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ABSTRACT

AGE OF INFORMATION AND UNBIASED FEDERATED LEARNING IN
ENERGY HARVESTING ERROR-PRONE CHANNELS

Çakır, Zeynep

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Elif Tuğçe CERAN ARSLAN

August 2022, 82 pages

Federated learning is a communication-efficient and privacy-preserving learning tech-

nique for collaborative training of machine learning models on vast amounts of data

produced and stored locally on the distributed users. In this thesis, unbiased feder-

ated learning methods that achieve a similar convergence as state-of-the-art federated

learning methods in scenarios with various constraints like error-prone channel or in-

termittent energy availability are investigated. In addition, a prevalent metric called

the age of information (AoI), which quantifies the staleness of the information at the

destination, is studied under energy constraints and exploited to increase the perfor-

mance of federated learning algorithms.

Firstly, a constrained Markov decision problem that aims to minimize the average age

of information over an imperfect channel and under energy constraints is investigated.

An optimal threshold-based scheduling policy is obtained and the optimal time aver-

age AoI and age violation probabilities are derived. Secondly, a federated learning

algorithm that jointly designs the unbiased user scheduling and gradient weighting

according to the energy and channel profile of each user is presented. It is shown that

the proposed algorithm provides a high test accuracy and a convergence guarantees,
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which is close to the algorithms that have no energy or channel constraints. Lastly, the

effect of AoI on federated learning with heterogeneous users and different datasets is

studied, and the performance is demonstrated by experiments.

Keywords: federated learning, energy harvesting, age of information, momentum,

wireless communications
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ÖZ

HATAYA AÇIK KANALLAR ÜZERİNDE ENERJİ HASADI İLE TARAFSIZ
FEDERE ÖĞRENME VE BİLGİ YAŞI

Çakır, Zeynep

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Elif Tuğçe CERAN ARSLAN

Ağustos 2022 , 82 sayfa

Federe öğrenme, dağıtılmış kullanıcılar üzerinde yerel olarak üretilen ve depolanan

büyük miktarda veri üzerinde makine öğrenimi modellerinin işbirlikçi eğitimi için

iletişim açısından verimli ve gizliliği koruyan bir öğrenme tekniğidir. Bu tezde, ha-

taya açık kanal veya kesintili enerji varışı gibi çeşitli kısıtlamalara sahip senaryolarda

modern federe öğrenme yöntemlerine benzer bir yakınsamayı sağlayan tarafsız federe

öğrenme yöntemleri araştırılmaktadır. Ek olarak, varış noktasındaki bilginin eskiliğini

ölçen bilgi yaşı (AoI) adı verilen yaygın metrik, enerji kısıtlamaları altında incelenir

ve federe öğrenme algoritmalarının performansını artırmak için kullanılır.

İlk olarak, kusurlu bir kanal üzerinde ve enerji kısıtlamaları altında ortalama bilgi ya-

şını en aza indirmeyi amaçlayan kısıtlı bir Markov karar problemi incelenmiştir. Op-

timal eşik tabanlı bir zamanlama politikası önerilmiş ve zamana göre ortalama AoI

ve yaş ihlali olasılıkları elde edilmiştir. İkinci olarak, her kullanıcının enerji ve kanal

profillerine göre kullanıcı çizelgelemesini ve gradyan ağırlıklandırmasını ortaklaşa ta-

sarlayan, tarafsız bir federe öğrenme algoritması sunulmuştur. Önerilen algoritmanın,
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enerji veya kanal kısıtlaması olmayan algoritmalara yakın, yüksek bir test doğruluğu

ve yakınsama garantisi sağladığı gösterilmiştir. Son olarak, bilgi yaşının heterojen

kullanıcılar ve farklı veri kümeleri ile federe öğrenme üzerindeki etkisi incelenmiş ve

performansı deneylerle gösterilmiştir.

Anahtar Kelimeler: federe öğrenme, enerji hasadı, bilgi yaşı, momentum, kablosuz

haberleşme
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CHAPTER 1

INTRODUCTION

In today’s world, a vast amount of data is produced by various types of devices. The

need to store, process, and use this big data is one of the main focuses of up-to-

date machine learning applications. Since an orchestral server conducts the model

training, collecting, storing, and processing the data produced by the devices was

getting harder, and it was a burden for the server to work with that substantial amount

of data. In addition, the data produced by a device can be sensitive and private,

and privacy violations may occur because of the need to upload data. Motivated

by providing a solution to these problems, Google researchers introduced a concept

named "federated learning" [1], and it became a commonly-used method for private

and efficient machine learning/deep learning.

Federated learning is a communication-efficient and privacy-preserving learning tech-

nique for training machine learning models on vast amounts of data produced and

stored locally on the participant users. It allows users to be part of a global ma-

chine learning model training without sharing their local data. Training is performed

using distributed stochastic gradient descent (SGD) coordinated by a central server

responsible for the global model. To train the global model, each user uses their local

dataset, and the goal is to train a machine learning model on the combined dataset.

While designing a method for a federated learning setup with several constraints, en-

suring that there is no bias between users is an important guarantee. Federated learn-

ing found a place in many areas, such as the defense industry, the Internet of Things

(IoT), medical applications, and many more. Recently, there has been substantial

research on federated learning and its applications. Energy harvesting, which com-

prises energy gathering by electric, magnetic, or electromagnetic fields, has played an
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essential role in extending the current federated learning algorithms. Federated edge

learning is a version of federated learning performed by wireless devices, with con-

strained energy and bandwidth, on their local datasets, supported by a remote param-

eter server. A concept of weighting model differences by a "cooldown multiplier,"

based on the time elapsed between two most recent energy arrivals, is introduced.

Additionally, the method "momentum," an extension of the stochastic gradient de-

scent method, is essential in accelerating the convergence or increasing the accuracy

for non-homogeneous data distribution on participant users. Supported by numerous

convergence and performance analyses, federated learning is a trustworthy method

for conducting machine learning applications effectively and privately.

A prevalent metric called the Age of Information (AoI) quantifies the staleness of the

information at the destination. It is defined as the time elapsed since the generation

time of the most recent status update packet successfully received at the destination.

Especially for status update applications, AoI is a critical performance indicator. Its

implementation areas include machine-type communications, industrial applications,

the Internet of Things, social networks, etc. In the federated learning area, AoI is

commonly stated as the time elapsed between receiving the local updates from a par-

ticipant user. It is an essential and unique metric for increasing the performance of

federated learning algorithms and provides a new perspective to existing methods and

applications.

This thesis explores federated learning strategies that achieve a similar convergence as

state-of-the-art federated learning methods in contexts with diverse restrictions such

as error-prone channels or intermittent energy availability.

1.1 Contributions and Novelties

To the best of our knowledge, this thesis is the first work on bringing together the two

main concepts of the age of information and unbiased federated learning with energy

harvesting with the error-prone channels. The contributions of this thesis are listed as

follows:

• A constrained Markov decision problem, aiming to minimize the average age of
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information under energy constraints, is studied, and as a solution, an optimal

threshold-based decision policy is proposed. Part of this work has been pre-

sented as a poster presentation at London Symposium on Information Theory

(LSIT) in 2019, and an extension of this work is studied in [2] and presented

at the 19th International Symposium on Modeling and Optimization in Mobile,

Ad hoc, and Wireless Networks (WiOpt) in 2021.

• A channel and energy-aware federated learning method is proposed for an un-

biased and heterogeneous federated learning network that is prone to intermit-

tent energy arrivals and channel errors. It is shown that the proposed method

achieves the same convergence guarantees as the federated learning algorithms

with no energy or channel constraints. Part of this work has been presented

at the 30th Signal Processing and Communications Applications Conference

(SIU) in 2022.

• The effect of AoI on federated learning with channel and energy-aware schedul-

ing is studied, combined with the dynamic weighting of the updates and the ac-

celeration of AoI-aware momentum for independent and identically distributed

(IID) and not independent and identically distributed (non-IID) datasets, is

studied.

• Performances of proposed methods are verified by several experiments, and

numerical results are provided.

1.2 The Outline of the Thesis

This thesis includes six chapters. In Chapter 2, background information and literature

review on federated learning and the age of information are provided. In Chapter

3, achieving optimal age of information with wireless energy transfer with system

model, proposed methods, and experimental results are provided. In Chapter 4, fed-

erated learning with channel and energy-aware scheduling with system model, pro-

posed methods, and experimental results are provided. In Chapter 5, the effect of age

on federated learning with channel and energy-aware scheduling combined with dy-

namic weighting and AoI-aware momentum with system model, proposed methods,
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and experimental results are provided. In Chapter 6, a summary of the work in this

thesis with some important results and future research/work areas are provided.
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CHAPTER 2

BACKGROUND INFORMATION

2.1 Federated Learning

Models trained using the data produced, processed, and used in mobile devices have

the potential to pave the way for promising technologies in the future. In the case of

the model training process being dependent on a single center, data privacy violation

may occur on the part of the participating users since all the data for which the model

will be trained must be on the server. Additionally, it requires a lot of time and energy

due to the high processing load. Since first introduced by Google researchers in 2016

[1] as a solution to the need to carry out a training process without needing to store the

local data set of each user on a central server, federated learning and its applications

have become a popular approach for such concerns.

To train a model in federated learning, a training scenario where K users work to-

gether is considered. Each user has their local dataset, and the goal is to train a

machine learning model on the combined dataset. Dataset can be either IID (ex.

shuffling the dataset and splitting it between the users) or non-IID (ex. sorting and

dividing the dataset and assigning each part to a client). Training is performed using

distributed stochastic gradient descent (SGD) coordinated by a central server respon-

sible for the global model. Illustration of SGD is provided in Figure 2.1. Note that

the learning rate determines how quickly the model adapts to the situation, which is

why it is one of the most crucial hyperparameters [3]. A lower learning rate might

cause the training process to be slower, whereas a greater learning rate might lead the

model to converge too soon to an unreliable result.

The server sends users the current estimate of the model parameters after each training
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Figure 2.1: An illustration about the operation of SGD.

round. Users then update the global model by calculating a local gradient on local

datasets and sending the results to the server. The server then collects users’ local

updates, updates the global model, and returns the updated model to the users. This

method aims to ensure privacy and security since the data is not shared with the server,

and the training process takes place on a user basis. An illustration about federated

learning is provided in Figure 2.2 (Retrieved from: https://ai.googleblog.com/

2021/10/fedjax-federated-learning-simulation.html).

Figure 2.2: An illustration about federated learning.

The term "heterogeneous users" for a federated learning setup is used for users with

different network characteristics, such as energy arrival or channel availability. In
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such terms, the parameter server may give particular importance to users who can

participate in the process more frequently and produce better results than the other

users. This situation leads to a bias in federated learning. It is a situation not desired

because the parameter server would prefer the users that are more advantageous than

the other users in terms of participation, resulting in a performance loss. In sum, while

designing a method for a federated learning setup with several constraints, ensuring

that there is no bias between users is an important guarantee.

Along with the first introduction of federated learning by Konecny et al. [4], [1], an-

other reference guide is presented by McMahan et al. [5] in 2017. In this study, the

concept of federated learning is explained, and the FederatedAveraging algorithm,

which forms the basis of many following studies, is introduced. In this algorithm,

each participant user performs local training on the current global model using its

local dataset, and the parameter server takes a weighted average of the locally trained

model parameters. This method provides the advantage of multiple computations on

each user. This algorithm is provided in Algorithm 1. The convergence analysis of

this algorithm was carried out by Li et al. in [6], and it was carried out separately

for the datasets that are equally distributed and not equally distributed to the users.

