
NETWORK INTRUSION DETECTION SYSTEM WITH INCREMENTAL
ACTIVE LEARNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MÜNTEHA NUR BEDİR TÜZÜN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2022

Approval of the thesis:

NETWORK INTRUSION DETECTION SYSTEM WITH INCREMENTAL
ACTIVE LEARNING

submitted by MÜNTEHA NUR BEDİR TÜZÜN in partial fulfillment of the require-
ments for the degree of Master of Science in Computer Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Pelin Angın
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Pınar Karagöz
Computer Engineering, METU

Assoc. Prof. Dr. Pelin Angın
Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Burak Can
Computer Engineering, Hacettepe University

Date: 14.09.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Münteha Nur Bedı̇r Tüzün

Signature :

iv

ABSTRACT

NETWORK INTRUSION DETECTION SYSTEM WITH INCREMENTAL
ACTIVE LEARNING

Bedı̇r Tüzün, Münteha Nur
M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Pelin Angın

September 2022, 79 pages

While Internet usage has increased every year, it has gained momentum in recent

years with the global pandemic. Increasing Internet usage has brought increasing cy-

ber threats. Intrusion detection systems have become more important than ever. The

performance of these systems is directly proportional to their adaptiveness to the rapid

changes in attack types. However, desired performance cannot always be achieved

due to the lack of labeled data on newly developed attacks and the difficulty of incre-

mental learning with machine learning methods. In this study, we proposed a network

intrusion detection system using active learning methods for class incremental learn-

ing, which can adapt to the dynamic environment and provide high performance with

less labeled data. Experiment results show that the proposed method requires fewer

labeled training data instances and learns new types of attacks incrementally.

Keywords: network intrusion detection system, active learning, incremental learning

v

ÖZ

ARTIMLI AKTİF ÖĞRENME İLE AĞ SALDIRI TESPİTİ SİSTEMİ

Bedı̇r Tüzün, Münteha Nur
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Pelin Angın

Eylül 2022 , 79 sayfa

İnternet kullanımı her geçen yıl artarken geçtiğimiz yıllarda global pandemi ile bir-

likte ivme kazanmıştır. Artan internet kullanımı siber tehditlerin artışını da berabe-

rinde getirmiştir. Saldırı tespiti sistemleri her zamankinden daha önemli hale gelmiş-

tir. Bu sistemlerin başarımı hızla değişen saldırı tiplerine göre kendilerini güncelle-

meleriyle doğru orantılıdır. Ancak, yeni geliştirilen saldırılara ait yeterli etiketli veri

bulunmaması ve makine öğrenmesi metodları ile artımlı öğrenmenin zorluğu gibi se-

beplerle istenen performans her zaman elde edilememektedir. Bu çalışmada, aktif

öğrenme yöntemleri sınıf artımlı öğrenme için kullanılarak dinamik ortama uyum

sağlayan ve daha az veri ile yüksek başarım sağlayan bir ağ saldırı tespit sistemi ge-

liştirilmiştir. Deney sonuçları, önerilen yöntemin daha az etiketli eğitim verisi örneği

gerektirdiğini ve yeni tür saldırıları aşamalı olarak öğrendiğini göstermektedir.

Anahtar Kelimeler: ağ saldırı tespiti sistemi, aktif öğrenme, artımlı öğrenme

vi

To my love, sweetheart, dear life partner, my husband İsmail ...

vii

ACKNOWLEDGMENTS

First of all, I want to thank my husband, İsmail Tüzün, for his support, help, and

endless love. Without him, I cannot imagine how to deal with the difficulties I faced

during my thesis work. Also, I want to thank my thesis advisor, Pelin Angın for her

encouragement and assistance. I think she is the most helpful thesis advisor ever. I

would like to thank the jury members, Pınar Karagöz and Ahmet Burak Can, for their

contributions. Lastly, I thank my sister, Fatma Nur Demir, and all members of my

family for their support.

The numerical calculations reported in this thesis were fully performed using the

TÜBITAK ULAKBİM, High Performance and Grid Computing Center (TRUBA)

resources.

This research has been supported by TÜBİTAK under grant number 120E537. The

entire responsibility of the thesis belongs to the author of the thesis. The support re-

ceived from TÜBİTAK does not mean that the content of the publication is approved

in a scientific sense by TÜBİTAK.

viii

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . ix

LIST OF TABLES . xi

LIST OF FIGURES . xiii

LIST OF ABBREVIATIONS . xv

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND INFORMATION . 5

2.1 Intrusion Detection System (IDS) 5

2.1.1 What is IDS? . 5

2.1.2 Brief History of IDS . 5

2.1.3 Taxonomy of IDS . 6

2.2 Deep Learning . 7

2.3 Active Learning . 9

2.3.1 What is Active Learning? . 9

2.3.2 Query Strategies . 11

ix

2.4 Incremental Learning . 12

3 RELATED WORK . 15

3.1 IDS with Deep Learning . 15

3.2 IDS with Active Learning . 17

3.3 IDS with Incremental Learning . 22

4 METHODOLOGY . 25

4.1 Architecture and General Properties of Proposed IDS 25

4.2 Classification Module . 28

4.3 Incremental Learner Module . 28

4.4 Active Learning Module . 29

4.5 Simulated Oracle Module . 30

5 EXPERIMENTS AND DISCUSSION . 31

5.1 Dataset . 31

5.2 Experimental Setup . 32

5.3 Evaluation Measure . 33

5.4 Results and Discussion . 34

5.4.1 Least-confident Method Results 35

5.4.2 Margin Strategy Results . 46

5.4.3 Entropy Strategy Results . 58

5.4.4 General Discussion . 70

6 CONCLUSION . 73

REFERENCES . 75

x

LIST OF TABLES

TABLES

Table 5.1 Least-confident method’s general performance table 36

Table 5.2 Least-confident method’s f1-score table for each class 37

Table 5.3 Least-confident method’s input data and unlabeled data pool table . 37

Table 5.4 Least-confident method’s unlabeled data pool and selected data table 38

Table 5.5 Least-confident method’s train data table 39

Table 5.6 Margin method’s general performance table 47

Table 5.7 Margin method’s f1-score table for each class 48

Table 5.8 Margin method’s input data and unlabeled data pool table 49

Table 5.9 Margin method’s unlabeled data pool and selected data table 50

Table 5.10 Margin method’s train data table 51

Table 5.11 Entropy method’s general performance table 59

Table 5.12 Entropy method’s f1-score table for each class 60

Table 5.13 Entropy method’s input data and unlabeled data pool table 61

Table 5.14 Entropy method’s unlabeled data pool and selected data table 62

Table 5.15 Entropy method’s train data table 63

Table 5.16 All methods general performance comparison table 70

Table 5.17 All methods f1-score comparison table for each class 71

xi

Table 5.18 All methods train data comparison table 71

xii

LIST OF FIGURES

FIGURES

Figure 1.1 Total malware in the world . 1

Figure 2.1 Classification of IDSs . 6

Figure 2.2 Biological neuron . 8

Figure 2.3 Perceptron (Artificial neuron) 8

Figure 2.4 Neural network structure . 9

Figure 2.5 Active learning cycle . 10

Figure 2.6 Incremental learning process 13

Figure 3.1 Categorization of deep learning methods in IDS 16

Figure 4.1 The architecture of the proposed IDS 27

Figure 5.1 Evaluation graph of least-confident method 35

Figure 5.2 Effect of initial split ratio on least confident method 40

Figure 5.3 Effect of batch size on least confident method 41

Figure 5.4 Effect of epoch size on least confident method 42

Figure 5.5 Effect of selection parameter on least confident method 43

Figure 5.6 Effect of pool size on least confident method 44

xiii

Figure 5.7 Effect of new class min count on least confident method 45

Figure 5.8 Evaluation graph of margin method 46

Figure 5.9 Effect of initial split ratio on margin method 52

Figure 5.10 Effect of batch size on margin method 53

Figure 5.11 Effect of epoch size on margin method 54

Figure 5.12 Effect of selection parameter on margin method 55

Figure 5.13 Effect of pool size on margin method 56

Figure 5.14 Effect of new class min count on margin method 57

Figure 5.15 Evaluation graph of entropy method 58

Figure 5.16 Effect of initial split ratio on entropy method 64

Figure 5.17 Effect of batch size on entropy method 65

Figure 5.18 Effect of epoch size on entropy method 66

Figure 5.19 Effect of selection parameter on entropy method 67

Figure 5.20 Effect of pool size on entropy method 68

Figure 5.21 Effect of new class min count on entropy method 69

Figure 5.22 Comparison of all methods . 70

xiv

LIST OF ABBREVIATIONS

IDS Intrusion Detection System

NIDS Network based Intrusion Detection System

HIDS Host based Intrusion Detection System

DL Deep Learning

AL Active Learning

IL Incremental Learning

ANN Artificial Neural Network

KNN K-Nearest Neighbor

SVM Support Vector Machine

xv

xvi

CHAPTER 1

INTRODUCTION

Usage, size, and complexity of computer networks increased significantly in the last

few years. Furthermore, the global COVID-19 pandemic has accelerated this in-

crease. With remote work and education, more and more people need to use the

Internet and save their data on the cloud. People are required to control a lot of things

remotely by using IoT for their safety. With increased network usage, cyber threats

also increase. Figure 1.1 shows that total malware in the world has increased rapidly

in the last 3 years according to the McAfee Labs Threat Report 2021 [1]. Therefore,

network security has become a more vital issue than ever before.

Figure 1.1: Total malware in the world

1

The first line of defense is that well-designed systems have standard security policies.

However, a system with zero vulnerability cannot be achieved. Intrusion detection

systems (IDS) are generally called the second line of defense. They are designed

to detect attacks on networks or computers and alert system operators. There are

two types of IDS according to deployment location: network based IDS (NIDS) and

host based IDS (HIDS). NIDS analyzes network traffic data and HIDS examines pro-

cesses, logs, etc. on a computer. IDSs are divided into two categories based on the

analysis method they use: anomaly-based and signature-based. An anomaly-based

IDS learns the normal behavior of the system and any deviation from the normal is

considered an attack. On the other hand, a signature-based IDS learns known attack

patterns and classifies attacks based on similarity to those patterns. Signature-based

IDSs have high accuracy on known attacks, but cannot detect unknown attacks.

In today’s world, lots of new attack types are developed in a short time. Therefore,

an IDS must be adaptive to the highly dynamic environment. Usage of deep learning

and machine learning methods in the IDS domain is very popular these days and they

have a satisfying performance. Unfortunately, those methods cannot learn sequen-

tially to adapt to changes. Researchers have been working on the lifelong learning

problem for the last two decades, but it still has not been solved completely. The

main challenge in incremental learning is catastrophic forgetting. It means newly

learned information overwrites old knowledge learned before. Therefore, the model

needs to be retrained from scratch every time new information is available. Some in-

cremental learning methods have been developed to overcome this problem, but none

of the methods provides the same performance as retraining with all training data.

Thus, keeping the training data small makes the continuous learning process more

efficient. In fact, there is labeled data shortage in the intrusion detection domain.

This is another obstacle for obtaining high-performance IDSs. Active learning has

the potential to be a solution to those problems. The active learner selects the most

informative instances from the unlabeled dataset. Then, it queries selected instances

to the oracle for labeling. Same and even higher performance can be achieved with

less training data using active learning.

2

In this thesis, we proposed a signature-based network intrusion detection system with

active learning. The system can learn new attack types incrementally in an efficient

way. It requires fewer labeled data instances and has a short training time since the

training data set is as small as possible.

The contributions of this thesis are as follows:

• All of the uncertainty strategies of active learning are applied to the intrusion

detection domain, and their performances are compared.

• Parameters that affect performance while using active learning for intrusion

detection are analyzed comprehensively.

• As far as we know, this is the first time that active learning is applied to the

multi-class classification problem of intrusion detection domain for class incre-

mental learning purposes.

Background information will be given about intrusion detection systems, active learn-

ing, and incremental learning in chapter 2. In the next chapter, related works will be

summarized about the usage of deep learning, active learning, and incremental learn-

ing methods in the intrusion detection domain. The methodology proposed in this

thesis will be explained in detail in chapter 4. Then, the results of the experiments

will be shown and analyzed in chapter 5. Finally, this study will be concluded in

chapter 6.

3

4

CHAPTER 2

BACKGROUND INFORMATION

2.1 Intrusion Detection System (IDS)

2.1.1 What is IDS?

Definition of intrusion detection system from Internet Security Glossary is as follows

[2]:

A security service that monitors and analyzes system events for the purpose of find-

ing, and providing real-time or near real-time warning of, attempts to access system

resources in an unauthorized manner.

2.1.2 Brief History of IDS

Originally, intrusion detection was performed by system administrators monitoring

user activities in front of a console. This early form of intrusion detection strategy

was effective enough at that time, but it was not scalable. In the late ’70s and early

’80s, administrators typically printed audit logs to review for detecting unusual or

malicious behavior evidence. This was the next step of intrusion detection evolution.

