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Head of Department, Computer Engineering

Assoc. Prof. Dr. Pelin Angın
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assoc. Prof. Dr. Pelin Angın
Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Burak Can
Computer Engineering, Hacettepe University

Date: 14.09.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: İsmaı̇l Tüzün
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ABSTRACT

NETWORK ATTACK CLASSIFICATION WITH FEW-SHOT LEARNING
METHODS

Tüzün, İsmaı̇l
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Pelin Angın

September 2022, 74 pages

As the number of devices using the Internet increases, the network attacks that these

devices are exposed to also diversify. Identifying network attack types from network

packets is important to prevent the damage of the attack and to minimize it in cases

where it cannot be prevented. Classical machine learning methods and deep learning

methods need a lot of data to get successful results. Unfortunately, preparing and

labeling large amounts of data is costly in current conditions. This cost is mostly due

to the training of the experts who will do the labeling process, the difficulty of gen-

erating attack environments, and the complexity of attacks. This study examines the

problem of classifying network attacks with limited data in the learning process by

applying few-shot learning methods. To investigate the problem, we generate three

different datasets using previously labeled large datasets including CIC-IDS2017 and

UNSW-NB15. We apply three promising approaches, where two of them are based

on Prototypical Networks, and one of them is based on Relation Networks.

v



Keywords: Cybersecurity, Network Attack Classification, Few-shot Learning, Net-

work Intrusion Detection, Meta-Learning Framework

vi



ÖZ

AZ ATIŞLI ÖĞRENME YÖNTEMLERİ KULLANARAK AĞ SALDIRI
SINIFLANDIRILMASI

Tüzün, İsmaı̇l
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Pelin Angın

Eylül 2022 , 74 sayfa

İnternet kullanan araçların sayısı arttıkça, bu araçların maruz kalmış oldukları ağ sal-

dırıları da çeşitlenmektedir. Ağ saldırı tipinin ağ paketlerinin incelenerek anlaşılması,

saldırının zararını önlemek, önlenemediği durumlarda da en aza indirmek için önem

sarfetmektedir. Klasik makine öğrenme yöntemleri ve derin öğrenme yöntemleri, ba-

şarılı sonuçlar alabilmek için çok miktarda veriye ihtiyaç duymaktadırlar. Maalesef,

çok miktarda verinin hazırlanarak etiketlenmesi günümüz şartlarında maliyetli ol-

maktadır. Bu maliyet çok büyük oranda bahsedilen etiketleme işlemini yapacak olan

bilir kişilerin eğitilmesi, saldırı oluşturma ortamlarının zor oluşu ve saldırıların kar-

maşık oluşundan kaynaklanmaktadır. Bu çalışmada az atışlı öğrenme yöntemleri ile

az verinin bulunduğu veri kümesindeki sınıfları, eğitim sürecinde kullanmadan ağ sal-

dırı sınıflandırma yapılması problemi incelenmiştir. Problemin incelenmesi sırasında,

daha önceden hazırlanmış büyük veri kümelerinden CIC-IDS2017 ve UNSW-NB15

kullanılarak üç farklı küçük veri seti hazırlanmıştır. Problemin çözümü için iki tanesi

Prototipik Ağ tabanlı, bir tanesi İlişkisel Ağ tabanlı olmak üzere üç farklı yöntem

denenmiştir.
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CHAPTER 1

INTRODUCTION

1.1 Problem Definition

With the increase in the use of the Internet, almost all technological devices that we

use in our daily lives have started to access the Internet [1]. Due to the increase in

devices using the Internet as shown in the Figure 1.1, both the number of types and

the complexity of network attacks on these devices are increasing. At this point, Net-

work Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems

(NIPS) are being developed to be not affected by the attacks. These systems can be di-

vided into two categories based on how they detect attacks [2]. The first one is called

Misuse Detection, where the system tries to detect attacks using previously analyzed

attack signatures using monitored resources. The second one is called Anomaly De-

tection. In this type of method, the system tries to learn the normal behavior of the

network traffic pattern. Misuse Detection systems fail to distinguish new attack types

compared to Anomaly Detection systems.

To effectively eliminate network attack damages, it is necessary to classify the types

of attacks. Classifying the types of attacks is just as important as recognizing the

occurrence of an attack during a network flow since different prevention techniques

are used against each type of attack. To give an example, if your system is under a

DDoS attack and, as a solution, you stop providing service to avoid damaging your

system, the attack will reach its goal. On the other hand, if you have been exposed to

a Worm attack that spreads as the service continues, it would be a good starting point

for you to stop your service for a while and try to neutralize the related worm. If we

compare the two cases, stopping providing service means that the attack in the first

1



Figure 1.1: Number of Internet Connected Devices

one has achieved its purpose, while in the second it is a good starting point against

the attack. It is not always optimal to apply the same method for different types of

attacks. Therefore, understanding what type of attack the system is dealing with is

important for deciding the appropriate defensive action to take.

In the case of diversification of attacks, previously developed network attack classi-

fication systems fail, since the system is unaware of unseen classes. To make them

aware, it should be retrained using a new dataset that contains new classes. Creating

sufficient datasets to adapt old systems to new attack types requires both time and the

work of expert personnel which is rare. In most cases, it is not possible to collect

data as much as the number of samples in the datasets created for previous attacks.

Furthermore, the datasets that are commonly used for network intrusion detection

problems contain unbalanced data. While there are classes with a lot of data, there

are also classes with very little data. The reasons behind having few data on some

attack classes include the high complexity of the attack type, the difficulties in gen-

erating the attack environment, and the fact that the attack is recent. Adding unseen

attack types to these datasets will increase the unbalance of a dataset, which will end

up in bias at the learning stage. The new attack types will share the same destiny with

the ones that are a small number of samples in datasets. On the other hand, previously

developed methods like artificial neural networks (ANN), convolutional neural net-

2



works (CNN), etc require a large dataset to learn from for the classification problem.

The problem we are examining is the case where there is little data in the network

attack classification problem. Few-shot learning (FSL) methods take a role here to

overcome the problem of learning to classify network attack types using few training

data instances.

In this work, to investigate the defined problem above, we prepared three small

datasets using CICIDS2017 and UNSW-NB15 datasets to generate the problem set-

tings. Then we evaluate some of the FSL methods on the problem of network attack

classification. These methods do not require retraining for classifying unseen classes.

1.2 Contributions

Our contributions are as follows:

• Prepared FSL Network Attack Classification datasets using existing datasets

• Applied two FSL methods to Network Attack Classification problem

• Compared applied FSL methods’ results with both FSL methods and the ANN

method.

1.3 Notation and Terminology

A few-shot learning task T uses a dataset D = {DTrain, DTest}. The training set

DTrain = {xi, yi}mi=1 where m is small, contains a small number of samples. If the

testing set DTest contains n classes and each class has k samples, then the problem is

called n-way k-shot learning.

1.4 Organization of the Thesis

The remainder of the thesis is organized as follows: Chapter 2 provides an overview

of the background information and related work done by others. Chapter 3 describes

3



the methods developed in this study. This section details three methods for solving

the few-shot intrusion classification problem. Chapter 4 provides detailed information

about the experiments performed and their results. Finally, Chapter 5 concludes the

study by summarizing the findings and providing future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Network-based Intrusion Detection Systems

An intrusion [3], which is an event that consists of one or more security events, and

is performed by an attacker with an aim of gaining access to a system or system

resource without having permission. Intrusion Detection Systems are tools to un-

derstand whether there is an active intrusion attempt or not. These systems can be

developed based on three different approaches [4]. The first one is signature based,

which analyzes attacks and generates a signature for them to compare later on. The

second approach is anomaly based, which tries to learn the normal behavior of the

system and tries to detect anomalies. The last approach is the hybrid approach; as the

name implies, it uses both signatures and anomalies.

IDSs are divided into two categories with respect to how they are deployed [4]. The

first category is Host-based Intrusion Detection Systems (HIDS), which is deployed

on the target device and analyzes the system to detect intrusions. Antivirus systems

can be given as an example of HIDS systems. The second category is Network-

based Intrusion Detection Systems (NIDS), which aims to detect attacks using net-

work flows via network connections. NIDSs can be deployed on both a computer and

a network device.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANN) is a method that mimics human brain activity to

solve computer science problems. This idea was first written by McCulloch et al. [5].

5



ANN consists of neurons named perceptrons [6] just like brain structure. These neu-

rons are connected to each other and transfer data to output neurons after processing

input data. Figure 2.1 represents a simple neuron structure. The left tentacles are

connected to the input neurons and data flows from those neurons into the neuron.

Then, the information is processed inside this neuron with the neuron’s parameters.

After calculating the output, it transfers the value to the output neurons, which are

connected to the neuron via the right tentacles.

Figure 2.1: Sample Neuron

A set of connected neurons construct an artificial neural network. The sample struc-

ture of the ANN is given at Figure 2.2. The first group of neurons is called the input

layer, and the last group of neurons is called the output layer. In our example, the

output layer contains only one neuron, which is most probably the problem that the

ANN tries to solve, and it requires only the value calculated at the last neuron. The

layers between the input and output layers are called hidden layers.

6



Figure 2.2: Sample ANN

2.3 Convolutional Neural Networks

Convolutional Neural Networks which are first mentioned in the study [7] by Fukushima

et al. are a type of neural network. The main difference between CNN from any other

neural network is that CNN contains a convolutional layer. This layer aims to extract

features using only neurons close to each other. As Figure 2.3 shows, when we inves-

tigate one of the output neurons of the convolutional layer, its value depends on only

three input neurons, not all of them.

Figure 2.3: Comparison of Convolutional Layer with Fully Connected layer
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CNNs are efficiently used in extracting features from image inputs, since, pixels near

each other construct information rather than pixels far from each other.

2.4 Few-shot Learning

Few-shot learning is one of the subfields of machine learning. In order to increase

understanding of the FSL terminology used in this study, we need to define both

machine learning and few-shot learning. Machine learning can be defined as an al-

gorithm or an application that can learn to increase performance metric P on some

task T using experience E [8] [9]. The following case is a good example: consider an

image classification task T. This task aims to classify any query image to its correct

class. The accuracy of the correctly classified queries can be defined as performance

metric P. A machine learning application tries to increase P using previously labeled

images. The large dataset containing labelled images can be considered as experience

E [10]. Another example is spam mail detection [11]. In this problem, the task is to

discriminate spam mails from useful mails. Performance metric can be defined as

the percentage of correctly labeled spam mails, whereas the experience is the previ-

ously labeled large number of spam and non-spam emails dataset. Task, performance

metric and experience for given examples can be found at Table 2.1.