In this context, it has shed light on many convergence analysis studies. While there

is an assumption in traditional federated learning algorithms that users participate in

the training process as soon as they are scheduled, Güler et al. [7] studied adding

energy harvesting to the federated learning concept. In this study, the criterion of

users’ participation according to their energy level was added, and convergence anal-

ysis and experiments were carried out for the functionality of this criterion. This

study motivated adding new measures to the federated learning concept. To intro-

duce, energy harvesting, which comprises the gathering of electrical energy without

wires using time-dependent electric, magnetic, or electromagnetic fields, has been

indicated as a feasible preference for numerous communication systems [8, 9, 10].

Similarly, Güler et al. [11] examined the energy harvest criterion and the feder-

ated learning concept concerned with the sustainability of future smart ecosystems.

Gündüz et al. [12] studied communicative constraints, inspected the divergence of

existing coding and communication schemes and learning algorithms, and suggested

new approaches to combine these concepts. Özfatura et al. [13] studied the demon-
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Algorithm 1 FederatedAveraging
Require: Total number of global rounds T , total number of local iterations L, num-

ber of users K, the fraction of users C, local minibatch size B, set of indexes of

data points Pk, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize w(0)

for Global round t = 1, 2, ..., T do

Determine m = max(C ∗K, 1)

Determine St = Random set of m clients

for User i in St do

Split Pk into batches of size B

for Local round l in L do

Local training with w(t) according to the corresponding minibatch

end for

Return w
(t+1)
i to the server

end for

Update the global model as w(t+1) =
∑K

k=1

nk

n
w

(t+1)
i , where nk is the local

dataset size and n is the total dataset size

Send model parameters w(t+1) to the users

end for
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stration of how taking wireless channel characteristics, such as resource allocation,

scheduling, and so on, into consideration may considerably enhance the speed and

overall performance of distributed learning approaches. Generic communication re-

duction approaches, including sparsification, quantization, and local iterations, are

inspected, and an overview of device scheduling and resource allocation methodolo-

gies for wireless distributed learning is provided.

In addition to the valuable works above, many works focus on industrial applications.

Since the main idea of federated learning is focused on the privacy and security of

local data of the participating users, it can easily find a place in military applica-

tions. One of its popular areas of interest in applications is unmanned aerial vehicle

(UAV) networks. Zhang et al. investigated the image classification problems in the

context of UAV-assisted exploration, where the coordination of UAVs is handled by

a center located in a strategic but inaccessible area, where available energy is finite

[14]. In this work, federated learning is used to reduce the communication cost be-

tween the UAVs and the center, as well as the computational complexity [14]. Brik

et al. reviewed both the advantages and the main objections, and possible research

areas of UAV-based networks with federated deep learning [15]. Pham et al. studied

improving the UAV transmit power efficiency by optimizing transmission time, band-

width allocation, power management, and UAV positioning [16]. Lim et al. studied

the trade-off between age and service latency in the federated learning for contract-

theoretic incentive system to fairly rewarding users based on the expense of updating

data [17].

Additionally, there are recent studies about analyzing and improving the performance

of federated edge learning (FEEL). Supported by a remote parameter server, feder-

ated edge learning is performed by wireless devices, with constrained energy and

bandwidth, on their local datasets. Aygün et al. studied a FEEL scenario among users

that harvest energy with over-the-air (OTA) aggregation [18]. Users are assumed to

participate in the process only when their energy level is enough, and they send local

updates concurrently over the same channel bandwidth. Applicable for different en-

ergy arrival processes, it is proposed that the model differences can be weighted by a

"cooldown multiplier", based on the time elapsed between the two most recent energy

arrivals. Supported by the convergence analysis and experiments, it is shown that the
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proposed algorithm does not violate the convergence guarantees. Again, Aygün et

al. studied a federated learning setup where mediating servers create clusters near

users to deal with the challenge of being away from the parameter server and re-

lated channel effects [19]. Supported by the numerical analysis and experiments,

proposed system design performs better than traditional federated learning methods

in the manner of convergence rate and accuracy. Amiri et al. investigated the effect of

the bandwidth-shared wireless communication on the performance of FL from both

uplink and downlink transmissions’ perspectives, mainly downlink transmission [20].

In the downlink transmission, the server sends the global model to the users; in the up-

link transmission, it is the reverse. This study focuses on the effect of noisy downlink

transmission on FEEL. Supported by the experiments, it is pointed out that analog

downlink transmission is much more efficient in a non-IID scenario, with fewer local

SGD iterations.

In addition, there is a method called "momentum" for increasing the efficiency of

stochastic gradient descent applied in federated learning. Momentum is a variant

of gradient descent optimization aiming to speed up the optimization process. Mo-

mentum brings a new parameter (mostly called momentum attenuation factor) to the

equation that regulates the quantity of previous data to incorporate in the update equa-

tion. The momentum attenuation factor is in the range of 0 to 1, and 0 corresponds to

gradient descent without momentum. A large value of the momentum attenuation fac-

tor means that the current update is strongly affected by the previous update, whereas

a lower value means the reverse [21]. An illustration about momentum is provided in

Figure 2.3.

There are many applications of momentum in federated learning. Xu et al. studied

expanding the FederatedAveraging algorithm introduced in [5], by adding a momen-

tum factor to it, supported by the convergence analysis and experiments [22]. This

method is named as FedCM, aiming to solve the problem of client heterogeneity and

partial participation. It is stated that this method introduces a correction term to the

local gradient direction as the momentum attenuation factor, and the smaller this term

is, the more global gradient information is included in the update. Kim et al. proposed

another method named FedAGM, to deal with the challenge of low convergence rate

[23]. FedAGM uses momentum to accelerate the model training process and aims to
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Figure 2.3: Comparison of SGD with and without momentum.

improve the convergence and accuracy of the model. Supported by the experiments,

it is shown that the proposed algorithm performs better than the other various fed-

erated learning algorithms, including FedCM. Liu et al. proposed a method named

Momentum Federated Learning (MFL) and studied defining the proposed method’s

global convergence characteristics and estimating an upper bound on the convergence

rate [24]. Supported by the numerical analysis and experiments, it is shown that the

proposed method has a positive effect on the convergence rate. The circumstances

under which the proposed method accelerates convergence are also examined. Huo et

al. studied on FederatedAveraging and their proposed method named FedMom from

a perspective of non-convex problems and showed that their proposed method does

not violate convergence guarantees for non-convex problems [25].

2.2 Age of Information

The age of information was introduced by Kaul et al. in [26] and [27], to adjust the

freshness of information in status-update systems. The AoI quantifies the staleness of

the information at the destination and is defined as the time elapsed since the genera-

tion time of the most recent status update packet successfully received at the destina-

tion. The effectiveness of AoI requires low-latency packets to be received promptly.
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AoI is a substantial performance criterion, especially for status update applications,

which are becoming increasingly crucial in machine-type communications, industrial

applications, the Internet of Things, social networks, etc. Mathematically, AoI is

defined as the following:

∆t = t− u(t), (2.1)

where ∆t is the AoI and u(t) is the time of the last update for any time slot t. Time-

average age for the second update is visualized in Figure 2.4 and analyzed by the

yellow area. This can be adapted to all updates. A general formula for calculating the

time-average age is provided as follows:

Area =
1

2
(Xn + Yn)

2 − 1

2
(Yn)

2,

∆t =
E[Area]

E[Yn]
=

E[YnTn] + E[Y 2
n ]/2

E[Yn]
,

(2.2)

where E[.] denotes the expectation, Xn denotes the time elapsed between the n-th and

(n + 1)-th system updates, and Yn denotes the time between the n-th system update

and its receivement.

Figure 2.4: Sample change of age of information for a first-come-first-serve network.

X1 denotes the time elapsed between the first two system updates, and Y1 denotes the

time between the first system update and its receivement.

Optimal transmission scheduling, first formulated in [28] and [29], is the concern of
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modifying rate and power in time to energy and data arrivals and channel diversity

to transfer data as precisely as possible. Today, there has been a growing interest in

minimizing the AoI in communication systems. Bacınoğlu et al. studied solving the

continuous-time problem of optimizing status updates for reducing the average age

of information [30]. Kadota et al. studied the formulation of a discrete-time decision

problem of a scheduling policy that minimizes the AoI of the clients in the network

[31]. Sun et al. studied managing the AoI of status updates sent from a source to

a remote monitor via a network server and formulated a constrained semi-Markov

decision process (SMDP) problem [32]. Their work was an important reference be-

cause of the detailed optimization problem solutions. Ceran et al. examined both

standard automatic repeat request (ARQ) and hybrid ARQ (HARQ) protocols and

with a contribution of reinforcement learning, minimizing the long-term average AoI

under a constraint on the average number of transmissions at the source node [33].

Scheduling problems conditioned on energy efficiency also take part in communica-

tion systems. Yates et al. mainly examine the issue of status updates by an energy

harvesting source [34]. Their work is important in the manner of combining and ana-

lyzing the freshness and energy harvesting concepts together. Bacınoğlu et al. studied

formulating two offline transmission scheduling problems for the transmitter-centric

and the receiver-centric wireless energy transmission (WET) [35]. Bacınoğlu et al.

also studied non-linear age penalty optimization under the restriction that the number

of energy units possible to be stored at one time is restricted by the battery capacity

[36].

In the federated learning area, age is defined as the time elapsed between receiving

the local updates from a participant user. Yang et al. studied a metric called “age of

update” and a scheduling policy is proposed, which takes channel parameters and age

into account [37]. The aim is to find the minimum age of update, with the constraints

of maximum transmit power, avoiding interference and rate exceeding a threshold.

To define the age-optimal number of total and earliest participant users, Büyükateş et

al. studied the metric of the average age of information of each client, and numerical

results show that the suggested communication strategy not only ensures timeliness

but also reduces average iteration durations without negatively affecting the conver-

gence [38]. Liu et al. focused on an age-aware communication method for federated
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learning over wireless networks that takes both the staleness of parameters and ca-

pabilities of end devices into account to achieve precise and efficient model training

over non-IID data [39]. Numerical results support the performance of the proposed

method. Aygün et al. defined a metric called "cooldown multiplier", the time elapsed

between two most recent energy arrivals, to weight the model differences [18].
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CHAPTER 3

ACHIEVING OPTIMAL AGE OF INFORMATION WITH WIRELESS

ENERGY TRANSFER

3.1 Introduction

In this chapter, an optimal threshold-based decision policy that aims to provide the

lowest long-term average AoI is studied. A receiver pulls data from a transmitter on

a binary channel by providing the transmitter with enough energy by wireless energy

transfer (WET). It is assumed that the receiver has infinite energy to perform this en-

ergy transfer, and the goal of the receiver is to control the time-average AoI by taking

the previous action and the channel state into account. The channel state as ON/OFF

is known instantaneously by the receiver. The optimization problem is modeled as a

constrained Markov decision problem, and both the optimal decision policy and the

threshold are obtained. The optimal time average AoI and age violation probabilities

are also provided. The performance of the proposed decision policy is evaluated by

comparing it to a benchmark uniform transmission policy. In Section 3.2, system

model and problem definition are presented. In Section 3.3.1, steady-state analysis

is presented. In Section 3.3.2, optimality of the decision policy is demonstrated. In

Section 3.3.3, optimal AoI threshold is derived. In Section 3.3.4, age violation prob-

ability is derived. In Section 3.4, experimental results and evaluation of the proposed

decision policy are provided.

