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ABSTRACT

REINFORCEMENT LEARNING BASED ADAPTIVE BLOCKLENGTH
AND MCS SELECTION FOR MINIMIZATION OF AGE VIOLATION

PROBABILITY

Özkaya, Ayşenur

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Elif Tuğçe Ceran Arslan

August 2022, 72 pages

As a measure of data freshness, Age of Information (AoI) is an important semantic

performance metric in systems where small status update packets need to be deliv-

ered to a monitor in a timely manner. This study aims to minimize the age violation

probability (AVP), which is defined as the probability that instantaneous age exceeds

a certain threshold. The AVP can be considered as one of the key performance indi-

cators in emerging 5G and beyond technologies such as massive machine-to-machine

communications (mMTC) and ultra-reliable low latency communications (URLLC).

This thesis focuses on two main problems regarding the adaptive transmission of

short packets in time-sensitive systems. Firstly, we propose two methods for choos-

ing the optimal blocklength for coding in short packet transmissions. We utilize finite

blocklength theory approximations along with dynamic programming (DP) and re-

inforcement learning (RL) methods. Adopting state-aggregated value iteration and

Q-learning algorithms, we present adaptive policies that dynamically select the op-

timal blocklength according to the state of the system. Our second problem focuses

on choosing the appropriate modulation and coding scheme (MCS) for minimiza-

tion of age violation probability. We construct a deep reinforcement learning (DRL)
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framework and employ deep Q networks (DQN) to exploit a policy for the dynamic

selection of MCS among available MCSs defined in 5G standards. The performances

of the proposed approaches are demonstrated in different scenarios and compared

with the performances of benchmark policies and state-of-the-art algorithms.

Keywords: age of information, dynamic programming, reinforcement learning, adap-

tive modulation and coding, finite blocklength
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ÖZ

BİLGİ YAŞI İHLALİ OLASILIĞININ AZALTILMASI İÇİN
PEKİŞTİRMELİ ÖĞRENMEYE DAYALI ADAPTİF BLOK UZUNLUĞU VE

MCS SEÇİMİ

Özkaya, Ayşenur

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Elif Tuğçe Ceran Arslan

Ağustos 2022 , 72 sayfa

Bilginin tazeliğinin bir ölçüsü olan Bilgi Yaşı (BY), küçük boyuttaki durum gün-

celleme paketlerinin eskimeden bir gözlemciye iletilmesini gerektiren sistemlerde

önemli bir ölçüt haline gelmiştir. Bu çalışmadaki amaç, anlık bilgi yaşının belirli bir

eşik değerini aşması olasılığı olarak tanımlanan bilgi yaşı ihlali olasılığının (AVP) en

aza indirilmesidir. AVP, kitlesel makine tipi haberleşme (mMTC) ve ultra güvenilir ve

düşük gecikmeli iletişim (URLLC) gibi 5G ve ötesi sistemlerinde anahtar performans

göstergelerinden biri olarak görülmektedir. Bu tez çalışmasında, kısa paketlerin adap-

tif iletimini konu alan iki ana problem üzerine odaklanılmıştır. İlk olarak, kısa paket

iletimlerinde kodlama için ideal blok uzunluğunu seçmek amacıyla iki yöntem öne-

rilmiştir. Sonlu blok uzunluğu teorisi yaklaşımlarının yanı sıra dinamik programlama

(DP) ve pekiştirmeli öğrenme (RL) metotlarından yararlanılmıştır. Durum toplamalı

değer iterasyonu ve Q-öğrenme algoritmaları eğitilerek sistemin anlık durumuna göre

optimal blok uzunluğunu gösteren adaptif politikalar elde edilmiştir. İkinci problemde

bilgi yaşı ihlali olasılığını en aza indirecek modülasyon ve kodlama şemasının (MCS)
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seçimine odaklanılmıştır. Derin pekiştirmeli öğrenme (DRL) ortamı kurulmuş ve de-

rin Q ağları (DQN) kullanılarak 5G standartlarında tanımlı MCS’ler arasından seçim

yapan bir politika elde edilmiştir. Önerilen çözümlerin performansı referans politika-

lar ve en gelişmiş algoritmalar ile karşılaştırılmış ve farklı senaryolar için elde edilen

sonuçlar sunulmuştur.