Table 2.1: Sample Machine Learning Task, Performance Metric, Experience

Task Performance Metric Experience

Image classification Classification accuracy Large image dataset that contains images for each classes

Spam mail detection Detection accuracy Large mail dataset that contains spam and normal mails

Most of the machine learning applications, like the given examples above, need a

large dataset with supervised information to reach high performance metrics. But,

it may be impossible or costly to get a large supervised dataset for few-shot learning

problems. FSL is a specific area of machine learning, that also aims high performance

metric P on the task T like the other machine learning areas. Different from other

techniques, it requires experience E which contains a small number of supervised

samples [12]. Current FSL problems in the literature are mostly supervised learning

problems. In other words, few-shot classification tries to classify each class using
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only a small number of samples per class. For example, image classification [13] and

object recognition [14] are problems where few-shot classification can be applied.

Table 2.2 summarizes the details of the tasks.

Table 2.2: Sample Few-shot Learning Tasks, Performance Metric, and Experience

Task Performance
Experience

Supervised info Prior knowledge

Object recogni-

tion

Intersection over

Union

A few labelled images for

each object

Images of other classes

or previously trained

models on different

dataset

Image classifica-

tion

Classification

accuracy

Small number of labelled

samples for each classes

Images of other classes or

previously trained mod-

els on different dataset

Wang et al. [12] discussed four learning problems relevant to FSL. Some of the

methods compared with FSL can be summarized as follows:

• Transfer learning [15] is a method that tries to transfer knowledge from a do-

main that has a large amount of data or a model that works well on the source

domain, while there is scarce data for the target domain. As an example, the

study [16] done by Wu et al. tries to detect network intrusions using transfer

learning method.

• Weakly supervised learning [17] aims to learn from a dataset that contains

noisy, limited, or imprecise labeled information. Wang et al. [12] realized that

the most similar problem to few-shot learning is weakly supervised learning

with incomplete supervision which is a subarea of weakly supervised learning.

In this problem, there is only a little data with supervision.

• Meta learning [18] is a process to improve the performance of a task by training

a set of tasks different than the target task. Although meta learning and normal

learning methods are very much alike, there is a separate dataset for each task

in meta learning [19].

The formal definition of few-shot classification is that given task T and performance
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metric P, improve P on T using an experience E where E contains n classes and

each one of the classes contains k samples, where k is a relatively small number with

respect to similar tasks in the same domain. If k = 1 then the problem is called

one-shot learning.

Some of the leading studies in the field of few-shot learning used the meta learning

paradigm as a baseline for their work. A sample meta learning task is illustrated

at Figure 2.4. The support set can be considered as a training dataset for the normal

learning procedure. On the other hand, the query set can be correlated with the testing

dataset in the normal learning process. The main difference between meta learning

and the classical learning procedure is that meta learning tries to train a model that

solves the meta test task via learning by tasks and those tasks have their own training

set (that is support set) and their own test set (that is query set). In other words, meta

learning uses a set of tasks for the learning stage and tries to generalize a model that

has high performance on the meta test task.

Figure 2.4: Sample meta test task

To explain the essence of the meta learning phases, let’s investigate over figures. The

Figure 2.5 summarizes the training phase of meta learning, whereas Figure 2.6 shows

meta testing phase. The following conditions must be satisfied for meta learning:

1. The meta train phase contains l tasks, and each task has a support set and a

query set. At each learning iteration a model tries to learn query set samples by

using supervised support set information.
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2. Support set of Tx where 1 ≤ x ≤ l, and query set of Tx must have the same

classes.

3. Support set of Ty where 1 ≤ y ≤ l and y ̸= x, and support set of Tx may or

may not have disjoint classes

4. Support set of TMetaTest and query set of TMetaTest must have the same classes.

Figure 2.5: Sample Meta Training Phase

11



Figure 2.6: Sample Meta Testing Phase

Koch et al. [20] proposed an approach to solve one-shot image classification using

the Siamese neural network. The architecture is illustrated in Figure 2.7. In the model

training section, they feed two images to the model as input and hope that the model

would learn whether the images are from the same class or not. For the test time, they

select only one sample per class and form a support set. In order to classify an image,

they feed the model with the query image along with an image from the support set,

until the model finds a match.
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Figure 2.7: Siamese Convolution Network Architecture

Xu et al. used a meta learning framework in their study [21], in order to detect

anomalies in network traffic. In their work, they tried to discriminate benign network

flows from attacks. They defined their problem as detecting the attack using a small

dataset containing benign traffic and one of the attack types for testing. During the

training phase, they generated tasks using benign traffic and three different attack

types. They use a convolutional network called F-Net to extract a feature map of raw

network traffic. To compare two feature maps, first, they combine them and feed them

to another convolutional network called C-Net which aims to calculate the delta score.

The main difference between our study and this work is that they tried to differentiate

benign classes from one of the attack classes that was not included at training phase.

On the other hand, our study tries to distinguish multiple classes from each other for

which no data was included in the training phase.

Vinyals et al. [22] used the meta learning paradigm to train a metric based one shot

image classifier. The proposed method contains two LSTM networks as shown at the

Figure 2.8, gθ is the first one to generate embeddings for the support set, and fθ is the

second one to find probability distributions over the classes of the query image. The
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proposed method feeds all support set samples to the embedding network to achieve

more distinguishable embeddings. They used cosine distance to calculate the distance

between query image embedding and each class’s embeddings.

Figure 2.8: Matching Network Architecture

Prototypical Network [23] which is proposed by Snell et al. defines few-shot classi-

fication as a task for classifying new classes that are not seen at the training phase,

where the new classes have only a few samples per each class. The study suggests

calculating the prototype of each class in the support set at the embedding space. In

order to predict the class of any image, first, they calculate its embedding with the

same network and they calculate the distance to each prototype. This distance is cal-

culated by using squared Euclidean distance. Their approach is similar to k-means

algorithm. The embedding space and prototypes are illustrated at the Figure 2.9. The

embedding network will be trained during meta training. They used episodic compo-

sition which is a naive way to create episodes. At each episode they choose random

N classes with k samples per class for the support set, then they choose random q

samples per class for the query set at train time. In the Figure 2.9, they represent
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3-way 5-shot learning problem. After training the encoder, they calculate each class’s

prototype. The black circles are class prototypes.

Figure 2.9: Prototypical Networks Sample Embeddings

Another work on few-shot image classification is Relation Network by Sung et al [24].

In this method, there are two networks, one for encoding inputs to the embedding

area and the second for comparing feature maps. The difference from FC-Nets is

that they train end-to-end from scratch. Unlike Prototypical Networks, in this study,

they trained Relation Module to make the comparison. Their architecture is given at

Figure 2.10. As seen in the figure, there is an embedding module fΨ that calculates

feature maps. Then they concatenate query embedding with each of the support set

embeddings to generate pairs of feature maps. These pairs are fed to the relation

network gϕ to calculate relation scores. In the end, they convert the relation score to

the one hot vector.
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Figure 2.10: Relation Network Architecture
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CHAPTER 3

METHODOLOGY

In this section, details of the proposed approaches and the way that we follow for

dataset generation will be explained. More details for the dataset content will be pro-

vided in the experimentation section. This study investigates two main methods and

their variants. The first method is called Prototypical Networks [23], which tries to

learn an encoder that aims to place the same class samples close to each other in the

embedding space. Relation Networks [24] which is the second method, aims to learn

both the encoder and the comparison network as a whole. According to the research

[25] done by Gamage et al., a feed-forward neural network (ANN) works better than

the other three popular methods such as autoencoders, LSTMs, and deep belief net-

works on the classical network attack classification task. The study conducted ex-

periments using four different datasets including KDD99, NSL-KDD, CICIDS2017,

and CICIDS2018. The results show that the other methods did not perform as well as

ANN. It is important to remark that in their study they do not investigate few-shot net-

work attack classification problem, they use the full dataset. As they prove that ANN

works better than any other method on a large dataset, we choose it to compare our

results. The ANN implementation and the model architecture are highly influenced

by their research.

3.1 Dataset Generation

In this work, we generate three different datasets for network attack classification

problem using previously generated large datasets. Our datasets should be small since

we are working on the few-shot learning problem. Here comes the question of how
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many data samples a small dataset should contain to be a small dataset. When we

investigate this question, we found that there is no well-defined definition for a dataset

to be small. Researchers intuitively agree that a dataset is a small dataset, or that a

few-shot learning problem is a few-shot problem. This intuition emerges from the

ratio between the size of the dataset used for the non-few-shot version of the same

problem and the size of the dataset used for the few-shot problem.

For our datasets, we choose 600 samples per class. In order to make this decision,

first, we made simple experimentation, and we try to find an acceptable number of

samples per class for the meta training dataset. Additionally, we investigate few-shot

image classification datasets like Mini-ImageNet [22] and CIFAR-FS [26] . These

datasets contain 100 classes and each one of these classes has 600 samples. Also,

these datasets have about 10 times more classes than our dataset.

For the CICIDS2017 FSL1 dataset and CICIDS2017 FSL2 dataset, we use approxi-

mately 0.25% of the large dataset. For the last FSL dataset, which is UNSW-NB15

FSL dataset, we use approximately 0.28% of the large dataset. The details of these

datasets are provided in the experimentation section.

3.2 ANN

In the study [25], they found that for network attack classification problem, artificial

neural network with the following configuration works well. Their simple architec-

ture is given in Figure 3.1.

We used the ANN classifier explained below in our study to compare the proposed

FSL methods.

• Input layer with node number equals input features and ReLU [27] activation

• Batch normalization after input layer

• Dropout with 0.2

• Output layer with node number equals to number of classes to be classified with

the softmax [28] activation
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• Using binary cross entropy loss

• Using Adam optimizer

Figure 3.1: ANN Architecture

The implementation is done using Tensorflow [29] framework. During the training

phase, ANN needs all classes that are needed to be classified. Therefore, we have

to make small changes to the dataset used by FSL methods. The changes will be

explained in detail in the Experiments and Evaluation chapter.

3.3 FSL Methods

To solve the few-shot network attack classification problem, we applied two main ap-

proaches. These approaches try to generalize a model using the learning framework.

They need prior knowledge from a different dataset that is not included in the prob-

lem’s main dataset. In order to create prior knowledge, we prepared datasets using

existing ones. The meta training dataset contains different classes from the meta test
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dataset, where the meta test dataset consists of the main problem’s classes. Dataset

creation and their properties will be explained in the Experiments and Evaluation

chapter. We implement these methods using Pytorch [30] framework.

3.3.1 Prototypical Networks for Network Attack Classification

Prototypical networks [23] are proposed by Snell et al aims to encode inputs into

an embedding space, then use a k-means like algorithm on the embedding space.