Parts of this work has been presented as a poster presentation at London Sympo-

sium on Information Theory (LSIT) in 2019, and an extension of this work has been

studied in [2] and presented at the 19th International Symposium on Modeling and

Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt) in 2021.
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3.2 System Model and Problem Definition

As illustrated in Figure 3.1, a point-to-point channel including a transmitter-receiver

pair is considered. The receiver gets data from the sensor based on the requests it

obtains. It pulls data from the transmitter by sending energy to be harvested, named

receiver-centric scheduling. Data requests arrive intermittently to the receiver, and it

is expected from the receiver to determine whether the energy transmission should

be performed or not by taking the previous action and the channel state into account,

thus, controlling the long-term average age of information (AoI). It is important to

point out that the transmitter is responsible for transmitting data to the receiver only

by using the energy it received, so the harvested energy is not stored. The system

model is simplified in the sense that each transmission requires one unit of energy,

and the long-term energy usage is limited by the long-term average energy constraint,

denoted by λ, per time slot. It is also assumed that the receiver has an infinite energy

source. The channel state changes as ON and OFF from one time slot to the other as in

independent and identically distributed (IID) form with their corresponding probabil-

ity values. It is assumed that when the channel state is ON, any transmitted packet is

correctly decoded, and when the channel state is OFF, there is no successful transmis-

sion. AoI at time slot t, denoted by ∆t, is provided to the receiver by the network, and

it is assumed that unless the age is greater than a specific threshold value, the trans-

mission does not occur. Throughout this chapter, it is assumed that the AoI increases

by one when a transmission fails, whereas it decreases to one when a successful trans-

mission occurs. The system model is illustrated in Figure 3.1.

3.3 Proposed Method

A non-decreasing time-average age penalty function, g(∆), is a function of AoI and

is defined to evaluate the staleness of data packets under diverse scenarios. Suppose

the age penalty function is an identity function. In that case, the expected age penalty

becomes the time-average AoI. If g(∆) = 1∆>γ , where γ is the age violation thresh-

old, the expected age penalty becomes the age violation probability. Note that these

are the two extensively used timeliness metrics in the literature.
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Figure 3.1: Receiver-centric system model. Data requests arrive intermittently to

the receiver and the receiver determines whether the energy transmission should be

performed or not. The transmitter is responsible for transmitting data to the receiver

only by using the energy it receives.

The problem can be modeled as an infinite-state, constrained Markov decision process

(CMDP). The constrained Markov decision process formulation is defined by the 5-

tuple: (S,A, P, c, d): the countable set of states S = Z+ ×{ON,OFF} and the finite

action set A = {0, 1} are defined. 1 denotes that the transmission will be performed,

and 0 denotes that no transmission occurs. The state st consists of the AoI ∆t at

time t and the channel state Ct at time t. P refers to the transition function, where

P(s′|s, a) = Pr{st+1 = s′|st = s, at = a} is the probability that action a in state

s at time t will lead to state s′ at time t + 1. The cost function c is the AoI at the

destination, and is defined as c(s, a) = g(∆t). It is a non-decreasing function of state

and AoI, which are independent of each other. The transmission cost d is identical

for each transmission, d = 1 if a = 1 and d = 0 otherwise. A stationary policy

is a decision rule denoted by π, which maps the states s into actions a with some

probability π(a|s).

Given the initial state s0 = (1, ON) and under an energy constraint, the goal is to

minimize AoI under the optimal policy π with the help of age penalty function g(∆t).

The AoI, ∆t, either increases by 1 or drops to 1, depending on the success of trans-

missions:

∆t+1 =

 1, if Ct = ON and at = 1

∆t + 1, otherwise
(3.1)

Channel states are ON and OFF in each time slot in an IID fashion with probabilities
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Table 3.1: Chapter 3: Parameter Symbols and Definitions

Parameter Definition

∆, ∆t Age of information, age of information at time slot t

A, at Action set, action at time slot t

S, st State set, state at time slot t

Ct Channel state at time slot t

P Transition function

c(s, a) Cost function

λ Long-time average energy constraint

d Transmission cost

PON Probability that channel state is ON

POFF Probability that channel state is OFF

π∗ Optimal decision policy

θ Optimal age of information

pθ Randomization coefficient

γ Age violation threshold

g(∆) Age penalty function

PON and POFF (PON > 0), and are not affected by the actions:

Pr{Ct+1 = c} =

 PON , if c = ON

POFF , if c = OFF
(3.2)

The CMDP optimization problem is defined below, where E[.] represents the expec-

tation concerning the distribution of AoI produced by policy π and channel states Ct:

min
π

∆π(s0) = lim
T→∞

1

T
E

[
T∑
t=1

g(∆t)|s0]

]
,

subject to lim
T→∞

1

T
E

[
T∑
t=1

aπt |s0

]
≤ λ

(3.3)

The main focus of this work is to obtain an optimal decision policy π∗ that solves the

time-average expected AoI minimization problem defined in (3.3). In the following

sections, it will be shown that an optimal stationary policy exists, and the structure

of the optimal policy will be defined. In general, CMDPs with countably infinite
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Figure 3.2: Markov chain representation of the system model. ak represents the

transmission probability when age is equal to k and the channel is ON. Green arrows

indicate successful transmissions, and red arrows otherwise.

state spaces are difficult to solve because a stationary optimal policy, or an optimal

policy in general, is not guaranteed to exist [40]. In the following theorem, it will be

demonstrated that an optimal stationary policy exists, and the structure of such policy

will be outlined.

Theorem 1 There exists an optimal stationary policy for the CMDP in Problem 3.3,

and it is randomized in at most a single point in the state-space S.

Proof. The proof can be sketched out as follows: First, it is demonstrated that As-

sumptions 1-4 of [41] hold for Theorem 2.5, Proposition 3.2, and Lemma 3.9 of [41].

Then, according to Theorem 2.5 of [41], there exists an optimal stationary policy that

is a combination of two deterministic policies that differ in at most one state, and there

exists a randomization coefficient such that the corresponding decision policy satis-

fies the condition with equality [2]. The detailed proof can be achieved by performing

the method described in [33].
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3.3.1 Steady-State Analysis

For each j ≥ 1, if the channel state is OFF between t and t + j, then age rises by j

with probability 1, so that all states in the corresponding Markov chain presented in

Figure 3.2 are accessible from the ∆ = 1 state. In this analysis, the predicted time

between successive transmissions is considered to demonstrate that the state ∆ = 1 is

positively recurring. The average energy cost would be zero if the predicted time were

infinite, and such a policy would be lesser than the policies that meet the constraint in

Problem 3.3. If the predicted time between transmissions is finite, then the Markov

chain is positive recurrent, and the expected return time to the ∆ = 1 state is also

finite. As a result, a policy that results in a steady-state distribution can be obtained

[2].

3.3.2 Optimality of the Decision Policy

Optimality will be examined for the cases of λ ≥ PON and λ < PON . For the first

case, notably, if λ ≥ PON , the transmitter might not have to idle at a transmission op-

portunity because the infinite battery assumption makes such an unconstrained policy

possible. Any policy that skips a transmission opportunity will only perform worse

since any possible age plot will surpass the age plot of any policy that fully utilizes

all ON slots in any sample route of the channel state process, which includes random

occurrences of ON and OFF slots. The age will be lower than or equal to any other

potential age graph reachable on the same sample route since the zero wait policy

reduces the age to 1 at all ON slots. To conclude, for λ ≥ PON , zero-wait policy is

optimal [2]. For the second case, the following theorem can be stated:

Theorem 2 There exists a stationary policy π∗ that includes an integer Θ with the

following probabilities:

1. Pr{a = 1 | ∆ < Θ, C = ON} = 0

2. Pr{a = 1 | ∆ > Θ, C = ON} = 1

3. Pr{a = 1 | C = OFF} = 0
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4. Pr{a = 1} = λ

The detailed version and the proof of this theorem are provided in [2]. In this theorem,

the first two probabilities represent the structure of the threshold policy, and the last

two represent energy utilization. The optimality proof starts by showing that the

probability mass function of age at steady-state is monotonic. To show that, at any

time t, the equation below can be stated:

Pr{∆ = j + 1} = Pr{∆ = j}(1− PON(Pr{at = 1|st = (j, ON)})) (3.4)

This implies that Pr{∆ = j+1} ≤ Pr{∆ = j}, so the monotonicity holds. Next, the

age violation probability will be inspected to show the optimality, which is demon-

strated in Lemma 1 from [2]. The lower bound defined in [2] is valid for a successful

transmission occurs with probability λ at steady-state. The energy constraint must

be completely exploited, and any available energy must not be used on transmitting

while the channel is OFF. Also, there must be no successful transmission when the

age is below λ. In general, the lower bound holds if transmission occurs when the

channel state is ON and the AoI is greater than or equal to j. To maintain larger

violation thresholds, Lemma 2 is defined in [2]. The optimal decision policy can be

defined as follows:

π∗(at = 1|st = (∆t, Ct)) =


1, ∆t > Θ and Ct = ON

pΘ, ∆t = Θ and Ct = ON

0, ∆t < Θ or Ct = OFF

(3.5)

The derivation of Θ and pΘ will be performed in the following section.

3.3.3 Derivation of the Optimal AoI Threshold

Let qk denote the steady state probability of ∆t = k, Pr{∆t = k}. The state transi-

tion probabilities and total probability equation are as follows:

qk = q1 if k ≤ Θ

qΘ+1 = qΘ(1− pΘPON)

qk = qk−1POFF if k ≥ Θ+ 2
∞∑
k=1

qk = 1

(3.6)
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A closed-form solution of qk can be obtained by solving these equations together,

with the first element of the series being equal to:

q1 =
1

Θ− pΘ + 1
PON

(3.7)

Since q1 is the expected average energy consumption, the following can be stated:

λ =
1

Θ− pΘ + 1
PON

(3.8)

Finally, since Θ is an integer and pΘ ∈ (0, 1], the parameters of the optimal policy

can be derived as follows:

Θ =

⌊
1 +

1

λ
− 1

PON

⌋
(3.9)

pΘ = Θ−
(
1

λ
− 1

PON

)
(3.10)

Note that the optimal threshold value depends on the value of λ; the smaller the value,

the greater the optimal threshold. For a greater value of the optimal threshold, noting

that the receiver waits to pull data until that threshold is achieved, the probability that

the transmission occurs decreases significantly.

3.3.4 Derivation of the Age Violation Probability

Age violation probability is defined as the probability that age is above a constant

integer value, denoted by γ. If transmission occurs at s = (j, ON) state and if the

channel is OFF and age is j at time t, the above equation can be defined for any

integer m:

Pm
OFFPr{∆ = j} ≤ Pr{∆ = j +m} (3.11)

With the help of (3.11), the following can be derived:

Pr{∆ ≥ j + 1} =
∞∑

m=1

Pr{∆ = j +m}

≥
∞∑

m=1

Pm
OFFPr{∆ = j} =

POFF

PON

Pr{∆ = j}
(3.12)

It is known that Pr{∆ ≥ j} − Pr{∆ ≥ j + 1} = Pr{∆ = j}. This can be used for

transforming (3.12) into:

POFFPr{∆ ≥ j} ≤ Pr{∆ ≥ j + 1} (3.13)
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To generalize:

Pm
OFFPr{∆ ≥ j} ≤ Pr{∆ ≥ j +m} (3.14)

From Lemma 1 from [2], below can be defined:

Pr{∆ ≥ γ + 1} ≥ P γ−r
OFFPr{∆ ≥ r + 1} ≥ P γ−r

OFF (1− γr) (3.15)

The age violation probability under the optimal policy is given in the following:

Pr{∆t > γ} =
∞∑

k=γ+1

qk =

 1− λγ, γ ≤ Θ

P γ−Θ
OFF (1− λΘ) , γ ≥ Θ

(3.16)

3.4 Performance Evaluation

To verify the proposed policy’s efficiency, simulations are performed by comparing

the performance of the proposed decision policy with a uniform transmission policy.