In 1980, the first intrusion detection system was developed by James P. Anderson [3].

However, the IDS was usually executed at night since the analysis was slow. Because

of that, most intrusions were detected after their occurrence. Researchers were able to

develop real-time IDSs in the early ’90s. This enabled real-time response for detected

attacks [4]. When IDSs are evolving rapidly, attacks are also evolving and more so-

phisticated attacks are developed. Moreover, data volume generated and transmitted

5

over the Internet is increasing each year. Therefore, the performance of IDSs have

become more critical for us these days. Lots of research has been conducted on in-

trusion detection systems, but important issues still exist. Intrusion detection systems

which are more precise, capable of detecting a wide range of attacks, and lower false

alarm rates are needed in today’s world [5].

2.1.3 Taxonomy of IDS

IDSs are classified in two ways according to the data analysis method or deployment

location as shown in Figure 2.1.

Figure 2.1: Classification of IDSs

1. IDS Types based on Analysis Method

• Anomaly detection: Compares current behavior with the behavior of le-

gitimate users, and deviation from the normal behavior is considered as

intrusion. The advantage of this method is that it can detect unknown

attacks. The disadvantage is high false positive alarm rate. [5]

• Signature detection: Compares current behavior with known attack pat-

terns (signatures) to detect intrusions. It is also known as misuse detec-

tion. The advantage of this method is high detection accuracy for known

attacks. The disadvantage is that it can only identify known attacks, and

6

zero-day attacks cannot be detected. [5]

• Hybrid: Combines anomaly and signature detection to obtain better de-

tection performance.

2. IDS Types based on Deployment Location

• Host based IDS (HIDS): Monitors the events occurring within the host.

Data sources to detect intrusions are process identifiers, system calls, reg-

istry accesses etc. [6]

• Network based IDS (NIDS): Monitors network traffic at selected points

in a network. The data sources for detecting intrusions are traffic packets,

network, transport, and application layer protocols. [6]

• Distributed or hybrid IDS: Monitors both host and network traffic to

better identify intrusion activities. [6]

2.2 Deep Learning

Deep learning is a branch of machine learning that mimics the human brain, learning

from examples. It works in an end-to-end fashion, in other words, it can extract

features automatically. Accuracy that was not possible with previous methods can be

obtained with deep learning. It can even exceed human-level performance in some

tasks. Deep learning has a long history, but it was not popular in the past as today,

since sufficient data and computation power did not exist in those days.

Biological nerve cells sum up the information taken from other cells that feed into

it by dendrites. Then, the summed information is transferred through the axon and

delivered to other cells by the synapses. Information is transmitted in the form of

nerve impulses [7]. The shape of a biological neuron is shown in Figure 2.2.

7

Figure 2.2: Biological neuron

The perceptron, or artificial neuron, which is a mathematical function, was intro-

duced by Frank Rosenblatt in 1957 [8] inspired by the biological neuron. It creates

a weighted sum by multiplying input values with weights and adding bias to them.

Then, the activation function is applied to that sum to map the output between (0,1).

The perceptron model is shown in Figure 2.3.

Figure 2.3: Perceptron (Artificial neuron)

Deep learning methods use neural network architectures which imitate the biological

human brain. Multi-layer perceptron (MLP) or artificial neural network (ANN) was

developed by Aleksei Grigoryevich Ivakhnenko and Valentin Grigorevich Lapa in

1965 [9]. Neural networks consists of at least 3 layers as shown in Figure 2.4: input

layer, hidden layer and output layer. There is no limit to the count of hidden layers,

8

and depth is defined by the number of hidden layers in the neural network.

Figure 2.4: Neural network structure

The computation process from the input layer to the output layer is called forward

propagation. There is another process that works in the backward direction, called

backpropagation, introduced by Henry J. Kelley in 1960 [10]. It uses optimization

algorithms like gradient-decent to calculate and minimize prediction errors. Weights

and biases of the neurons in each layer of the network are adjusted with this process

during training.

2.3 Active Learning

2.3.1 What is Active Learning?

For a wide variety of learning problems, obtaining a sufficient amount of labeled data

is one of the most important challenges. Unlabeled data may be abundant or easily

obtained, but labels for training are difficult, time consuming, or expensive to ob-

tain in many learning problems. Active learning is a way to overcome the labeling

bottleneck. The main motivation behind active learning is that if the learning algo-

rithm is allowed to choose the data from which it learns, it can reach high accuracy

9

with fewer labeled training data instances. The active learner selects from unlabeled

data instances as few as possible. Then, it asks queries in the form of unlabeled data

instances to be labeled by an oracle (a human annotator). In this way, the cost of

obtaining labeled data can be minimized [11]. Figure 2.5 shows the active learning

cycle.

Figure 2.5: Active learning cycle

In fact, all data instances are not equally important for training. Some of them may be

more representative and closer to the boundaries between classes. On the other hand,

some data instances may be noisy or contain no useful information. Active learning

can separate noisy and redundant data instances, and achieve even higher accuracy

[12]. The study in [13] shows that active learning can provide higher accuracy.

There are two main scenarios for the active learning process [11]:

1. Stream-based sampling: Each unlabeled instance is drawn once at a time from

the data source, and the active learner must decide whether to query or discard

it.

2. Pool-based sampling: The large pool of unlabeled instances is available before

10

the active learning process, and queries are selectively drawn from that pool.

2.3.2 Query Strategies

How do we decide which instances will be chosen to label from unlabeled data for

obtaining the most effective training dataset?

There is more than one answer to this question. In this section, the query strategies

for the active learner will be explained [11].

1. Uncertainty Sampling: Probably the simplest and most commonly used query

strategy is uncertainty sampling[14]. The instances that are most uncertain are

queried by the active learner. This strategy is well suited for probabilistic learn-

ing models, but also applicable for non-probabilistic classifiers and regression

problems. There are three different ways of calculating uncertainty.

• Least-confident strategy queries instances whose prediction is least con-

fident. The strategy is straightforward, but the weakness is that it only

considers information about the most probable label.

• Margin strategy queries instances according to the difference between

the posterior of the first and second most likely label. It is a way of fixing

the weakness of the least confident strategy.

• Entropy is a more general uncertainty sampling strategy since it consid-

ers the probabilities of all possible labels. It is an information-theoretic

measure. Shannon entropy [15] is the most popular one for active learn-

ing.

2. Query by Committee (QBC): The approach maintains a committee of models

that are all trained on the current labeled dataset. Each committee member

predicts the labels of unlabeled data instances. The instance which has most

disagreement on is considered the most informative data, and the active learner

queries those data instances to label [16].

3. Expected Model Change: Expected model change is a decision-theoretic ap-

proach. It queries the instance has the highest potential to change the current

11

model most if we knew its label. Expected gradient length (EGL) [17] is an

example for this approach. The “change” on the model can be measured by the

gradient length for the models trained using gradient-based optimization.

4. Expected Error Reduction: Expected Error Reduction is also a decision-

theoretic approach. It queries the instance that is the most likely to reduce

the generalization error of the model. A data instance from an unlabeled data

pool is added to the training set temporarily, and the model is trained with that

dataset. Then, the expected future error for that instance is estimated on the re-

maining unlabeled instances with the new model. The approach is less prone to

querying outliers since it considers the entire input space rather than individual

instances.

5. Variance Reduction: Minimizing the expectation of a loss function cannot

be done in closed form in general. The generalization error can be reduced by

minimizing the output variance. This is a more efficient way to reduce expected

errors, since it sometimes has a closed-form solution. The approach is less

prone to querying outliers since it considers the entire input space rather than

individual instances.

6. Density Weighted Methods: The idea behind density-weighted methods is

that informative instances are not only those which are uncertain but also those

that are “representative” of the underlying distribution. In this approach, the

informativeness is measured with a weighted version of the base query method.

Weights are calculated according to the average similarity of the data instance

to all other instances in the input distribution. The method was formulated by

Settles and Craven [18].

2.4 Incremental Learning

Humans have a lifelong learning ability to adapt to changing environments. They

accumulate information from their environment, fine-tune it, and make inferences

for new tasks by using previous knowledge throughout their lifespan. This ability

is not only critical for us, it is also crucial for computational learning systems and

12

autonomous agents. Nevertheless, incremental learning for machine learning and

neural network models is still an unresolved issue. They have achieved human-level

performance on individual tasks, but they are static models and incapable of adapt-

ing their behavior over time. Incremental learning from non-static data distributions

generally causes catastrophic forgetting [19]. New information overwrites previously

learned knowledge partially or completely in the shared representational resources of

the model when new data instances are significantly different from previously learned

data instances. This is called catastrophic forgetting [20]. Therefore, they require re-

training from scratch each time new data becomes available for adaptation to changes

in the data distribution. This is the main deficiency of classical deep neural network

models. The incremental learning process is shown in Figure 2.6.

Figure 2.6: Incremental learning process

There are three basic incremental learning approaches based on how task-specific

information is stored and used [21]:

1. Replay methods: Previous data instances are stored in raw format and replayed

while learning a new task to overcome forgetting. They are either reused as

training data or to constrain optimization of the new data instances’ loss. The

most popular algorithms for this approach are class incremental learner, iCaRL

[22] and Gradient Episodic Memory, GEM [23].

13

2. Regularization based methods: Instead of storing previous data instances,

this approach introduces an additional regularization term in the loss function to

consolidate previous knowledge when learning new data. The most important

algorithm in this family is Elastic weight consolidation, EWC [24].

3. Parameter isolation methods: This approach changes architectural properties

by increasing the number of neurons or network layers to prevent any possible

forgetting. When there is no constraint on architecture size, a neural network

can allocate a new branch for each new task and freeze the previous task pa-

rameters. The most popular algorithm in this family is PackNet [25].

14

CHAPTER 3

RELATED WORK

3.1 IDS with Deep Learning

The challenges of improving performance in terms of detection accuracy, false alarm

rate, and dealing with unseen attacks still exist for current IDSs. Using deep learning

methods to increase the performance of IDS has been a very popular research area in

recent years. Various kinds of methods have been tried, and the results show that deep

learning methods exhibit remarkable performance compared to traditional machine

learning methods. Some of the popular survey articles about the use of deep learning

for IDS are reviewed in this section.

The survey [26] proposes a taxonomy for IDS based on machine learning and deep

learning. They summarize representative studies between 2015 and 2019 and com-

pare them empirically. Machine learning-based IDSs have substantial detection and

generalization performance when a sufficient amount of training data is available.

However, deep learning-based IDSs can give better results. In the problem of deal-

ing with big data, deep learning methods are better than traditional machine learning.

Moreover, deep learning methods can extract feature vectors from raw data. There-

fore, they are easy to use since there is no need for manual operations during the

process, and they just get raw inputs and give the prediction results. Because of the

reasons mentioned before, deep learning methods have great potential and popularity

in the field of IDS.

15

In the paper [27], Gamage et al. categorize deep learning models for IDS and sum-

marize them. The taxonomy is shown in Figure 3.1

Figure 3.1: Categorization of deep learning methods in IDS

They worked on four main deep learning methods: feed-forward neural network, au-

toencoder, LSTM, and deep belief network for the attack classification problem. Ad-

ditionally, a random forest which is a classical machine learning method commonly

used for intrusion detection is also used for comparison. Two old datasets (KDD-

99, NSL-KDD) and two new datasets (CICIDS2017, CICIDS2018) are selected for

training and evaluation of the models. The results of the experiments show that ran-

dom forests give good results on the new datasets. Their implementation is easy and

training time is short. On the other hand, their prediction time is high for a real-time

system. ANNs are faster than random forests by a factor of 5-10 times.

The most important finding in this study is that LSTM networks and semi-supervised

models (AE + ANN, DBN + ANN) do not give better results than ANNs. The im-

plementation and the experiments are shared with the research community for further

use and analysis. The released implementation of the paper is taken as basis in this

thesis.

16

3.2 IDS with Active Learning

Collecting huge amounts of unlabeled data for IDS is easy, but high-quality labeled

data cannot be obtained easily. The labeling process must be made by security experts

and requires a lot of time. Because of that, the labeling is expensive. A substantial

amount of labeled data is needed to construct an IDS that has sufficient performance.

However, available labeled data is very limited. This is one of the most important bot-

tlenecks for developing high-performance systems. The most important motivation

behind using active learning for IDS is that the same performance may be achieved

with a smaller labeled dataset. Moreover, there is a possibility of achieving even

much better performance by using small amounts of representative, noiseless, high-

quality labeled data instead of huge amounts of labeled data in different quality. The

researchers applied different machine learning algorithms with active learning to con-

struct IDS and compared the performance of the system with different amounts of

data. Although a limited amount of work exists combining active learning and IDS,

the experiments from the studies show that results are promising to achieve this goal.