The same methodology was used in this study with some differences. Firstly, their

problem contains inputs with 2-dimensional images, on the other hand, our problem’s

input is 1-dimensional feature vectors. Therefore, the used encoders are different. In

this work, we applied two different encoders to map inputs to the embedding space,

the first one is the Convolutional Neural Network encoder, and the second one is an

Artificial Neural Network encoder which is very similar to the ANN that we compare

as the base model.

In order to understand how this approach works, we should understand two phases:

Meta Training and Meta Testing. During Meta Training phase, we use the meta train-

ing dataset, which contains classes other than meta test dataset. Meta training pro-

cess is explained in the Figure 2.5. The model uses episodic training where for each

episode the model tries to learn one task. That task is similar to the task that we try

to solve at the end. For each task, there is a support set and a query set. At each

episode, one task is constructed by sampling its support and query sets from the meta

training dataset. The model uses samples from the support set and encodes them into

the embedding space. After encoding all samples from the support set, it calculates

the prototype for each class, by simply taking the mean of the all embedding vectors

of the same class element-wise. Then the model also calculates embedding vectors of

all query set samples. After that, the model calculates the loss value using Euclidean

Distance between query samples with their ground truth class prototypes. Then the

encoder updates its weights with respect to calculated gradients using the Adam opti-

mizer. Learning rate decreases between each episode with the parametric decay rate.

The algorithm decides when to stop by looking at a fixed size window of the last train-

ing accuracy and calculating the mean of the accuracy change. If the change in the
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mean is less than a specified threshold and the window has reached its fixed size, the

learning process is stopped. In addition, if learning accuracy is reached to a specified

threshold, the learning process is completed.

Figure 3.2: Prototypical Network Meta Training Phase

At Meta Testing time, the model uses the meta test dataset, which consists of the

support set that has n classes, with k samples per class, and the query set that has q

samples per class. Recall that k is small, which means the meta test dataset is not a

large dataset, and the goal to be achieved is to classify these query samples using the

support set. In addition to that, the meta test dataset consists of classes that are not

used in the meta training phase. To achieve this purpose, the model takes the meta

test support set as input and encodes them into the embedded space. As done in the

meta training phase, it calculates prototypes for each class. When predicting the class

label for a new data sample from the query set, the model also encodes the query

sample into the embedded space and then calculates Euclidean Distance between the

encoded query sample with all prototypes and labels the query sample with the label

of the nearest prototype’s class. Illustration of the meta testing phase can be found

at Figure 3.3. In order to get more accurate results, during the meta testing phase,

we sampled 1000 different meta testing tasks, with different support and query sets.

Then we take the average of the results.
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Figure 3.3: Prototypical Network Meta Testing Phase

The following two sections will explain the encoder used in the Prototypical Network

approach.
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3.3.1.1 CNN Encoder

In this study, one of the encoders used with the prototypical network approach is the

CNN encoder, whose architecture is shown in Figure 3.4. We used four convolutional

blocks, each one of them consists of a one-dimensional convolutional block with

kernel size equal to 3 and padding equal to 1, a one-dimensional batch normalization,

ReLU activation, and a one-dimensional max pool layer with kernel size equal to

2. At the end of the convolutional blocks, we used a fully connected layer which

flattens all the inputs and generates a one-dimensional vector. The input channel size

of the first convolutional block equals the feature size of the input. The rest of the

convolutional blocks’ input and output channel sizes are left as parametric, at the

experimentation time we provide that information. From this point, we will call this

method as PN-CNN method.

Figure 3.4: Prototypical Network CNN Encoder Architecture

3.3.1.2 ANN Encoder

Another encoder used with prototypical networks in this study is the artificial neural

network encoder. Architecture of the ANN encoder is illustrated at the Figure 3.5.

The encoder has three ANN blocks and at the end a fully connected layer to gener-

ate a one-dimensional vector. The ANN blocks are influenced by the work done by
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Gamage et al. [25], even though they did not use the ANN as an encoder, we choose

this architecture because it was successful at a similar task. The ANN block used in

this encoder consists of a fully connected layer, a batch normalization layer, a ReLU

activation layer, and a dropout layer with the probability of 0.5. At the end of the

three ANN blocks, we place a fully connected layer to generate a one-dimensional

vector. From this point, we will call this method as PN-ANN method.

Figure 3.5: Prototypical Network ANN Encoder Architecture

3.3.2 Relation Networks for Network Attack Classification

Relation network [24] which is proposed by Sung et al., is similar to prototypical

networks, additionally, it tries to learn the comparison method also. The approach first

calculates mappings to an embedding space. Then, it generates pairs of prototype and

query embeddings. These pairs feed into a network called Relation Network, which

aims to calculate relation score of the pairs. The pairs that contain instances from the

same class get higher relation scores, whereas, the pairs that consist of instances from

different classes get low relation scores. This method also uses the meta learning

framework. It has two phases, Meta Learning and Meta Testing. Meta learning phase

is shown in the Figure 3.6.
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Figure 3.6: Relation Network Meta Training

During the meta learning phase, this method uses episodic training. That is, taking

tasks relatively similar to the main goal at each episode and trying to learn the episode

task first, hoping to be successful at the meta test task. Firstly, we generate a meta

train task using samples from the meta training dataset. Each meta training task has

a support set and a query set. Secondly, the encoder calculates embedding space

vectors of all samples in the support and query sets. Then, we generate pairs of

embedding vectors, one of the pairs is from the support set and the other one is from

the query set. These pairs are fed into the relation network, and it tries to maximize

the relation score of the pairs with the same class and minimize the relation score

of the other pairs. During the training phase, we used the Adam optimizer with the

parametric learning rate. The learning rate is decreased at each episode by using the

decay parameter at the test time. We also use the early stopping method proposed in

the previous section. If not decided to early stop or the batch size is not reached, this

process continues from the first step.

At the meta test time of this approach, like the meta training phase, the encoder first

encodes the support set and the query set into the embedding space. Then we con-

struct pairs of embedding vectors. Next, the relation network predicts the query label

by selecting the highest relation score of the pairs. As done at the prototypical ap-

proach, we test 1000 meta test tasks by sampling different support and query sets and
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taking the average of them in order to get accurate metrics.

Figure 3.7: Relation Network Meta Testing

As mentioned earlier, this approach needs an encoder in order to map inputs to em-

bedding space vectors. Figure 3.8 shows architecture of encoder that we use for this

method. The encoder consists of four convolutional blocks. The first two convolu-

tional blocks consist of a one-dimensional convolutional layer, a batch normaliza-

tion layer, a ReLU activation layer, and a max pool layer, respectively. The one-

dimensional convolutional layers used in these blocks have a kernel of 3 and padding

of 1, and input and output channels are left parametric so that we can change them
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at experimentation. The max pool layers have kernel size 2. The remaining convolu-

tional blocks are similar to the first two of them except they do not utilize the ReLU

layer, since, we will use ReLU layers also in the Relation Network architecture.

Figure 3.8: Relation Network Encoder Architecture

Learning to compare is done by the relation network. Figure 3.9 illustrates the relation

network architecture used in this study. This network aims to calculate a number that

represents the relation score of the provided input, which consists of two embedded

vectors. The network architecture contains two convolutional blocks, a flatten block,

and two fully connected layers respectively. The convolutional blocks are the same

as the first two convolutional blocks used at the encoder. In the middle, the flatten

block resides, and it aims to create a one-dimensional vector. This block is required

since we used different datasets, that have different sizes of feature vectors. In order

to continue after convolutional blocks, we need to arrange output vectors. Then, a

fully connected layer with a ReLU activation layer takes that output as input. In the

end, another fully connected layer resides. The difference between this block and the

previous one is that it utilizes a sigmoid function instead of ReLU since we need to

end with a number that shows the relation score. From this point, we will call this

method as RN-CNN method.
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Figure 3.9: Relation Network Architecture
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CHAPTER 4

EXPERIMENTS AND EVALUATION

4.1 Datasets

The methods used in this study are based on a meta learning framework that has two

main phases. The first one is called the meta-training phase and the second one is

called the meta testing phase. As the name implies, in the meta training phase, model

training occurs. In this phase, the model tries to learn different tasks at each episode.

We use two IDS datasets in order to generate a new dataset for few-shot network

intrusion classification problem. Therefore, we need to prepare appropriate meta-

training and meta-testing datasets. Additionally, in order to compare results with the

ANN method, we also prepare a meta-validation set that contains classes from both

meta-training and meta-testing datasets. After this point, we will explain the details

of the mentioned datasets.

4.1.1 CIC-IDS2017

The first large intrusion dataset is CIC-IDS2017 [31] prepared by Sharafaldin et al.,

which contains five days of network flows. After collecting raw network packets,

they extract flows and label them. Then they calculate feature vectors of flows which

consists of 78 numeric features and an attack label. The dataset contains 15 different

classes. We chose this dataset since it has more attack types than other datasets. After

eliminating invalid values such as NaN and inf, we randomly choose 600 samples

from 12 classes, since some of the classes have less instances than others. Then we

split this into three datasets which are meta train, meta test, and meta validation.

The meta train dataset contains 8 classes and each class has 470 samples. The meta
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test data set consists of 4 attack types, 470 samples per class. Meta train and meta

test datasets have different classes. The remaining samples form the meta validation

dataset which contains samples from all 12 classes.

4.1.1.1 CIC-IDS2017 FSL-1 Dataset

The first collection of FSL datasets prepared using CIC-IDS2017 is named CIC-

IDS2017 FSL-1 Dataset. The Table 4.1 shows classes and their distributions over

datasets. As presented in the table, meta training dataset classes are Benign, DDos,

Dos Goldeneye, Dos Hulk, Dos Slowhttptest, Dos Slowloris, FTP-Patrator, Port Scan,

SSH-Patrator. Each of the classes has 470 samples, in total, the meta training dataset

contains 3760 samples. The meta testing dataset consists of the following classes:

Bot, DoS Slowhttptest, Web Attack Brute Force, Web Attack XSS. Each class has

470 samples as in the case of the meta train dataset. The meta test dataset contains

1880 samples in total. The meta validation set contains all classes from the meta test

and meta train datasets, and each class has 130 samples. In total, the meta validation

dataset contains 1560 samples.