In uniform transmission, transmission occurs only when there is an energy arrival and

the channel is available at the same time, and age is not taken into account. The value

of λ alters in a range of values starting by 0.05, increasing by 0.005, and reaching 1.

For each value of λ, simulations are performed for 3∗104 time slots with 300 iterations

and for two different PON values as 0.2 and 0.5. Channel is either ON or OFF uni-

formly randomly. Comparison of uniform transmission and optimal threshold policy

in terms of time-average AoI and average energy consumption, for different values

of PON , is provided in Figures 3.3 and 3.4. The same comparison in terms of age

violation probability and average energy consumption is provided in Figures 3.5 and

3.6. Numerical results show that the proposed threshold policy is simple and compu-

tationally cost-effective, yet improves the performance considerably. Time-average

age of uniform transmission is markedly higher compared to the proposed threshold

policy for both of the probabilities that the channel is ON. As expected, if the value of

PON increases, the time-average age decreases. Similarly, age violation probability

is decreased with the proposed threshold policy, and the value of PON affects the age

violation probability in the same way as the time-average age. Note that the average

energy consumption does not exceed PON , which is in parallel with the assumption in

Section 3.3.2. For the threshold policy, average energy consumption starts from the

minimum value of the λ, satisfying the constraint defined in Problem 3.3. The opti-

mal threshold directly depends on the value of λ and PON . Note that a higher value
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of λ and PON denotes that the value of AoI is decreasing, because if the channel is

available with a higher probability, energy used for transmissions in a full round (in

this case, 3 ∗ 104 time slots with 300 iterations) is going to be increased. The same

logic is valid from the AoI perspective. To conclude, even in this simple setting with

an ON/OFF channel, uniformly pulling data is inefficient. Getting fresh data through

wireless energy transmission is possible by using an age threshold that depends on

the average power available, and the channel capacity.

Figure 3.3: Comparison of uniform transmission and optimal threshold policy in

terms of time-average AoI and average energy consumption.
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Figure 3.4: The effect of the probability that the channel is ON on the uniform trans-

mission and optimal threshold policy in terms of time-average AoI and average energy

consumption.
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Figure 3.5: Comparison of uniform transmission and optimal threshold policy in

terms of age violation probability and average energy consumption.
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Figure 3.6: The effect of the probability that the channel is ON on the uniform trans-

mission and optimal threshold policy in terms of age violation probability and average

energy consumption.
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CHAPTER 4

FEDERATED LEARNING WITH CHANNEL AND ENERGY AWARE

SCHEDULING

4.1 Introduction

In this chapter, a federated learning algorithm that schedules users and weighting

their local gradients according to the energy and channel profiles of each user is pre-

sented. A federated learning setup in which several users that harvest energy from

the environment and collaboratively train a machine learning model under the con-

straints of intermittent energy arrivals and channel availability is studied. The main

focus is to develop an algorithm that achieves a similar convergence as modern fed-

erated learning methods in a scenario with an error-prone channel and intermittent

energy availability. Supported by the experiments, it has been seen that the proposed

scheduling method provides higher test accuracy and lower train loss compared to the

other methods. In Section 4.2, the system model and problem definition, including

channel and energy models, are provided. In Section 4.3, scheduling methods for

deterministic and stochastic energy arrivals and known and unknown channel states

are presented. In Section 4.4, convergence analysis is presented. In Section 4.5, ex-

perimental results and evaluation of the proposed scheduling methods are provided.

Parts of this work are presented at 30th Signal Processing and Communications Ap-

plications Conference (SIU) in 2022.
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Figure 4.1: System model. Users are connected to a central parameter server and

receive energy through an energy harvesting process. A user can join the global

model update only if there is enough energy and the channel is available.

4.2 System Model and Problem Definition

As illustrated in Figure 4.1, a federated learning system with K users on the network

is considered. These users are connected to a central parameter server and receive en-

ergy through energy harvesting. The arrival of energy can be deterministic or stochas-

tic. In addition to the energy constraint, channel availability is also a criterion for the

user to participate in the training. A user can join the training only if there is enough

energy and the channel is available. The energy model and the channel model are the

two determining factors in how scheduling will be done. The aim is to minimize the

global loss function under the awareness of energy and channel state. The illustration

of the system model is in Figure 4.1.

Assuming that a user i ∈ {1, . . . , K} has Di data points in its local dataset, the total

number of data points for all users can be defined as D. With these definitions, the
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global loss function can be defined as follows:

F (w) =
K∑
i=1

piFi(w), (4.1)

In this equation, K is the number of users, pi is the ratio of the user i’s local dataset

size to the entire dataset size (pi = Di

D
,
∑K

i=1 pi = 1), and the function Fi(w) repre-

sents the local loss function. The local loss function of user i is defined as follows:

Fi(w) =
1

Di

Di∑
j=1

l(w, xij), (4.2)

The value l(w, xij) in this equation indicates the loss of the point xij in user i in the

local dataset.

Training is performed by using the distributed SGD method. In this method, the

model parameters are constantly updated in the negative direction of the gradient. Es-

timation of the model parameters for the global round t ∈ 0, 1, 2, .. is represented by

w(t). In the distributed SGD method, the parameter server sends the value w(t) to par-

ticipating users. The number of local training iterations (local rounds) performed by

the participant user is defined by L. Users i ∈ 1, 2, ..., K calculate a local stochastic

gradient with L local iterations:

gi(w
(t), ξti) = ∇Fi(w

(t), ξ
(t)
i ), (4.3)

The value ξ
(t)
i specifies a uniformly random sample from the local dataset. This en-

sures that the stochastic gradient is not biased. Under this assumption, the actual

gradient value of user i can be defined as:

E
ξ
(t)
i
[∇Fi(w

(t), ξ
(t)
i )] = ∇Fi(w

(t)), (4.4)

In this equation, the value ∇Fi(w
(t)) specifies the gradient of the local loss function.

The gradient of the global loss function is defined as follows:

∇F (w(t)) =
K∑
i=1

pi∇Fi(w
(t)) (4.5)

After users complete their local calculations, local gradient values are sent to the

parameter server. The parameter server updates the model as follows:

w(t+1) = w(t) − η
K∑
i=1

pigi(w
(t), ξ

(t)
i ) (4.6)
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In this equation, the value η indicates the learning rate. After the update, the model

is sent back to participating users, and the cycle continues until the global training

process is complete.

4.2.1 Energy Model

In this study, it is assumed that the users get energy through the energy harvesting

process. Energy can be provided by the environment in various ways. In this study,

it is assumed that a step in the SGD method, including calculating the local gradient

and sending it to the parameter server, costs each user a unit amount of energy. It is

also assumed that each user has a unit battery that stores enough energy for one SGD

step.

The energy arrival process of users is indicated by Et
i . It is assumed that if there is an

energy arrival, Et
i = 1, otherwise Et

i = 0. The distribution of energy arrivals varies

depending on whether the harvesting process is deterministic or stochastic.

4.2.1.1 Deterministic Energy Arrivals

In the case of deterministic energy arrival, users know when the energy will arrive.

It is assumed that there is just one energy arrival in the same global round, and it is

unit energy. In this energy arrival state, the T t
i parameter specifies the time elapsed

between the two energy arrivals of the user i at time t. This parameter will be used as

the "energy arrival parameter" in the following sections.

4.2.1.2 Stochastic Energy Arrivals

In the case of stochastic energy arrival, users do not know exactly when the energy

will arrive, but they know the probabilistic model of the energy arrival process. In this

study, the particular focus is on the "binary energy arrival" setup for the stochastic

energy state. Binary energy arrival is defined as a Bernoulli process with energy

arrival probabilities as βi for each user i. The user i receives a unit amount of energy

with βi per global round. The value of βi is between 0 and 1, which may vary from
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user to user.

Et
i =

 1, with the probability βi

0, with the probability 1− βi

(4.7)

4.2.2 Channel Model

The channel state, shown as Qt
i, indicates whether the channel of user i is available at

global round t, and is defined as a Bernoulli process with channel error probabilities

as qi for each user i. The channel of user i is available with probability 1 − qi. The

value of qi is between 0 and 1, which may vary from user to user.

Qt
i =

 0, with the probability qi

1, with the probability 1− qi
(4.8)

This chapter examines the cases where the channel status is known and not known by

the users separately.

4.3 Proposed Methods

In this section, an algorithm that schedules users and weighting their local gradients

according to each user’s energy and channel profiles is proposed and adapted into

combinations of different schemes: deterministic and stochastic energy arrivals, and

channel status is known and not known.

4.3.1 Federated Learning with Deterministic Energy Arrivals

In this section, two scheduling methods are going to be explained for a setup with

deterministic energy arrivals and known and unknown channel status, respectively.

4.3.1.1 Case 1: Channel Status is Known

When the channel state is known, the user determines an integer J with a certain

probability in the range of 0 to T t
i − 1, if it has enough energy. The value of this
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Table 4.1: Chapter 4: Parameter Symbols and Definitions

Parameter Definition

K Total number of users

Di Number of data points in the local dataset of user i

pi The ratio of user i’s local dataset size to the entire dataset size

L Total number of local training rounds

w(t) Estimation of the model parameters for round t

ξ
(t)
i Uniformly random sample from the local dataset of user i for round t

η Learning rate

Et
i Energy arrival process for the user i for round t

T t
i Energy arrival parameter for the user i for round t

βt
i Energy arrival probability for the user i for round t

Qt
i Channel availability process for the user i for round t

qti Channel error probability for the user i for round t

χi The scaling coefficient for P (J = 0) for the user i

φi The scaling coefficient for P (0 < J ≤ T t
i − 1) for the user i

T Total number of global rounds

St The set of users who have successfully participated
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integer depends on the energy arrival parameter of the participating user and the error

probability of the channel. It is determined with the help of the following two different

probability values:

P (J = 0) =
1

T t
i − T t

i qi + qi
(4.9)

P (0 < J ≤ T t
i − 1) =

1− qi
T t
i − T t

i qi + qi
(4.10)

The derivation of these probabilities is provided in Appendix A.

After the integer J is determined, the user is scheduled by adding J to the current

global round value (t+J). Once the scheduling is complete, the learning process can

begin. In each global round, it is checked whether users can participate in the learn-

ing process in accordance with the scheduling, taking the channel availability into

account. The user can participate in the learning process if the channel is available at

the current global round. If not, the user is scheduled to participate in the next global

round. Since the participation check of the users is performed in each global round,

it is aimed that the user can participate in the learning process as soon as possible by

finding the closest global round to which it can participate.

The parameter server sends the model parameters to the participating users, and the

users perform the learning process by making local gradient calculations. The user-

specific local gradient values are multiplied by a coefficient based on the energy ar-

rival parameter and the channel error probability for each participant user. The scaling

coefficient for P (J = 0) for the user i is defined as:

χi =
1

P (J = 0)
= T t

i − T t
i qi + qi

The scaling coefficient for P (0 < J ≤ T t
i − 1) for the user i is defined as:

φi =
1

P (0 < J ≤ T t
i − 1)

=
T t
i − T t

i qi + qi
1− qi

The scaling, dependent on the value of J, is performed as in the following:

g
(t+L)
i = [χi or φi](gi(w

(t), ξti)) (4.11)

With the scaled local gradients, locally trained model parameters are obtained.