The first study applying active learning to IDS is [28]. They propose an IDS by using

SVM as a classifier with active learning. The method is evaluated on the KDD’99

dataset, and the results show that active learning can reduce the number of labeled

data instances significantly although it conserves the performance of a traditional

classifier that needs much more labeled data. Moreover, the required labeled data

instances can be reduced to even 20% of the total data instance count for some cases.

[29] proposes an IDS by using the TCM-KNN (Transductive Confidence Machines

for K-Nearest Neighbors) algorithm with active learning. They use the KDD 99

dataset for their experiments. They observed that active learning is a better option

than random sampling. The same accuracy can be achieved using 40 data instances

selected by active learning and 2000 data instances selected by random selection.

The proposed method in [30] consists of a classifier module based on the Metacost

algorithm which is a cost-sensitive learning method and an active learning module

using the largest misclassification cost as a sampling criterion. The results of the ex-

periments on the KDD’99 dataset show that the active cost-sensitive sampling method

17

reduces the required labeled instance count to 16% of the total data when compared

with the standard random sampling method.

[31] propose an anomaly-based IDS by using semi-supervised learning and co-training

methods. The Naive Bayes classifier is used for supervised learning. They evaluated

their method on the KDD’99 dataset. The experiments show that active labeling can

significantly decrease the error rate by using 6.6% of labeled data.

[32] propose an anomaly-based IDS using neural networks as a classifier with active

learning. They evaluated their method on the KDD’99 dataset. They use a small por-

tion of the dataset as an initial training dataset and iteratively additional data instances

selected by active learning were added to the training dataset. They reported that the

active data instance selection yielded better performance than the random selection

of instances.

[33] propose an adaptive false alarm filter for NIDS by using active learning. The

KNN (k-nearest neighbor) algorithm is used as a classifier in this work. The exper-

imental results show that the method can reach higher performance than a classical

machine learning method, and reduce the required amount of labeled data instances

to 50%.

[34] propose an IDS using a hybrid semi-supervised machine learning technique. The

method combines Active learning Support Vector Machine (ASVM) and Fuzzy C-

Means (FCM) clustering. NSL-KDD dataset is used for evaluation. Results show

that active learning has the potential to improve IDSs.

[35] is the first study applying active learning to IoT IDS. Their system detects outliers

first in an unsupervised way. Then iteratively, the system selects from unlabeled data

and labels them by an oracle until the system reaches expected performance in terms

of precision and recall. They evaluated their method using the KDD’99 dataset. They

observed that an active learning-based method converges to the target performance

much quicker than the random one. In addition, the same performance is achieved

with 30% of labeled data instances by using active learning methods. This is a signif-

icant improvement in the efficiency of the labeling process.

18

[36] proposes an active transfer learning based IDS, called ACTrAdaBoost. Exper-

iments on the DARPA1998, the KDD 99, and the ISCX2012 datasets show that the

method gives better performance when active learning is used.

The nature of the intrusion detection problem requires real-time or near real-time

response, and quick adaptation to new attacks. Therefore, reducing the training time

is essential for a real-time system if it needs to be retained continuously [32]. A long

training time is needed to train with a huge amount of training data. In fact, there

is no need for all instances in a large training set since it also contains redundant,

noisy data instances. Therefore, using active learning is a good way of shrinking the

training set by choosing the most informative instances [37]. Some works are focused

on using active learning for updating the classifier.

[38] proposed an IDS consisting of two modules: a random forest classifier and an

active learner trainer. Classification predictions are analyzed and some of the data

instances are selected to label by an oracle. After new data instances are labeled, the

classifier is retrained with a new training dataset. Those processes are monitored by

the trainer module. K-means clustering algorithm is used to select which sample will

be labeled. The oracle is simulated with another random forest classifier. KDD 99

dataset is used for evaluation in this study. The dataset is split into 49 batches repre-

senting days. The learner observes the data instances that just belong to the current

day. Some of the data instances of the day are chosen for labeling, and the classifier is

retrained with a training set containing those new data instances. Experiment results

show that normal class data can be detected with 90% accuracy when only 0.13% of

data instances selected by the learner are used for training. However, the detection

accuracy of other attack classes is lower than the normal class since there are fewer

data instances belonging to those classes. Active learning provides a more efficient

manual labeling process. Moreover, the method enables the adaptation of classifiers

for changing data.

[39] builds on their previous work [38]. The problems related to event level IDS and

the large amounts of intrusion alerts are analyzed by using active learning and cyber

situation awareness. The authors conducted two experiments on the UNSW-NB15

dataset. In the first experiment, a random forest classifier is trained with the data

19

instances selected by active learning, and active learning methods are evaluated. The

second experiment is about cyber situation awareness. The detection results of the

first experiment are aggregated and the probability of a computer system being part

of an attack is calculated. The results of those experiments show that the probability

of a computer system being involved in an attack could be calculated cumulatively

with a high degree of accuracy after just a few active learning cycles.

[40] proposed a hybrid IDS which is adaptive to unseen attacks. The method consists

of two modules: a supervised module using Deep Neural Network (DNN) and an

unsupervised module using K-Nearest Neighbors (KNN). Both supervised and unsu-

pervised modules perform binary classification (attack vs. normal). They used the

least-confident uncertainty method as an active learning strategy for teaching the su-

pervised module. The Supervised module, DNN is retrained incrementally. They

used the CICIDS2017 dataset for their experiments. The dataset is divided into train-

ing and a test set, using a 70 - 30 % split, respectively. The training set was split into

sliding windows that contained 5000 samples. The first window is completely labeled

and used for pre-training of the model. The others that include new attack types are

used for incremental learning. They analyze the effect of queried sample size in each

window on system performance and compare them with the baseline trained by using

the full training data. When queried sample size increased, in other words, more la-

beled training data was provided, they got better DNN performance. In addition, they

observed that labeling only 13% of the full training data selected by active learning is

enough for the performance of the baseline which is trained with the full training set.

In [38] and [39], the classifier is improved with active learning progressively, but a

new class of attack is not added. Furthermore, they just analyze the effect of the

selected sample size for labeling and minimum confidence threshold. Other param-

eters affecting the performance are not researched. For the first time, active learning

is used to achieve adaptive IDS in the study [40]. Their system permorms binary

classification. Therefore, the system learns to distinguish new kinds of attacks from

normal data, but it cannot learn to classify them as additional types of attacks since

it is not a multi-class classifier. Moreover, they just analyze the effect of the selected

instance size from the pool and do not analyze the effects of all parameters that the

system depends on. In addition, they used just the least-confident uncertainty method

20

and did not examine other active learning methods. Because of that, their work is not

comprehensive.

Another advantage of using active learning is that it is resistant to poisoning attacks.

IDSs based on machine learning methods have the potential to be an objective of an

attack. Attackers’ activities may not be detected by IDS after those kinds of attacks

[38]. The main idea behind poisoning attacks is that the attacker injects fake un-

labeled data which makes attacks classified as benign by the model. New training

data must be involved for the adaptation of IDS to changing environments. Since

a sufficient amount of labeled instances for new attacks is not available generally,

semi-supervised learning methods are an alternative to enhance attack classification.

However, they introduce new security vulnerabilities with unlabeled data. Long et

all show that the semi-supervised classifier could be misled by the attacker. More-

over, they developed a defense mechanism using active learning for those kinds of

attacks. They observe that the detection performance of the classifier based on semi-

supervised learning can be decreased with poisoning attacks. Experiment results

show that their method achieves better performance than the classifier based on semi-

supervised learning when a poisoning attack is occurs.[41]

There is just one survey article that summarizes studies about IDS with active learning

[37]. Authors conclude that most of the work combining active learning with IDS is

based on SVM, ANN, or KNN classifiers. The most popular active learning strategy

is uncertainty sampling. The publications combining active learning with intrusion

detection are very limited. Also, this is an old survey study, and a survey comparing

results of current works does not exist.

The work in [42] compares the effect of active learning strategies on intrusion de-

tection systems. Three active learning strategies are selected: uncertainty sampling,

expected model change, and Query By Committee (QBC). They used the Neural Net-

work (NN) for binary (normal and attack) classification. They evaluated the classifier

on the KDD CUP 1999 dataset by training with the data selected by different active

learning methods. hey observed that the expected model change strategy gives the

best performance over other strategies. Uncertainty sampling is the second one, and

QBC is in the last place. Results give some intuition but they are not giving a direct

21

opinion about performance comparison on the modern network attacks since an old

dataset is used for evaluation. In addition, there are still unexamined active learning

methods for intrusion detection.

3.3 IDS with Incremental Learning

Deep learning-based IDSs achieve high detection performance. However, they are

usually trained once before deployment and have the ability to classify only known

classes at train time. When new attack types arise, those systems fail to classify them.

The classification model must be retrained from scratch to be able to learn additional

attack types. This is not an efficient method since IDS needs quick adaptation to

changes. Using incremental learning for updating IDSs efficiently is a new research

area. As far as we know, all of the work about incremental IDS is from the last two

years. In this section, those studies are reviewed.

In [43], Zhang et al. developed an IDS which is scalable and adaptive to unknown

attacks. The system consists of three components. The first one is the open set classi-

fication network which is used to detect unknown attacks. The classification network

is based on CNN and the nearest class mean classifier. The second component is the

semantic embedding clustering which is used to find out obscure unknown attacks

which couldn’t be detected by the classifier. The last one is the incremental nearest

cluster centroid module. This module updates the classifier with new attack types.

They evaluated the system on the KDD 99 and the CICIDS2017 datasets. The system

works better than other state-of-the-art methods in terms of the detection of multiple

unknown attacks.

In [44], Martina et al. propose an IDS, called Soft-Forgetting Self-Organizing Incre-

mental Neural Network (SF-SOINN). The method has incremental learning ability. In

addition, it has a short classification time and high performance. Some of the neurons

in the model are removed based on utility measures. NSL-KDD and CIC-IDS-2017

datasets are used for validation of the method.

In [45], Amalapuram et al. apply two popular incremental learning methods Elastic

Weight Consolidation (EWC) and Gradient Episodic Memory (GEM) to IDS. A sim-

22

ple Multi-Layer Perceptron (MLP) and simple Convolutional Neural Network (CNN)

are used as a classifier. The performances of the methods across different task orders

are evaluated on CICIDS-2017, CICIDS-2018, and KDD’99 datasets. The results

show that the proposed architecture is one of the most scalable solutions.

In [46], Lin et al. propose a two-stage IDS using Deep Neural Network (DNN) and In-

cremental Learning (IL). The model was trained using CAN data in the offline stage.

Afterward, the model is updated with new data by using incremental learning meth-

ods in the online stage. The method has high performance according to experimental

results.

23

24

CHAPTER 4

METHODOLOGY

4.1 Architecture and General Properties of Proposed IDS

The architecture of the proposed IDS consists of four modules: the classification

module, the incremental learner module, the active learner module, and the simulated

oracle module. In this section, interactions of the modules and the general function-

ing of the system will be explained. Figure 4.1 shows the general structure of the

architecture.The details of the modules will be clarified in the next sections.

The classifier gets the feature set as input and gives the label the highest probability

as the output according to the prediction of the neural network model. If the resulting

label has less probability than the minimum confidence threshold, then the input fea-

ture set is added to the unlabeled data pool. Regardless of the confidence of the label,

the result is returned. Note that the neural network model is pre-trained with a small

train dataset as an initial step before starting the system.

Whenever the unlabeled data pool size exceeds the pool size threshold, the incremen-

tal learning module is activated. The incremental learner module gives the unlabeled

data pool to the active learner module and requests the selected data instances with

their labels from it.

The active learner module calculates a score for each data instance in the unlabeled

data pool according to the chosen query method. Then, some of the instances are

selected using the scores according to the chosen selection criteria. The module com-

municates with the simulated oracle and asks for the labels of the selected unlabeled

data instances.

25

Afterward, the selected data instances given by the active learner module are split

into two parts by the incremental learner module: known class data and new class

data. Known class data is directly added to the training dataset, but new class data

is added to the rare class dataset first. Then, instance count for each class in the rare

class dataset is checked. If there exist data instances as many as the min count for the

new class threshold, the data instances are transferred from the rare class dataset to

the train dataset. New classes are waited before use until the specified data instance

count is reached.

If a new class is added to the training dataset, the output layer of the neural network

model must be extended for those classes. Therefore, new neurons are added to the

output layer as many as the number of new classes. However, the weights of the

neurons in the hidden layers are preserved in order not to forget the learned knowledge

so far.

The neural network model is retained with the updated training dataset by the incre-

mental learner module. After retaining is completed, the unlabeled data pool is made

empty to be ready for the next cycle. After each retaining cycle, the model is im-

proved for known classes and also learned new classes. The cycle continues as long

as the system is running, but the period is expected to increase since the system will

be more stable after some point.