Table 4.1: CIC-IDS2017 FSL-1 Dataset

Meta Train Dataset Meta Test Dataset Meta Validation Dataset

Label Sample Count Label Sample Count Label Sample Count

BENIGN 470 Bot 470 BENIGN 130

DDoS 470 DoS Slowhttptest 470 DDoS 130

DoS GoldenEye 470 Web Attack Brute Force 470 DoS GoldenEye 130

DoS Hulk 470 Web Attack XSS 470 DoS Hulk 130

DoS slowloris 470 DoS slowloris 130

FTP-Patator 470 FTP-Patator 130

PortScan 470 PortScan 130

SSH-Patator 470 SSH-Patator 130

Bot 130

DoS Slowhttptest 130

Web Attack Brute Force 130

Web Attack XSS 130
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4.1.1.2 CIC-IDS2017 FSL-2 Dataset

The second FSL dataset collection created using CIC-IDS2017 is called CIC-IDS2017

FSL-2 Dataset. The Table 4.2 summarizes distribution of classes over datasets. As

shown in the table, meta training dataset classes are Benign, DDos, Dos Goldeneye,

Dos Hulk, Dos Slowhttptest, Dos Slowloris, Web Attack Brute Force, and Web At-

tack XSS. Each one of the classes has 470 samples, in total the meta learning dataset

contains 3760 samples. The meta testing dataset consists of the following classes:

Bot, FTP-Patrator, PortScan, SSH-Patrator. Each class has 470 samples like the case

in the meta train dataset. The meta test dataset consists of 1880 samples in total. The

meta validation set contains all classes from meta test and meta train datasets and each

class has 130 samples. In total, the meta validation dataset contains 1560 samples.

Table 4.2: CIC-IDS2017 FSL-2 Dataset

Meta Train Dataset Meta Test Dataset Meta Validation Dataset

Label Sample Count Label Sample Count Label Sample Count

BENIGN 470 Bot 470 BENIGN 130

DDoS 470 FTP-Patator 470 Bot 130

DoS GoldenEye 470 PortScan 470 DDoS 130

DoS Hulk 470 SSH-Patator 470 DoS GoldenEye 130

DoS Slowhttptest 470 DoS Hulk 130

DoS slowloris 470 DoS Slowhttptest 130

Web Attack Brute Force 470 DoS slowloris 130

Web Attack XSS 470 FTP-Patator 130

PortScan 130

SSH-Patator 130

Web Attack Brute Force 130

Web Attack XSS 130

4.1.2 UNSW-NB15

In order to prepare the FSL dataset, the second large IDS dataset used in this study

is UNSW-NB15 [32]. It was developed by Moustafa et al. from UNSW Sydney
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University. This dataset contains 9 attack types in total, which is less than the previous

dataset but still above the literature. Therefore, we choose this data set as the second

choice. As we did in the previous dataset generation process, first we drop samples

that contain invalid values like NaN and inf. Then we select 600 samples per class.

4.1.2.1 UNSW-NB15 FSL Dataset

The last FSL dataset used in this study is generated using UNSW-NB15 dataset. After

selecting 600 samples per classes, we split them as shown in the Table 4.3. The meta

train dataset contains 6 classes which consist of DoS, Exploits, Fuzzers, Generic,

Normal, Reconnaissance. The meta test dataset has 3 classes which are Analysis,

Backdoor, and Shellcode. Each class at meta train and meta test dataset has 470

samples. Like the other generated FSL datasets, the meta validation dataset contains

both classes from the meta train and meta test dataset, and each class has 130 samples

in the meta validation dataset.

Table 4.3: UNSW-NB15 FSL Dataset

Meta Train Dataset Meta Test Dataset Meta Validation Dataset

Label Sample Count Label Sample Count Label Sample Count

DoS 470 Analysis 470 Normal 130

Exploits 470 Backdoor 470 Analysis 130

Fuzzers 470 Shellcode 470 Backdoor 130

Generic 470 DoS 130

Normal 470 Exploits 130

Reconnaissance 470 Fuzzers 130

Generic 130

Reconnaissance 130

Shellcode 130
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4.2 Evaluation Metrics

In this study, we used the following evaluation metrics to compare the results of the

methods. These metrics are well-defined, de facto metrics in machine learning liter-

ature. True Positive (TP) is the number of correct predictions made by the classifier.

True Negative (TN) is the number of negative correct predictions. False Positive (FP)

is the number of predictions in which the classifier labels negative classes as positive.

False Negative (FN) is the number of predictions in which the classifier labels posi-

tive classes as negative. In order to understand more clearly, we can investigate the

example multiclass confusion matrix shown in Figure 4.1.

Figure 4.1: Example Multiclass Confusion Matrix

For the class DOG the metrics TP, TN, FP, FN are calculated as follows:

TP = 1

TN = 5 + 6 + 8 + 9

FP = 2 + 3

FN = 4 + 7

Using the definition above, the metrics Accuracy, Precision, Recall and F1-Score are
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calculated.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

4.3 Experiments

As a starting point, we need to show that the ANN method cannot learn classes that

are unseen during training time. To prove that ANN requires all classes at training

time, the following experimentation is made. The number of nodes at ANN’s output

layer is set to the number of meta validation classes, and the ANN model is trained

using only the meta train dataset. Note that the meta validation dataset contains all

classes from both meta train and meta test datasets where the meta train and meta

test datasets have disjoint classes. The results are shown in Table 4.4. As the table

implies, the ANN method cannot predict correctly any of the unseen classes. The F1

Score of the unseen classes is equal to zero as shown in red marked cells.

Table 4.4: ANN Performance on CIC-IDS2017 FSL1 meta test set trained only using

meta train set classes

k Accuracy F1

Score

Benign DDoS DoS Gold-

enEye

DoS

Hulk

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Bot DoS

Slowhttptest

Web Attack

Brute Force

Web Attack

XSS

5 0.637 0.553 0.426 0.974 0.949 0.977 0.563 0.989 0.851 0.908 0 0 0 0

10 0.653 0.568 0.382 0.970 0.952 0.962 0.684 0.989 0.977 0.905 0 0 0 0

15 0.649 0.567 0.389 0.970 0.952 0.966 0.694 0.953 0.974 0.904 0 0 0 0

20 0.651 0.568 0.394 0.977 0.952 0.981 0.686 0.964 0.956 0.908 0 0 0 0

25 0.654 0.569 0.392 0.963 0.948 0.966 0.705 0.992 0.955 0.902 0 0 0 0

50 0.656 0.573 0.386 1.000 0.952 0.981 0.686 0.996 0.974 0.901 0 0 0 0

For this study, we prepared the following test setups to investigate the few-shot net-

work attack classification problem.

• Experiment 1 is a setting that uses the CIC-IDS2017 FSL-1 dataset explained

previously.
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• Experiment 2 is a setting that uses the CIC-IDS2017 FSL-2 dataset explained

previously.

• Experiment 3 is a setting that uses the UNSW-NB15 FSL dataset explained

previously.

For all experiment settings mentioned above, we performed the actions below:

• Extracted k samples for each class from the meta test set to train the ANN

model. Trained ANN model using those samples. After training the ANN

model, we test it using the remaining meta test set and collect performance

metrics. We take an average of the performance metrics by repeating this pro-

cess at least 10 times.

• Trained PN-CNN method using meta train dataset, evaluated using meta test

dataset, and collected performance metrics.

• Trained RN-CNN method using meta train dataset. Collected performance met-

rics on meta test set using different training parameters.

• Trained PN-ANN method using meta train dataset. Collected performance met-

rics on meta test set using different training parameters.

• Extracted k samples for each class from the meta test set and combined with the

meta train set for only using this step. Trained ANN model using extended meta

train dataset. After training the ANN model, we test it using the meta validation

set and collect performance metrics. We take the average of the performance

metrics by repeating this process at least 10 times.

• Trained PN-CNN method using meta train dataset, evaluated using meta vali-

dation dataset, and collect performance metrics.

• Trained RN-CNN method using meta train dataset. Collected performance met-

rics on meta validation set using different training parameters.

• Trained PN-ANN method using meta train dataset. Collected performance met-

rics on meta validation set using different training parameters.

35



For the steps where we trained PN-CNN, RN-CNN and PN-ANN, we changed model

parameters like CNN’s hidden layer’s neuron counts, k used at meta training phase,

learning rate decay rate used at training phase, meta train epoch size and epoch count,

ANN hidden layer’s neuron counts, etc. to search for best performance of the method

that we are working on. These steps are executed for all three FSL datasets generated

by this study, and the results achieved are explained in the next sections.

As a remark, for the actions for training the ANN method, we enlarge the training

dataset of ANN in order to make ANN learn test classes. To explain more specifically,

we used a train set by adding classes from the meta test dataset by randomly selecting

k samples per class from the meta test dataset and dropping them from the meta test

dataset. In other words, the training dataset of ANN contains the meta train dataset

and k examples per class from the meta test dataset. As an important remark, different

from ANN, FSL methods used in this study do not need to train with meta test classes

during the training phase. They aim to generalize a model that can classify even if

it does not see classes at the train set, and just use unseen class samples as input at

prediction time.

Tables from 4.5 to 4.28 show experimentation results. The first three columns show

k which is the number of samples per class on the evaluation dataset, the accuracy

of the method, and the F1 score of the method respectively. The remaining columns

represent the F1 scores of the classes given in the column name. For the performance

tables on meta validation datasets, yellow marked columns represent classes that are

not used at the meta training phase of the three methods which are PN-CNN, RN-CNN

and PN-ANN.

4.3.1 Experiments on CIC-IDS2017 FSL1 Dataset

This section details the results of experiments on the CIC-IDS2017 FSL1 Dataset. Ta-

ble 4.5 shows the results capturing performances of ANN trained using the extended

meta train dataset. As the table shows, the accuracy increases as k increases, which

means ANN gives better results when the number of samples in the training dataset

increases. As in the case of accuracy, the f1 score of ANN increases as k increases.

There is a 10.2% difference between k = 5 and k = 50 which is a huge improvement.
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When we investigate individual class f1 scores, they seem to increase as k increases.

This implies that ANN is a data-hungry method.

Table 4.5: ANN method Performances on CIC-IDS2017 FSL1 meta test set

k Avg Accuracy Avg f1_score Bot DoS Slowhttptest Web Attack Brute Force Web Attack XSS

5 0.638 0.625 0.810 0.806 0.418 0.465

10 0.689 0.668 0.884 0.868 0.412 0.508

15 0.709 0.683 0.914 0.899 0.399 0.521

20 0.727 0.701 0.930 0.917 0.411 0.546

25 0.732 0.707 0.949 0.930 0.441 0.508

50 0.758 0.727 0.969 0.962 0.464 0.514

Table 4.6 shows the results of the PN-CNN method. Unlike in the case of ANN,

increasing k did not affect accuracy and f1 score much. Individual class f1 scores

except Web Attack XSS are also not affected proportionally when k is increased.

