

• 16 pointers for connectivity ( Parent, Children, Neighbors, Split and Quad

Cells, Level)

• 5 pointers for cell type (Cell Type, Intersection Points, Square and Split Indices)

• 25 pointers for solution parameters ( Residuals, Conserved variables, Gradients,

Limiter, Viscosity)

• 2 pointers for solution adaptation ( Tau, Ksi)

• 21 static pointers for flux calculations
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2.2 Cartesian Mesh Generation

The first step to generating an appropriate mesh structure is the generation of the

lowest level grid. This grid is called the root grid because it is the root of the whole

data structure, and by dividing it isotropically, four equal squares are obtained each

time until the final Cartesian mesh is obtained.

2.2.1 Uniform Mesh Generation

The first step of Cartesian mesh generation is dividing the root cell uniformly. A

user-defined input, called uniform mesh division level, is used to achieve this step.

The root cell is defined until it reaches the user-defined level. As mentioned in the

Data Structure section, the level of the root cell is 0. The level of the uniform mesh

is increasing for each division. In this step, cells intersecting with the body are found

and cut. With the appropriate level of uniform cells, the geometry of a body can be

represented well. Figure 2.3 shows the resulting uniform mesh at different levels for

the NACA0012 airfoil. As it is seen for increasing levels of uniform mesh, the body’s

geometry is represented better. The airfoil body is well captured after ten cycles of

uniform mesh generation. However, using only uniform grids causes an excessive

number of cells. The number of grids generated for ten cycles is 1,048,238. Using

it directly to solve problems is inefficient in terms of memory and computational

power. Cells far away from the body are unnecessarily refined due to this procedure.

Thus several adaptations are applied in this study in order to have a grid structure that

represents the body satisfactorily, while it is more efficient than a uniformly generated

grid. In general, these adaptations represent the body geometry and help the mesh

generation process more robust. In total, three geometric adaptations are applied.

These are,

• Box Adaptation

• Cut-Split Adaptation

• Curvature Adaptation
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(a) Level 4 (b) Level 6

(c) Level 8 (d) Level 10

Figure 2.3: Uniformly generated Cartesian grids for different levels

2.2.2 Box Adaptation

This adaptation procedure aims to refine grids closer to wall boundaries. Part of

the solution domain, which is far from any geometry, generally does not need to be

refined because flow variables do not change much with respect to location. Thus,

refining the regions nearer to the bodies while having coarser grids away from the

bodies is reasonable. The Box adaptation procedure aims to define a rectangular

region that contains grids close to the body and refine these grids according to the

given refinement criteria. The size of the rectangular area, box, is determined with

user input as boundary size factors in both x and y directions. Global maximum

coordinate differences of geometry in x and y directions are multiplied by this factor.

The length and height of the box are defined as follows
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L = (Sx − 1)
(Xmax −Xmin)

2
, (2.1)

H = (Sy − 1)
(Ymax − Ymin)

2
, (2.2)

where Sx and Sy are the boundary size factors in the x and y directions, respectively.

X and Y represent the maximum and minimum values of nodal positions for all

geometries in the solution domain.

Cells inside the box are queried whether they provide the conditions determined by

another user input, the body division factor. The ones that do not provide are refined.

The criterion is for refinement can be specified as follows

max(Xmax −Xmin, Ymax − Ymin)FD ≤ D

2L
, (2.3)

where D is domain size, size of the root cell, L is the level of the cell, FD is the

body division factor. Figure 2.4 shows Cartesian grids generated with box adaptation

around NACA0012 airfoil.

(a) (b)

Figure 2.4: Box adaptation
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2.2.3 Cut-Split Adaptation

Cut and split cells must have a higher resolution because they are in the neighborhood

of the bodies where higher gradients are presented. Also, it helps to have a good rep-

resentation of the geometry without refining the whole grid structure. After refining

cut and split cells, their neighbors are also refined in order to have a smooth transition

from finer cells to coarser cells at outer regions. Figure 2.5 shows Cartesian grids

generated with cut-split adaptation around the leading edge of the NACA0012 airfoil.

Figure 2.5: Cut-Split adaptation

2.2.4 Curvature Adaptation

This procedure is based on examining the angles between successive cut-cell and

determining whether they need to be refined or not. These grids are refined if this

angle is below a defined threshold angle. This procedure is achieved by constructing

a triangle by using the intersection point of consequent lines and their other ends.

Then, the angle at the point of intersection is computed. Lastly, this angle is compared

with the threshold angle; if it is less, cells are refined. In the figure, the procedure is

represented. Figure 2.6 shows Cartesian grids generated with curvature adaptation

around the leading edge of the NACA0012 airfoil.
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Figure 2.6: Curvature adaptation

2.2.5 One Level Difference Check

In this study, the maximum allowed level difference between two adjacent Cartesian

grids is one. After each adaptation cycle, the data structure is checked to see if there

is more than one level difference between the neighboring cells. If there is, lower-

level neighbor cells are refined until the difference decreases to one. This procedure

simplifies the connectivity handling and solution approach and provides a smoother

mesh structure.

2.3 Boundary Layer Mesh Generation

One of the aims of this study is to use a body-conforming grid structure to solve near-

body flow more accurately. Each conforming grid has direct connectivity to a cut or

split cell or each other. While it decreases the flexibility of the approach, it simplifies

the data structure and guarantees a conserved solution.

Before generating near-body grids, a puffed geometry is required. After the geometry

is obtained, the edges of the cut-split cells are connected to the body. Lastly, quadri-

lateral body conforming grids are generated starting from the cut-split cells’ edges.

Details of the process are explained in the following sections.
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2.3.1 Setting the Boundary Layer Thickness

Turbulent boundary layer thickness is calculated based on Reynolds Number. It is

estimated by using Von Karman’s momentum integral approach, which is defined as,

δ =
5

Re0.2
. (2.4)

Although this assumption may be sufficient for some cases, generally, it is required

to modify total boundary layer thickness, especially for complex geometries. Thus,

users may use different empirical approaches to set a boundary layer thickness for

specific problems.

Another essential parameter to be considered before generating body conforming

grids is the first layer thickness. The first layer thickness should be sufficiently thin

to solve the viscous sub-layer region accurately. Non-dimensional wall distance y+

should be smaller than one. It is defined as

y+ =
yuτ

ν
, uτ =

√
τw
ρ
, (2.5)

where uτ is the friction velocity. Estimating the wall shear and other parameters gives

an approximate first layer thickness for the desired y+.

2.3.2 Puffed Geometry Generation

The geometry is defined with points rather than a function. For each successive point,

line segments are defined, and their normal vectors are found. Then points of the

line segments are shifted in the direction of these vectors by an amount of boundary

layer thickness. New line segments are intersected, and puffed geometry is defined

as it is shown in Figure 2.7. After obtaining the first geometry, two more additional

applications are applied to have a more proper geometry for quad grid generation.

These are,

• Handling Convex Geometries
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• Negative Volume Check

Figure 2.7: Creation of new nodes of puffed geometry

Highly convex parts are handled by defining new nodes from the edge of the convex

part. If the angle between the two line segments is lower than 60 degrees, five equally

distributed new points are defined by considering the boundary layer thickness. If it

is lower than 120 degrees, three new points are defined. Figures 2.8, 2.9 illustrate

puffed node calculation without and with the adaptation process.

Figure 2.8: Convex part without handling
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(a)

(b)

Figure 2.9: Addition of extra nodes to handle convex geometries

Direct extrusion of concave geometries may create negative volumes at the interface

of cut cells and boundary layer cells. Thus, the puffed geometry is checked before

the mesh generation process to eliminate this problem. Until none of the line seg-

ments intersect, the geometry is checked, and the nodes inside the puffed geometry

are eliminated.

2.3.3 Quad Cell Generation

After the boundary layer points are determined, Cartesian grids are generated around

these points. Cartesian cells are cut and split along the boundary layer. Then the
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space between the new boundary and the geometry is filled with quadrilateral grids.