26

Figure 4.1: The architecture of the proposed IDS

27

4.2 Classification Module

Gamage et al. found that any of the commonly used deep learning methods for IDS

do not outperform the ANN [27]. Based on the findings of the study, ANN is chosen

for the classification method. The architecture is shaped according to the experiment

results of the work. In addition, the shared implementation of the study is used as a

basis.

The number of neurons in the input layer is adjusted according to the feature count

in the selected dataset. The experiments of the paper show that the best performance

is obtained from ANN with a single hidden layer having 64 neurons and four hidden

layers having 256-128-64-32 neurons respectively. Both of the architectures give

almost the same performance. Therefore, a single hidden layer with 64 neurons is

used in this work. RELU is used as an activation function in the hidden layer. The

number of neurons in the output layer is adjusted according to the class count in the

training dataset. The output layer activation function is softmax.

Dropout and batch normalization are applied to overcome overfitting. The dropout

rate is 0.20 since it gives the best performance in this setting according to the study.

The cross-entropy loss function is used with the Adam optimizer. Class weighting is

applied to deal with the imbalanced nature of intrusion detection data. Class weights

are calculated according to the instance count of class in training data before every

retraining process.

The classification module is the main module in the system. It predicts labels of the

input data and also collects the data for which there is not enough confidence in the

predicted labels.

4.3 Incremental Learner Module

The responsibility of the incremental learner module is to update the neural network

model for adapting to the changing environment. It picks up new data instances with

their labels by communicating with the active learning module, manages the new data,

and retrains the model.

28

4.4 Active Learning Module

The active learning module is configurable in terms of query and selection strategy.

The active learning module supports three types of uncertainty query methods: least-

confident, margin, and entropy. A score is calculated for each unlabeled data instance

by using the query method.

• Least confident: Uncertainty measure for this strategy is calculated according

to the probability of the label has the highest probability among possible labels.

The formula is

Sx = 1−P(ŷ|x) (4.1)

where ŷ is the most likely label for data instance x.

• Margin: Difference between highest probability and second highest probabil-

ity among possible predicted labels gives the uncertainty measure in this strat-

egy. The formula is

Sx = P(ŷ1|x)−P(ŷ2|x) (4.2)

where ŷ1 is the most likely label and ŷ2 is the second most likely label for data

instance x.

• Entropy: Entropy considers the probability of all possible labels when calcu-

lating uncertainty measures. Shannon entropy [15] is preferred in this work

since it is the most popular entropy calculation method. The formula is

Sx = −
∑
i

P(yi|x) log2 P (yi|x) (4.3)

where yi ranges over possible labels for data instance x.

Selection methods have two kinds: maximum n instance and minimum n instance. It

means the first data instances that have a maximum or minimum score are selected.

29

4.5 Simulated Oracle Module

An identifier number is given to each data instance in the dataset. All of the data labels

in the dataset is given to the simulated oracle module with the identifier numbers.

When asked label of any data instance, simulated oracle searches the label by using

the identifier number and gives the label. Note that data instance is given as input

with the identifier number.

A simulated oracle module is used for experimental purposes since working with a

security expert was not possible within the scope of this thesis. In real use cases,

instead of the simulated oracle, real security experts will label the data.

30

CHAPTER 5

EXPERIMENTS AND DISCUSSION

5.1 Dataset

The CICIDS-2017 intrusion detection dataset [47] is used for evaluation. The dataset

was captured in a 5 day period from 3 to 7 July 2017. There are 80 flow-based traffic

features, and 2 of them are text-based. The dataset is fully labeled and contains 15

different labels from seven common families of attacks: Botnet, Brute Force Attack,

DoS Attack, Heartbleed Attack, Infiltration Attack, DDoS Attack, and Web Attack.

Benign background traffic is generated using more than 20 users’ behavior based on

the FTP, HTTPS, HTTP, SSH, and email protocols. The generated network traffic

represents a modern network traffic scenario.

Data pre-processing: Just numeric features were used in this work. Thus, 78 features

exist in the pre-processed dataset. In addition, the data belonging to 3 of the labels

were removed from the dataset since their instance count is too few. The paper [27]

shows that the complete dataset and 10% of it give the same performance when the

smaller dataset is prepared by preserving the original class proportions. Therefore,

the dataset was reduced to 10 % by using the same approach. Then, 20 % of the small

dataset was separated for testing. Initially, some portion of the remaining part was

separated for pre-training of the model. The proportion was configured for different

values. The pre-training data includes only 3 classes: BENIGN, PortScan, and DDos,

and other classes were removed. The remaining data after those processes was given

as input to the IDS sequentially in 100 data-instance batches. The reason for giving

input as a batch is to speed up the experiments since the calculations take much more

time when it is given to the neural network one by one. Moreover, it is a more realistic

31

scenario, because more than one data flow exists at the same time in the network and

they are checked by IDS.

5.2 Experimental Setup

The proposed IDS was implemented in Python language, and ANN was built by using

Tensorflow and Keras. The ANN trained with the complete dataset was used as a

baseline. The baseline was trained with a batch size of 256 and epoch size of 150 at

once.

Experiments were designed according to the parameters that can affect performance:

• initial data split ratio: the percentage of the dataset used for pre-training

• batch size: training batch size of the neural network

• epochs: training epoch count of the neural network

• query strategy: active learning strategy used for calculating uncertainty mea-

sure

• selection strategy: maximum or minimum score

• selection count: number of data instances to select from the unlabeled data

pool

• pool size threshold: unlabeled data pool size for activating the active incre-

mental learning process

• new class min count threshold: minimum required number of data instances

to include a new class in the training dataset

Default configurations containing those parameters are prepared by using initial tested

values. Then, test configurations generated by changing the values of the parameter

will be analyzed while the others are constant. Default configuration values are listed

below:

32

• initial data split ratio = 0.05

• batch size = 256

• epochs = 10

• query strategy = least-confident

• selection strategy = max-n

• selection count = 100

• pool size threshold = 500

• new class min count threshold = 1

The experiments were performed in the Turkish National e-Science e-Infrastructure

(TRUBA) environment. High-performance computing and data storage are provided

for all research institutions and researchers in our country by TÜBİTAK ULAKBİM

High Performance and Grid Computing Center.

5.3 Evaluation Measure

Performance measures and their formulas are listed below:

• Accuracy = TP+TN
TP+TN+FP+FN

• Precision = TP
TP+FP

• Recall = TP
TP+FN

• F1 score = 2∗Precision∗Recall
Precision+Recall

= 2∗TP
2∗TP+FP+FN

True positive(TP) represents number of outputs which are predicted as the positive

class correctly. Similarly, true negative(TN) represents number of outputs which are

predicted as the negative class correctly.

False positive(FP) represents number of outputs which are predicted as the positive

class incorrectly. Similarly, false negative(FN) represents number of outputs which

are predicted as the negative class incorrectly.

33

In addition to the performance measures, some data count information is recorded for

further analysis:

• data counts for each class in input

• data counts for each class in unlabeled data pool

• data counts for each class in selected data

• data counts for each class in training data

By comparing input and unlabeled data pool content, we can analyze classes the

system is not confident about. A comparison of the unlabeled data pool and selected

data content gives the selection behavior of the system. Examining training data

contents provides a better understanding of the system performance.

Note that performance measures and data count information are recorded for each

learning process.

5.4 Results and Discussion

We conducted experiments with 3 methods. There are 6 parameters that affect their

performances. For each method, the following issues will be explained for the system

in the default configuration:

1. Evaluation graph for the default configuration

2. General performance measure change

3. Change of performance measure for each class

4. Data analysis for adding data instances to the unlabeled data pool

5. Data selection behavior analysis

6. Train data updates behavior

34

Then, the comparison graphs for different values of the parameters will be explained

for the 6 parameters and each method. Lastly, the 3 methods will be compared in

terms of performance and data usage in the general discussion section.

5.4.1 Least-confident Method Results

Figure 5.1: Evaluation graph of least-confident method

The evaluation graph of the least-confident method is shown in Figure 5.1. In this

graph, we can observe that the change in the f1-score of the IDS is based on the least-

confident active learning strategy. "train-0" means pre-training cycle, and retraining

cycles are named as train-x. In each retraining cycle, new data instances selected

by the active learner are added to the training dataset, and the classifier is updated

accordingly. Yellow dots show the places where a new type of attack is added to the

dataset. A new type of class was added 8 times. As shown in the graph, some amount

of performance decrease occurs when a new class is added to the dataset since the new

class introduces additional confusion between classes. However, after a few learning

cycles, new data instances belonging to the new class are added to the training dataset,

and the performance is increased progressively. The green line shows the f1-score of

the baseline which is the classifier trained with whole train data instances at once.

35

We can see that the performance of the classifier converges to the performance of the

baseline in approximately train-110.

Table 5.1: Least-confident method’s general performance table

name accuracy accuracy

balanced

f1-score

weighted

f1-score

macro

precision

weighted

precision

macro

recall

weighted

recall

macro

train-0 0.833 0.149 0.770 0.125 0.717 0.109 0.833 0.149

train-1 0.835 0.160 0.776 0.134 0.745 0.144 0.835 0.160

train-5 0.836 0.263 0.807 0.227 0.788 0.213 0.836 0.263

train-6 0.712 0.261 0.742 0.197 0.797 0.174 0.712 0.261

train-19 0.517 0.321 0.590 0.157 0.829 0.174 0.517 0.321

train-25 0.439 0.370 0.529 0.179 0.797 0.183 0.439 0.370

train-31 0.445 0.279 0.531 0.163 0.794 0.160 0.445 0.279

train-45 0.716 0.386 0.744 0.201 0.802 0.171 0.716 0.386

train-47 0.458 0.436 0.543 0.190 0.836 0.193 0.458 0.436

train-172 0.894 0.723 0.908 0.541 0.927 0.530 0.894 0.723

baseline 0.913 0.620 0.920 0.527 0.934 0.560 0.913 0.620

Change in all performance measures for the classifier based on least-confident ac-

tive learning strategy is listed in Table 5.1. There are four performance measures:

accuracy, f1-score, precision, and recall. Performance measures have two types: av-

erage and weighted average. An average measurement means the calculating mean

of the measurements for each class. On the other hand, a weighted average measure-

ment means the calculating mean of the measurements for each class weighted with

their instance count in the test dataset. Weighted average shows the real use case

performance since the performance of the most common classes affects the total per-

formance more. However, the direct average represents the effect of the learning of

a new class more clearly. "train-0" means pre-training cycle, and other train cycles

are where a new type of attack is added to the dataset. In addition, the performances

at the last training cycle and baseline are added to the end of the table. Values of all

performance measures are increasing progressively and converging to the baseline as

shown in the table. Moreover, the classifier reaches higher values for some of the

measures in the direct average type although weighted versions are almost the same.

It means the classifier learned some of the classes better than the baseline.

36

Table 5.2: Least-confident method’s f1-score table for each class

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

train-0 0.926 0.000 0.569 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

train-1 0.927 0.000 0.607 0.000 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000

train-5 0.924 0.000 0.555 0.000 0.000 0.563 0.000 0.000 0.686 0.000 0.000 0.000

train-6 0.835 0.000 0.603 0.000 0.089 0.198 0.000 0.000 0.639 0.000 0.000 0.000

train-19 0.652 0.039 0.535 0.000 0.307 0.057 0.000 0.000 0.301 0.000 0.000 0.000

train-25 0.564 0.004 0.553 0.000 0.144 0.123 0.052 0.019 0.692 0.000 0.000 0.000

train-31 0.579 0.001 0.521 0.067 0.064 0.000 0.035 0.035 0.651 0.000 0.000 0.000

train-45 0.853 0.065 0.374 0.046 0.000 0.132 0.000 0.000 0.729 0.213 0.000 0.000

train-47 0.583 0.013 0.531 0.192 0.170 0.039 0.031 0.047 0.628 0.005 0.041 0.000

train-172 0.936 0.078 0.904 0.534 0.708 0.534 0.415 0.821 0.887 0.622 0.051 0.000

baseline 0.947 0.006 0.914 0.907 0.879 0.437 0.183 0.656 0.695 0.620 0.078 0.000

Changes in f1-scores for each class are listed in Table 5.2. "train-0" means pre-

training cycle, and other train cycles are where a new type of attack is added to the

dataset. In addition, the performances at the last training cycle and baseline are added

to the end of the table. We can see that new classes were learned incrementally and

almost all classes were learned at the end. For some of the classes, the classifier

performs better than the baseline.