Table 4.6: PN-CNN method Performances on CIC-IDS2017 FSL1 meta test set

k Best Accuracy Best f1_score Bot DoS Slowhttptest Web Attack Brute Force Web Attack XSS

5 0.680 0.625 0.893 0.867 0.340 0.534

10 0.692 0.650 0.898 0.889 0.326 0.572

15 0.696 0.657 0.886 0.878 0.321 0.588

20 0.702 0.656 0.897 0.895 0.301 0.599

25 0.693 0.661 0.891 0.885 0.323 0.623

50 0.702 0.646 0.878 0.887 0.267 0.653

Table 4.7 gives the results of the PN-ANN method. Different from the case of ANN,

increasing k did not affect much accuracy and f1 score much. F1 scores of the meta

test dataset classes are also not affected by the increase of k, except for the Web

Attack XSS class.
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Table 4.7: PN-ANN method Performances on CIC-IDS2017 FSL1 meta test set

k Best Accuracy Best f1_score Bot DoS Slowhttptest Web Attack Brute Force Web Attack XSS

5 0.677 0.633 0.898 0.857 0.312 0.478

10 0.647 0.586 0.866 0.779 0.239 0.473

15 0.668 0.605 0.888 0.851 0.248 0.498

20 0.674 0.608 0.869 0.861 0.216 0.523

25 0.694 0.640 0.903 0.904 0.257 0.532

50 0.689 0.624 0.874 0.903 0.171 0.592

In the Table 4.8, the results of the RN-CNN method are shown. Like the previous

FSL techniques, increasing k did not affect accuracy much. However, the f1 score is

increased with the increase in k. Additionally, different from previous FSL methods,

as k increases, f1 scores of Web Attack Brute Force and Web Attack XSS mostly

increase.

Table 4.8: RN-CNN method Performances on CIC-IDS2017 FSL1 meta test set

k Best Accuracy Best f1_score Bot DoS Slowhttptest Web Attack Brute Force Web Attack XSS

5 0.643 0.564 0.827 0.935 0.444 0.456

10 0.656 0.599 0.837 0.948 0.491 0.470

15 0.687 0.630 0.858 0.949 0.506 0.584

20 0.697 0.637 0.888 0.955 0.557 0.573

25 0.679 0.638 0.893 0.931 0.515 0.577

50 0.694 0.635 0.882 0.953 0.572 0.634

Figure 4.2 gives a comparison of meta test performance of the methods, when k

is equal to 5. As represented in the figure, PN-ANN and PN-CNN are leading in

accuracy, but at the f1 score PN-ANN gives a slightly better result. The highest Bot

f1 score is achieved by PN-ANN again. For DoS Slowhttptest and Web Attack Brute

Force classes, RN-CNN outperforms other methods in terms of class f1 scores. On

the other hand, PN-CNN performs better than other methods on Web Attack XSS.

For k equals 5, PN-ANN gives better performance on the CICIDS2017 FSL1 meta

test dataset.
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Figure 4.2: CIC-IDS2017 FSL1 Meta test results when k = 5

Figure 4.3 shows performance of methods on the CICIDS2017 FSL1 meta test dataset.

PN-CNN gives the highest accuracy over the methods. However, it lost the first place

to ANN at the f1 score. PN-CNN gives better results for Bot and Web Attack XSS

classes. RN-CNN method performs well on the remaining classes.

Figure 4.3: CIC-IDS2017 FSL1 Meta test results when k = 10

Figure 4.4 illustrates the captured performance on the CICIDS2017 FSL1 meta test

dataset, when k is increased to 15. At this configuration, the order of the performance

of methods on both accuracy and f1 score is the following respectively: ANN, PN-

CNN, RN-CNN, and PN-ANN. Even the good performance on DoS Slowhttptest and

Web Attack Brute Force classes individually did not rescue RN-CNN from fitting in

third place overall. ANN method performed well on Bot class, whereas PN-CNN was

the best at classifying Web Attack XSS class correctly.
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Figure 4.4: CIC-IDS2017 FSL1 Meta test results when k = 15

Figure 4.5 shows performances of methods on CICIDS2017 FSL1 meta test dataset

for k = 20. As k increases, the performance of ANN is improved. On both accuracy

and f1 score, ANN gets a higher score. The other methods are ordered as PN-CNN,

RN-CNN, and PN-ANN at overall performance like the case where k is equal to 15.

RN-CNN performs well on DoS Slowhttptest and Web Attack Brute Force classes

interestingly.

Figure 4.5: CIC-IDS2017 FSL1 Meta test results when k = 20

Figure 4.6 shows performances of methods on the CICIDS2017 FSL1 meta test

dataset for k equals 25. On both accuracy and f1 score, ANN gets a higher score.

ANN also gets the highest f1 score on Bot class.
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Figure 4.6: CIC-IDS2017 FSL1 Meta test results when k = 25

Figure 4.7 shows performances of methods on CICIDS2017 FSL1 meta test dataset

for k equals 50. On both accuracy and f1 score, ANN gets the highest score. Addi-

tionally, ANN beats the other methods on the Bot and DoS Slowhttptest classes.

Figure 4.7: CIC-IDS2017 FSL1 Meta test results when k = 50

For the cases where the value of the variable k is bigger than 15, ANN works better on

the Bot class. Except k is equal to 50, RN-CNN performs best on the Dos Slowhttptest

class. Additionally, for the Web Attack Brute Force class, RN-CNN achieves the

highest f1 score. For all k values that we examine, PN-CNN acheieves the highest f1

score on the Web Attack XSS class.

Table 4.9, Table 4.10, Table 4.11 and Table 4.12 show performances on the CI-

CIDS2017 FSL1 meta validation dataset for the methods ANN, PN-CNN, PN-ANN

and RN-CNN respectively. The yellow mark shows the classes that the meta valida-

tion dataset contains but the meta train dataset does not contain.

As in the case of meta test dataset performance, ANN performance on meta validation
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dataset increases with the increase of k, as shown in the Table 4.9.

Table 4.9: ANN method Performances on CIC-IDS2017 FSL1 meta validation set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.769 0.725 0.588 0.174 0.975 0.955 0.971 0.689 0.846 0.976 0.962 0.924 0.197 0.440

10 0.798 0.762 0.648 0.407 0.967 0.962 0.972 0.739 0.855 0.983 0.965 0.922 0.215 0.506

15 0.808 0.776 0.691 0.469 0.978 0.965 0.975 0.741 0.860 0.975 0.969 0.937 0.490 0.265

20 0.834 0.807 0.756 0.701 0.977 0.965 0.974 0.783 0.881 0.986 0.963 0.928 0.257 0.510

25 0.806 0.776 0.658 0.498 0.965 0.962 0.954 0.762 0.873 0.971 0.958 0.935 0.214 0.567

50 0.852 0.831 0.776 0.816 0.976 0.974 0.973 0.862 0.912 0.978 0.952 0.946 0.311 0.493

Table 4.10 shows the performance on the meta validation dataset of PN-CNN method.

An increase in k seems to increase the overall performance of the method unlike the

performance of the meta test dataset.

Table 4.10: PN-CNN method Performances on CIC-IDS2017 FSL1 meta validation

set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.756 0.752 0.602 0.744 0.945 0.965 0.915 0.815 0.834 0.911 0.757 0.866 0.600 0.661

10 0.778 0.751 0.700 0.736 0.970 0.967 0.918 0.836 0.864 0.928 0.794 0.864 0.601 0.669

15 0.791 0.785 0.700 0.736 0.961 0.974 0.917 0.838 0.860 0.925 0.834 0.894 0.580 0.667

20 0.783 0.770 0.738 0.752 0.969 0.973 0.919 0.853 0.866 0.954 0.821 0.879 0.583 0.669

25 0.802 0.798 0.749 0.755 0.981 0.972 0.931 0.850 0.856 0.933 0.855 0.885 0.592 0.677

50 0.818 0.815 0.771 0.807 0.975 0.976 0.947 0.870 0.880 0.950 0.898 0.884 0.570 0.673

Table 4.11 shows the performance on the meta validation dataset of PN-ANN method.

Overall performance of the method is not affected by the change in k, just like the

performance at meta test dataset.

42



Table 4.11: PN-ANN method Performances on CIC-IDS2017 FSL1 meta validation

set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.557 0.550 0.162 0.664 0.780 0.964 0.792 0.778 0.802 0.755 0.649 0.615 0.556 0.643

10 0.519 0.502 0.122 0.388 0.747 0.955 0.717 0.674 0.578 0.715 0.445 0.631 0.504 0.655

15 0.532 0.510 0.124 0.370 0.762 0.945 0.652 0.669 0.602 0.760 0.452 0.567 0.571 0.648

20 0.553 0.522 0.115 0.374 0.748 0.952 0.718 0.789 0.613 0.760 0.459 0.615 0.501 0.614

25 0.556 0.532 0.105 0.400 0.759 0.949 0.729 0.696 0.610 0.793 0.470 0.613 0.140 0.639

50 0.555 0.537 0.128 0.382 0.795 0.952 0.690 0.692 0.585 0.782 0.451 0.607 0.531 0.661

Table 4.12 shows the performance on the meta validation dataset of RN-CNN method.

Overall performance of the method is not directly related to k.

Table 4.12: RN-CNN method Performances on CIC-IDS2017 FSL1 meta validation

set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.721 0.679 0.789 0.742 0.988 0.973 0.973 0.811 0.827 1.000 0.930 0.951 0.604 0.665

10 0.778 0.736 0.780 0.479 0.988 0.964 0.976 0.819 0.848 1.000 0.944 0.952 0.610 0.661

15 0.783 0.753 0.750 0.623 0.987 0.970 0.983 0.817 0.892 1.000 0.979 0.958 0.614 0.673

20 0.783 0.745 0.808 0.682 0.987 0.973 0.978 0.766 0.829 1.000 0.956 0.960 0.608 0.662

25 0.759 0.712 0.788 0.671 0.995 0.972 0.977 0.794 0.842 1.000 0.967 0.963 0.619 0.675

50 0.763 0.729 0.772 0.639 0.994 0.988 0.988 0.779 0.855 1.000 0.952 0.970 0.613 0.667

Figure 4.8 shows performance metrics of the methods using CICIDS2017 FSL1 meta

validation dataset, where k is equal to 5. Red marked columns show the classes that

are not used in the training phase for FSL methods. Since ANN cannot learn unseen

classes, those classes are added to ANN’s training dataset. As seen from the figure,

the ANN method achieves the highest accuracy, but the second-best accuracy is not

so far from it. When we look at the best f1 score, we see that PN-CNN reaches the

highest score. For the unseen classes which are Bot, DoS Slowhttptest, Web Attack

Brute Force, and Web Attack XSS, the ANN approach gives the worst results among

all four approaches. On the other hand, PN-CNN and RN-CNN methods both worked

well on all unseen classes. Because of the small k value, we expect that ANN should
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have worse results. Interestingly, for this experimentation setup, the ANN method

worked well overall.

Figure 4.8: CIC-IDS2017 FSL1 Meta validation results when k = 5

Figure 4.9 gives detailed information about the performances of the methods us-

ing CICIDS2017 FSL1 where k is equal to 10. From the figure, it can be eas-

ily understood that PN-CNN and RN-CNN give better accuracy and f1 score than

the ANN method. PN-CNN achieves a slightly better f1 score than RN-CNN. For

unseen classes, the ANN approach’s performance is the worst except for the DoS

Slowhttptest class. For this class, ANN performance passes PN-ANN performance

with a small distance. PN-CNN nearly achieves the best results for the unseen classes.