The first layer of quad cells is neighbor to cut and split cells. The connectivity relation

at the boundary is provided by two pointers, "quad1" and "inclusiveOfQuads." Each

cut and split cell is neighbor to at least one quad cell, and this information is stored

using the "quad1" pointer. Also, the "inclusiveofQuads" pointer stores neighboring

cut or split cells for quad cells. Furthermore, cut cells may have two quad cells at

their two different faces. In this situation, "quad1 and "quad2" pointers are used to

store these quad cells. Figure 2.10 represents a mixed grid generated around NACA

0012 airfoil.

Figure 2.10: Mixed grid generated around NACA0012 airfoil
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CHAPTER 3

GOVERNING EQUATIONS

After covering the mesh generation method, the governing equations that describe

two-dimensional fully turbulent compressible flows are described in this chapter.

Firstly, Navier-Stokes equations are presented in their integral form for two-dimensional

compressible flows.

Secondly, the compressible Reynolds-Averaged Navier-Stokes equations, also known

as the Favre-Averaged Navier-Stokes equations, are described briefly. Non-dimensional

forms of these governing equations are also presented since the code used in this study

uses non-dimensional parameters.

Finally, Spalart-Allmaras is selected to model the turbulence. Its well-known baseline

model is expressed. Then a conservative form of the SA model with limitations in its

production term is demonstrated. In addition, the negative SA equation is used to

prevent possible numerical problems. After the turbulence model explanation, the

complete RANS-SA system is shown. The boundary conditions for corresponding

governing equations are also explained at the end of the chapter.

3.1 Navier-Stokes Equations

Navier-Stokes Equations are a system of equations that describe the dynamical be-

havior of a fluid flow. This set of equations contains the conservation laws for mass,

momentum, and energy. In this study, the solution domain of our interest is two-

dimensional. The two-dimensional integral form of the compressible Navier-Stokes

Equations is defined as
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∂

∂t

ˆ

V

−→
QdV +

ˆ

S

(
−→
F −

−→
G)dS = 0. (3.1)

where
−→
Q is the vector of conserved variables. It is given as

−→
Q =


ρ

ρu

ρv

ρE

 . (3.2)

−→
F is the inviscid flux vector. Its components are

−→
F =


ρunx + ρvny

(ρu2 + P )nx + ρuvny

ρuvnx + (ρv2 + P )ny

ρuHnx + ρvHny

 . (3.3)

where H is the total enthalpy, and E is the total energy. The relation between these

two terms is defined as

H = E +
p

ρ
. (3.4)

−→
G vector is the viscous flux vector. Its components contain the viscous stress terms ,

τxx, τxy, τyy and heat conduction terms , qx, qy.

−→
G =


0

τxxnx + τxyny

τyxnx + τyyny

(uτxx + vτxy − qx)nx + (vτyy + uτyx − qy)ny

 (3.5)

The heat conduction terms are formulated by following Fourier’s heat conduction law.

qx = −k
∂T

∂x
(3.6)

qy = −k
∂T

∂y
(3.7)
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3.1.1 The Working Fluid

In this solver, the air is selected as the working fluid, and it is a calorically perfect gas

if the flow is not at hyper-sonic speeds. Thus, its specific heat capacity is constant.

There are five unknown parameters represented in Navier-Stokes Equations, while

the number of the equations is four. Since one more equation is required for closure,

the equation of the state of a perfect gas is also used.

p = ρRT (3.8)

Other thermodynamic correlations for perfect gases are

R = cp − cv, (3.9)

γ =
cp
cv
, (3.10)

h = cpT. (3.11)

where R is the specific gas constant, cp and cv are specific heat capacities under

constant pressure and volume, respectively, and h is the enthalpy per unit mass.

Pressure in terms of conserved variables can be found by using the above relations

and the total enthalpy equation (3.4).

p = (γ − 1)

(
ρE − ρ(u2 + v2)

2

)
(3.12)

Since air is a Newtonian fluid, shear stress is proportional to the velocity gradient.

Viscous stresses can be calculated by using the below relations [28]

τxx = 2µ

(
∂u

∂x
− 1

3

(
∂u

∂x
+

∂v

∂y

))
, (3.13)

τyy = 2µ

(
∂v

∂y
− 1

3

(
∂u

∂x
+

∂v

∂y

))
, (3.14)
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τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)
. (3.15)

The dynamic viscosity µ, can be calculated by using the Sutherland formula for air.

It is defined by using reference free-stream values as

µ

µ∞
=

[
T∞ + 110

T + 110

]
.

(
T

T∞

)3/2

. (3.16)

where µ∞ is free-stream dynamic viscosity and taken as the reference. T∞ is the

corresponding free-stream temperature, and the temperature unit is selected as Kelvin.

For liquids, the thermal conductivity can be taken as a constant. However, for gases,

their dependency on temperature can be related by using µ

k = cp
µ

Pr
. (3.17)

Pr is the Prandtl Number and its value Pr = 0.72 for the air.

3.1.2 Non-dimensional Formulation of Navier-Stokes Equation

As already mentioned, this research aims to develop a CFD code to calculate fully

turbulent flows over various geometries like airfoils. The comparison cases generally

have been studied with experimental applications like wind tunnel tests. However,

there is no global standardization of measurement of these experimental applications.

It may create difficulty in following up units of each parameter for every different

application. Thus, a non-dimensionalized form of the Navier-Stokes Equation is used

in this research to alleviate this problem. The dimensionless parameters that are used

for non-dimensionalizing the governing equations are defined as

x∗ = x
L
, x∗ = y

L
, t∗ = ta∞

L
,

u∗ = u
a∞

, v∗ = v
a∞

, k∗ = k
k∞

,

p∗ = p
ρa2∞

, ρ∗ = ρ
ρ∞

, µ∗ = µ
µ∞

.

(3.18)

and dimensionless free-stream values are defined as
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u∗
∞ = M∞cosα,

v∗∞ = M∞sinα,

ρ∗∞ = 1,

p∗∞ = 1
γ
,

c∗∞ = 1.

(3.19)

Substituting dimensionless parameters into governing equations (3.1) and further mod-

ifications give a non-dimensional set of equations

∂

∂t

ˆ

V

−→
Q ∗dV +

ˆ

S

(
−→
F ∗ − M∞

Re

−→
G ∗)dS = 0, (3.20)

where asterisks state that corresponding vectors of variables are dimensionless. Also,

the remaining parameters after non-dimensionalizing are grouped in two different

dimensionless groups. These are Reynolds Number and Mach Number. They are

defined as,

Re =
ρ∞V∞L

µ∞
, M∞ =

u∞

a∞
, (3.21)

where V∞ is the magnitude of the free-stream velocity.

V∞ =
√
u2
∞ + v2∞ (3.22)

Corresponding vectors with non-dimensional variables have the same parameters

compared to dimensional ones (3.2, 3.3, 3.5), except that heat conduction terms are

defined differently.

q∗x = − 1

γ − 1

µ

Pr

∂T ∗

∂x∗ (3.23)

q∗y = − 1

γ − 1

µ

Pr

∂T ∗

∂y∗
(3.24)
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Temperature gradient term can be re-organized by using the thermodynamic relations

and attained dimensionless free-stream parameters as it is shown below.

q∗x = − γ

γ − 1

µ

Pr

∂ (p∗/ρ∗)

∂x∗ (3.25)

q∗y = − γ

γ − 1

µ

Pr

∂ (p∗/ρ∗)

∂y∗
(3.26)

3.2 Favre-Averaged Navier-Stokes Equations

Favre-Averaged Navier-Stokes (FANS) equations are a system of transport equa-

tions for solving compressible turbulent flows. FANS equations are derived by us-

ing density-weighted averaging operations on flow variables except for pressure and

density, which was proposed by Favre [29]. After the flow parameters are decom-

posed into their mean and fluctuating parts, they are substituted into Navier-Stokes

equations, and density-weighted averaging operations are performed. Density and

pressure are averaged by using Reynolds averaging. Details of this application can be

found in various sources [30, 31]. The resulting system of equations is usually called

Favre averaged mean conservation equations.