Table 5.3: Least-confident method’s input data and unlabeled data pool table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

input_data-1 556 0 23 3 61 1 0 3 52 1 0 0 700

unlabeled_data_pool-1 447 0 12 2 22 0 0 3 50 1 0 0 537

input_data-5 809 4 49 5 74 2 2 2 50 2 1 0 1000

unlabeled_data_pool-5 449 4 8 0 10 1 1 1 25 2 0 0 501

input_data-6 572 1 31 2 53 1 0 2 33 5 0 0 700

unlabeled_data_pool-6 522 1 12 2 16 0 0 2 21 5 0 0 581

input_data-19 1187 2 82 2 120 4 1 7 89 3 3 0 1500

unlabeled_data_pool-19 422 2 15 0 13 1 0 3 45 3 1 0 505

input_data-25 826 1 45 0 70 4 3 0 45 6 0 0 1000

unlabeled_data_pool-25 437 1 17 0 17 1 2 0 22 6 0 0 503

input_data-31 556 1 30 5 58 1 0 3 44 2 0 0 700

unlabeled_data_pool-31 460 1 11 3 14 0 0 3 23 2 0 0 517

input_data-45 970 0 56 5 96 2 1 3 64 3 0 0 1200

unlabeled_data_pool-45 494 0 7 3 10 1 1 3 28 3 0 0 550

input_data-47 481 0 30 0 49 1 2 1 33 1 2 0 600

unlabeled_data_pool-47 456 0 13 0 18 1 1 1 20 1 2 0 513

input_data-172 1679 1 105 11 167 2 3 4 121 5 2 0 2100

unlabeled_data_pool-172 399 1 40 6 22 1 1 1 45 5 0 0 521

37

Data counts belonging to each class given as input and added to the unlabeled data

pool in each training cycle where a new type of attack is added to the training dataset

are listed in Table 5.3. The data counts in the last training cycle are available at the

end of the table. The default unlabeled pool size threshold is 500. Because of that, the

unlabeled pool size equals approximately 500 in the table for each training cycle. In

the first training cycle, 82% of the input data instances are added to the unlabeled data

pool since the confidence of prediction given by the system is less than the threshold.

However, the percentage decreases to 24% in the last training cycle. The system adds

less data instances belonging to the classes learned well.

Table 5.4: Least-confident method’s unlabeled data pool and selected data table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

unlabeled_data_pool-1 447 0 12 2 22 0 0 3 50 1 0 0 537

selected_data-1 45 0 5 0 4 0 0 0 46 0 0 0 100

unlabeled_data_pool-5 449 4 8 0 10 1 1 1 25 2 0 0 501

selected_data-5 70 0 4 0 9 1 0 0 16 0 0 0 100

unlabeled_data_pool-6 522 1 12 2 16 0 0 2 21 5 0 0 581

selected_data-6 74 0 0 0 9 0 0 1 16 0 0 0 100

unlabeled_data_pool-19 422 2 15 0 13 1 0 3 45 3 1 0 505

selected_data-19 54 1 10 0 8 0 0 0 27 0 0 0 100

unlabeled_data_pool-25 437 1 17 0 17 1 2 0 22 6 0 0 503

selected_data-25 97 0 0 0 1 0 1 0 1 0 0 0 100

unlabeled_data_pool-31 460 1 11 3 14 0 0 3 23 2 0 0 517

selected_data-31 79 1 0 1 3 0 0 2 14 0 0 0 100

unlabeled_data_pool-45 494 0 7 3 10 1 1 3 28 3 0 0 550

selected_data-45 69 0 1 1 4 0 0 3 21 1 0 0 100

unlabeled_data_pool-47 456 0 13 0 18 1 1 1 20 1 2 0 513

selected_data-47 93 0 0 0 4 0 1 0 0 0 2 0 100

unlabeled_data_pool-172 399 1 40 6 22 1 1 1 45 5 0 0 521

selected_data-172 71 0 9 1 2 0 0 0 13 4 0 0 100

Data counts belonging to each class added to the unlabeled data pool and selected by

the active learner in each train cycle where a new type of attack is added to the train-

ing dataset are listed in Table 5.4. The table shows the selection behavior of the active

learner based on the least-confident strategy. The default selection parameter value

is 100. As shown in the table, 100 data instances were selected by the active learner

from the unlabeled data pool in each learning cycle. Least-confident strategy selects

the data instances which have the lowest prediction confidence. We can observe that

data instances belonging to a new type of class are selected incrementally. Moreover,

38

the active learner continues to select from data instances belonging to known classes

as shown in the table. Until the last cycle, most of the selected data belongs to the

BENIGN class. In fact, the unlabeled data pool consists of a high proportion of BE-

NIGN data. Nevertheless, the learner also selects from the data instances belonging

to attack classes. The number of new classes selected by the active learner in total is

8.

Table 5.5: Least-confident method’s train data table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

train_data-0 9115 0 494 0 0 0 0 0 616 0 0 0 10225

train_data-1 9160 0 499 0 4 0 0 0 662 0 0 0 10325

train_data-5 9419 0 509 0 43 2 0 0 749 0 0 0 10722

train_data-6 9493 0 509 0 52 2 0 2 765 0 0 0 10823

train_data-19 10429 2 533 0 158 4 0 11 985 0 0 0 12122

train_data-25 10983 2 536 0 166 4 2 12 1018 0 0 0 12723

train_data-31 11490 3 537 2 193 5 5 15 1074 0 0 0 13324

train_data-45 12622 4 553 3 242 5 10 27 1257 2 0 0 14725

train_data-47 12801 4 560 3 251 5 11 28 1257 2 3 0 14925

train_data-172 19728 14 1287 27 2509 20 74 85 3542 130 9 0 27425

base train data 181705 157 10242 823 18409 440 464 635 12704 472 121 52 226224

Data counts belonging to each class in the training dataset is listed in Table 5.5 start-

ing from the pre-training cycle. Other train cycles are where the new type of attack

is added to the training dataset. The data counts in the last training cycle and for the

baseline are available at the end of the table. The pre-training dataset only consists

of 3 classes: BENIGN, DDos, and PortScan. However, the training dataset contains

almost all of the classes in the last training cycle. Only Web attack XSS class is not

added to the training dataset. While the training dataset of the baseline contains 80%

of the data instances from the BENIGN class, the training dataset of the classifier in

the last training cycle contains 71% of the data instances from the BENIGN class.

It means the proportion of the data instances from the attack classes is higher in the

dataset of the classifier. In addition, the total data instance count in the training dataset

of the classifier is 12.12% of the total data instance count in the training dataset of the

baseline. This is a significant labeled data reduction.

39

Effect of initial data split ratio

Figure 5.2: Effect of initial split ratio on least confident method

The evaluation graph of the least-confident method for different amounts of pre-

training data is shown in Figure 5.2. The initial split ratio means the proportion

of the data instances reserved from the remaining data after the test data is split for

pre-training. As shown in the graph, this parameter doesn’t affect the general perfor-

mance at all. Evolution curves for all of the initial split ratio values have almost the

same shape.

40

Effect of batch size

Figure 5.3: Effect of batch size on least confident method

The evaluation graph of the least-confident method for different batch sizes is shown

in Figure 5.3. When batch size is decreased, we can observe a more smooth evolution

curve and faster convergence. ANN learns better with a batch size of 128.

41

Effect of epochs

Figure 5.4: Effect of epoch size on least confident method

The evaluation graph of the least-confident method for different epoch sizes is shown

in Figure 5.4. When epoch size is increased, we can observe a more smooth evolution

curve and faster convergence. ANN learns better with an epoch size of 30.

42

Effect of selection count

Figure 5.5: Effect of selection parameter on least confident method

The evaluation graph of the least-confident method for different selection parameter

values is shown in Figure 5.5. The selection parameter means the number of data in-

stances selected from the unlabeled data pool by the active learner. Since the default

unlabeled data pool size value is 500, the selection parameter of 500 means selecting

all of the data instances in the unlabeled data pool. As shown in the graph, the selec-

tion parameter of 500 has huge fluctuations in the first training cycles. The system

behavior is approximately the same for all of the other values. Although those values

give similar performance, the smallest selection parameter is a better choice because

it means using less labeled train data instances.newline

43

Effect of pool size threshold

Figure 5.6: Effect of pool size on least confident method

The evaluation graph of the least-confident method for different pool sizes is shown

in Figure 5.6. For each pool size, the same amount of data instances are selected

from the unlabeled data pool since the default value of the selection parameter is 100.

Therefore, higher pool size means using fewer training data instances for this exper-

iment. Although the system reaches a similar f1-score value with all of the values,

huge fluctuations occur in the evolution curve for the values 750 and 1000. The most

suitable pool size value is 500.

44

Effect of new class min count threshold

Figure 5.7: Effect of new class min count on least confident method

The evaluation graph of the least-confident method for different new class min count

parameter values is shown in Figure 5.7. When data instances belonging to a new

type of class are selected by the active learner, the system waits until the data instance

count for that class reaches a certain value for adding them into the training dataset.

The parameter having a value of 1 means no waiting. We observe more performance

decreases for the parameter value of 1 when data instances belonging to a new type

of class are added to the training dataset as shown in the graph. When the parameter

value is 10, fewer new types of classes can be added since some of them are very rare.

The performance of the system reaches the highest value with the parameter value of

5.

45

5.4.2 Margin Strategy Results

Figure 5.8: Evaluation graph of margin method

Evaluation graph of margin method is shown in Figure 5.8. In this graph, we can

observe the change in the f1-score of the IDS based on the margin active learning

strategy. "train-0" means pre-training cycle, and retraining cycles are named as train-

x. In each retraining cycle, new data instances selected by the active learner are added

to the training dataset, and the classifier is updated accordingly. Yellow dots show the

places where a new type of attack is added to the dataset. A new type of class was

added 9 times. As shown in the graph, some amount of performance decrease occurs

when a new class is added to the dataset since the new class introduces additional

confusion between classes. The system reaches a more stable state after train-20.

Although fluctuations occur in the graph, the performance is increased progressively.

The green line shows the f1-score of the baseline which is the classifier trained with

whole train data instances at once. We can see that the performance of the classifier

converges to the performance of the baseline in approximately train-90.

46

Table 5.6: Margin method’s general performance table

name accuracy accuracy

balanced

f1-score

weighted

f1-score

macro

precision

weighted

precision

macro

recall

weighted

recall

macro

train-0 0.832 0.152 0.771 0.127 0.738 0.137 0.832 0.152

train-1 0.337 0.196 0.399 0.118 0.775 0.158 0.337 0.196

train-3 0.833 0.260 0.823 0.245 0.834 0.261 0.833 0.260

train-4 0.210 0.262 0.212 0.132 0.687 0.160 0.210 0.262

train-6 0.726 0.371 0.764 0.220 0.848 0.210 0.726 0.371

train-7 0.188 0.358 0.247 0.150 0.853 0.214 0.188 0.358

train-10 0.263 0.336 0.345 0.206 0.842 0.235 0.263 0.336

train-36 0.710 0.376 0.757 0.274 0.833 0.244 0.710 0.376

train-55 0.772 0.434 0.808 0.301 0.876 0.280 0.772 0.434

train-109 0.751 0.565 0.808 0.351 0.889 0.339 0.751 0.565

train-203 0.903 0.755 0.924 0.512 0.952 0.467 0.903 0.755

baseline 0.913 0.620 0.920 0.527 0.934 0.560 0.913 0.620

Change in all performance measures for the classifier based on margin active learn-

ing strategy is listed in Table 5.6. There are four performance measures: accuracy,

f1-score, precision, and recall. Performance measures have in two types: average

and weighted average. Weighted average shows the real use case performance since

the performance of the most common classes affects the total performance more.

However, the direct average represents the effect of the learning of a new class more

clearly. "train-0" means pre-training cycle, and other train cycles are where a new

type of attack is added to the dataset. In addition, the performances at the last train-

ing cycle and baseline are added to the end of the table. Values of all performance

measures are increasing progressively and converging to the baseline as shown in the

table. Moreover, the classifier reaches higher values for some of the measures.

47

Table 5.7: Margin method’s f1-score table for each class

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

train-0 0.926 0.000 0.573 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.000

train-1 0.427 0.000 0.540 0.000 0.282 0.000 0.000 0.000 0.167 0.000 0.000 0.000

train-3 0.922 0.000 0.541 0.000 0.278 0.578 0.000 0.000 0.617 0.000 0.000 0.000

train-4 0.202 0.000 0.517 0.031 0.189 0.476 0.000 0.000 0.175 0.000 0.000 0.000

train-6 0.859 0.000 0.479 0.098 0.278 0.342 0.000 0.000 0.508 0.074 0.000 0.000

train-7 0.208 0.003 0.484 0.089 0.281 0.119 0.000 0.000 0.608 0.010 0.000 0.000

train-10 0.320 0.006 0.544 0.270 0.415 0.432 0.000 0.000 0.484 0.004 0.000 0.000

train-36 0.831 0.002 0.538 0.468 0.341 0.370 0.004 0.001 0.612 0.124 0.000 0.000

train-55 0.876 0.033 0.541 0.411 0.469 0.493 0.032 0.044 0.700 0.013 0.000 0.000

train-109 0.841 0.038 0.780 0.389 0.716 0.393 0.019 0.084 0.642 0.267 0.021 0.023

train-203 0.940 0.075 0.901 0.676 0.888 0.514 0.174 0.242 0.884 0.770 0.055 0.028

baseline 0.947 0.006 0.914 0.907 0.879 0.437 0.183 0.656 0.695 0.620 0.078 0.000

Changes in f1-scores for each class are listed in Table 5.7. "train-0" means pre-

training cycle, and other train cycles are where a new type of attack is added to the

dataset. In addition, the performances at the last training cycle and baseline are added

to the end of the table. We can see that new classes were learned incrementally and

all of the classes were learned at the end. In addition, the f1-score of the classifier is

similar to the f1-score of the baseline for most classes.