Only for the Web Attack Brute Force class, PN-CNN lost first place to the RN-CNN.

On the other hand, RN-CNN gets the second position for the remaining unseen classes

with a small difference from first place.
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Figure 4.9: CIC-IDS2017 FSL1 Meta validation results when k = 10

Figure 4.10 explains the performances of the methods using CICIDS2017 FSL1 meta

validation dataset, for k = 15. In this experimentation setup, ANN reaches the best

accuracy performance over the four methods. However, it cannot perform better than

PN-CNN in terms of the f1 score. For the Bot and DoS Slowhttptest classes, the ANN

approach only beats the PN-ANN approach. The worst results for remaining unseen

classes are performed by ANN. PN-ANN gave the best f1 scores for Bot and DoS

Slowhttptest classes. On the other hand, for Web Attack Brute Force and Web Attack

XSS classes RN-CNN method performed best.

Figure 4.10: CIC-IDS2017 FSL1 Meta validation results when k = 15

ANN method finally performs better in terms of accuracy and f1 score than FSL

45



methods when k reaches 20 as shown in the Figure 4.11. However, it gives the worst

results for the Web Attack Brute Force and Web Attack XSS classes. On the other

hand, PN-CNN gives the best results for the unseen classes except for Web Attack

Brute Force.

Figure 4.11: CIC-IDS2017 FSL1 Meta validation results when k = 20

When we increase k to the 25, PN-CNN passes ANN method in terms of f1 score as

shown in the Figure 4.12. Starting from k = 20, ANN achieves the best accuracy

on the CICIDS2017 FSL1 meta validation dataset. For the unseen classes except for

Web Attack Brute Force, PN-CNN gives better results.

Figure 4.12: CIC-IDS2017 FSL1 Meta validation results when k = 25

Figure 4.13 shows the performances of all four methods using CICIDS2017 FSL1
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meta validation dataset, where k is equal to 50. The main different outcome of this

setup is that ANN achieves the best f1 score on Bot class.

Figure 4.13: CIC-IDS2017 FSL1 Meta validation results when k = 50

PN-ANN approach achieved the worst accuracy and f1 score on the CICIDS2017

FSL1 meta validation dataset over four methods for all k values.

4.3.2 Experiments on CIC-IDS2017 FSL2 Dataset

This section provides experimentation results of four approaches using the CIC-

IDS2017 FSL2 Dataset. As Table 4.13 shows, ANN method performance on CI-

CIDS2017 FSL2 meta test increased proportionally when k is increased. Even for the

small training dataset, this ANN architecture gives good results on the CICIDS2017

FSL2 dataset. Remark that this architecture is proposed by study [25] done by Gam-

age et al., and they also find interesting that simple ANN architecture’s performance

on the CICIDS2017 dataset.

47



Table 4.13: ANN method Performances on CIC-IDS2017 FSL2 meta test set

k Avg Accuracy Avg f1_score Bot FTP-Patator PortScan SSH-Patator

5 0.867 0.863 0.792 0.873 0.855 0.932

10 0.925 0.925 0.883 0.927 0.933 0.956

15 0.960 0.960 0.937 0.972 0.949 0.980

20 0.964 0.964 0.952 0.970 0.957 0.978

25 0.978 0.978 0.969 0.983 0.976 0.986

50 0.982 0.982 0.976 0.987 0.981 0.984

PN-CNN performance on CICIDS2017 FSL2 meta test dataset is shown in the Table

4.14. The performance of the method is nearly proportional to k.

Table 4.14: PN-CNN method Performances on CIC-IDS2017 FSL2 meta test set

k Best Accuracy Best f1_score Bot FTP-Patator PortScan SSH-Patator

5 0.591 0.590 0.613 0.602 0.627 0.657

10 0.623 0.620 0.626 0.683 0.648 0.653

15 0.607 0.610 0.683 0.720 0.627 0.652

20 0.663 0.672 0.712 0.684 0.640 0.706

25 0.674 0.683 0.635 0.741 0.606 0.779

50 0.672 0.687 0.743 0.762 0.676 0.666

Performance of PN-ANN on the CICIDS2017 FSL2 meta test dataset is shown in the

Table 4.15. As the table implies, chancing at k did not affect directly the performance

of the method.
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Table 4.15: PN-ANN method Performances on CIC-IDS2017 FSL2 meta test set

k Best Accuracy Best f1_score Bot FTP-Patator PortScan SSH-Patator

5 0.471 0.405 0.450 0.332 0.547 0.344

10 0.474 0.415 0.463 0.313 0.554 0.350

15 0.470 0.409 0.508 0.312 0.540 0.405

20 0.466 0.403 0.484 0.296 0.546 0.454

25 0.469 0.403 0.505 0.300 0.567 0.438

50 0.471 0.411 0.479 0.338 0.564 0.453

Performance of RN-CNN on the CICIDS2017 FSL2 meta test dataset is shown in the

Table 4.16. Like in the case of PN-ANN, chancing at k did not affect directly the

performance of the method.

Table 4.16: RN-CNN method Performances on CIC-IDS2017 FSL2 meta test set

k Best Accuracy Best f1_score Bot FTP-Patator PortScan SSH-Patator

5 0.638 0.617 0.570 0.529 0.628 0.739

10 0.442 0.398 0.538 0.491 0.547 0.559

15 0.660 0.627 0.695 0.484 0.692 0.795

20 0.515 0.486 0.592 0.583 0.598 0.661

25 0.440 0.376 0.555 0.592 0.612 0.652

50 0.577 0.574 0.660 0.621 0.587 0.785

From Figure 4.14 to Figure 4.19, we compare the performances of the four methods

on CICIDS2017 FSL2 meta test dataset. For all performance metrics, ANN achieves

the highest score. However, the ANN method needs to train using all classes, whereas

FSL techniques did not require to use those classes during the training phase.

As Figure 4.14 shows, RN-CNN gives best performance among FSL techniques on

both accuracy and f1 score. It also beats other FSL methods on SSH-Patator and
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PortScan classes. For the classes, FTP-Patator and Bot, PN-CNN is the best method

among FSL approaches.

Figure 4.14: CIC-IDS2017 FSL2 Meta test results when k = 5

For k equals 10, among FSL approaches, PN-CNN gives best performance on both

accuracy and f1 score using the CICIDS2017 FSL2 meta test dataset, as shown in the

Figure 4.15. Additionally, it achieves the best f1 scores on unseen classes among FSL

approaches.

Figure 4.15: CIC-IDS2017 FSL2 Meta test results when k = 10

Figure 4.16 shows performances of the methods using the CICIDS2017 FLS2 meta

test dataset, when k is equal to 15. As shown in the figure, RN-CNN beats the other

two FSL methods on all metrics except FTP-Patator class. For the FTP-Patator class,

PN-CNN takes the lead over the FSL methods.
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Figure 4.16: CIC-IDS2017 FSL2 Meta test results when k = 15

PN-CNN scores higher than three FSL methods using the CICIDS2017 FSL2 meta

test dataset, when k equals 20, as shown in Figure 4.17.

Figure 4.17: CIC-IDS2017 FSL2 Meta test results when k = 20

Figure 4.18 shows performances of the methods using CICIDS2017 FLS2 meta test

dataset, when k is equal to 25. As shown in the figure, PN-CNN performs better other

two FSL methods on all metrics except the PortScan class. For this class, RN-CNN

gives a slightly better f1 score than other FSL methods.

Figure 4.18: CIC-IDS2017 FSL2 Meta test results when k = 25
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Figure 4.19 compares performances of the methods using CICIDS2017 FLS2 meta

test dataset, when k is equal to 50. As shown in the figure, PN-CNN performs better

other two FSL methods on all metrics except SSH-Patator class. For this class, RN-

CNN achieves a better f1 score than other FSL techniques.

Figure 4.19: CIC-IDS2017 FSL2 Meta test results when k = 50

Performances of all four methods using CICIDS2017 meta validation set are given

tables from Table 4.17 to Table 4.20. Unseen classes during the meta training phase

of the FSL methods are marked as yellow at these tables. Only the ANN method used

those classes during the training phase, since it cannot learn classes without having

them in the training dataset.

Table 4.17 shows the performance of the ANN method using the CICIDS2017 FSL2

meta validation dataset. As k increases, the performance of ANN increases, in gen-

eral. Web Attack Brute Force class cannot be recognized by ANN well even if k is

equal 50.

Table 4.17: ANN method Performances on CIC-IDS2017 FSL2 meta validation set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.703 0.684 0.509 0.261 0.992 0.983 0.966 0.939 0.867 0.666 0.515 0.557 0.272 0.686

10 0.726 0.717 0.542 0.408 0.992 0.982 0.970 0.934 0.872 0.704 0.628 0.646 0.240 0.689

15 0.756 0.753 0.588 0.626 0.991 0.983 0.975 0.931 0.896 0.785 0.665 0.668 0.253 0.671

20 0.760 0.755 0.601 0.656 0.990 0.984 0.968 0.926 0.897 0.763 0.722 0.664 0.234 0.656

25 0.752 0.748 0.575 0.603 0.980 0.981 0.957 0.920 0.900 0.775 0.732 0.668 0.218 0.661

50 0.815 0.812 0.696 0.831 0.990 0.982 0.974 0.930 0.932 0.876 0.854 0.727 0.278 0.680

Results of PN-CNN captured from the experiment made for CICIDS2017 FSL2 meta
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validation dataset is shown in Table 4.18. Overall f1 score is increased proportion-

ally to increase at k. When k is small, PN-CNN suffers from classifying the Benign

traffic. However, an increase at k results in better performance in the Benign traffic

classification.

Table 4.18: PN-CNN method Performances on CIC-IDS2017 FSL2 meta validation

set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.647 0.639 0.337 0.636 0.949 0.980 0.892 0.945 0.893 0.693 0.717 0.635 0.639 0.693

10 0.715 0.717 0.387 0.734 0.959 0.983 0.908 0.963 0.897 0.687 0.700 0.652 0.629 0.708

15 0.718 0.724 0.411 0.731 0.970 0.983 0.924 0.970 0.907 0.729 0.736 0.659 0.630 0.708

20 0.717 0.728 0.432 0.730 0.964 0.991 0.915 0.973 0.901 0.751 0.648 0.659 0.622 0.703

25 0.716 0.728 0.405 0.743 0.967 0.990 0.899 0.972 0.904 0.722 0.686 0.654 0.622 0.720

50 0.740 0.750 0.568 0.765 0.969 0.994 0.927 0.976 0.926 0.737 0.625 0.672 0.620 0.724

Table 4.19 shows the performance of PN-ANN approach on the CICIDS2017 FSL2

meta validation dataset. As shown in the table, the increase at k is not directly cor-

related with the performance of the overall method. Like the PN-CNN method, the

PN-ANN method also suffers from classifying the Benign classes for small values k.