After the local learning is finished, locally trained model parameters, denoted as

w
(t+L)
i , are sent to the server. The parameter server updates the global model as
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follows:

w(t+1) = pi ∗
∑
i∈St

w
(t+L)
i (4.12)

In this equation, St represents the set of users who have successfully participated in

the learning process. Scheduling and training steps can be seen in Algorithm 2. This

method allows users to participate more in the learning process as the channel status

is known. In a worst case scenario where all of the users participate in the training

and channels for all users are always available, the time complexity of Algorithm 2

is O(T ∗ (KL +K)) = O(TKL), where T is the total number of global rounds, K

is the total number of users and L is the total number of local training rounds (local

iterations).

4.3.1.2 Case 2: Channel Status is Unknown

In case the channel status is not known, if there is enough energy for the user, J is

determined uniformly random between 0 and T t
i − 1, and the user is scheduled by

adding J to the current global round. Once the scheduling is complete, the learning

process can begin. After users complete the local learning process with L local itera-

tions, locally trained model parameters are sent to the server. The user-specific local

gradients are obtained by multiplying the gradients with a different coefficient than

before:

g
(t+L)
i =

T t
i

1− qi
(gi(w

(t), ξti)) (4.13)

If the channel is available at that global round, the parameter server updates the global

model after obtaining the participants’ locally trained model parameters.

w(t+1) = pi ∗
∑
i∈St

w
(t+L)
i (4.14)

On the other hand, if the channel is not available, the user will not be able to par-

ticipate in the parameter server global model update. Scheduling and training steps

can be seen in Algorithm 3. In this method, since the channel status is unknown, the

closest global round that users can participate in cannot be obtained. For this reason,

fewer users participate in the learning process than in Case 1. In a worst case scenario

where all of the users participate in the training, the time complexity of Algorithm 3
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Algorithm 2 Federated Learning with Deterministic Energy Arrivals When Channel

Status Is Known
Require: Total number of global rounds T , number of users K, channel status for

user i Qi, channel error probability of user i qi, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do

for User i in K do

if Et
i =1 then

Determine J using (4.9) and (4.10)

Schedule Kt+J
i =1

end if

if Kt
i =1 then

if Qt
i =1 then

for Local iteration m in L do

Calculate and scale the local gradient gi(w(t), ξ
(t)
i )

end for

Send the locally trained model parameters to the parameter server

else if Qt
i = 0 then

Schedule Kt+J
i = 0 and Kt+J+1

i = 1

end if

end if

end for

Parameter Server:

Update the global model using (4.12)

Send model parameters w(t+1) to the users

end for
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is O(T ∗ (KL +K)) = O(TKL), where T is the total number of global rounds, K

is the total number of users and L is the total number of local training rounds.

Algorithm 3 Federated Learning with Deterministic Energy Arrivals When Channel

Status Is Unknown
Require: Total number of global rounds T , number of users K, channel error prob-

ability of user i pi, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do

for User i in K do

if Et
i =1 then

Determine J as uniformly random between 0, ..., T t
i − 1

Schedule Kt+J
i =1

end if

if Kt
i =1 then

for Local iteration m in L do

Calculate and scale the local gradients gi(w(t), ξti)

end for

Send the locally trained model parameters to the parameter server

end if

end for

Parameter Server:

Update the global model using (4.14)

Send model parameters w(t+1) to the users

end for

4.3.2 Federated Learning with Stochastic Energy Arrivals

The system architecture of the stochastic energy arrivals is the same as the determin-

istic energy arrivals. However, there is no need to determine J in scheduling, and the

coefficient multiplied by the local gradient values differs as the energy arrival method

changes. Within the scope of stochastic energy arrival, the case of binary energy

arrival has been examined. Different from the scheduling method for determinis-
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tic energy arrival, the battery status will be necessary for scheduling. The scheduling

method is explained as follows: If there is an energy arrival, the user is directly sched-

uled. If there is no energy arrival but energy available at the user’s battery, the channel

status is checked. If the channel is available, the user is scheduled. If the channel is

not available, the user is scheduled for the next round. With this approach, it is aimed

to avoid the waste of energy.

After the scheduling, in each global round, it is checked whether users can participate

in the learning process by taking the channel and energy availability into account be-

fore starting the local training. The user can participate in the learning process if the

channel is available in the current global round. The user is scheduled to participate

in the next global round if the channel is unavailable. Likewise, since the participa-

tion check of the users is performed in each global round, it is aimed that the user can

participate in the learning process as soon as possible. When scheduling is complete,

and users participate in the learning process and complete the local training with L

local iterations, the user-specific local gradient value for both channel cases is mul-

tiplied by the coefficient obtained by replacing T t
i with 1

βi
. Likewise, this coefficient

is used when updating the global model on the parameter server side. Algorithm 4

and 5 defines the learning process for stochastic energy arrivals. For both Algorithm

4 and Algorithm 5, in a worst case scenario where all of the users participate in the

training, the time complexity is O(T ∗ (KL+K)) = O(TKL), where T is the total

number of global rounds, K is the total number of users and L is the total number of

local training rounds.

4.4 Convergence Analysis

To show that the proposed algorithm for deterministic energy arrivals and IID data

does not violate the convergence guarantees, a few assumptions must be revisited:

Assumption 1 (Variance Bound) The variance of the stochastic gradients from (4.3)

are bounded:

E
ξ
(t)
i
[||gi(w(t), ξ

(t)
i )−∇Fi(w

(t))||2] ≤ σ2, i ∈ [K] (4.15)
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Algorithm 4 Federated Learning with Stochastic Energy Arrivals When Channel Sta-

tus Is Known
Require: Total number of global rounds T , number of users K, channel status for

user i Qi, channel error probability of user i qi, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 and Bt

i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do

for User i in K do

if Et
i =1 then

Schedule Kt
i =1

Battery level Bt
i = 1

else

if Bt
i =1 then

if Qt
i =1 then

Schedule Kt
i =1

else

Schedule Kt+1
i =1

Schedule Kt
i =0

end if

end if

end if

if Kt
i =1 then

if Qt
i =1 then

for Local iteration m in L do

Calculate and scale the local gradients gi(w(t), ξ
(t)
i )

end for

Send the locally trained model parameters to the parameter server

else if Qt
i = 0 then

Schedule Kt
i = 0 and Kt+1

i = 1

Battery level Bt+1
i = 1

end if

end if

end for
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Parameter Server:

Update the global model

Send model parameters w(t+1) to the users

end for

Algorithm 5 Federated Learning with Stochastic Energy Arrivals When Channel Sta-

tus Is Unknown
Require: Total number of global rounds T , number of users K, channel error prob-

ability of user i qi, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do

for User i in K do

if Et
i =1 then

Schedule Kt
i =1

end if

if Kt
i =1 then

for Local iteration m in L do

Calculate and scale the local gradients gi(w(t), ξti)

end for

Send the locally trained model parameters to the parameter server

end if

end for

Parameter Server:

Update the global model

Send model parameters w(t+1) to the users

end for
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Assumption 2 (Second Moment Bound) The expected square norm of the stochastic

gradients from (4.3) are bounded:

E
ξ
(t)
i
[||gi(w(t), ξ

(t))
i ||2] ≤ G2, i ∈ [K] (4.16)

Assumption 3 (µ-Strong Convexivity) The local loss functions of the participating

users and the global loss function are µ-strongly convex: For all v and w,

Fi(v) ≥ Fi(w) + (v −w)T∇Fi(w) +
µ

2
||v −w||22 (4.17)

Assumption 4 (L-Smoothness) The local loss functions of the participating users and

the global loss function are L-smooth: For all v and w,

Fi(v) ≤ Fi(w) + (v −w)T∇Fi(w) +
L

2
||v −w||22 (4.18)

Let the scaling coefficient of the local gradients for J = 0 be χi and for 0 < J ≤
T t
i − 1 be φi. Using these parameters, the following lemma can be defined:

Lemma 1 (Unbiasedness) For distributed SGD with deterministic energy arrivals,

ESt

[∑
i∈St

piχigi(w
(t), ξ

(t)
i )

]
=

N∑
i=1

pigi(w
(t), ξ

(t)
i ) (4.19)

ESt

[∑
i∈St

piφigi(w
(t), ξ

(t)
i )

]
=

N∑
i=1

pigi(w
(t), ξ

(t)
i ) (4.20)

for J = 0 and 0 < J ≤ T t
i − 1, respectively.

Theorem 3 For training a machine learning model (4.1) using Algorithm 2 with de-

terministic energy arrivals and a learning rate η ≤ min{ 1

2µ
,
1

L
}, the global loss

function can be upper bounded as follows:

ESt,ξt [||w(t+1) − w∗||2 ≤ (1− ηµ)ESt,ξt [||w(t) − w∗||2 + η2(
K∑
i=1

p2i (αi,max − 1)

+
K∑
i=1

K∑
j=1

pipj)G
2

(4.21)

in T iterations, where w∗ denotes the optimal parameters that minimize the global

loss function.
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Proof. By letting gti ≜ gi(w
(t), ξt), w∗ ≜ argminwF (w), ξt = (ξ

(t)
1 , ξ

(t)
2 , ..., ξ

(t)
K ),

from (4.12), and αt
i = χi for J = 0 and αt

i = φi otherwise, we find that:

ESt,ξt [||w(t+1) − w∗||2] = ESt,ξt [||w(t) − η
∑
i∈St

pi(α
t
igi(w

(t), ξ
(t)
i ))− w∗||2]

= ESt,ξt [||w(t) − w∗||2 − 2ηESt,ξt [⟨w(t) − w∗,
∑
i∈St

pi(α
t
ig

t
i)⟩]

+ η2ESt,ξt [||
∑
i∈St

pi(α
t
ig

t
i)||2]]

(4.22)

The second term in (4.22) can be expanded as in the following:

ESt,ξt [⟨w(t) − w∗,
∑
i∈St

pi(α
t
ig

t
i)⟩] = ESt,ξt [⟨w(t) − w∗,

∑
i∈St

pi(α
t
ig

t
i)

−
K∑
i=1

pi∇Fi(w
(t)) +

K∑
i=1

pi∇Fi(w
(t))⟩]

(4.23)

= ESt,ξt [⟨w(t) − w∗,
∑
i∈St

pi(α
t
ig

t
i)−

K∑
i=1

pi∇Fi(w
(t))⟩]

+ ESt,ξt [⟨w(t) − w∗,
K∑
i=1

pi∇Fi(w
(t))⟩]

(4.24)

Because of Lemma 1, the first term in (4.24) vanishes, and by using Assumption 3

and (4.5), we get that:

ESt,ξt [⟨w(t) − w∗,
K∑
i=1

pi∇Fi(w
(t))⟩] = ⟨w(t) − w∗,∇F (w(t))⟩ (4.25)

≥ F (w(t))− F (w∗) +
µ

2
||w∗ − w(t)||2 (4.26)

The third term in (4.22) can be expanded as in the following:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i ||2]] = ESt,ξt [||

∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i +

K∑
i=1

pig
t
i ||2]] (4.27)

= ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]]

− 2ESt,ξt [⟨
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ,

K∑
i=1

pig
t
i⟩] +

K∑
i=1

||pigti ||2
(4.28)
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The second term in (4.28) vanishes, and the equation becomes:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i ||2]] = ESt,ξt [||

∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]] + ESt,ξt [

K∑
i=1

||pigti ||2]

(4.29)

By combining (4.22), (4.26) and (4.29) and using Assumption 3, we get that:

ESt,ξt [||w(t+1) − w∗||2] = ESt,ξt [||w(t) − w∗||2 − 2η⟨w(t) − w∗,∇F (w(t))⟩

+ η2(ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]] + ESt,ξt [

K∑
i=1

||pigti ||2])