48

Table 5.8: Margin method’s input data and unlabeled data pool table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

input_data-1 475 0 20 3 52 1 0 2 46 1 0 0 600

unlabeled_data_pool-1 416 0 12 2 23 1 0 2 45 1 0 0 502

input_data-3 551 1 33 2 61 3 2 4 41 2 0 0 700

unlabeled_data_pool-3 450 1 7 2 10 3 2 4 41 2 0 0 522

input_data-4 470 1 31 4 43 1 1 3 44 1 1 0 600

unlabeled_data_pool-4 456 1 8 4 13 0 1 3 44 1 1 0 532

input_data-6 495 3 28 2 40 2 1 1 25 2 1 0 600

unlabeled_data_pool-6 482 3 9 2 9 1 1 1 24 2 1 0 535

input_data-7 476 2 35 2 43 0 1 2 36 3 0 0 600

unlabeled_data_pool-7 469 2 27 0 27 0 1 2 36 3 0 0 567

input_data-10 499 0 21 1 41 1 1 2 31 3 0 0 600

unlabeled_data_pool-10 453 0 3 0 13 1 0 2 30 3 0 0 505

input_data-36 956 0 50 4 105 3 3 4 73 1 1 0 1200

unlabeled_data_pool-36 461 0 7 0 34 1 2 4 32 1 1 0 543

input_data-55 821 2 45 8 66 1 0 2 51 3 1 0 1000

unlabeled_data_pool-55 467 1 7 1 14 0 0 2 27 3 1 0 523

input_data-109 801 0 43 6 70 2 0 3 74 0 0 1 1000

unlabeled_data_pool-109 422 0 18 1 48 0 0 3 30 0 0 1 523

input_data-203 1020 0 78 7 104 2 1 2 83 3 0 0 1300

unlabeled_data_pool-203 439 0 22 2 21 0 1 1 34 3 0 0 523

Data counts belonging to each class given as input and added to the unlabeled data

pool in each train cycle where a new type of attack is added to the training dataset are

listed in Table 5.8. The data counts in the last training cycle are available at the end

of the table. The default unlabeled pool size threshold is 500. Because of that, the un-

labeled pool size equals approximately 500 in the table for each training cycle. In the

first training cycle, 83% of the input data instances are added to the unlabeled data

pool since the confidence of prediction given by the system is less than the thresh-

old. However, the percentage decreases to 40% in the last training cycle. The system

reaches a more stable state progressively and adds fewer data instances to the unla-

beled data pool since it learns incrementally.

49

Table 5.9: Margin method’s unlabeled data pool and selected data table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

unlabeled_data_pool-1 416 0 12 2 23 1 0 2 45 1 0 0 502

selected_data-1 42 0 1 0 14 0 0 0 43 0 0 0 100

unlabeled_data_pool-3 450 1 7 2 10 3 2 4 41 2 0 0 522

selected_data-3 54 0 3 0 0 3 0 0 40 0 0 0 100

unlabeled_data_pool-4 456 1 8 4 13 0 1 3 44 1 1 0 532

selected_data-4 71 1 5 2 2 0 0 0 19 0 0 0 100

unlabeled_data_pool-6 482 3 9 2 9 1 1 1 24 2 1 0 535

selected_data-6 82 0 3 0 3 0 0 1 9 2 0 0 100

unlabeled_data_pool-7 469 2 27 0 27 0 1 2 36 3 0 0 567

selected_data-7 75 2 1 0 3 0 0 0 16 3 0 0 100

unlabeled_data_pool-10 453 0 3 0 13 1 0 2 30 3 0 0 505

selected_data-10 79 0 1 0 7 0 0 1 12 0 0 0 100

unlabeled_data_pool-36 461 0 7 0 34 1 2 4 32 1 1 0 543

selected_data-36 56 0 4 0 11 0 2 2 25 0 0 0 100

unlabeled_data_pool-55 467 1 7 1 14 0 0 2 27 3 1 0 523

selected_data-55 72 1 3 0 4 0 0 2 15 2 1 0 100

unlabeled_data_pool-109 422 0 18 1 48 0 0 3 30 0 0 1 523

selected_data-109 71 0 10 1 11 0 0 1 5 0 0 1 100

unlabeled_data_pool-203 439 0 22 2 21 0 1 1 34 3 0 0 523

selected_data-203 76 0 0 0 1 0 0 0 23 0 0 0 100

Data counts belonging to each class added to the unlabeled data pool and selected

by the active learner in each train cycle where a new type of attack is added to the

training dataset are listed in Table 5.9. The table shows the selection behavior of the

active learner based on the margin strategy. The default selection parameter value is

100. As shown in the table, 100 data instances were selected by the active learner

from the unlabeled data pool in each learning cycle. Margin strategy selects the data

instances in which the difference between the most probable and second probable pre-

diction confidence is less. We can observe that data instances belonging to a new type

of class are selected incrementally. Moreover, the active learner continues to select

from data instances belonging to known classes as shown in the table. Until the last

cycle, most of the selected data belongs to the BENIGN class in general. In fact, the

unlabeled data pool consists of a high proportion of BENIGN data. Nevertheless, the

learner also selects from the data instances belonging to attack classes. The number

of new classes selected by the active learner in total is 9.

50

Table 5.10: Margin method’s train data table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

train_data-0 9115 0 494 0 0 0 0 0 616 0 0 0 10225

train_data-1 9157 0 495 0 14 0 0 0 659 0 0 0 10325

train_data-3 9311 0 498 0 14 3 0 0 699 0 0 0 10525

train_data-4 9382 0 503 2 16 3 0 0 718 0 0 0 10624

train_data-6 9563 0 506 3 19 3 0 0 727 2 0 0 10823

train_data-7 9638 3 507 3 22 3 0 0 743 5 0 0 10924

train_data-10 9905 3 508 3 30 3 0 2 766 5 0 0 11225

train_data-36 12014 11 541 4 155 5 3 17 1064 11 0 0 13825

train_data-55 13443 13 581 7 214 5 5 57 1374 24 2 0 15725

train_data-109 17089 15 890 17 646 8 30 108 2249 65 6 2 21125

train_data-203 23145 20 1457 24 1126 19 67 132 4377 137 14 7 30525

base train data 181705 157 10242 823 18409 440 464 635 12704 472 121 52 226224

Data counts belongs to each class in the training dataset is listed in Table 5.10 starting

from the pre-training cycle. Other train cycles are where the new type of attack is

added to the training dataset. The data counts in the last training cycle and for the

baseline are available at the end of the table. The pre-training dataset only consists

of 3 classes: BENIGN, DDos, and PortScan. However, the training dataset contains

all of the classes in the last training cycle. While the training dataset of the baseline

contains 80% of the data instances from the BENIGN class, the training dataset of

the classifier in the last training cycle contains 75% of the data instances from the

BENIGN class. It means the proportion of the data instances from the attack classes

is higher in the training dataset of the classifier. In addition, the total data instance

count in the training dataset of the classifier is 13.49% of the total data instance count

in the training dataset of the baseline. This is a promising labeled data reduction.

51

Effect of initial data split ratio

Figure 5.9: Effect of initial split ratio on margin method

Evaluation graph of margin method for different amounts of pre-training data is

shown in Figure 5.9. The initial split ratio means the proportion of the data instances

reserved from the remaining data after the test data is split for pre-training. After

train-80, the shape of the curve is almost the same for all of the values. However, the

system has too low performance with an initial split ratio of 0.01 through the first 30

train cycles. In addition, lots of large performance decreases occur for the parameter

of 0.03 until train 40.

52

Effect of batch size

Figure 5.10: Effect of batch size on margin method

The evaluation graph of the margin method for different batch sizes is shown in Fig-

ure 5.10. Huge fluctuations occur in the evolution curve for the values 256 and 512.

ANN converges faster and more smoothly for batch size of 128.

53

Effect of epochs

Figure 5.11: Effect of epoch size on margin method

The evaluation graph of the margin method for different epoch sizes is shown in Fig-

ure 5.11. When epoch size is increased, we can observe a more smooth evolution

curve and faster convergence. ANN learns better with a epoch size of 30.

54

Effect of selection count

Figure 5.12: Effect of selection parameter on margin method

The evaluation graph of the margin method for different selection parameter values is

shown in Figure 5.12. The selection parameter means the number of data instances

selected from the unlabeled data pool by the active learner. Since the default unla-

beled data pool size value is 500, the selection parameter of 500 means selecting all of

the data instances in the unlabeled data pool. The system converges to approximately

the same performance at the end for all values. However, the convergence is fastest

for the value 500 and slowest for the value 50. Huge fluctuations occur for the values

50 and 500 in the first training cycles. The system behavior is almost the same for

the values 100 and 250. Although those values give similar performance, the smallest

selection parameter is a better choice because it means using less labeled train data

instances.

55

Effect of pool size threshold

Figure 5.13: Effect of pool size on margin method

The evaluation graph of the margin method for different pool sizes is shown in Figure

5.13. For each pool size, the same amount of data instances are selected from the un-

labeled data pool since the default value of the selection parameter is 100. Therefore,

higher pool size means using fewer train data instances for this experiment. Although

the system behavior is similar for all of the values, less performance decreases occur

for the value 750 when a new type of class is added to the dataset.

56

Effect of new class min count threshold

Figure 5.14: Effect of new class min count on margin method

The evaluation graph of the margin method for different new class min count param-

eter values is shown in Figure 5.14. When data instances belonging to a new type of

class are selected by the active learner, the system waits until the data instance count

for that class reaches a certain value for adding them into the training dataset. The

parameter having a value of 1 means no waiting. The system converges faster and

has a smoother evolution curve for the values 5 and 10. However, fewer new types of

classes can be added since some of them are very rare with those values. Although

the value 1 causes a lot of fluctuations, the system can learn more with it. At the end,

all of the curves reach the same performance as shown in the graph.

57

5.4.3 Entropy Strategy Results

Figure 5.15: Evaluation graph of entropy method

The evaluation graph of the entropy method is shown in Figure 5.15. In this graph,

we can observe that the change in the f1-score of the IDS is based on entropy active

learning strategy. "train-0" means pre-training cycle, and retraining cycles are named

as train-x. In each retraining cycle, new data instances selected by the active learner

are added to the training dataset, and the classifier is updated accordingly. Yellow

dots show the places where a new type of attack is added to the dataset. A new type

of class was added 7 times. As shown in the graph, some amount of performance

decrease occurs when a new class is added to the dataset since the new class intro-

duces additional confusion between classes. The system reaches a more stable state

after train-40. Although fluctuations occur in the graph, the performance is increased

progressively. The green line shows the f1-score of the baseline which is the classifier

trained with whole train data instances at once. We can see that the performance of

the classifier converges to the performance of the baseline in approximately train-90.

58

Table 5.11: Entropy method’s general performance table

name accuracy accuracy

balanced

f1-score

weighted

f1-score

macro

precision

weighted

precision

macro

recall

weighted

recall

macro

train-0 0.832 0.150 0.771 0.127 0.745 0.148 0.832 0.150

train-3 0.830 0.211 0.804 0.178 0.792 0.168 0.830 0.211

train-4 0.596 0.206 0.665 0.173 0.793 0.167 0.596 0.206

train-5 0.325 0.190 0.399 0.131 0.737 0.141 0.325 0.190

train-6 0.346 0.243 0.442 0.145 0.768 0.168 0.346 0.243

train-18 0.469 0.244 0.537 0.121 0.775 0.123 0.469 0.244

train-29 0.591 0.262 0.667 0.209 0.825 0.194 0.591 0.262

train-65 0.762 0.297 0.777 0.232 0.834 0.245 0.762 0.297

train-133 0.896 0.410 0.889 0.378 0.895 0.411 0.896 0.410

baseline 0.913 0.620 0.920 0.527 0.934 0.560 0.913 0.620

Change in all performance measures for the classifier based on entropy active learn-

ing strategy is listed in Table 5.11. There are four performance measures: accuracy,

f1-score, precision, and recall. Performance measures have in two types: average

and weighted average. Weighted average shows the real use case performance since

the performance of the most common classes affects the total performance more.