Anahtar Kelimeler: bilgi yaşı, dinamik programlama, pekiştirmeli öğrenme, adaptif

modülasyon ve kodlama, sonlu blok uzunluğu
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CHAPTER 1

INTRODUCTION

With the immense progress of technology over the years, the demand for fast and re-

liable communication networks increased significantly. A wide range of applications

has been developed that rely on the transmission of status update messages from a

source to a monitor: remote surgery systems, smart cities, wearable devices, etc.

These applications brought the need for timely delivery of information [2]. As a re-

sult, Age of Information (AoI) [3,4] has become an important research topic in recent

years as a measure of the freshness of data. AoI is defined as the time elapsed since the

last successfully received packet was generated. It is one of the key performance in-

dicators in status update systems where information is needed before it becomes stale

or irrelevant. AoI is a critical metric in applications such as autonomous driving, fac-

tory automation, and smart grids, along with fifth-generation (5G) technologies such

as massive machine-to-machine communications (mMTC) and [5] and Ultra Reliable

Low Latency Communications (URLLC) [6]. Especially with the introduction of ex-

treme URLLC (xURLLC) [7] in sixth generation (6G) communications, AoI-related

metrics are expected to gain more importance. The significance of AoI is also appar-

ent in semantic communications, where the meaning of the transmitted message is

more important than the accurate transmission of bits [8]. AoI is considered as one

of the measures of the relevance of the information in semantic communications, as

it determines whether the information is still fresh and valuable or out-of-date and

irrelevant [9, 10].

AoI is a destination-centric metric: it is concerned only with the successfully deliv-

ered packets of fresh updates [11], making it a substantially different metric from

delay or latency. Also, age and delay vary in their responses to different network

1



parameters. For example, consider a First Come First Served (FCFS) queue in a sta-

tus update system. If status update frequency is low, then the queuing delay of the

packets would be small, thus leading to a smaller end-to-end delay. However, the age

at the receiver would increase since the information becomes stale before a new up-

date arrives. On the other hand, high-frequency updates would cause longer queuing

delays and higher age because of the waiting time in the queue [12].

The most commonly used age-related metric is the average age, i.e., the time-average

AoI. Although it is a key performance indicator in status update systems, it is not

enough to fully represent the timeliness of the information. In some applications such

as URLLC, the age violation probability, i.e., the probability that instantaneous age

exceeds a threshold, is required to be kept low. In this thesis, we focus on minimizing

the age violation probability.

In age-aware status update systems such as autonomous driving, augmented reality

and factory automation, information packets generally have a small number of bits;

hence the term short packet communications is used to describe such communication

systems. Short packet communications have certain disadvantages. In conventional

communication networks where long packets are transmitted, the distortions caused

by the propagation channel and the thermal noise are averaged out. With short pack-

ets, this is not possible. Thus, in short packet communication, Shannon capacity [13],

which is based on infinite blocklength, cannot be used as a performance metric. The

results of classic information theory do not apply to short packet transmissions [14].

Instead, finite blocklength theory approximations need to be considered [15].

The main problem in short packet transmissions with AoI in consideration is the se-

lection of the finite blocklength. A large blocklength implies that more redundancy

bits are added to information packets; thus, the error probability is small. However, a

large blocklength directly increases the transmission time of the packet and the age at

the receiver even if the transmission is successful. On the other hand, a small block-

length results in a short transmission time, with the disadvantage of a higher error

probability which will increase the age at the receiver. So, there exists a trade-off in

the selection of the blocklength. One of our purposes in this thesis is to select the

blocklength dynamically so that the age violation probability is minimized.
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Adaptive modulation and coding (AMC) is another approach to the age optimization

problem. In communication systems, the number of bits that will be transmitted in

one symbol is defined by the modulation and coding scheme (MCS); thus, it directly

affects the age. While MCSs with higher modulation order and coding rate shorten the

transmission time of a packet, the probability of an erroneous transmission is higher.

On the other hand, MCSs with lower modulation and coding rates yield lower error

probability but longer transmission time. Hence, similar to blocklength selection,

MCS selection also faces a trade-off regarding age optimization. In this study, we aim

to overcome this trade-off by selecting the MCS dynamically in order to minimize the

age violation probability.