(4.30)

≤ (1− ηµ)ESt,ξt [||w(t) − w∗||2]− 2η(F (w(t))− F (w∗))

+ η2ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]] + η2ESt,ξt [

K∑
i=1

||pigti ||2]
(4.31)

Let U t
i =

 1, if the user participates at time t

0, otherwise
and P (U t

i = 1) = αi. Under this

definition, the third term in (4.31) can be written as in the following:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2] = EUt,ξt [||

K∑
i=1

pi(α
t
ig

t
i − gti)||2] (4.32)

=
K∑
i=1

p2iEUt,ξt [||αt
ig

t
i − gti ||2]

+
K∑
i=1

K∑
j=1,j ̸=i

EUt,ξt [⟨pi(αt
ig

t
i − gti), pj(α

t
jg

t
j − gtj)⟩]

(4.33)

Because of independence, the second term in (4.33) vanishes:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2] =

K∑
i=1

p2iEUt,ξt [||αt
ig

t
i − gti ||2] (4.34)

=
K∑
i=1

p2i (U
2
i )Eξt [EUt|ξt [(U

t
i −

1

αt
i

)2 − ||gti ||2|ξt] (4.35)
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By using Assumption 2, it can be stated that:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2] ≤

K∑
i=1

p2i (αi,max − 1)G2 (4.36)

From Cauchy-Schwarz inequality, the last term in (4.31) can be expressed as in the

following:

η2ESt,ξt [
K∑
i=1

||pigti ||2] ≤
K∑
i=1

p2iEξt [||gti ||2] +
K∑
i=1

K∑
j=1,j ̸=i

pipjEξt [||gti ||||gtj||] (4.37)

≤
K∑
i=1

p2iEξt [||gti ||2] +
K∑
i=1

K∑
j=1,j ̸=i

pipj
2

Eξt [||gti ||2 + ||gtj||2] (4.38)

≤
K∑
i=1

K∑
j=1

pipjG
2 (4.39)

Equation (4.38) holds by using AM-GM Inequality, and Equation (4.39) is stated

by using Assumption 2. Finally, by combining (4.36) and (4.39) and noting that

−2η(F (w(t))− F (w∗)) ≤ 0, it can be stated that:

ESt,ξt [||w(t+1) − w∗||2 ≤ (1− ηµ)ESt,ξt [||w(t) − w∗||2 + η2(
K∑
i=1

p2i (αi,max − 1)

+
K∑
i=1

K∑
j=1

pipj)G
2

(4.40)

This completes the proof.

4.5 Performance Evaluation

Experiments were performed as an image classification task with 10 classes of 40

users, for 1000 global rounds and 5 local training rounds, using the CIFAR-10 dataset

[42]. Sample images of CIFAR-10 dataset are provided in Figure 4.3 (Retrieved from:

https://www.cs.toronto.edu/ kriz/cifar.html). Dataset was distributed as 50,000 train-

ing samples and 10,000 test samples, with a batch size of 64. Images were prepro-

cessed before the training to train the model more accurately, including horizontal
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Figure 4.2: Architecture of the convolutional neural network (CNN).

and vertical flip, color jittering, resizing, and normalization. As the optimizer, SGD,

which implements stochastic gradient descent, is used. The learning rate is set to 0.01.

As the architecture, the convolutional neural network (CNN) is used, which includes

three 3x3 convolutional layers (with 32, 64, and 64 channels, respectively, the first

two with 2x2 pooling layers), a 0.25 dropout layer, a 64-unit fully connected layer,

and an output layer for this specific scenario. The architecture of CNN is provided in

Figure 4.2 (Retrieved from: https://towardsdatascience.com/a-comprehensive-guide-

to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53).

In the experiments, four different methods were simulated for the same scenario. In

the first and second methods, the federated learning process in cases where the chan-

nel state is known or not known for deterministic energy arrivals (Algorithm 2 and

Algorithm 3), respectively, is performed. In the third method, Conservative Algo-

rithm is simulated, in which the learning process takes place only when all users have

enough energy for deterministic energy arrivals, and the gradients are not multiplied

by a coefficient. In the fourth method, as a baseline and reference for many federated

learning algorithms in the literature, FederatedAveraging [5] algorithm is simulated.

Note that this algorithm represents the performance in perfect conditions, i.e., no en-

ergy or channel constraint is included.

To show the effect of non-homogeneous energy arrivals, Güler et. al. [7] used a

method of dividing users into four equal groups and assigning different energy arrival

parameters to each group. This method is also adapted to the proposed algorithms,
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Figure 4.3: CIFAR-10 Dataset: Image classes and samples.

with the addition that different channel error probabilities were also assigned for each

group. In addition, the channel models were generated in a way that the channel error

probabilities were randomly assigned, independent of the energy harvesting. With

this method, it is aimed to show that the proposed algorithm balances the participation

of each user in the training process. The performance evaluation is conducted by

calculating the test accuracy for each image class and taking the average.

In the first case of deterministic energy arrivals, the training dataset is IID to the users.

This is performed by shuffling the dataset and splitting it between the users. Figure

4.9 shows the test accuracy versus the number of rounds for these methods and their

comparison with the FederatedAveraging algorithm. It can be seen that the method

with deterministic energy arrival, in which the channel state is known, provides high

test accuracy compared to other methods. It is important to point out that the refer-

ence algorithm, FederatedAveraging, does not have any channel, processing power,

or time constraints, and still, it provided 75% test accuracy, which is close to the

accuracy of channel-aware scheduling (Algorithm 2). Note that the model used in

these simulations is basic, and the proposed scheduling methods can be applied to

more complicated and high-efficient models. The main goal of these experiments is
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Figure 4.4: Samples from MNIST dataset.

to show that the proposed algorithms do not violate convergence guarantees and not

to achieve higher test accuracy.

Figure 4.5 shows the effect of the learning rate on the proposed Algorithm 2. Note

that the learning rate determines how quickly the model adapts to the situation, which

is why it is one of the most crucial hyperparameters [3]. A lower learning rate might

cause the training process to be slower, whereas a greater learning rate might lead the

model to converge too soon to an unreliable result. It can be observed that Figure

4.5 reflects that statement: when the learning rate increases, the model converges

more quickly, but the test accuracy becomes less consistent and reliable. Similarly,

the training loss decreases quickly but changes more often, so it is also unreliable.

Experimental results were obtained for IID data and deterministic energy arrival. In

the first column, the learning rate was set as 0.01, and it can be seen that the model

reaches an average test accuracy of 70% and a minimum of train loss of 0.37, which
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Figure 4.5: Test accuracy and train loss of channel aware scheduling (Algorithm 2)

for different learning rates, for IID data and deterministic energy arrival.

demonstrates good performance. In the second column, the learning rate was set as

0.05, and it can be seen that the model reaches 70% test accuracy, but with a bit of

a variance. Also, the minimum train loss was obtained approximately as 0.3, with

a bit of a variance. Note that the convergence time decreased due to the increase in

the learning rate. Lastly, in the third column, the learning rate was set as 0.1, and it

can be seen that the model cannot reach 70% test accuracy, and variates more than

the other cases. Also, the minimum train loss was obtained at approximately 0.25,

with increased variance. Convergence is faster than in the other cases. These results

support the conception explained in the beginning.

Figure 4.6 shows the effect of the number of local iterations on the proposed Algo-

rithm 2. Note that the number of local iterations defines how often the participant

user will go through its dataset, perform its training and converge to adequate model

parameters. A smaller number of local iterations might cause the training process to

be faster but less accurate, whereas a greater number of local iterations might lead the

model to converge more slowly but to a reliable result. Supporting this conception,

it can be seen from Figure 4.6 that when the number of local iterations increases, the

model converges more slowly, whereas the test accuracy becomes better.
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Figure 4.6: Test accuracy and train loss of channel aware scheduling (Algorithm 2)

for different numbers of local training rounds, for IID data and deterministic energy

arrival.

Figure 4.7 and Figure 4.8 shows the performance of proposed algorithms, Conserva-

tive Algorithm and FederatedAveraging algorithm for MNIST dataset [43], instead

of CIFAR-10 dataset, for both IID and non-IID data. MNIST is an introductory yet

useful dataset, which includes handwritten digits from 0 to 9 and has 60,000 samples

for training and 10,000 samples for testing. Sample images of MNIST dataset are

provided in Figure 4.4 (Retrieved from: https://www.tensorflow.org/datasets/catalog/

mnist). The digits are in normal size and centered in a fixed-size image. It can be ob-

served that the performance significantly improved for all of the algorithms compared

to the CIFAR-10 dataset. This is because images in the MNIST dataset are relatively

clean and easy to recognize and learn.

In the second case of deterministic energy arrivals, the training dataset is non-IID
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Figure 4.7: Test accuracy of channel aware scheduling (Algorithm 2) for MNIST for

IID data and deterministic energy arrival according to the global rounds and compar-

ison with channel unaware scheduling (Algorithm 3), Conservative Algorithm and

FederatedAveraging.

to the users. This is performed by sorting the dataset by the digit label, dividing

the data into 200 shards of size 250, and assigning two shards to each user. Figure

4.10 shows the test accuracy versus the number of rounds for these methods and

their comparison with the FederatedAveraging algorithm. As expected, the accuracy

goes back and forth because of the unbalanced data distribution among the participant

users. Still, it can be observed that channel-aware scheduling (Algorithm 2) provides

higher test accuracy compared to other methods. Another observation can be stated

as the oscillation of the test accuracy, and the number and variation of participating

users can be related. As an example, the test accuracy of the Conservative Algorithm

is much more consistent compared to the others, or the test accuracy of Algorithm 3

does not oscillate as much as Algorithm 2. Note that in the Conservative Algorithm,
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Figure 4.8: Test accuracy of channel aware scheduling (Algorithm 2) for MNIST for

non-IID data according to the global rounds and comparison with channel unaware

scheduling (Algorithm 3), Conservative Algorithm and FederatedAveraging.

all users participate every 20 rounds, so the scheduling is very certain and predictable,

resulting in consistent, settled test accuracy. In the scheduling process of Algorithm

3, the integer J is determined as uniformly random, and if the channel is not available

at that round, users are not re-scheduled. This reduces the deviation from the initial

scheduling so that the oscillation is not as much as Algorithm 2. Algorithm 2 and

FederatedAveraging algorithms have more oscillation because the scheduling in these

algorithms is more random. Note that in FederatedAveraging algorithm, in every

global round, users are randomly selected; and in Algorithm 2, users are scheduled

according to the energy arrivals and the value of integer J , which is determined by a

probability value that is dependent to a randomly available channel.

Additionally, as another method, a non-IID dataset can be synthetically produced.
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Figure 4.9: Test accuracy of channel aware scheduling (Algorithm 2) for CIFAR-

10 for IID data and deterministic energy arrival according to the global rounds and

comparison with channel unaware scheduling (Algorithm 3), Conservative Algorithm

and FederatedAveraging.

To introduce, a synthetic dataset can be defined as an alternative dataset that has

been created intentionally, rather than actual occurrences. Synthetic data is generated

by modeling the original data statistically and utilizing those models to make new

data values that replicate the statistical characteristics of the original. It is used to

validate mathematical models and train machine learning models. Compared to the

numerical results of the experiments with non-IID data, it can be observed that the

numerical results with synthetic datasets are more settled because of the difference

in the dataset characteristics. Note that CIFAR-10 is a dataset produced by real-

life events, and even the FederatedAveraging algorithm without any communicative

constraints does not have a settled test accuracy. Similar oscillation can be observed in

the numerical results in [44] and [45]. To reduce the oscillation, a possible approach
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Figure 4.10: Test accuracy of channel aware scheduling (Algorithm 2) for CIFAR-10

for non-IID data according to the global rounds and comparison with channel unaware

scheduling (Algorithm 3), Conservative Algorithm and FederatedAveraging.

can be eliminating several image classes in the training process.