The resulting system of equations is somehow similar to the NS equations but has

additional unknown terms. These additional terms create a closure problem and need

to be modeled. Among the various forms of the Spalart-Allmaras models, the se-

lected form for this study is a linear eddy viscosity model and uses the Boussinesq

assumption to model the Reynolds stress tensor.

τ̃ij = 2µeff

(
Sij −

1

3

∂ũk

∂xk

δij −
2

3
ρ̄kδij

)
(3.27)

Turbulent heat flux is modeled by using a Reynolds analogy,

qtj =
µtcp
Prt

∂T̃

∂xj

, (3.28)
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where Prt is the turbulent Prandtl Number taken as 0.9, and µt is the turbulent eddy

viscosity.

Lastly, molecular diffusion and turbulent transport terms are neglected in the Spalart

Allmaras model used in this study.

The final form of the FANS equations in weak conservation form is

∂

∂t

ˆ

V

−→
QdV +

ˆ

S

(
−→
F −

−→
G)dS −

ˆ

V

−→
S dV = 0. (3.29)

where
−→
Q is vector of conserved variables,

−→
F and

−→
G are inviscid and viscous flux

vectors, and
−→
S is the source vector. For a two-dimensional domain, they are given as

−→
Q =


ρ

ρu

ρv

ρE

 ,
−→
F =


ρunx + ρvny

(ρu2 + P )nx + ρuvny

ρuvnx + (ρv2 + P )ny

ρuHnx + ρvHny

 , (3.30)

−→
G =


0

τxxnx + τxyny

τyxnx + τyyny

(uτxx + vτxy − qx)nx + (vτyy + uτyx − qy)ny

 . (3.31)

These vectors have the same form as the vectors defined in equations (3.2, 3.3, 3.5).

The only differences are the definitions of shear stresses and heat fluxes. Shear

stresses are defined as,

τxx = 2µeff

(
∂u

∂x
− 1

3

(
∂u

∂x
+

∂v

∂y

))
,

τyy = 2µeff

(
∂v

∂y
− 1

3

(
∂u

∂x
+

∂v

∂y

))
, (3.32)
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τxy = τyx = µeff

(
∂u

∂y
+

∂v

∂x

)
,

where µeff is the effective viscosity, the sum of laminar and turbulent viscosity.

µeff = µ+ µt (3.33)

The turbulent heat fluxes are given as,

qx = keff
∂T

∂x
, qy = keff

∂T

∂y
, (3.34)

and effective thermal conductivity, keff is defined as,

keff = cp

(
µ

Pr
+

µT

PrT

)
. (3.35)

3.3 Spalart Allmaras One-Equation Turbulence Model

The eddy viscosity µt resulting from the Boussinesq assumption is modeled by using

the Spalart Allmaras one equation turbulence model. This research is based on the

so-called "standard" version of the SA equation to model turbulence [5]. The eddy

viscosity µt evaluated by

µt = ρν̃fv1, (3.36)

where the function fv1 and χ are

fv1 =
χ3

χ3 + c3v1
, (3.37)

χ =
ν̃

ν
. (3.38)

The corresponding transport equation is
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∂ν̃

∂t
+ uj

∂ν̃

∂xj

= P −D +
1

σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
. (3.39)

where P and D indicate production and destruction terms respectively, which are

P = cb1 (1− ft2) S̃ν̃, (3.40)

D =
[
cw1fw − cb1

κ2
ft2

]( ν̃

d

)2

. (3.41)

S̃ is the modified vorticity and is defined as

S̃ = S +
ν̃

κ2d2
fv2. (3.42)

and S is the magnitude of the vorticity, that is,

S = abs

(
∂ui

∂xi

− ∂uj

∂xi

)
. (3.43)

The remaining empirical constants and functions are given by

fw = g

[
1 + c6w3

g6 + c6w3

]1/6
, g = r + cw2(r

6 − r), r = min

(
ν̃

S̃κ2d2
, rlim

)
, (3.44)

fv2 = 1− χ
1+χfv1

, cw1 = cb1/κ
2 + (1 + cb2)/σ, ft2 = ct3exp (−ct4χ

2) ,

cb1 = 0.1355, σ = 2/3, cb2 = 0.622,

cv1 = 7.1, κ = 0.41, cw2 = 0.3,

cw3 = 2.0, rlim = 10, ct3 = 1.2,

ct4 = 0.5.

The first two terms in equation (3.39) are similar to other transport equations. The

first term on the right-hand side represents the generation of turbulence. When there

are velocity gradients, shear, in the mean flow, turbulence is generated. The second
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term is the destruction term. As the distance from a wall goes to zero, fw also goes

to zero. The third term is the diffusion term. This term has an additional non-linear

term to control the spreading of the wake at the edge of the turbulent region.

An equivalent conservative form of the standard equation (3.39) can be derived by

summing the product of the SA transport equation with density and the product of the

mass conservation equation with the working variable, ν̃ of the model [32]. The final

form is represented below.

∂(ρν̃)
∂t

+
∂(ρuj ν̃)

∂xj
=

P −D + 1
σ

[
∂

∂xj

(
ρ (ν + ν̃) ∂ν̃

∂xj

)
+ ρcb2

∂ν̃
∂xi

∂ν̃
∂xi

]
− 1

σ
(ν + ν̃) ∂ρ

∂xi

∂ν̃
∂xi

(3.45)

The production and destruction terms are defined as follows:

P = ρcb1 (1− ft2) S̃ν̃, (3.46)

D = ρ
[
cw1fw − cb1

κ2
ft2

]( ν̃

d

)2

. (3.47)

3.3.1 The Negative SA Model

The original SA model claims positive solutions for positive boundaries and initial

conditions. However, the solution may become negative in the cases of coarse grid

solutions. The original model allows only positive values of the working variable.

The negative SA model is proposed to solve this issue [32]. The negative model is

the same as the original model (3.45) for ν̃ equal or greater than zero. If ν̃ becomes

negative, the following equation is solved.

∂(ρν̃)
∂t

+
∂(ρuj ν̃)

∂xj
=

Pn −Dn +
1
σ

[
∂

∂xj

(
ρ (ν + ν̃fn)

∂ν̃
∂xj

)
+ ρcb2

∂ν̃
∂xi

∂ν̃
∂xi

]
− 1

σ
(ν + ν̃fn)

∂ρ
∂xi

∂ν̃
∂xi

,

(3.48)
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where

Pn = ρcb1 (1− ct3)Sν̃, Dn = −ρcw1

(
ν̃

d

)2

, fn =
cn1 + χ3

cn1 − χ3
. (3.49)

with cn1 = 16.

3.3.2 Limiting Minimum Value of Modified Vorticity S̃

The modified vorticity S̃ may be zero or negative because fv2 term can be negative

over a range of X . S-A functions are not calibrated for negative values since they may

create numerical problems. There are various ways to handle that situation. Three of

them are,

1. Limiting S̃ to be greater than zero.

2. Limiting S̃ to be greater than 0.3 ∗ Sij .

3. Another approach that uses the identical definition of modified vorticity for

S̃ > 0.3 ∗ Sij but still ensures positive values for all other vorticity magnitude

values, and it is continuous[32].

The third approach is selected to limit S̃ in this study. The continuous approach is

defined below.

S̃ =

 S + ν̃
κ2d2

fv2 for ν̃
κ2d2

fv2 ≥ −cv2S

S +
S(c2v2S+cv3

ν̃
κ2d2

fv2)

(cv3−2cv2)S− ν̃
κ2d2

fv2
for ν̃

κ2d2
fv2 < −cv2S

 (3.50)

3.3.3 Non-dimensional Form of SA Equation

Non-dimensional form of the Spalart-Allmaras equation can be obtained by using the

previously mentioned non-dimensional parameters in chapter 3.1.2 and including the

non-dimensional turbulence variable ν̃∗ = ν̃
ν∞

.