For the adaptive selection of the blocklength and MCS, we utilize reinforcement

learning and dynamic programming methods. Reinforcement learning (RL) is one

of the three types of machine learning, along with supervised learning and unsuper-

vised learning, and it has been widely used for optimization problems. Reinforcement

learning is based on the interaction between a decision-maker called the agent and an

environment, and its aim is to maximize an accumulated reward. The agent does not

know about the environment dynamics or the possible consequences of its actions,

and it learns entirely by trial and error. Dynamic programming (DP), on the other

hand, requires an exact mathematical model of the environment. In dynamic pro-

gramming, complex problems are broken down into simple subproblems, and these

subproblems are solved in a recursive manner. Thus DP methods are generally used

in cases with optimal substructures and overlapping subproblems.

For the blocklength selection problem, RL and DP methods are sufficient. How-

ever, the MCS selection problem requires utilizing more complex learning methods

because it presents a more complicated problem with large numbers of states and

actions. Hence, we use deep reinforcement learning (DRL), which is the combina-

tion of reinforcement learning with deep learning. DRL methods make use of neural

networks (NN) to solve reinforcement learning problems.
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1.1 Related Work

One of our main goals in this study is to find the optimal blocklength that minimizes

the probability of age violation. Our motivation comes from the numerous works

in the literature showing the existence of an optimal blocklength that minimizes the

age-related metrics. In [16], the average age is analyzed for three different packet

management schemes, and it is shown that the average age is minimized with an

optimal blocklength. In [17], the average age in M/G/1/1 queues with incremental

redundancy (IR) hybrid automatic repeat request (HARQ) and fixed redundancy (FR)

HARQ is analyzed. It is shown that for both policies, average age is minimized by an

optimal blocklength. [18] also works on IR-HARQ scheme along with simple auto-

matic repeat request (ARQ). The average age in the two schemes is formulated, and

optimal blocklength for minimum average age is found. In [19], single transmission

and HARQ schemes are compared in terms of average age, and for both schemes,

the average age is minimized at certain blocklengths. Results of [20] display the

ideal blocklength for minimum average age in a URLLC system with a decode-and-

forward relay scheme. In [21], age and energy trade-off in a dual-hop status update

system is discussed, and it is found that an optimal blocklength minimizes the average

age but maximizes the energy cost. In [22], average age is analyzed in a dual-queue

system in which short information packets flow in parallel paths. While it is shown

that the dual-queue outperforms the single queue in terms of average age; in both

systems, average age is minimized with an ideal blocklength.

There are also many studies that focus on age-related metrics other than the average

age. In [23], an M/G/1 queue with ARQ and HARQ schemes is considered. It is

shown that there is an optimal blocklength minimizing both the peak age and the

average age. [24] analyzes delay violation and peak age violation probabilities in

steady state, adopting frame-synchronous and frame-asynchronous system models.

Results show that optimal blocklength exists for both minimum delay violation and

maximum throughput. In [25], an age-aware machine type communications (MTC)

system is considered. Age violation probability and average age are investigated,

and it is shown that the optimal blocklengths that minimize the two metrics may

differ. [26] considers a downlink cellular network where base stations (BS) transmit
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packets to a user with finite blocklength, and derives the age violation probability

and the average age. As in [25], it is shown that the two metrics are minimized with

different optimal blocklengths.

Since it exists as confirmed by many studies, some of which we mentioned above,

optimizing the blocklength has been a topic of discussion. In [27], an adaptive block-

length selection scheme is proposed for minimizing end-to-end delay minimization.

A variable transmission time interval (V-TTI) approach is adapted with a dynamic

buffering model, and a blocklength optimization method is proposed. Also, a re-

source allocation scheme based on multiple DQNs is suggested, used for adaptive

allocation of bandwidth and TTI for multiple users. In [28], the correlation between

age and delay is investigated analytically in finite blocklength regime, and a method

for joint optimization of age and delay is proposed based on optimal blocklength and

update rate selection. In [29], the AoI of wireless sensor networks is studied in the

FBL regime. To minimize the long-term discounted AoI of the system, an adaptive

blocklength allocation scheme based on Q-learning is proposed. The same authors

propose a recursive optimization method for mitigating AoI outage, i.e., AoI being

critically high, in [30]. AoI outage probability in steady-state is analyzed, and a re-

cursive policy optimizer is presented. In [31], the average age of a two-hop relay

working with a decode-and-forward rule is investigated. An iterative algorithm is

proposed for joint optimization of blocklengths allocated to both hops to minimize

the average age. Our study differs from the ones mentioned above as it focuses on

the age violation probability and proposes a dynamic blocklength selection method

based on reinforcement learning and dynamic programming that adapts to the varying

channel conditions.