Unlike in the PN-CNN case, the performance of the Benign class does not improve as

k increases. Furthermore, PortScan performance of the method, which is one of the

unseen classes, decreases as k increases.

Table 4.19: PN-ANN method Performances on CIC-IDS2017 FSL2 meta validation

set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.543 0.548 0.339 0.594 0.764 0.957 0.768 0.873 0.788 0.574 0.546 0.532 0.551 0.661

10 0.552 0.515 0.110 0.737 0.770 0.954 0.782 0.872 0.568 0.450 0.440 0.473 0.593 0.663

15 0.568 0.530 0.151 0.524 0.792 0.957 0.792 0.869 0.800 0.497 0.440 0.432 0.562 0.660

20 0.568 0.524 0.111 0.541 0.800 0.955 0.794 0.886 0.814 0.564 0.431 0.608 0.593 0.662

25 0.564 0.521 0.117 0.557 0.787 0.967 0.806 0.876 0.806 0.507 0.429 0.461 0.591 0.664

50 0.525 0.494 0.077 0.429 0.775 0.969 0.731 0.888 0.571 0.593 0.434 0.639 0.558 0.670

CICIDS2017 FSL2 meta validation performances of the RN-CNN method are shown
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in the Table 4.20. At the overall performance in both f1 score and total accuracy,

RN-CNN gives better results for the minimum value of k in this dataset.

Table 4.20: RN-CNN method Performances on CIC-IDS2017 FSL2 meta validation

set

k accuracy f1_score BENIGN Bot DDoS DoS

Golden-

Eye

DoS

Hulk

DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

5 0.643 0.618 0.553 0.631 0.850 0.980 0.835 0.925 0.845 0.301 0.640 0.588 0.561 0.667

10 0.613 0.565 0.483 0.497 0.954 0.987 0.885 0.938 0.885 0.286 0.478 0.483 0.635 0.706

15 0.617 0.581 0.425 0.733 0.965 0.991 0.966 0.958 0.891 0.556 0.583 0.640 0.577 0.679

20 0.564 0.505 0.677 0.540 0.916 0.991 0.845 0.947 0.860 0.651 0.598 0.533 0.417 0.682

25 0.521 0.498 0.403 0.512 0.824 0.990 0.822 0.939 0.854 0.481 0.577 0.622 0.598 0.649

50 0.635 0.593 0.600 0.592 0.988 0.994 0.963 0.957 0.942 0.630 0.609 0.595 0.640 0.670

From figures 4.20 to 4.25, comparisons of the performance of all four methods are

represented for different values of k. The red marked classes on these figures repre-

sent classes which did not seen during the meta training phase of the FSL methods.

On the other hand, k samples per the red marked classes are used for ANN’s training

dataset.

Figure 4.20 shows the performance of the four approaches in the CICIDS2017 FSL2

meta validation dataset when the variable k is 5. In terms of overall f1 score and

accuracy, ANN performs the best. ANN is beaten by FSL methods on the following

classes’ f1 scores: Benign, Bot, DoS Slowloris, FTP-Patator, PortScan, SSH-Patator,

Web Attack Brute Force, and Web Attack XSS. In other words, for twelve classes,

FSL methods perform better than ANN for eight classes. Those eight classes contain

all four unseen classes. Additionally, for all unseen classes, PN-CNN gives the best

score.
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Figure 4.20: CIC-IDS2017 FSL2 Meta validation results when k = 5

CICIDS2017 FSL2 meta validation dataset performances when the variable k is equal

to 10 is shown in Figure 4.21. PN-CNN method reaches the highest score in terms

of both accuracy and f1 score. Additionally, it performs better than the other three

methods for all four unseen classes. ANN method scores best in three classes. PN-

CNN achieves the highest score in seven classes. In the remaining two classes, the

highest score was achieved by the RN-CNN method.

Figure 4.21: CIC-IDS2017 FSL2 Meta validation results when k = 10

For k equals 15, performance of investigated methods on the CICIDS2017 FSL2 meta

validation dataset is given at Figure 4.16. In terms of the f1 score and accuracy, ANN

method performs better than others. In addition, in two of the unseen classes, ANN
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scores the best. For the Bot class, which is also one of the unseen classes, RN-CNN

performs best. The last remaining unseen class is best classified by PN-CNN.

Figure 4.22: CIC-IDS2017 FSL2 Meta validation results when k = 15

The experimentation performed for variable k equals 20 using the CICIDS2017 FSL2

meta validation dataset is shown in Figure 4.23. As expected, as the value k increases,

the performance of ANN increases. It performs best in six classes which also con-

tain three of the unseen classes. The last unseen class, which is the Bot class, was

classified best by PN-CNN.

Figure 4.23: CIC-IDS2017 FSL2 Meta validation results when k = 20

Figure 4.24 shows the performance of methods using the CICIDS2017 FSL2 meta

validation dataset where the variable k is equal to 25. ANN achieves the best accuracy
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and the best f1 score in all four approaches. Like the case where the variable k is 20,

ANN method reaches the highest f1 score on three of the unseen classes. PN-CNN

scores best in the Bot class, which is the last unseen class. FSL methods score better

than ANN method in the Web Attack Brute Force class.

Figure 4.24: CIC-IDS2017 FSL2 Meta validation results when k = 25

The last figure in this section is Figure 4.25 which shows the performance of methods

using the CICIDS FSL2 meta validation dataset where k equals 50. As expected, the

increase at k results in a performance improvement in ANN method. It performed

best in eight classes. ANN approach performs the best f1 score for all unseen classes.

Only the Web Attack Brute Force class cannot be classified well using ANN method.

Figure 4.25: CIC-IDS2017 FSL2 Meta validation results when k = 50
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4.3.3 Experiments on UNSW-NB15 FSL Dataset

Experimentation results for the UNSW-NB15 FSL dataset are provided in this sec-

tion. Tables from 4.21 to 4.24 contains performances of four methods using meta test

dataset. The meta test dataset’s classes were not used in the meta training phase of

FSL methods. On the other hand, ANN method used these classes during the training

time. All four methods cannot reach good performance on this dataset. The maximum

overall accuracy or f1 score is around 0.5.

UNSW-NB15 meta test dataset performance of the ANN method is shown in Table

4.21. It can be easily realized that the overall performance is not as well as previously

tested datasets. Using a much larger portion of the original dataset did not change

the method’s performance too much. Therefore, we do not expect higher accuracy

and f1 score from the four methods using this dataset. Like previously used dataset

experiments, ANN performance increased with the increase in variable k.

Table 4.21: ANN method Performances on UNSW-NB15 FSL meta test set

k Avg Accuracy Avg f1_score Analysis Backdoor Shellcode

5 0.404 0.381 0.323 0.391 0.428

10 0.408 0.399 0.330 0.417 0.452

15 0.441 0.425 0.319 0.428 0.529

20 0.452 0.436 0.383 0.361 0.563

25 0.462 0.442 0.325 0.419 0.582

50 0.504 0.491 0.423 0.387 0.664

Table 4.22 shows the performance of the PN-CNN approach using the UNSW-NB15

FSL meta test dataset. The performance of this approach also improved as the value

of k increased.
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Table 4.22: PN-CNN method Performances on UNSW-NB15 FSL meta test set

k Avg Accuracy Avg f1_score Analysis Backdoor Shellcode

5 0.414 0.392 0.344 0.383 0.477

10 0.440 0.417 0.330 0.413 0.530

15 0.443 0.420 0.324 0.435 0.547

20 0.449 0.426 0.330 0.409 0.554

25 0.457 0.431 0.323 0.428 0.577

50 0.469 0.437 0.339 0.446 0.593

The performance of the PN-ANN method on the UNSW-NB15 FSL meta test dataset

is shown in Table 4.23. Its accuracy also increases with the increase in k. However,

the overall f1 score reached its maximum value when k is equal to 20, not 50.

Table 4.23: PN-ANN method Performances on UNSW-NB15 FSL meta test set

k Avg Accuracy Avg f1_score Analysis Backdoor Shellcode

5 0.422 0.375 0.280 0.390 0.468

10 0.438 0.376 0.262 0.407 0.515

15 0.444 0.381 0.241 0.418 0.534

20 0.448 0.389 0.238 0.426 0.542

25 0.449 0.387 0.174 0.443 0.548

50 0.453 0.384 0.181 0.478 0.550

The last table, which is Table 4.23, shows the performance of RN-CNN on the UNSW-

NB15 FSL meta test dataset. The performance of this method seems not to be related
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to the value of k. But it reaches its best performance when k equals 50.

Table 4.24: RN-CNN method Performances on UNSW-NB15 FSL meta test set

k Avg Accuracy Avg f1_score Analysis Backdoor Shellcode

5 0.410 0.383 0.515 0.366 0.481

10 0.395 0.339 0.500 0.406 0.472

15 0.391 0.353 0.501 0.407 0.506

20 0.464 0.429 0.519 0.424 0.601

25 0.406 0.382 0.500 0.373 0.532

50 0.481 0.463 0.500 0.463 0.634

Figures from 4.26 to 4.31 show the comparisons of method performances on the

UNSW-NB15 FSL meta test dataset. Different from FSL methods, ANN uses k sam-

ple per class from the meta test dataset during training time. FSL methods use only

the meta test dataset, which does not contain samples from the meta test dataset’s

classes.

The comparison of UNSW-NB15 FSL meta test performances of all four approaches

when k equals 5 is shown in Figure 4.26. PN-ANN reached the best accuracy, but, it

has the worst f1 score overall. On the other hand, PN-CNN achieves the best f1 score

and the second-best accuracy. For the Analysis class, RN-CNN scores the best, with

huge differences from its opponents.
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Figure 4.26: UNSW-NB15 FSL Meta test results when k = 5

When we increase the variable k to 10, on both accuracy and f1 score PN-CNN per-

forms the highest score, as shown in the Figure 4.27. Like the case where k equals 5,

RN-CNN achieves the best f1 score for the Analysis class.

Figure 4.27: UNSW-NB15 FSL Meta test results when k = 10

Comparison of the methods for k equals 15 using UNSW-NB15 FSL meta test dataset

is shown in the Figure 4.28. The best accuracy is achieved by PN-ANN. However, the

highest f1 score is reached by the ANN method. One of the important points in this

comparison is that PN-CNN places a second position on both accuracy and the f1

score.
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Figure 4.28: UNSW-NB15 FSL Meta test results when k = 15

Figure 4.30 shows the results for k is 20 using UNSW-NB15 FSL meta test dataset. In

terms of accuracy, RN-CNN is placed the first and ANN is placed the second. When

we look at the f1 score, the order of these two methods swaps.