33



ρ∞ν̃∞
L

a∞

∂(ρ∗ν̃∗)
∂t∗

+ ρ∞a∞ν̃∞
L

∂(ρ∗u∗
j ν̃

∗)
∂x∗

j
=

P −D +
(

ν̃2∞ρ∞
L2

)
1
σ

[
∂

∂x∗
j

(
ρ (ν∗ + ν̃∗) ∂ν̃∗

∂x∗
j

)
+ ρcb2

∂ν̃∗

∂x∗
i

∂ν̃∗

∂x∗
i

]
−
(

ν̃2∞ρ∞
L2

)
1
σ
(ν + ν̃) ∂ρ

∂xi

∂ν̃
∂xi

(3.51)

P =

(
ν̃2
∞ρ∞
L2

)
ρ∗cb1 (1− ft2) S̃

∗ν̃∗ (3.52)

D =

(
ν̃2
∞ρ∞
L2

)
ρ∗

[
cw1fw − cb1

κ2
ft2

]( ν̃∗

d∗

)2

(3.53)

Multiplying the equation with L
ρ∞a∞ν̃∞

results in

∂(ρ∗ν̃∗)
∂t∗

+
∂(ρ∗u∗

j ν̃
∗)

∂x∗
j

=

P −D +
(

ν̃∞
a∞L

)
1
σ

[
∂

∂x∗
j

(
ρ (ν∗ + ν̃∗) ∂ν̃∗

∂x∗
j

)
+ ρcb2

∂ν̃∗

∂x∗
i

∂ν̃∗

∂x∗
i

]
−
(

ν̃∞
a∞L

)
1
σ
(ν + ν̃) ∂ρ

∂xi

∂ν̃
∂xi

, (3.54)

P =

(
ν̃∞
a∞L

)
ρ∗cb1 (1− ft2) S̃

∗ν̃∗, (3.55)

D =

(
ν̃∞
a∞L

)
ρ∗

[
cw1fw − cb1

κ2
ft2

]( ν̃∗

d∗

)2

. (3.56)

Equating the group of parameters ν̃∞
a∞L

to M∞
Re

, resulting in

∂(ρ∗ν̃∗)
∂t∗

+
∂(ρ∗u∗

j ν̃
∗)

∂x∗
j

=

P −D +
(
M∞
Re

)
1
σ

[
∂

∂x∗
j

(
ρ (ν∗ + ν̃∗) ∂ν̃∗

∂x∗
j

)
+ ρcb2

∂ν̃∗

∂x∗
i

∂ν̃∗

∂x∗
i

]
,

−
(
M∞
Re

)
1
σ
(ν + ν̃) ∂ρ

∂xi

∂ν̃
∂xi

(3.57)

P =

 ρ∗cb1 (1− ft2) S̃
∗ν̃∗ for ν̃∗ > 0

ρ∗cb1 (1− ct3)S
∗ν̃∗ for ν̃∗ ≤ 0

 , (3.58)

where
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S̃∗ = S +

(
M∞

Re

)
ν̃∗

κ2d2∗
fv2, (3.59)

D =


(
M∞
Re

)
ρ∗

[
cw1fw − cb1

κ2 ft2
] (

ν̃∗

d∗

)2
for ν̃∗ > 0

−
(
M∞
Re

)
ρ∗cw1

(
ν̃∗

d∗

)2
for ν̃∗ ≤ 0

 , (3.60)

r = min

(
M∞

Re

ν̃∗

S̃∗κ2d2∗
, 10

)
. (3.61)

The compressible RANS equations can be non-dimensionalized using the same method-

ology applied to NS equations. Including the turbulence transport equation (3.57), the

complete system of transport equations in non-dimensional form is obtained. From

this point on, asterisks will not be used to indicate dimensionless parameters for clar-

ity. The conservation equation that includes mass, momentum, energy and turbulence

equations in integral form is shown below.

∂

∂t

ˆ

V

−→
QdV +

ˆ

S

(
−→
F −

−→
G)dS =

ˆ

V

−→
S dV (3.62)

where Q is the conserved variable vector, and F is the inviscid flux vector. G is the

viscous flux vector, and S is the source vector.

−→
Q =



ρ

ρu

ρv

ρE

ρν̃


−→
F =



ρunx + ρvny

(ρu2 + p)nx + ρuvny

ρuvnx + (ρu2 + p)ny

ρuHnx + ρvHny

ρuν̃nx + ρvν̃ny


(3.63)

−→
G =



0

τxxnx + τxyny

τyxnx + τyyny

(uτxx + vτxy − qx)nx + (uτxy + vτyy − qy)ny[
1
σ
ρ (ν + ν̃) ∂ν̃

∂x

]
nx +

[
1
σ
ρ (ν + ν̃) ∂ν̃

∂y

]
ny


(3.64)
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−→
S =



0

0

0

0

St


(3.65)

where turbulence source term equals to

St = P −D +

(
M∞

Re

)
1

σ

(
ρcb2

∂ν̃∗

∂x∗
i

∂ν̃∗

∂x∗
i

)
−
(
M∞

Re

)
(ν + ν̃)

∂ρ

∂xi

∂ν̃

∂xi

. (3.66)

The final form of shear stress terms are

τxx = µeff
M∞

Re
(
4

3

∂u

∂x
− 2

3

∂v

∂y
), (3.67)

τyy = µeff
M∞

Re
(
4

3

∂v

∂y
− 2

3

∂u

∂x
), (3.68)

τyx = τxy = µeff
M∞

Re
(
∂u

∂x
− ∂v

∂y
). (3.69)

and heat fluxes are defined as

qx = − 1

γ − 1

M∞

Re

(
µ

Pr
+

µt

Prt

)
∂ (p/ρ)

∂x
, (3.70)

qy = − 1

γ − 1

M∞

Re

(
µ

Pr
+

µt

Prt

)
∂ (p/ρ)

∂y
. (3.71)

3.4 Boundary Conditions

In the solution of external flows, two types of boundary conditions are used. These are

far-field and wall boundary conditions. Numerical implementation of these boundary
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conditions is described in the following sections, including the treatment of turbu-

lence variable ν̃.

3.4.1 Far-field and Wall Boundary conditions

The far-field boundary is presented when an out-type grid has no neighbors at its face.

It indicates that the grid is at the edge of the far-field boundary. For test cases, the

domain size is selected larger than at least 200 times the chord of selected airfoils.

Thus, vortex correction for lifting bodies becomes nonessential. Fluxes are computed

using ghost cells of the same size as boundary cells at the outer boundaries. Free-

stream values are attained to these ghost cells, and the same flux function is applied.

Figure 3.1 shows a representation of the far-field boundary procedure.

(Vn)ghost = M∞cosα (Vt)ghost = M∞sinα (3.72)

pghost = p∞ ρghost = ρ∞ Eghost = E∞ (3.73)

Figure 3.1: Far-field boundary condition

The second one is the wall boundary condition. At the wall boundaries body, orthog-

onal an-isotropic quad cells are used. If the cell type is quad and one of the faces has

no neighbors wall boundary procedure is applied. Again, the cell size of the ghost

cell is equated to the size of the real cell. No-slip boundary conditions are applied by
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equating the tangential velocity parameter at the face to zero. Similarly, the velocity

component normal to the wall is equated to zero since there is no mass flux into the

wall.

(Vn)ghost = − (Vn)i (3.74)

(Vt)ghost = − (Vt)i (3.75)

The wall boundary procedure is completed by setting zero pressure gradient and as-

suming zero heat flux, defining

Tghost = Ti, pghost = pi, ρghost = ρi. (3.76)

Figure 3.2 shows a representation of the wall boundary procedure.

Figure 3.2: Wall boundary condition

3.4.2 Turbulent Boundary Conditions

Two different boundary conditions attained to turbulence variable ν̃. The first one is

the wall boundary condition. The turbulence variable is equated to zero at the wall

boundaries.
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ν̃wall = 0 (3.77)

The second one is the far-field boundary condition. It is defined differently from the

given conditions in the original paper [5]. Since the model is applied to solve fully

turbulent problems, a more suitable range is used following the suggestion in [33].