For the stochastic energy arrivals, the experimental setup is the same as the previous

experiments, only with the difference in the energy arrival process. In the first case,

similar to deterministic energy arrivals, the training dataset is IID to the users, in the

same way. Energy arrival processes are modeled as binary energy arrival processes

defined in (4.7). In addition to the channel error probabilities, different energy arrival

probabilities were assigned to each user group. Because of the change in energy ar-

rival processes, the coefficient T t
i is replaced by

1

βi

in all of the calculations. Note

that there is no need to determine the integer J for scheduling because of the stochas-

tic energy arrival. Figure 4.11 shows the test accuracy versus the number of rounds

for these methods and their comparison with the FederatedAveraging algorithm. It
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can be seen from the figures that the performance of both proposed algorithms in-

creased compared to the deterministic arrival case. For Algorithm 5, aiming not to

waste substantial energy, the scheduling process includes checking both the channel

and battery status when there is no energy arrival. Note that in Algorithm 2, when

there is no energy arrival, there is no scheduling. Additionally, there is no J included

in the stochastic energy arrival case, because both the scheduling process and scaling

parameter provide unbiasedness among users. These factors lead to a better conver-

gence result, because the participation of the user is much more guaranteed. On the

other hand, in Algorithm 6, users are directly scheduled if there is an energy arrival,

and no channel or battery status is included. Because of that, the performance of Al-

gorithm 6 is a bit worse than Algorithm 5. In the second case, the training dataset is

non-IID to the users, the same as the distribution in the experiments for deterministic

energy arrival. Figure 4.12 shows the test accuracy versus the number of rounds for

these methods and their comparison with the FederatedAveraging algorithm. Like

the deterministic energy arrival case, channel aware scheduling outperforms channel

unaware scheduling.
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Figure 4.11: Test accuracy of channel aware scheduling (Algorithm 2) for CIFAR-10

for IID data and stochastic energy arrival according to the global rounds and compar-

ison with channel unaware scheduling (Algorithm 3), Conservative Algorithm and

FederatedAveraging.
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Figure 4.12: Test accuracy of channel aware scheduling (Algorithm 2) for CIFAR-

10 for non-IID data and stochastic energy arrival according to the global rounds and

comparison with channel unaware scheduling (Algorithm 3), Conservative Algorithm

and FederatedAveraging.
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CHAPTER 5

EFFECT OF AGE ON FEDERATED LEARNING WITH CHANNEL AND

ENERGY AWARE SCHEDULING

5.1 Introduction

In this chapter, a federated learning algorithm that schedules users according to the

energy and channel profiles and weighting their local gradients according to the same

profiles with an extension of age (AoI) of each user is studied. Age is defined as the

time elapsed between the two most recent participation in the training process. The

setup is the same with Chapter 4. The main focus is to develop an age-involved al-

gorithm that achieves a significant convergence rate in a scenario with an error-prone

channel and intermittent energy availability. The experiments evaluate the perfor-

mance of the proposed algorithms, and it has been seen that the proposed scheduling

method provides similar test accuracy as the other methods. In Section 5.2, system

model and problem definition are provided. In Section 5.3, age and momentum in-

cluded scheduling methods for deterministic and stochastic energy arrivals for known

channel states are presented. In Section 5.4, experimental results and evaluation of

the proposed scheduling methods are provided.

5.2 System Model and Problem Definition

The system architecture is the same as in Chapter 4. Age (AoI), denoted as ∆t
i, is

defined as the time elapsed between the two most recent participation in the training

process for user i. As an extension to the previous methods, age is added as a gra-

dient update and momentum attenuation factor metric to train the model in a more
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Table 5.1: Chapter 5: Parameter Symbols and Definitions

Parameter Definition

K Total number of users

pi The ratio of user i’s local dataset size to the entire dataset size

∆t
i The time elapsed between the two most recent participation in the training process

L Total number of local training rounds

w(t) Estimation of the model parameters for round t

ξ
(t)
i Uniformly random sample from the local dataset of user i for round t

δti Momentum attenuation factor of participant user i

η Learning rate

T Total number of global rounds

St The set of users who have successfully participated

balanced and accurate way. As it is defined in Chapter 2, momentum is a variant of

gradient descent designed for performance improvement and optimization. Momen-

tum attenuation factor of participant user i is denoted as δti . It is important to note

that momentum improves the model’s accuracy for non-IID data, and decreases the

convergence time for IID data. This difference originated from the diversity of data

of a participant user. To show the effect of age on model update and momentum more

precisely, the work in this chapter is evaluated by both IID and non-IID datasets.

The global loss function is defined in (4.1), and the local loss function is defined in

(4.2). Assuming that a user i ∈ {1, . . . , K} has Di data points in its local dataset,

the total number of data points for all users is denoted as D. pi is defined as the ratio

of the user i’s local dataset size to the entire dataset size (pi = Di

D
,
∑K

i=1 pi = 1).

The value t ∈ 0, 1, 2, .. represents each global round, and L defines the number of

local training iterations. K is the total number of users. Training is performed by

using the distributed SGD method. Estimation of the model parameters for the round

t is represented by w(t). In the distributed SGD method, the parameter server sends

the value w(t) to participating users. Users i ∈ 1, 2, ..., K calculate a local stochastic

gradient with L local iterations as defined in (4.3), and the actual gradient value of

user i is defined in (4.4). The gradient of the global loss function is defined in (4.5).

After users complete their local calculations, local gradient values are sent to the

parameter server. The parameter server updates the model as in (4.6). After the
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update, the model is sent back to participating users, and the cycle continues until the

process is complete.

5.3 Proposed Methods

As an extension of the previous chapter, the main motivation for this chapter is that

if the user cannot participate in the training process because of its energy arrival or

channel availability processes, that user’s previous data must be taken into account in

a grander scale. In order to achieve that, the momentum attenuation factor must be

set at a higher value. On the other hand, if the user participates in the training process

more frequently, the momentum attenuation factor must be determined as a smaller

value. The same motivation holds for the gradient scaling: if the time elapsed be-

tween the two most recent participation of the corresponding user is long, the scaling

coefficient must be greater than the other users; since that user cannot participate in

the training process frequently, so that the information obtained from that user must

be important. To ensure this assumption, while scaling the local gradients, the age of

the user is taken into account, which is going to be explained in the following.

When the channel state is known and if the user has enough energy, an integer J with

a certain probability in the range of 0 to T t
i − 1 is determined with the help of the

following two different probability values, defined as in (4.9) and (4.10). After the

integer J is determined, the user is scheduled by adding J to the current global round

value (t+ J). The momentum attenuation factor is also determined in the scheduling

process according to the age of the corresponding user:

δti =


0.1, if ∆t

i = 1

0.5, if 1 < ∆t
i ≤ T t

i

0.9, if ∆t
i > T t

i

(5.1)

where T t
i is the energy arrival parameter. Once the scheduling is complete, the learn-

ing process can begin. In each global round, it is checked whether users can partic-

ipate in the learning process by the channel status. The user can participate in the

training process if the channel is available at the current global round. If not, the user

is scheduled to participate in the next global round. The parameter server sends the

model parameters to the participating users, and the users perform the local training.
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The information gathered from the user that participates in the training process less

than the other users is more important and must be included in the process on a greater

scale. With this information, the scaling coefficient is defined as the ratio of the age

of the corresponding user to the total age of the users,
∆t

i

∆t
. During the local training,

local gradients are scaled as follows:

g
(t+L)
i =

∆t
i

∆t
(gi(w

(t), ξti)) (5.2)

If the time elapsed between the two most recent participation of the corresponding

user is greater than the energy arrival parameter, the momentum attenuation factor

must be greater; because the information gathered from that user becomes more im-

portant due to the lack of participation in the process. The momentum term can be

obtained as in the following:

mi(t+ 1) = δtim(t)− η ∗ g(t+L)
i (5.3)

The participant user obtains the locally trained model parameters as follows:

w(t+L) = w(t) +mi(t+ 1) (5.4)

After the local training, participant users send their locally trained model parameters

to the server. The parameter server updates the global model and sends the global

model back to the users until the global training is complete. Scheduling and training

steps for deterministic energy arrivals can be seen in Algorithm 6, and for stochastic

energy arrivals can be seen in Algorithm 7. For both Algorithm 6 and Algorithm 7,

in a worst case scenario where all of the users participate in the training, the time

complexity is O(T ∗ (KL+K)) = O(TKL), where T is the total number of global

rounds, K is the total number of users and L is the total number of local training

rounds.

5.4 Performance Evaluation

Similar to the experiments in Chapter 4, experiments were performed as an image

classification task with 10 classes of 40 users, for 1000 global rounds and 5 local

training rounds, using both the CIFAR-10 dataset [42], distributed as 50,000 training

samples and 10,000 test samples; and MNIST dataset [43], distributed as 60,000
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Algorithm 6 Age-Involved Federated Learning with Momentum for Deterministic

Energy Arrivals and Known Channel Status
Require: Total number of global rounds T , number of users K, channel status for

user i Qi, channel error probability of user i qi, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do

for User i in K do

if Et
i =1 then

Determine J using (4.9) and (4.10)

Schedule Kt+J
i =1

Determine the momentum attenuation factor using (5.1)

end if

if Kt
i =1 then

if Qt
i =1 then

for Local iteration m in L do

Calculate and scale the local gradients gi(w(t), ξ
(t)
i )

end for

Send the locally trained model parameters to the parameter server

∆t+1
i = 1

else if Qt
i = 0 then

Schedule Kt+J
i = 0 and Kt+J+1

i = 1

∆t+1
i = ∆t

i + 1

end if

end if

end for

Parameter Server:

Update the global model

Send model parameters w(t+1) to the users

end for
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Algorithm 7 Age-Involved Federated Learning with Momentum for Stochastic En-

ergy Arrivals and Known Channel Status
Require: Total number of global rounds T , number of users K, channel status for

user i Qi, channel error probability of user i qi, initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 and Bt

i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do

for User i in K do

if Et
i =1 then

Schedule Kt
i =1

Determine the momentum attenuation factor using (5.1)

Battery level Bt
i = 1

else

if Bt
i =1 then

if Qt
i =1 then

Schedule Kt
i =1

Determine the momentum attenuation factor using (5.1)

else

Schedule Kt+1
i =1 and Kt

i =0

end if

end if

end if

if Kt
i =1 then

if Qt
i =1 then

for Local iteration m in L do

Calculate and scale the local gradients gi(w(t), ξ
(t)
i )

end for

Send the locally trained model parameters to the parameter server

∆t+1
i = 1

else if Qt
i = 0 then

Schedule Kt
i = 0 and Kt+1

i = 1

∆t+1
i = ∆t

i + 1

Battery level Bt+1
i = 1
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end if

end if

end for

Parameter Server:

Update the global model

Send model parameters w(t+1) to the users

end for

samples for training and 10,000 samples for testing, both of the datasets with the batch

size as 64. In the experiments, Algorithm 6 and Algorithm 7 are simulated for both

CIFAR-10 and MNIST datasets for the case of deterministic and stochastic energy

arrivals. For the CIFAR-10 dataset, images were preprocessed before the training.

SGD optimizer is used for both of the datasets, and the learning rate was set as 0.01.