Figure 4.29: UNSW-NB15 FSL Meta test results when k = 20

When we increase k to 25, ANN approach performs better than the FSL methods in

terms of both the f1 score and the accuracy. PN-ANN is the second best in terms of

accuracy and PN-CNN is the third. For the f1 score, PN-CNN is the second best.

Figure 4.30: UNSW-NB15 FSL Meta test results when k = 25

62



Figure 4.31 shows the performance of methods using the UNSW-NB15 FSL meta test

dataset, for the variable k is 50. ANN approach is the best on both the f1 score and

accuracy. The second best method is RN-CNN. It achieves the best f1 score in both

Analysis and Backdoor classes, but its performance in the Shellcode class places it

second in overall performance.

Figure 4.31: UNSW-NB15 FSL Meta test results when k = 50

Tables from 4.25 to 4.28 show the individual performance of the methods using the

UNSW-NB15 FSL meta validation dataset for different values of k. The yellow

marked columns represent the classes that are not used during the meta training phase

of the FSL methods. Remark that those classes are used in the training phase of the

ANN method, since, this method requires all classes during training time.

Table 4.25 shows performance of ANN method using UNSW-NB15 FSL meta vali-

dation dataset. As the table illustrates, the ANN method cannot learn yellow-marked

classes. These classes cannot be learned due to unbalance of the classes. The yellow

columns have k samples per class; on the other hand, the other classes have 470 sam-

ples per class. This is also valid for the FSL methods except that those classes are

not used in the meta training phase, only used as the support set during the meta test

phase. ANN tests are done at least 10 times and we get an average of them.
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Table 4.25: ANN method Performances on UNSW-NB15 FSL meta validation set

k Avg Accuracy Avg F1 Score Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode

5 0.318 0.250 0.000 0.000 0.313 0.128 0.294 0.852 0.553 0.108 0.000

10 0.319 0.248 0.000 0.000 0.313 0.181 0.280 0.853 0.556 0.052 0.000

15 0.319 0.251 0.000 0.000 0.312 0.187 0.298 0.861 0.572 0.027 0.000

20 0.330 0.259 0.000 0.000 0.322 0.147 0.297 0.861 0.600 0.104 0.000

25 0.327 0.254 0.000 0.000 0.316 0.182 0.292 0.861 0.585 0.053 0.000

50 0.357 0.297 0.000 0.000 0.337 0.174 0.289 0.868 0.611 0.389 0.000

Table 4.26 shows performance of PN-CNN method using UNSW-NB15 FSL meta

validation dataset. It gives its highest accuracy for k equals 50 and its best f1 score

occurs for k is 10.

Table 4.26: PN-CNN method Performances on UNSW-NB15 FSL meta validation

set

k Avg Accuracy Avg f1_score Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode

5 0.256 0.236 0.307 0.248 0.281 0.270 0.287 0.584 0.532 0.211 0.233

10 0.318 0.296 0.323 0.263 0.296 0.272 0.268 0.776 0.586 0.237 0.228

15 0.284 0.261 0.304 0.268 0.142 0.281 0.303 0.687 0.547 0.179 0.218

20 0.286 0.258 0.311 0.298 0.289 0.250 0.298 0.660 0.628 0.179 0.199

25 0.291 0.258 0.309 0.258 0.274 0.286 0.296 0.619 0.573 0.203 0.210

50 0.306 0.288 0.344 0.269 0.264 0.281 0.321 0.708 0.598 0.186 0.203

Table 4.27 shows the performance of the PN-ANN method using the UNSW-NB15

FSL meta validation dataset. It gives its highest accuracy for k equal to 15 and its

best f1 score occurs for k is 15.

Table 4.27: PN-ANN method Performances on UNSW-NB15 FSL meta validation set

k Avg Accuracy Avg f1_score Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode

5 0.205 0.178 0.251 0.085 0.253 0.275 0.238 0.516 0.265 0.131 0.150

10 0.207 0.131 0.082 0.241 0.141 0.219 0.226 0.397 0.281 0.000 0.081

15 0.220 0.152 0.186 0.275 0.096 0.164 0.273 0.389 0.269 0.152 0.033

20 0.208 0.121 0.170 0.230 0.111 0.266 0.263 0.384 0.279 0.000 0.134

25 0.207 0.121 0.179 0.165 0.166 0.257 0.266 0.379 0.273 0.067 0.033

50 0.217 0.129 0.162 0.222 0.020 0.263 0.270 0.395 0.297 0.085 0.023
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RN-CNN performance using the UNSW-NB15 FSL meta validation dataset is shown

in the Table 4.28. RN-CNN gives its highest accuracy and its best f1 score for k equals

50.

Table 4.28: RN-CNN method Performances on UNSW-NB15 FSL meta validation

set

k Avg Accuracy Avg f1_score Analysis Backdoor DoS Exploits Fuzzers Generic Normal Reconnaissance Shellcode

5 0.331 0.283 0.242 0.308 0.235 0.192 0.244 0.934 0.611 0.384 0.201

10 0.260 0.204 0.255 0.176 0.227 0.187 0.153 0.809 0.462 0.197 0.244

15 0.297 0.248 0.291 0.227 0.160 0.249 0.280 0.835 0.655 0.219 0.192

20 0.324 0.291 0.368 0.210 0.177 0.287 0.317 0.964 0.454 0.510 0.185

25 0.367 0.337 0.287 0.179 0.231 0.339 0.282 0.953 0.533 0.479 0.174

50 0.415 0.396 0.300 0.236 0.358 0.359 0.353 0.981 0.624 0.506 0.271

Figures from 4.32 to 4.37 represents comparison of the methods using UNSW-NB15

meta validation dataset. The red marked columns show the classes which are not seen

at the meta training phase of the FSL methods.

Figure 4.32 shows comparison of performances of the methods using UNSW-NB15

FSL meta validation dataset, for the variable k is equal to 5. As the figure illustrates,

RN-CNN achieves the best f1 score and accuracy. For Analysis and Shellcode classes,

which are two of the unseen classes, the best performance is achieved by PN-CNN

method. For the Backdoor class, which is the remaining unseen class, RN-CNN scores

the best performance.

Figure 4.32: UNSW-NB15 FSL Meta validation results when k = 5
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Figure 4.33 shows the performance of all the methods for the variable k is equal to 10.

The two methods, ANN and PN-CNN give almost the same result in accuracy score.

However, PN-CNN achieves the highest score on the f1 score. Furthermore, PN-CNN

has the highest score in Analysis and Backdoor classes, which are unseen in the meta

training phase. For the remaining unseen class, RN-CNN scores the highest.

Figure 4.33: UNSW-NB15 FSL Meta validation results when k = 10

Performance comparison of the methods on UNSW-NB15 FSL meta validation dataset

for k is 15, is shown in the Figure 4.34. The accuracy of ANN beats FSL methods

for this experimentation setup. But, the f1 score of both PN-ANN and RN-CNN is

higher than ANN’s f1 score. PN-ANN reaches the best f1 score for Backdoor class.

The remaining unseen classes’ best f1 score was reached by PN-CNN method.

Figure 4.34: UNSW-NB15 FSL Meta validation results when k = 15
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Figure 4.35 shows performance of the investigated approaches using UNSW-NB15

FSL meta validation dataset for k is 20. ANN gets the highest accuracy, like the case

where k is 15. Also, like the case k is 15, ANN’s f1 score is beaten by both PN-CNN

and RN-CNN methods. For two unseen classes, PN-CNN performs the best f1 score.

RN-CNN scores best for the remaining unseen classes.

Figure 4.35: UNSW-NB15 FSL Meta validation results when k = 20

UNSW-NB15 meta validation performances of the all methods is shown in Figure

4.36, where k equals 25. RN-CNN performs best in terms of both accuracy and f1

score. On the other hand, PN-CNN achieves the best f1 score on all three unseen

classes.

Figure 4.36: UNSW-NB15 FSL Meta validation results when k = 25
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Figure 4.37 shows the comparison of methods using the UNSW-NB15 meta valida-

tion dataset, where the variable k is 50. Like in the case where k is 25, RN-CNN

reaches the best accuracy and the best f1 score. Also, the Backdoor performance of

RN-CNN is the best. However, PN-CNN scores the highest f1 score for the remaining

two unseen classes.

Figure 4.37: UNSW-NB15 FSL Meta validation results when k = 50
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CHAPTER 5

DISCUSSION AND CONCLUSION

With the increase in smart devices and the use of the Internet, new types of network

attacks have emerged. Existing NIDSs based on deep learning techniques suffer from

adapting to these new attack types, due to lack of data and the difficulties of generating

a new dataset. This brings to mind that the problem of classifying network attacks

can be solved with few-shot learning approaches.

In this study, we investigated three different few-shot learning methods and compared

them with both ANN and each other. To make this evaluation, we generate three

few-shot network attack classification datasets using two modern network intrusion

datasets. The novelty of this study is the classification of network attacks using few

data without using test class samples in the training phase, contrary to previous re-

search to our knowledge. As a common approach, our methods try to match an input

vector to a vector in embedding space, then predict its class by comparing it with the

embeddings of the support set. Additionally, in order to work on this problem, we

also generate three different few-shot network attack classification datasets by using

previously developed two modern intrusion datasets. These generated datasets are

another contribution that this study made.

This study shows that FSL methods achieved better performance for small datasets.

As the number of samples in the dataset grows, the ANN method’s performance in-

creases more than the FSL methods’ performance. Furthermore, we found that for

low values of k, good results are obtained in unseen classes using the methods PN-

CNN and RN-CNN. On the other hand, even if there are some cases that PN-ANN

works better, its performance is not good as the other FSL methods.
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When we compare the three FSL methods, PN-CNN and RN-CNN methods per-

formed well on overall. But PN-ANN did not perform as we expected. Since the

dataset that we used is small, this method cannot achieve good performance. Maybe,

we should eliminate some of the ANN blocks used on its encoder, in order to im-

prove its performance. Whereas, the other two methods perform good results, espe-

cially for the classes which are not used during the training phase. Also, these meth-

ods performed good classification results overall. This proves that the meta learning

paradigm can be used for the few-shot learning problems.

We realize that support set quality for the investigated problem is an essential point to

get better performance. As future work, we propose to choose representative support

set samples to get better classification results using active learning methods. Addi-

tionally, the encoders for both prototypical network based and relation network based

methods can be replaced with different neural network architectures, such as more

simple ANN architecture, recurrent neural network architecture, etc. Also, different

neural network architectures can be tested for the relation network on the RN-CNN

method.
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