However, the direct average represents the effect of the learning of a new class more

clearly. "train-0" means pre-training cycle, and other train cycles are where a new

type of attack is added to the dataset. In addition, the performances at the last train-

ing cycle and baseline are added to the end of the table. Values of all performance

measures are increasing progressively and converging to the baseline as shown in the

table, but the classifier has a lower value in all of the measures.

59

Table 5.12: Entropy method’s f1-score table for each class

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

train-0 0.925 0.000 0.557 0.000 0.000 0.000 0.000 0.000 0.046 0.000 0.000 0.000

train-3 0.922 0.000 0.522 0.000 0.016 0.000 0.000 0.000 0.674 0.000 0.000 0.000

train-4 0.741 0.000 0.570 0.000 0.072 0.000 0.000 0.000 0.690 0.000 0.000 0.000

train-5 0.425 0.021 0.539 0.000 0.037 0.000 0.000 0.000 0.545 0.000 0.000 0.000

train-6 0.472 0.011 0.515 0.000 0.040 0.000 0.000 0.000 0.648 0.057 0.000 0.000

train-18 0.622 0.060 0.500 0.000 0.001 0.000 0.000 0.000 0.260 0.013 0.000 0.000

train-29 0.738 0.337 0.601 0.000 0.062 0.000 0.000 0.001 0.745 0.026 0.000 0.000

train-65 0.871 0.000 0.603 0.000 0.126 0.035 0.000 0.374 0.687 0.087 0.000 0.000

train-133 0.941 0.209 0.912 0.710 0.640 0.098 0.000 0.000 0.639 0.388 0.000 0.000

baseline 0.947 0.006 0.914 0.907 0.879 0.437 0.183 0.656 0.695 0.620 0.078 0.000

Changes in f1-scores for each class are listed in Table 5.12. "train-0" means pre-

training cycle, and other train cycles are where a new type of attack is added to the

dataset. In addition, the performances at the last training cycle and baseline are added

to the end of the table. We can see that new classes were learned incrementally and

most of the classes were learned at the end. In addition, the f1-score of the classifier

is similar to the f1-score of the baseline for some of the classes. On the other hand,

there are too many differences between some of them. The classifier performs better

just for the BOT class.

60

Table 5.13: Entropy method’s input data and unlabeled data pool table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

input_data-3 1190 2 79 7 126 3 1 8 80 3 1 0 1500

unlabeled_data_pool-3 423 2 14 0 21 0 0 3 42 0 0 0 505

input_data-4 573 3 30 3 55 2 1 1 29 2 1 0 700

unlabeled_data_pool-4 508 3 8 3 20 1 1 1 29 2 1 0 577

input_data-5 476 2 35 2 43 0 1 2 36 3 0 0 600

unlabeled_data_pool-5 435 2 15 2 12 0 0 2 36 3 0 0 507

input_data-6 495 1 20 1 44 1 0 1 34 3 0 0 600

unlabeled_data_pool-6 447 1 6 1 24 1 0 1 32 3 0 0 516

input_data-18 963 0 52 5 106 2 5 6 58 3 0 0 1200

unlabeled_data_pool-18 466 0 3 2 22 1 0 3 29 3 0 0 529

input_data-29 1131 0 51 2 125 1 3 2 82 3 0 0 1400

unlabeled_data_pool-29 446 0 19 2 26 0 2 0 37 0 0 0 532

input_data-65 2951 4 173 18 295 8 10 10 221 7 3 0 3700

unlabeled_data_pool-65 279 0 50 2 73 0 1 2 93 2 0 0 502

input_data-133 1610 0 99 13 149 5 3 5 112 3 1 0 2000

unlabeled_data_pool-133 407 0 11 1 47 1 0 3 41 0 0 0 511

Data counts belonging to each class given as input and added to the unlabeled data

pool in each train cycle where a new type of attack is added to the training dataset

are listed in Table 5.13. The data counts in the last training cycle are available at the

end of the table. The default unlabeled pool size threshold is 500. Because of that,

the unlabeled pool size equals approximately 500 in the table for each training cycle.

The system reaches a more stable state progressively and adds fewer data instances

to the unlabeled data pool since it learns incrementally.

61

Table 5.14: Entropy method’s unlabeled data pool and selected data table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

unlabeled_data_pool-3 423 2 14 0 21 0 0 3 42 0 0 0 505

selected_data-3 50 0 9 0 1 0 0 0 40 0 0 0 100

unlabeled_data_pool-4 508 3 8 3 20 1 1 1 29 2 1 0 577

selected_data-4 76 2 5 0 7 0 0 1 9 0 0 0 100

unlabeled_data_pool-5 435 2 15 2 12 0 0 2 36 3 0 0 507

selected_data-5 76 1 3 0 0 0 0 0 17 3 0 0 100

unlabeled_data_pool-6 447 1 6 1 24 1 0 1 32 3 0 0 516

selected_data-6 85 0 1 0 1 0 0 1 10 2 0 0 100

unlabeled_data_pool-18 466 0 3 2 22 1 0 3 29 3 0 0 529

selected_data-18 81 0 1 0 11 1 0 2 4 0 0 0 100

unlabeled_data_pool-29 446 0 19 2 26 0 2 0 37 0 0 0 532

selected_data-29 87 0 0 0 7 0 2 0 4 0 0 0 100

unlabeled_data_pool-65 279 0 50 2 73 0 1 2 93 2 0 0 502

selected_data-65 29 0 16 1 21 0 0 0 31 2 0 0 100

unlabeled_data_pool-133 407 0 11 1 47 1 0 3 41 0 0 0 511

selected_data-133 45 0 5 0 36 1 0 0 13 0 0 0 100

Data counts belonging to each class added to the unlabeled data pool and selected

by the active learner in each train cycle where a new type of attack is added to the

training dataset are listed in Table 5.14. The table shows the selection behavior of the

active learner based on the entropy strategy. The default selection parameter value is

100. As shown in the table, 100 data instances were selected by the active learner

from the unlabeled data pool in each learning cycle. We can observe that data in-

stances belonging to a new type of class are selected incrementally. Moreover, the

active learner continues to select from data instances belonging to known classes as

shown in the table. At least 45% of the selected data belongs to the BENIGN class.

The number of new classes selected by the active learner in total is 7.

62

Table 5.15: Entropy method’s train data table

name BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total

train_data-0 9115 0 494 0 0 0 0 0 616 0 0 0 10225

train_data-3 9262 0 520 0 2 0 0 0 741 0 0 0 10525

train_data-4 9338 2 525 0 9 0 0 0 750 0 0 0 10624

train_data-5 9414 3 528 0 9 0 0 0 767 3 0 0 10724

train_data-6 9499 3 529 0 10 0 0 2 777 5 0 0 10825

train_data-18 10484 3 539 0 63 2 0 10 916 8 0 0 12025

train_data-29 11482 3 555 0 104 2 3 16 950 9 0 0 13124

train_data-65 14395 4 626 2 358 4 11 59 1253 12 0 0 16724

train_data-133 18962 5 887 29 1701 10 16 100 1799 15 0 0 23524

base train data 181705 157 10242 823 18409 440 464 635 12704 472 121 52 226224

Data counts belonging to each class in the training dataset is listed in Table 5.15 start-

ing from the pre-training cycle. Other train cycles are where the new type of attack

is added to the training dataset. The data counts in the last training cycle and for the

baseline are available at the end of the table. The pre-training dataset only consists

of 3 classes: BENIGN, DDos, and PortScan. However, the training dataset contains

most of the classes in the last training cycle. The training dataset of the baseline and

the classifier in the last training cycle contain 80% of the data instances from the BE-

NIGN class. The total data instance count in the training dataset of the classifier is

10.39% of the total data instance count in the training dataset of the baseline. This is

a substantial labeled data reduction.

63

Effect of initial data split ratio

Figure 5.16: Effect of initial split ratio on entropy method

The evaluation graph of the entropy method for different amounts of pre-training data

is shown in Figure 5.16. The initial split ratio means the proportion of the data in-

stances reserved from the remaining data after the test data is split for pre-training.

Lots of large performance decreases occur for the parameter value of 0.01 until train

30. The curve for the parameter value of 0.05 converges to the highest performance

value. Moreover, it has fewer fluctuations when compared to curves of the other val-

ues. The best initial split ratio value is 0.05.

64

Effect of batch size

Figure 5.17: Effect of batch size on entropy method

The evaluation graph of the entropy method for different batch sizes is shown in Fig-

ure 5.17. The performance for all of the values converges to almost the same value,

and the shape of the curves are similar. However, we observed that the curve for the

parameter value of 128 is the smoothest one.

65

Effect of epochs

Figure 5.18: Effect of epoch size on entropy method

The evaluation graph of the entropy method for different epoch sizes is shown in Fig-

ure 5.18. When epoch size is increased, we can observe a more smooth evolution

curve and faster convergence. ANN learns better with a epoch size of 30.

66

Effect of selection count

Figure 5.19: Effect of selection parameter on entropy method

The evaluation graph of the entropy method for different selection parameter values

is shown in Figure 5.19. The selection parameter means the number of data instances

selected from the unlabeled data pool by the active learner. Since the default unla-

beled data pool size value is 500, the selection parameter of 500 means selecting all

of the data instances in the unlabeled data pool. Although the system converges to

approximately the same performance for all values, there is a performance decrease

at the end for the value 250. The convergence is fastest for the value 500 and almost

the same for the other values. Huge fluctuations occur for all of them, especially in

the first training cycles.

67

Effect of pool size threshold

Figure 5.20: Effect of pool size on entropy method

The evaluation graph of the entropy method for different pool sizes is shown in Fig-

ure 5.20. For each pool size, the same amount of data instances are selected from the

unlabeled data pool since the default value of the selection parameter is 100. There-

fore, higher pool size means using fewer train data instances for this experiment. The

system reaches the highest performance with the value 500. Moreover, the evolution

curve is smoothest for it. On the other hand, huge fluctuations occur for the values

750 and 1000.

68

Effect of new class min count threshold

Figure 5.21: Effect of new class min count on entropy method

The evaluation graph of the entropy method for different new class min count param-

eter values is shown in Figure 5.21. When data instances belonging to a new type of

class are selected by the active learner, the system waits until the data instance count

for that class reaches a certain value for adding them into the training dataset. The

parameter having a value of 1 means no waiting. The system converges faster and has

a smoother evolution curve while the new class min count parameter decreases. On

the other hand, fewer new types of classes can be added since some of them are very

rare with those values. Although the value 1 causes a lot of fluctuations, the system

can learn more with it.

69

5.4.4 General Discussion

Figure 5.22: Comparison of all methods

The evaluation graph for all of the three methods and the baseline is shown in Figure

5.22. The default configuration is used for all of them. As shown in the graph, all of

the three methods converge to the baseline at the end, but the margin converges faster

than the others.

Table 5.16: All methods general performance comparison table

method accuracy accuracy

balanced

f1-score

weighted

f1-score

macro

precision

weighted

precision

macro

recall

weighted

recall

macro

least-confident 0.894 0.723 0.908 0.541 0.927 0.530 0.894 0.723

margin 0.903 0.755 0.924 0.512 0.952 0.467 0.903 0.755

entropy 0.896 0.410 0.889 0.378 0.895 0.411 0.896 0.410

baseline 0.913 0.620 0.920 0.527 0.934 0.560 0.913 0.620

For all of the three methods and the baseline, all performance measures are listed in

Table 5.16. The values are collected from the last training cycle. There are four per-

formance measures: accuracy, f1-score, precision, and recall. Performance measures

are in two types: average and weighted average. Weighted average shows the real

use case performance since the performance of the most common classes affects the

70

total performance more. For most of the performance measures, the margin method

has a higher value than the other active learning methods. All of the three methods

have similar values with the baseline in any weighted version of the performance

measures. When we consider the whole table, the margin method is the best and the

entropy method is the worse in terms of those measures.

Table 5.17: All methods f1-score comparison table for each class

method BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

least-confident 0.936 0.078 0.904 0.534 0.708 0.534 0.415 0.821 0.887 0.622 0.051 0.000

margin 0.940 0.075 0.901 0.676 0.888 0.514 0.174 0.242 0.884 0.770 0.055 0.028

entropy 0.941 0.209 0.912 0.710 0.640 0.098 0.000 0.000 0.639 0.388 0.000 0.000

baseline 0.947 0.006 0.914 0.907 0.879 0.437 0.183 0.656 0.695 0.620 0.078 0.000

F1-score for each class is listed in Table 5.17 for all of the three methods and the

baseline. Performances for BENIGN, DDos, PortScan, and DoS Hulk classes are

high for all methods and baseline since those are the most common classes in the

dataset. For the Bot class, all of the three active learning methods perform better than

the baseline. On the other hand, the baseline overperforms for DoS Golden Eye. Web

attack XSS class can be detected just with the margin method.