ν̃farfield = 3ν∞ to 5ν∞ (3.78)

νt,farfield = 0.210438ν∞ to 1.294234ν∞ (3.79)
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CHAPTER 4

NUMERICAL APPROACH

The primary aim of this study is to solve the compressible RANS equations with

Spalart Allmaras turbulent model presented in Chapter 3. A cell-based numerical

algorithm has been developed to achieve this goal. The solution domain is discretized

with Cartesian grids at outer regions, while body orthogonal quadrilateral grids are

used to discretize near-body regions, as it is indicated in Chapter 2. Discretization

methods are based on the cell-centered finite volume method. This chapter explains

numerical approximations used for governing equations.

The governing equations are described in three primary steps. These are reconstruc-

tion, flux calculation, and time discretization. As the first step, cell averaged val-

ues are reconstructed linearly at the faces of cells using a limiter. Then using re-

constructed values, inviscid and viscous flux methods are applied. Also, flux and

source terms of the Spalart Allmaras equation are included in the solution. Lastly,

a multi-stage time stepping scheme is used to proceed the solution to a steady state.

A solution adaptive mesh refinement procedure is also implemented to have a higher

convergence rate and obtain a grid-independent solution.

4.1 Solution Reconstruction

In the cell-centered finite volume approaches, average values of variables are stored

at cell centers. These values are assumed as constant through the volume of each cell.

Thus, there is no direct information about the distribution of these variables from one

cell to another. This information is required to compute face fluxes and source terms

that use the change of variables according to the change of position in the control
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volume. Therefore, solution reconstruction is essentially required. There are various

approaches for reconstructing the solution. One of them is the Green-Gauss approach

which approximates the gradient of some scalar function as its path integral over some

control volume. The other one is the Least-squares approach that is selected in this

study.

4.1.1 Least-squares Approach

This approach is firstly introduced by Barth [34] for a median-dual scheme. The

application is very similar for both median-dual and cell-centered schemes. An ex-

ample of cell-centered application can be found in Wang [9]. By using cell-centered

variables of neighbor cells, the gradient of primitive variables at cell centers can be

approximated as

q(x, y) = qcell + qx(x− xcell) + qy(y − ycell). (4.1)

where qcell is the value of primitive variable at cell center and xcell, ycell are its location

for a 2 dimensional domain. Then the change of the variables qx, qy with respect to x

and y can be computed by using,

qx =
1

∆

[
Iyy

n∑
i=1

w2
i (qi − qc) (xi − xc)− Ixy

n∑
i=1

w2
i (qi − qc) (yi − yc)

]
, (4.2)

qy =
1

∆

[
−Ixy

n∑
i=1

w2
i (qi − qc) (yi − yc) + Ixx

n∑
i=1

w2
i (qi − qc) (xi − xc)

]
, (4.3)

Ixx =
n∑

i=1

w2
i (xi − xc)

2 , (4.4)

Ixy =
n∑

i=1

w2
i (xi − xc) (yi − yc) , (4.5)
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Iyy =
n∑

i=1

w2
i (yi − yc)

2 , (4.6)

∆ = IxxIyy − I2xy. (4.7)

where n is the total number of neighbor and corner cells, and wi is the weight function.

For the calculations in this thesis, the weights were set to one for particular test cases.

For other test cases, the weight function defined by Shima et al. [35] is used. They

proposed the function for a weighted least-squares (WLSQ) approach inherited from

the Green-Gauss method. The function is defined as

w2
i =

(
2li

Li

)2
si
Li

. (4.8)

where Li is the distance between cell centers, si is face length, Li and li are projec-

tions of cell center distance Li, the distance between the cell center and face center to

the cell face normal, respectively.

Figure 4.1 illustrates geometric variables used in function (4.8).

Figure 4.1: Schematic of cell geometrical values used in the weight function

In the code, Ixx, Ixy, and Iyy are precalculated to decrease computational cost.
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4.1.2 Gradient Limiting

The implemented reconstruction procedure in this study has no inherent measure to

guarantee that the result of reconstruction bounded within the range of support data

used. Thus, an additional limiter is used [36] to ensure the monotonicity criterion.

The limiter limits the maximum and minimum results of the performed solution so

that it does not exceed the values at the center of support cells used in the reconstruc-

tion. The reconstruction function with limiter is defined as

q(x, y) = qcell +Φ [qx(x− xcell) + qy(y − ycell)] . (4.9)

where Φ is the limiter. It is calculated for each primitive parameter and each vertex of

the cell. Then, the smallest value is selected and used in the reconstruction function

(4.9). Firstly, the maximum and minimum values of the primitive parameters among

values at supporting cell centers and the cell center where reconstruction is applied

are computed.

qmax = (qcell, q
i
n), qmin = (qcell, q

i
n), for i = 1, .., Number of Supports.

(4.10)

The reconstructed value should be within the range of maximum and minimum valued

parameters.

qmin ≤ q(x, y) ≤ qmax (4.11)

For a vertex k of the cell, where reconstruction is applied with no limiter if the recon-

structed value is larger than the value at the cell center qmax is used to calculate the

limiter. Otherwise, qmin is used. Calculation of limiter is defined as follows:

Φk =


min

(
1, qmax−qcell

qk−qcell

)
if qk − qcell > 0

1 if qk − qcell = 0

min
(
1, qmin−qcell

qk−qcell

)
if qk − qcell < 0

 . (4.12)

Finally, the minimum value is selected for the limiter that is going to be used in

reconstruction,

44



Φ = min (Φ1,Φ2, ..Φk) . (4.13)

Although implemented limiter provides stability in numerical solutions, it delays con-

vergence and makes it difficult to reach steady state solutions in some cases [37].

Venkatakrishnan presented a modified limiter [38] based on Barth’s limiter by ad-

dressing this problem. In this study, this modification is also applied and tested.

The modified limiter is defined as

Φk =
1

△−

[
(△2

+ + ϵ2)△− + 2△2
−△+

△2
+ + 2△2

− +△+△− + ϵ2

]
. (4.14)

where △− = qk − qcell and △+ is defined as

△+ =

 qmax − qcell if △− > 0

qmin − qcell if △− < 0

 . (4.15)

Epsilon is defined by following the work of Wang [10]. He addressed that with the

significant variations of the cell size across the domain, the original definition may

become problematic for neighboring cells with different levels. Since Cartesian cells

can also have significant size differences, an ϵ that does not depend on the mesh size

is defined and used in this study.

ϵ = 0.05(qmax − qmin) (4.16)

4.2 Spatial Discretization

In the cell-centered finite volume method, the discrete form of the equation (3.62)

becomes

A
∂
−→
Q

∂t
+

∑
faces

(
−→
F −

−→
G)△s− A

−→
S = 0. (4.17)
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where A is the area and L is the length of the corresponding cell. The viscous and

inviscid fluxes are calculated as the summation of them at the faces of the cell. Invis-

cid flux is formulated by using an upwind scheme, the Roe’s flux difference splitting

[39], while viscous flux is formulated with averaged cell variables and their gradients

at the cell interfaces.