As the architecture, CNN is used with the same layer structure. The performance

evaluation is conducted by calculating the test accuracy for each image class and

taking the average. Lastly, to show the effect of momentum more clearly, both IID and

non-IID training datasets are used in the simulations. Like in the previous simulation

setup, IID is applied by shuffling the dataset and splitting it between the clients. Non-

IID is applied by sorting the dataset by the digit label, dividing the data into 200 shards

of size 250, and assigning two shards to each client. To evaluate the performance of

the proposed algorithm, both FedAvg and Conservative Algorithm are also simulated

for both cases.

Figure 5.1 shows the convergence of Algorithm 6 for deterministic energy arrivals,

comparing with FedAvg, for non-IID MNIST and CIFAR-10 datasets. For the MNIST

dataset, Algorithm 6 reaches approximately 88% of accuracy, which is slightly better

than the accuracy of the channel aware algorithm, Algorithm 2, without age. Addi-

tionally, for CIFAR-10, accuracy reaches approximately 50%, which is greater than

the maximum test accuracy of Algorithm 2, without age. Figure 5.2 shows the con-

vergence of Algorithm 6 for deterministic energy arrivals for IID MNIST and CIFAR

datasets. Algorithm 6 reaches 100% of accuracy, which is the same as the accuracy

with Algorithm 2, without age. Similarly, for CIFAR-10, accuracy reaches approxi-

mately 70%, which is similar to the test accuracy of Algorithm 2, without age.
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Figure 5.1: Test accuracy of Algorithm 6 for MNIST and CIFAR-10 datasets, for

non-IID data and deterministic energy arrival. Note that channel status is known in

this scenario.
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Figure 5.2: Test accuracy of Algorithm 6 for MNIST and CIFAR-10 datasets, for

IID data and deterministic energy arrival. Note that channel status is known in this

scenario.

In Table 5.2 and Table 5.3, the maximum age values for deterministic energy arrivals

and CIFAR-10 and MNIST datasets respectively are provided. Similar to the ex-

perimental setup in the previous chapter, users were divided into four equal groups

and different energy arrival parameters and channel availability probabilities were as-

signed to each group. How the age changes is dependent to both the channel and

energy status of the user, because it is directly obtained by the scheduling process.
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Table 5.2: Chapter 5: Maximum Age Statistics for CIFAR Dataset and Deterministic

Energy Arrivals

User Groups IID Dataset Non-IID Dataset

First User Group 6 7

Second User Group 14 18

Third User Group 177 205

Fourth User Group 160 120

Table 5.3: Chapter 5: Maximum Age Statistics for MNIST Dataset and Deterministic

Energy Arrivals

User Groups IID Dataset Non-IID Dataset

First User Group 6 7

Second User Group 13 18

Third User Group 178 210

Fourth User Group 159 120

Figure 5.4 shows the convergence of Algorithm 6 for stochastic energy arrivals, com-

paring with FedAvg, for non-IID MNIST and CIFAR-10 datasets. For the MNIST

dataset, Algorithm 6 reaches approximately 88% of accuracy, which is slightly better

than the accuracy of the channel aware algorithm, Algorithm 2, without age. Addi-

tionally, for CIFAR-10, accuracy reaches approximately 53%, which is greater than

the maximum test accuracy of Algorithm 2 for the stochastic energy arrivals, without

age. Figure 5.3 shows the convergence of Algorithm 6 for stochastic energy arrivals

for IID MNIST and CIFAR datasets. Algorithm 6 reaches 100% of accuracy, which

is the same as the accuracy with Algorithm 2, without age. For CIFAR-10, accuracy

reaches approximately 73%, which is very close to the accuracy of FedAvg.
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Figure 5.3: Test accuracy of Algorithm 6 for MNIST and CIFAR-10 datasets, for IID

data and stochastic energy arrival. Note that channel status is known in this scenario.
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Figure 5.4: Test accuracy of Algorithm 6 for MNIST and CIFAR-10 datasets, for

non-IID data and stochastic energy arrival. Note that channel status is known in this

scenario.

It can be observed from the experimental results that adding age as a gradient scaling

factor and a metric for momentum attenuation factor has a positive effect on both

the test accuracy and convergence rate for non-IID datasets. Additionally, for IID

datasets, the model converged significantly faster. Experimental results for Algorithm

2 in the previous chapter showed that the model started to converge around 500th

global round. In contrast, in this chapter, with the help of age-based momentum, the

model started to converge around 200th global round. As a result, these experimental

results verify the claim that AoI-aware momentum improves the model’s accuracy for

non-IID data and decreases the convergence time for IID data.
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CHAPTER 6

CONCLUSIONS

This thesis focused on developing federated learning algorithms that are extended by

constraints such as channel availability, energy harvesting, and data freshness, and

provide the same guarantee of convergence with the algorithms that have no con-

straints. In Chapter 3, an optimal threshold-based decision policy that aims to pro-

vide the lowest long-term average AoI is studied. A point-to-point channel with a

receiver-centric scheduling policy, with channel states changing as ON and OFF in

an IID fashion, is considered. It is assumed that unless the AoI is greater than a

specific threshold value, the transmission does not occur. The performance of the

proposed policy is compared with the uniform transmission policy, and it is observed

that the proposed policy is significantly more efficient than the uniform transmission

policy. In Chapter 4, the study on optimizing the federated learning process according

to the intermittent energy harvesting and channel state without violating the theoreti-

cal convergence guarantees by proposing a scheduling algorithm sensitive to channel

and energy state for a federated learning system prone to energy harvesting and chan-

nel errors is presented. As a result of this work, it has been seen that the proposed

scheduling method provides higher test accuracy and lower loss than other methods.

In Chapter 5, an extension of the work in Chapter 4 by studying the effect of AoI with

momentum for the proposed channel and energy-aware scheduling methods is pre-

sented. As a result, it is shown that with AoI-aware momentum, the accuracy of the

model for non-IID data increases, and the convergence time for IID data decreases.

For future work, there are many research areas focused on improving the efficiency

of federated learning.

• Federated Learning with Finite Battery: In the proposed methods for deter-
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ministic energy arrival, for the sake of simplicity, the battery status of both the

users and the parameter server were not included. It was only included in the

stochastic energy arrival case because of the randomness of the energy arrivals,

and it was aimed that the existing energy will not be wasted. The same logic

can be adapted into the finite battery case: in the scheduling process, the battery

status of each user can be another constraint, just as energy and channel. On

the other hand, the parameter server may have finite battery and may not prefer

to perform the model updating process, but this will lead to a slow convergence

of the model. This tradeoff might be an interesting research problem to work

on in the future.

• Adaptive Model/Network Pruning: After the model is initially trained using

SGD for a fixed number of iterations, a specified proportion (referred to as the

pruning rate) of weights with the least absolute values can be eliminated, which

is called network pruning. This cycle can be repeated until the required model

size is achieved. The advantage of this strategy is that training and pruning

occur concurrently, resulting in a trained model with the desired size. How-

ever, current pruning strategies need the availability of training data in a central

location, which is against the FL’s principles [46]. Adapting it into the work

in this thesis, the least absolute values may be produced from the users with

less participation because of the several constraints referred to in this thesis.

Model pruning can be adapted to these constraints to achieve more accurate

model parameters. The research area would be determining the pruning rate for

a network that includes users with different channel, energy, and age profiles.

• Federated Edge Learning (FEEL): Supported by a remote parameter server,

federated edge learning is performed by wireless devices, with constrained en-

ergy and bandwidth, on their local datasets. Adapting it into the work in this

thesis, FEEL can be extended by adding an AoI parameter as a constraint.

• Federated Learning with Finite Blocklength: When users participate in the

process with the same channel, there may be interference among users. To

avoid interference and lessen the burden on the channel, the packet including

the locally trained model parameters can be compressed at a rate. There is a

tradeoff for determining the compression rate: If less error in the transmission
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is desired, the packets will be compressed on a smaller scale, so that the packet

size will be bigger and it will take time to transmit it, which will cause higher

AoI. On the other hand, if the amount of error in the transmission is not pri-

oritized, the packet will be compressed on a grander scale, so that it will take

less time to transmit, which will lead to a smaller AoI value. Considering this

problem, an interesting research problem would be determining a compression

and sparsification method for federated learning.

• Federated Learning with Incentives: In the context of this thesis, users with

less energy arrival or unavailable channel would not prefer to participate in the

process not to waste their resources. Such users can be encouraged to partic-

ipate in the process by offering an incentive by the parameter server. As an

example, this incentive can be providing energy to the user. As a result of

this application, more participation of users and more accurate models can be

achieved more quickly, especially for non-IID datasets.
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APPENDIX A

DERIVATION OF THE PROBABILITY OF THE SCHEDULING

PARAMETER

Let αt = PJ(j) and the channel error probability of user i is qi. To ensure fairness

among all participant users, it is assumed that α0 = α1 = α2 = ... = αTi−1. The

probabilities of different J values can be defined as in the following:

αt(0) = (1− qi)PJ(0)

αt(1) = (1− qi)PJ(1) + qi(1− qi)PJ(0)

αt(2) = (1− qi)PJ(2) + qi(1− qi)PJ(1) + q2i (1− qi)PJ(0)

...

αt(Ti − 1) = (1− qi)PJ(Ti − 2) + qi(1− qi)PJ(Ti − 3)

+ ...+ q
(Ti−2)
i (1− qi)PJ(0)

Because of the assumption:

(1− qi)PJ(0) = (1− qi)PJ(1) + qi(1− qi)PJ(0)

↪→ (1− qi)PJ(0) = PJ(1)

(1− qi)PJ(1) + qi(1− qi)PJ(0) = (1− qi)PJ(2) + qi(1− qi)PJ(1) + q2i (1− qi)PJ(0)

(1− qi)PJ(1) + qi(1− qi)PJ(0) = PJ(2)

↪→ PJ(2) = PJ(1)

PJ(3) = (1− qi)PJ(2) + qi(1− qi)PJ(1) + q2i (1− qi)PJ(0)

= PJ(2) = PJ(1)

↪→ PJ(Ti − 1) = ... = PJ(3) = PJ(2) = PJ(1)
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It is known that
∑Ti−1

0 PJ(j) = 1. This leads to:

PJ(0) + (Ti − 1)PJ(1) = 1

PJ(0)(1 + (Ti − 1)(1− qi)) = 1

PJ(0) =
1

Ti − Tiqi + qi

PJ(Ti − 1) = ... = PJ(3) = PJ(2) = PJ(1) =
1− qi

Ti − Tiqi + qi

This completes the derivation.

82


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF ALGORITHMS
	Introduction
	Contributions and Novelties
	The Outline of the Thesis

	Background Information
	Federated Learning
	Age of Information

	Achieving Optimal Age of Information with Wireless Energy Transfer
	Introduction
	System Model and Problem Definition
	Proposed Method
	Steady-State Analysis
	Optimality of the Decision Policy
	Derivation of the Optimal AoI Threshold
	Derivation of the Age Violation Probability

	Performance Evaluation

	Federated Learning with Channel and Energy Aware Scheduling
	Introduction
	System Model and Problem Definition
	Energy Model
	Deterministic Energy Arrivals
	Stochastic Energy Arrivals

	Channel Model

	Proposed Methods
	Federated Learning with Deterministic Energy Arrivals
	Case 1: Channel Status is Known
	Case 2: Channel Status is Unknown

	Federated Learning with Stochastic Energy Arrivals

	Convergence Analysis
	Performance Evaluation

	Effect of Age on Federated Learning with Channel and Energy Aware Scheduling
	Introduction
	System Model and Problem Definition
	Proposed Methods
	Performance Evaluation

	Conclusions
	REFERENCES
	Derivation of the Probability of the Scheduling Parameter