Table 5.18: All methods train data comparison table

method BENIGN Bot DDoS DoS

Golden

Eye

DoS Hulk DoS

Slowhttp

test

DoS

slowloris

FTP-

Patator

PortScan SSH-

Patator

Web

Attack

Brute

Force

Web

Attack

XSS

total percantage

least-confident 19728 14 1287 27 2509 20 74 85 3542 130 9 0 27425 12.12%

margin 23145 20 1457 24 1126 19 67 132 4377 137 14 7 30525 13.49%

entropy 18962 5 887 29 1701 10 16 100 1799 15 0 0 23524 10.39%

base train data 181705 157 10242 823 18409 440 464 635 12704 472 121 52 226224 100%

Data counts belonging to each class in the training dataset are listed in Table 5.18 for

all of the three methods and the baseline. Train data information for active learning

methods is from the last training cycle. Total data instance count in the training

datasets and also their percentages are also given in the table. All three method have

similar class distributions and uses less than 15% of the total data for training. This

is a significant data usage reduction. The entropy method is the best in terms of data

71

usage. Least-confident is the second and margin is the third. Data instances belonging

to web attack brute force and web attack XSS are not selected by some of the active

learners. In fact, those classes are rare in the dataset.

72

CHAPTER 6

CONCLUSION

An increase in usage of the Internet comes with the growth of malware. Therefore,

IDS has become a much more critical position in our lives. Its performance depends

on adaptability to changing attack types and a substantial amount of labeled data.

Unfortunately, labeled data amount for intrusion detection is very limited, and deep

learning methods have certain difficulties with learning incrementally. Active learn-

ing has great potential to deal with those problems.

In this thesis, we proposed a network intrusion detection system with active learn-

ing which can learn new attack types incrementally in an efficient way using a small

amount of labeled train data. As far as we know, this is the first time that active

learning is applied to the multi-class classification problem of the intrusion detection

domain for class incremental learning purposes. An ANN-based classifier is preferred

for use in this system. Since uncertainty-based active learning methods are a straight-

forward way of using them for incremental learning purposes, we worked on three

uncertainty-based methods: least-confident, margin, and entropy. We evaluated them

in the CICIDS-2017 dataset which can model modern network traffic. The parame-

ters that affect the performance of the proposed IDS were analyzed comprehensively

in the experiments. Moreover, the performance of the three methods and their data

usage behavior is compared. In addition, their performances are checked against the

baseline which is the classifier trained with the whole dataset.

Experiments show that all of the three active learning methods require less than 15%

of the total data for training to reach the baseline performance. This is a significant

data usage reduction. The entropy method is the best in terms of data usage. The

least-confident is the second and the margin is the third. On the other hand, the

73

margin method has a higher value than the other active learning methods for most

of the performance measures and the entropy method is the worst in terms of those

measures.

As a future work, the methods that perform better on small train datasets such as few-

shot learning can be used as a classifier instead of ANN. It may be possible to achieve

higher performance with those methods, especially for the classes that are too rare.

Uncertainty-based methods can be replaced with other active learning methods after

being modified for using class incremental learning. Moreover, deep active learning

methods can be tried to select data instances more wisely. Research papers about

those issues are very limited. They are waiting to be explored by researchers.

74

REFERENCES

[1] “McAfee labs threat report.” https://www.mcafee.com/enterprise/en-

us/assets/reports/rp-threats-jun-2021.pdf, Jun 2021. [Online; accessed

09-August-2022].

[2] R. Shirey, “RFC2828: Internet security glossary,” tech. rep., GTE/BBN Tech-

nologies, USA, 2000.

[3] J. P. Anderson, “Computer security threat monitoring and surveillance,” tech.

rep., James P. Anderson Company, 1980.

[4] R. Kemmerer and G. Vigna, “Intrusion detection: A brief history and overview,”

Computer, vol. 35, pp. 27–30, 2002.

[5] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion

detection systems: techniques, datasets and challenges,” Cybersecurity, vol. 2,

pp. 1–22, 2019.

[6] W. Stallings and L. Brown, Computer security: principles and practice. Pearson

Education, Inc, 2015.

[7] D. H. Hubel, Eye, brain, and vision. Scientific American Library/Scientific

American Books, 1995.

[8] F. Rosenblatt, “The perceptron - a perceiving and recognizing automaton,” Cor-

nell Aeronautical Lab, 1957.

[9] A. G. Ivakhnenko and V. G. Lapa, “Cybernetic predicting devices,” 1965.

[10] H. J. Kelley, “Gradient theory of optimal flight paths,” Ars Journal, vol. 30,

no. 10, pp. 947–954, 1960.

[11] B. Settles, “Active learning literature survey,” tech. rep., University of Wiscon-

sin–Madison, 2010.

75

[12] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu, Active learning: A survey.

CRC Press, 2014.

[13] G. Schohn and D. Cohn, “Less is more: Active learning with support vector

machines,” in Proceedings of the Seventeenth International Conference on Ma-

chine Learning, p. 839–846, 2000.

[14] D. Lewis and W. Gale, “A sequential algorithm for training text classifiers,”

in Proceedings of the 17th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, SIGIR 1994, pp. 3–12,

1994.

[15] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-

nical Journal, vol. 27, pp. 623–656, 10 1948.

[16] H. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in Proceed-

ings of the Fifth Annual ACM Workshop on Computational Learning Theory,

pp. 287–294, 1992.

[17] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,” in Ad-

vances in Neural Information Processing Systems 20 - Proceedings of the 2007

Conference, 2009.

[18] B. Settles and M. Craven, “An analysis of active learning strategies for sequence

labeling tasks,” in EMNLP 2008 - 2008 Conference on Empirical Methods in

Natural Language Processing, Proceedings of the Conference: A Meeting of

SIGDAT, a Special Interest Group of the ACL, pp. 1070–1079, 2008.

[19] G. Parisi, R. Kemker, J. Part, C. Kanan, and S. Wermter, “Continual lifelong

learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54–

71, 2019.

[20] R. French, “Catastrophic forgetting in connectionist networks,” Trends in Cog-

nitive Sciences, vol. 3, pp. 128–135, 1999.

[21] M. D. Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis,

G. Slabaugh, and T. Tuytelaars, “A continual learning survey: Defying forget-

ting in classification tasks,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 44, pp. 3366–3385, 2022.

76

[22] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. Lampert, “iCaRL: Incremental

classifier and representation learning,” in Proceedings - 30th IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-January,

pp. 5533–5542, 2017.

[23] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual

learning,” in Advances in Neural Information Processing Systems, vol. 2017-

December, pp. 6468–6477, 2017.

[24] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. Rusu,

K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Kumaran, and

R. Hadsell, “Overcoming catastrophic forgetting in neural networks,” Proceed-

ings of the National Academy of Sciences of the United States of America,

vol. 114, pp. 3521–3526, 2017.

[25] A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single network

by iterative pruning,” in Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pp. 7765–7773, 2018.

[26] H. Liu and B. Lang, “Machine learning and deep learning methods for intrusion

detection systems: A survey,” Applied Sciences (Switzerland), vol. 9, p. 4396,

2019.

[27] S. Gamage and J. Samarabandu, “Deep learning methods in network intrusion

detection: A survey and an objective comparison,” Journal of Network and

Computer Applications, vol. 169, p. 102767, 2020.

[28] M. Almgren and E. Jonsson, “Using active learning in intrusion detection,” in

Proceedings of the Computer Security Foundations Workshop, vol. 17, pp. 88–

98, 2004.

[29] Y. Li and L. Guo, “An active learning based TCM-KNN algorithm for super-

vised network intrusion detection,” Computers and Security, vol. 26, pp. 459–

467, 2007.

[30] J. Long, J.-P. Yin, E. Zhu, and W.-T. Zhao, “A novel active cost-sensitive learn-

ing method for intrusion detection,” in Proceedings of the 7th International Con-

77

ference on Machine Learning and Cybernetics, ICMLC, vol. 2, pp. 1099–1104,

2008.

[31] C. H. Mao, H. M. Lee, D. Parikh, T. Chen, and S. Y. Huang, “Semi-supervised

co-training and active learning based approach for multi-view intrusion detec-

tion,” in Proceedings of the ACM Symposium on Applied Computing, pp. 2042–

2048, 2009.

[32] N. Seliya and T. Khoshgoftaar, “Active learning with neural networks for intru-

sion detection,” in 2010 IEEE International Conference on Information Reuse

and Integration, IRI 2010, pp. 49–54, 2010.

[33] Y. Meng and L. F. Kwok, Enhancing false alarm reduction using pool-based

active learning in network intrusion detection, vol. 7863 LNCS. Springer, 2013.

[34] V. Kumari and P. Varma, “A semi-supervised intrusion detection system using

active learning svm and fuzzy c-means clustering,” in Proceedings of the In-

ternational Conference on IoT in Social, Mobile, Analytics and Cloud, I-SMAC

2017, pp. 481–485, 2017.

[35] K. Yang, J. Ren, Y. Zhu, and W. Zhang, “Active learning for wireless IoT intru-

sion detection,” IEEE Wireless Communications, vol. 25, pp. 19–25, 2018.

[36] J. Li, W. Wu, and D. Xue, “An intrusion detection method based on active trans-

fer learning,” Intelligent Data Analysis, vol. 24, pp. 263–283, 2020.

[37] Y. Gu and D. Zydek, “Active learning for intrusion detection,” in Proceedings

- 2014 National Wireless Research Collaboration Symposium: Rapidly Transi-

tioning Wireless Spectrum - Using Research to Deployable Innovations, NWRCS

2014, pp. 117–122, 2014.

[38] S. McElwee, “Active learning intrusion detection using k-means clustering se-

lection,” in Conference Proceedings - IEEE SOUTHEASTCON, pp. 1–7, 2017.

[39] S. McElwee and J. Cannady, “Cyber situation awareness with active learning

for intrusion detection,” in Conference Proceedings - IEEE SOUTHEASTCON,

vol. 2019-April, pp. 1–7, 2019.

78

[40] L. Boukela, G. Zhang, M. Yacoub, and S. Bouzefrane, “A near-autonomous and

incremental intrusion detection system through active learning of known and

unknown attacks,” in Conference Digest - 2021 International Conference on

Security, Pattern Analysis, and Cybernetics, SPAC 2021, pp. 374–379, 2021.

[41] J. Long, W. Zhao, F. Zhu, and Z. Cai, “Active learning to defend poisoning at-

tack against semi-supervised intrusion detection classifier,” International Jour-

nal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 19, pp. 93–

106, 2011.

[42] G. Alqaralleh, M. Alshraideh, and A. Alrodan, “A comparison study between

different sampling strategies for intrusion detection system of active learning

model,” Journal of Computer Science, vol. 14, pp. 1155–1173, 2018.

[43] Z. Zhang, Y. Zhang, D. Guo, and M. Song, “A scalable network intrusion de-

tection system towards detecting, discovering, and learning unknown attacks,”

International Journal of Machine Learning and Cybernetics, vol. 12, pp. 1649–

1665, 2021.

[44] M. Martina and G. Foresti, “A continuous learning approach for real-time net-

work intrusion detection,” International Journal of Neural Systems, vol. 31,

p. 2150060, 2021.

[45] S. Amalapuram, A. Tadwai, R. Vinta, S. Channappayya, and B. Tamma, “Con-

tinual learning for anomaly based network intrusion detection,” in 2022 14th

International Conference on COMmunication Systems and NETworkS, COM-

SNETS 2022, pp. 497–505, 2022.

[46] J. Lin, Y. Wei, W. Li, and J. Long, Intrusion Detection System Based on

Deep Neural Network and Incremental Learning for In-Vehicle CAN Networks,

vol. 1557 CCIS. Springer, 2022.

[47] I. Sharafaldin, A. Lashkari, and A. Ghorbani, “Toward generating a new intru-

sion detection dataset and intrusion traffic characterization,” in ICISSP 2018 -

Proceedings of the 4th International Conference on Information Systems Secu-

rity and Privacy, vol. 2018-January, pp. 108–116, 2018.

79

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Background Information
	Intrusion Detection System (IDS)
	What is IDS?
	Brief History of IDS
	Taxonomy of IDS

	Deep Learning
	Active Learning
	What is Active Learning?
	Query Strategies

	Incremental Learning

	Related Work
	IDS with Deep Learning
	IDS with Active Learning
	IDS with Incremental Learning

	Methodology
	Architecture and General Properties of Proposed IDS
	Classification Module
	Incremental Learner Module
	Active Learning Module
	Simulated Oracle Module

	Experiments and Discussion
	Dataset
	Experimental Setup
	Evaluation Measure
	Results and Discussion
	Least-confident Method Results
	Margin Strategy Results
	Entropy Strategy Results
	General Discussion

	Conclusion
	REFERENCES