4.2.1 Inviscid Flux Formulation

Roe’s flux difference Splitting is one of the most popular approximate Riemann

solvers. In Roe’s approach, the Jacobian matrix is replaced with a constant one to ap-

proximate the Riemann problem. It makes the original non-linear conservation laws a

linearized system of equations with constant coefficients. Details of approximations

can be found in [40]. The resulting intercell flux is

Fi+ 1
2
=

1

2
(FL + FR)−

1

2

m∑
i=1

α̃i | λ̃i | K̃(i). (4.18)

To find this flux for an m numbered hyperbolic system of equations, the wave strengths

α̃i, the eigenvectors λ̃i and also the right eigenvectors,K̃i, need to be calculated. For

the two-dimensional Euler equations, these matrices are defined as

| λ̃i |=


URL − CRL

URL

URL

URL + CRL

 , (4.19)

K̃i =


1 1 0 1

URL − CRL URL 0 URL + CRL

VRL VRL 1 VRL

HRL − URLCRL
U2
RL+V 2

RL

2
VRL HRL + URLCRL

 , (4.20)
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α̃i =


△P−ρRLCRL△u

2C2
RL

△ρ− △P
C2

RL

ρRL△v

△P+ρRLCRL△u
2C2

RL

 . (4.21)

The intermediate variables used are

ρRL =
√
ρLρR, (4.22)

URL = uR +

√
ρL (uL − uR)√
ρL +

√
ρR

, (4.23)

VRL = vR +

√
ρL (vL − vR)√
ρL +

√
ρR

, (4.24)

HRL = HR +

√
ρL (HL −HR)√
ρL +

√
ρR

, (4.25)

CRL =
(
(γ − 1)

(
HRL − 0.5

(
U2
RL + V 2

RL

)))1/2
. (4.26)

Corresponding left and right velocities are normal and tangential to the cell face di-

rection. For instance, right cell velocities are computed by using the following oper-

ations,

uR = ucosθ + vsinθ, (4.27)

vR = vcosθ − usinθ, (4.28)

where the angle θ is the face normal angle.
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4.2.2 Viscous Flux Formulation

Flow quantities and their gradients need to be known at cell faces to calculate vis-

cous flux at cell faces. While flow quantities reconstructed at the left and right cell

centers can be averaged to compute the quantity at the cell face, the same procedure

may create a numerical problem for the gradients. Because the contribution from the

further faces becomes more significant than the contribution of the neighbor cells,

it may cause numerical instability. Wang [9] address this problem and suggests the

following reconstruction approach for viscous flux to have more stable and accurate

results.

Let k and l be the cell face’s tangential and normal unit vectors, respectively. The

derivative of a primitive variable q at face with respect to k direction is

dq

dk
=

1

2
(∇f(qL) · k +∇f(qR) · k) . (4.29)

where gradients from left and right cells have already been calculated for inviscid

reconstruction. The gradient in the normal direction is calculated from

dq

dl
=

qR − qL
abs(rR − rL)

. (4.30)

By using these two equations, face gradients in x and y directions can be calculated

from

qx · lx + qy · ly =
dq

dl
, (4.31)

qx · kx + qy · ky =
dq

dk
. (4.32)

4.2.3 Discretization of the SA Equation

Like other transport equations, the SA equation is discretized using a cell-centered,

finite-volume method. The turbulence equation’s convective part is calculated by

using the first-order scalar upwind discretization. In this manner, the calculation of
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this part is uncoupled from the remaining set of convective fluxes. The diffusion term

is computed with the same procedure implemented for the rest of the viscous fluxes.

Source term is evaluated at cell centers by using cell values of flow parameters.

4.3 Temporal Discretization

The discrete form of the equation (3.62) is defined as

A
∂
−→
Q

∂t
+

∑
faces

(−→
F −

−→
G
)
△s− A

−→
S = 0. (4.33)

Calling all terms other than time derivative of conserved variables R,

A
∂Qi

∂t
+R (Q) = 0 (4.34)

For steady-state solutions, the R term known as the residual goes to zero.

R (Q) = 0 (4.35)

Applying forward finite difference discretization to the time derivative term to obtain

an explicit solution scheme,

A
Qn+1

i −Qn
i

△t
+Rn (Q) = 0 (4.36)

Qn+1
i = Qn

i −
△t

A
Rn (Q) (4.37)

Superscript n stands for the time step that the solution is known. An optimally

smoothing multi-stage scheme [41] is applied to advance the solution to n+ 1th time

step.

4.3.1 Multi-Stage Time Advancing

The general definition of the time scheme is defined as

49



Q0
i = Qn

i ,

Qk
i = Q0

i − C
αk△t

A
R
(
Qk−1

)
for k = 1, 2...,m, (4.38)

Qn+1
i = Ql.

where C is the Courant-Friedrichs Lewy number, CFL, and αk is the coefficient for

each stage. In this study, the number of stages is selected as three. In (4.1) multi-

stage coefficients and CFL numbers used for first and second-order spatial schemes

are listed.

First-Order Solution Second-Order Solution

C 1.5000 0.6936

α1 0.1481 0.1918

α2 0.4000 0.4929

α3 1.0000 1.0000

Table 4.1: Multi-stage coefficients for First and Second order discretization

This research aims to obtain steady-state solutions for turbulent flows. Thus, local

time-stepping is applied. It is necessary since cell sizes can significantly vary due to

cut and split cells. The local time step is calculated by considering the convective

and diffusive characteristics of the Navier-Stokes equations [42] with the following

equations.

△t =
△tc△tv

△tc +△tv
(4.39)

and convective and viscous time steps are defined as

△tv = Kv
A

λv

, (4.40)
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△tc =
A

φx + φy

. (4.41)

where Kv is an empirical constant and equals 0.25. Other terms are defined as

φx =
|u|+ c

2

∑
faces

|Sx| , φy =
|u|+ c

2

∑
faces

|Sy| , (4.42)

λv =
M∞γ

RePrA

∑
faces

µ

ρ
△s2. (4.43)

4.4 Wall Distance

SA model requires calculating the smallest distance between the wall boundary and

each cell. A small error in the wall distance calculation can result in a significant error

at the end of the solution [43]. Thus, the shortest distance to any point on the wall

boundary should be calculated instead of using the nearest mesh vertices or line center

on the wall boundary. In this study, wall distance is computed by searching every

line segment constructed by successive wall points using the brute force approach.

For each point nearest distance is calculated for every line, and the minimum one is

stored as a pointer. Brute force is a direct approach that may cause a problematic

computational cost. However, it has an insignificant calculation duration for most

applications since two-dimensional cases are studied in this research.

4.5 Solution Adaptive Mesh Refinement

One of the most desired features of Cartesian grids is that they provide ease in refine-

ment and coarsening procedure. This makes the use of solution adaption in certain

intervals quite attractive. After a specific number of iterations in solution, grids can

be easily refined or coarsened, considering relative flow characteristics. For instance,

shock locations, contact surfaces, and other high gradient locations can be flagged

according to selected criteria. Then grids can be refined locally to have more accurate

solutions in these areas. Selecting more proper criteria for studied flow characteristics
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is essential to use computational power more efficiently and have accurate solutions.

There are various adaptation criteria in the literature. A detailed study about them

was conducted by [44]. Their study showed that using the curl and the divergence

together gives one of the best results for finding shear layers and shocks. Also, both

criteria are direction-independent.

Divergence and curl are computed for each cell, including length scales of related

cells. Calculation of both terms with the addition of length scales is defined as,

τc =| ∇ × V | L
r+1
r , τd =| ∇.V | L

r+1
r (4.44)

where r = 2. The standard deviations about zero are computed for each parameter to

set the criterion,

σc =

√√√√ n∑
i=1

τ 2ci

n
, σd =

√√√√ n∑
i=1

τ 2di

n
(4.45)

If one of the following conditions is met for a cell, the cell is refined.

τc ≥ σc, τd ≥ σd (4.46)

The refinement procedure is simply taken for Cartesian grids by generating new chil-

dren grids. After Cartesian grids are refined, near-body quadrilateral grids are regen-

erated with the process mentioned in Chapter 2.
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CHAPTER 5

RESULTS AND DISCUSSION

In this section, the accuracy and efficiency of the solver are tested for different prob-

lems. The first problem is turbulent flow over a zero-pressure flat plate. The second

one is a two-dimensional bump problem. Lastly, turbulent flow over the NACA0012

airfoil is solved. Different levels of adaptive refinement are applied for all three prob-

lems, and results are compared with reference results. The code has been run on a

personal computer with Intel Core i7-11800H CPU @ 2.30GHz and 16 GB RAM.

5.1 Two-Dimensional Zero-Pressure Flat Plate

Two-dimensional turbulent flow over a flat plate is a well-known case and is suitable

for determining the accuracy of the turbulence model implementation in the code. In

this problem, the flow Mach number is selected as 0.2, free stream temperature is

273.15K, and Reynolds Number is 5 × 106, while the reference length is chosen as

one. The outer boundary size factor is selected as 18 to ensure far-field boundaries

are far enough and does not affect the solution accuracy. The initial condition for

turbulent eddy viscosity is selected as ν̃ = 3.0ν to provide a fully turbulent region

from the start. The solver is iterated until the logarithm of root mean square of nor-

malized continuity residual reaches -8. The following plot 5.1 illustrates the layout

of the solution domain with the boundary conditions.

The results are obtained by using five different cases. In all of the cases, the first-order

scheme is used. Two different initial grids are used to observe the sensitivity of the
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Figure 5.1: Solution domain with boundary conditions for flat plate problem

turbulence model to minimum wall-normal spacing and boundary layer resolution.

For the first three cases, the first layer thickness is chosen as 1.3×10−5 times the plate

length. The stretch factor is 1.15, and 35 layers of the body-conforming quadrilateral

grid are generated. For the fourth and fifth cases, the first layer thickness is chosen

as 1 × 10−6 times the plate length. The stretch factor is 1.15, and 58 layers of the

body-conforming quadrilateral grid are generated.

The other changed parameter for the cases is the refinement level. Solution adaptation

is used up to two refinement levels to show improvement in accuracy. In figure 5.2,

the mesh configuration at the leading edge for Case 4 and Case 5 is presented. Red

lines show the generated grids after two levels of solution refinement. In figure 5.3,

the two different discretizations of the boundary layer are represented. 5.3a shows

the initial boundary layer resolution used in Cases 1, 2, and 3. 5.3b shows the initial

boundary layer resolution used in Cases 4 and 5. As can be observed, finer boundary

layer resolution is applied for the last two cases.
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Figure 5.2: Three levels of solution adaptive refinement for flat plate problem

(a) (b)

Figure 5.3: Comparison of two different boundary layer discretization

Since the leading and trailing edges of the flat plate have pointed convex corners, the

first layer of cells appears as triangles at that location. The flat plate is parallel to the

y-axis, quad cells have a good alignment with cut cells, and thus most of the cut cells

remained quadrilateral. Table 5.1 lists the number of grids used and computational

time for all of the test cases.
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Table 5.1: Number of cells and computational time of cases for turbulent flow over a

flat plate

Case No. Description Number of Cells Computational Time

1
No Refinement

20360
5 hours 4 minutes

with thicker first layer 55 seconds

2
One Refinement

37652
8 hours 32 minutes

with thicker first layer 52 seconds

3
Two Refinement

74444
23 hours 30 minutes

with thicker first layer 40 seconds

4
No Refinement

32952
10 hours 58 minutes

with thinner first layer 26 seconds

5
Two Refinement

118121
33 hours 53 minutes

with thinner first layer 24 seconds

The skin friction coefficient for the flat plate problem is compared with two different

theories. The first one is Prandtl’s power-law approximation. It is defined as

Cf ≈ 0.058

Re
1/5
x

. (5.1)

The second one is White’s approximation for turbulent flow over a flat plate by using

Spalding’s wall formula and is defined as

Cf ≈ 0.455

ln2(0.06Rex)
. (5.2)

Figures 5.4 and 5.5 show the skin friction coefficient along the chord. Results are

compared with mentioned theories. Five percentage error bars are included for both

theory lines. For both grid structures, accuracy is increased for increased refinement

levels. Results from the fifth case underestimated White’s approximation with ap-

proximately five percentage differences excluding the trailing edge. Case 3 showed
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Figure 5.5: Skin friction coefficient distribution along the flat plate for the last two

cases with theoretical lines

similar results to Case 5. However, by the end of the flat plate, the percentage of

underestimation is increased.

Figure 5.4: Skin friction coefficient distribution along the flat plate for the first three

cases with theoretical lines
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Results of the test cases are also compared with CFL3D results [45] as they are shown

in Figures 5.7 and5.8. The best agreement is achieved in Case 5, where the finer

resolved boundary layer grid and two levels of adaptation are used. Although solution

accuracy is improved in the case of the coarser resolved boundary layer grid with an

increasing level of solution adaptation, there is still more difference with the CFL3D

result than the finer resolved grid with no solution adaptation.

Plot 5.6 shows y+ along the surface of cases 3 and 5. While y+ is lower than one

along the plate in Case 5, it is higher than one in Case 3 at the beginning and end of

the plate.

Figure 5.6: Minimum y+ values along the flat plate
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Figure 5.7: Skin friction coefficient distribution along the flat plate for Case 1, 2, and

3 with CFL3D results

Figure 5.8: Skin friction coefficient distribution along the flat plate for Case 4 and 5

with CFL3D results
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Results of Case 3 and Case 5 are also compared with the law of wall at x = 0.97 in

the figure 5.9. The law of wall is defined as follows

u+ = y+ for y+ < 5, u+ =
1

κ
lny+ + C+ for y+ > 30. (5.3)

At the log layer, both results have good accuracy. Case 3 has inaccurate results at

the viscous sublayer, while Case 5 has a better match as it is shown in Figure 5.10.

Results show that the best accuracy is obtained in Case 5, where a thinner first layer

and a larger number of boundary layer mesh are used. In all cases, inaccuracies are

observed at the end of the plate.

Figure 5.9: Inner wall variables at x = 0.97 with theoretical low-law curves
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Figure 5.10: Inner wall variables at x = 0.97 in the linear sub-layer region

Figure 5.11 presents the Mach contour at the leading edge of the flat plate for Case 5.

Also, velocity vectors at different locations are presented in the same figure to show

the development of the turbulent boundary layer.

Figure 5.11: Mach contour for turbulent flow over a flat plate
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5.2 Two-Dimensional Bump

The flat plate problem is the first step in testing the implementation of the turbulence

model. As the next step, the two-dimensional bump problem is selected. In this

problem, a pressure gradient is present because of curvature in the middle of the

geometry. The free-stream Mach number for this test case is selected as M∞ = 0.2,

while the Reynolds number is Re = 3 × 106. The initial condition for turbulent

eddy viscosity is selected as ν̃ = 3.0ν to provide a fully turbulent region from the

start. The solver is iterated until the logarithm of root mean square of normalized

continuity residual reaches -8. Plot 5.12 shows the layout of the solution domain with

the boundary conditions.

Figure 5.12: Solution domain with boundary conditions for two-dimensional bump

problem

Five test cases are conducted to compare the accuracy of first and second-order recon-

struction. The exact initial grid is used in all cases. In the first three cases, first-order

reconstruction is used with solution refinement up to level 2. Second-order recon-

struction is applied by using WLSQ and Venkatakrishnan’s limiter for the last two

cases with solution refinement up to level one. The results are compared with the

results of the CFL3D code, which NASA’s Langley Research Center provides [45].
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The number of cells used in each case and computational time are listed in table 5.2.

For the initial grid, using second-order reconstruction increased computational time

by a factor of 1.34 compared to first-order reconstruction.

Table 5.2: Number of cells and computational time of cases for turbulent flow over a

two-dimensional bump

Case No. Description Number of Cells Computational Time

1
No Refinement

20974
4 hours 44 minutes

with 1st order 13 seconds

2
One Refinement

38636
7 hours 43 minutes

with 1st order 43 seconds

3
Two Refinement

75452
11 hours 53 minutes

with 1st order 58 seconds

4
No Refinement

20974
6 hours 25 minutes

with 2nd order 32 seconds

5
One Refinement

38713
18 hours 20 minutes

with 2nd order 8 seconds

6 CFL3D 903169 -

Figures 5.13 and 5.14 show solution adapted grids used in Case 3. Black lines repre-

sent the base grid. Red lines represent refined ones.
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Figure 5.13: Grids around the middle section of the bump

Figure 5.14: Grids around the two-dimensional bump

Skin friction coefficient along the bump geometry for Cases 1, 4 and Cases 3, 5 are

compared with the reference result and presented in figures 5.15a, 5.15b. In figure

5.15a, it can be observed that the second-order solution (Case 4) has a better agree-

ment with the CFL3D result than the first-order solution (Case 1), especially at the
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middle section of the bump. Results presented in figure 5.15b show that first-order

solutions with two-level refinement (Case 3) have slightly better agreement with ref-

erence results than the second-order solution with one-level refinement (Case 2). As

can be observed from both figures, skin friction distribution is oscillatory. The rea-

son for oscillations is the grid non-smoothness caused by level differences between

Cartesian cells close to the boundary layer and cut cells, as shown in [46]. Since the

generation methodology of body orthogonal boundary layer cells depends on cut cells

at the interface, the non-smoothness is also presented on these grids. Thus increased

non-smoothness of the grid can decrease accuracy and cause oscillations.

(a)

(b)

Figure 5.15: Skin friction coefficients along the bump for different refinement levels

and their comparison with the results of CFL3D
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Velocity profiles at two locations of x=0.75 and x=1.20148 are shown in the figure

5.16. For both locations, results are similar closer to the wall boundary, while the

velocity is underestimated at farther locations.

(a)

(b)

Figure 5.16: Velocity profiles at x=0.75 (a) and x=1.20148 (b)

66



Figure 5.17 shows turbulent viscosity and Mach contours for cases 3 and 5. In Case

5, turbulent viscosity is slightly higher at the trailing edge than in Case 3.

(a) Case 5 (b) Case 3

(c) Case 5 (d) Case 3

Figure 5.17: Non-dimensional turbulent viscosity and Mach contours for turbulent

flow over a bump

As a result of tested cases, using WLSQ gave considerably more accurate results than

the first-order scheme when the same mesh was used. Although geometric parameters
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of WLSQ are precalculated, using it still increased the computational time by more

than thirty percent.

5.3 Turbulent flow Over NACA0012 Airfoil

In this test problem, a subsonic turbulent flow over the NACA0012 airfoil is solved.

The flow mach number is selected as M∞ = 0.15, and the Reynolds number is Re =

6×106. Two different angles of attack are selected, which are equal to 0◦ and 10◦. The

outer boundary factor is selected as 500 to ensure that far-field boundary conditions

do not affect the solution. Boundary layer cells are generated using 35 rows and

selecting the stretch factor as 1.2. The boundary layer cells’ total thickness equals

0.026 times the chord length. The initial condition for turbulent eddy viscosity is

selected as ν̃ = 3.0ν to provide a fully turbulent region from the start. The solver

is iterated until the logarithm of root mean square of normalized continuity residual

reaches -8. Table 5.3 lists the number of cells and computational time for all three

refinement levels. In all test cases, second-order reconstruction is applied by setting

the weight to one and using Venkatakrishnan’s limiter.

Table 5.3: Number of cells and computational time of cases for turbulent flow around

NACA0012 Airfoil

Case No. Description Number of Cells Computational Time

1
One Refinement Solution

52309
22 hours 55 minutes

for α = 0◦ 7 seconds

2
Two Refinement Solution

98519
42 hours 24 minutes

for α = 0◦ 58 seconds

3
One Refinement Solution

55463
25 hours 12 minutes

for α = 10◦ 3 seconds

4
Two Refinement Solution

104107
44 hours 5 minutes

for α = 10◦ 9 seconds

All cases’ results are compared with Ladson’s tripped data [47] except for the skin

friction coefficient. The skin friction coefficient is compared with the results of the

68



CFL3D code provided by NASA’s Langley Research Center [45].

The grids used for Cases 2 and 4 are shown in figure 5.18. Grids are refined approx-

imately the same amount around the lower and upper surfaces of the airfoil in Case

2 with solution adaptation. Solution adaptation is triggered most around the upper

surface in Case 4, where higher gradients are presented.

(a)

(b)

Figure 5.18: The grids around the NACA 0012 airfoil for Case 2 (a) and Case 4 (b)

for the subsonic turbulent flow
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Figure 5.19: Skin friction coefficients along the upper surface of NACA0012 airfoil

for the angle of attack 0◦

Figure 5.19 shows skin friction coefficient distribution along the airfoil for Cases 1

and 2 with the results of CFL3D. Case 2 has better agreement with the reference

result. However, at the leading edge, results scatter, and at the trailing edge, the skin

friction coefficient is underpredicted compared with the reference result.

Figure 5.20 compares the skin friction coefficient for Cases 3 and 4 with the reference

result provided for the upper surface of the airfoil. Results obtained from Case 4

show better agreement with CFL3D results while it underestimated the skin friction

coefficient at the leading edge and overpredicted it at the trailing edge.

Pressure coefficient distribution is compared with Ladson’s experimental data and

shown in figures 5.21, 5.22 for the angle of attacks 0◦ and 10◦, respectively. For the

angle of attack 0◦, Case 2 results are slightly closer to the experimental result along

the chord than Case 1. For the angle of attack 10◦, the results of Cases 3 and 4 show

a good agreement with the experimental data at the lower surface. In Case 4, the

leading edge upper surface pressure is resolved slightly better.
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Figure 5.20: Skin friction coefficients along the upper surface of NACA0012 airfoil

for the angle of attack 10◦

Figure 5.21: Pressure Coefficient distribution along the NACA0012 airfoil for 0 de-

grees of angle of attack
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Figure 5.22: Pressure Coefficient distribution along the NACA0012 airfoil for 10

degrees of angle of attack

Figure 5.23: Lift coefficient vs. angle of attack

In all of the cases, both pressure and skin friction coefficients show oscillatory be-

havior. The magnitude of oscillations is higher at the leading edge of the airfoil,

where non-smoothness is presented more than in other regions because of cut cells.

Also, solution adaptation increases oscillation magnitude by increasing non-smooth
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numbers of cells while it improves the accuracy of mean quantities.

Lastly, lift coefficients obtained from all cases are compared with the experimental

curve and shown in figure 5.23. While lift coefficients obtained from Cases 1 and 2

are nearly the same as the experimental results, the lift coefficient is underestimated

in Cases 3 and 4.
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CHAPTER 6

CONCLUSION

This thesis study aims to solve two-dimensional, steady, compressible RANS equa-

tions for fully turbulent problems. A cell-centered finite volume approach with an

explicit time scheme is used. The solution domain is discretized using off-body Carte-

sian and near-body conforming quadrilateral grids. Cartesian grids are cut and split

at the intersection with the outer boundary of quadrilateral cells. The faces of cut-

split and quad cells are matched precisely to provide fully conserved solutions. Mesh

generation is done with as minimum user intervention as possible. Since there are

minimum user interventions, geometric and solution adaptions are applied to have

accurate solutions. Solution variables are reconstructed using the weighted or un-

weighted least squares approach and limited with Venkatakrishnan’s limiter. Nega-

tive Spalart-Allmaras, one equation turbulence model, is used as a turbulence model.

Model is used in its conserved form, and the production term is modified to alleviate

numerical problems. In total, three different cases are presented to show the perfor-

mance of the solution approach. The first two are famous test cases to check if the

turbulence model is implemented accurately. The third one is selected to evaluate the

accuracy of the approach for a turbulent flow over an airfoil.

Results show that with the increasing cycles of solution adaptation, the difference

with the reference results is decreasing more and more. However, an increasing num-

ber of cells causes a significant increase in computational time. Also, significant

improvements in accuracy results are obtained by using WLSQ for reconstruction,

even when solution adaptation is not applied. In the first test case, it is shown that the

accuracy of the turbulence model is sensitive to boundary layer resolution. Boundary

layer cells are refined only vertically with each solution adaptation level. Thus it is
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crucial to specify the thickness of boundary layer cells sufficiently at the beginning

of the solution. Also, small cut-cells at the interface can cause low-quality boundary

layer grids because their width becomes significantly small. It is one of the notable

challenges that affect the accuracy of the solution and one of the reasons for the os-

cillatory behavior of flow quantities. One of the first improvements in the future may

be on the mesh refinement approach and considering the treatment of the boundary

between two different grid types.

Future works may be done to improve the current solver’s accuracy and computational

efficiency. These are,

• A parallel computation procedure

• A more efficient refinement approach

• Alleviating the small cut-cell problem
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