Although reinforcement learning is commonly used in age-related problems, the ma-

jority of the studies are on scheduling and resource allocation [32–37]. Age opti-

mization or minimization with RL methods is also popular in many energy harvest-

ing [38–41] and UAV trajectory planning [42–45] applications.

There are also some work in the literature that use reinforcement learning techniques

for adaptive modulation and coding in order to optimize traditional performance met-

rics. In [46], Q-learning is used for adaptively selecting the MCS in a 5G framework.
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A mapping between the channel conditions and suitable MCSs is obtained to maxi-

mize the spectral efficiency while a low block error rate (BLER) is maintained. [47]

proposes an algorithm for spectral efficiency maximization in orthogonal frequency-

division multiplexing (OFDM) wireless systems. The RL-based algorithm learns to

select the best MCS according to the signal-to-noise ratio. In [48], goodput is maxi-

mized by using an actor-critic method for link adaptation, optimizing both the MCS in

the physical layer (PHY) and frame size in the medium access control (MAC) layer in

an IEEE 802.11n framework. [49] proposes an RL-based dynamic radio resource al-

location for meeting key performance indicator (KPI) requirements in heterogeneous

virtual radio access networks using differential semi-gradient State-Action-Reward-

State-Action (SARSA) algorithm. In [50], multiple Deep Deterministic Policy Gra-

dient agents are used for MCS selection and power allocation in order to maximize

link-level throughput. [51] tackles the outdated channel state information (CSI) prob-

lem and proposes an adaptive modulation method based on deep reinforcement learn-

ing. [52] addresses MCS selection for maximizing the throughput in an Internet of

Vehicles (IoV) framework. An RL approach is utilized for selecting the appropriate

MCSs for each vehicle. In [53], again, the aim is to maximize the throughput, but in

a 5G mobile network. Q-learning is used with a neural network to obtain an adaptive

MCS and transmission rank selection method. MCS selection in age-aware systems

has been considered only in [54], where an AoI-driven scheduler compliant with 5G

standards is proposed to minimize the average age.

Outer loop link adaptation (OLLA) [55] is a baseline technique applied for adaptive

modulation and coding. It is an addition to inner loop link adaptation (ILLA), which

is a fixed lookup table method, mapping the CQI to the highest MCS that satisfies the

block error rate requirement. OLLA improves ILLA by adjusting the SNR according

to the positive or negative acknowledgment following a transmission; thus, the effects

of delayed CQI or quantization errors are avoided. Although quite functional, OLLA

has drawbacks such as slow or no convergence, and it can not fully adapt to non-

stationary channel conditions. [56] proposes a dynamic OLLA algorithm that adapts

to the variability of the SNR, hence improving the robustness of traditional OLLA.

[57] suggests adjusting the OLLA parameters according to the convergence status.

To the best of our knowledge, our study is the first to propose a reinforcement learning
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based dynamic MCS selection method to minimize the age violation probability and

provide superior performance compared to baseline methods. Similarly, while there

are numerous studies on optimal blocklength in age-aware systems, some of which we

have mentioned previously, we present a novel method of dynamically selecting the

optimal blocklength according to channel conditions based on reinforcement learning,

and we consider not average age but the age violation probability.

1.2 Objectives, Contributions, and Thesis Structure

Our main objective is to minimize the age violation probability by adaptive selection

of the blocklength or modulation and coding scheme (MCS), and the main contribu-

tions of this thesis are as follows:

• We propose two adaptive blocklength selection methods for minimizing the

age violation probability. First, we utilize a dynamic programming method that

uses the known system characteristics to select the appropriate blocklength for

the current channel conditions. Secondly, we propose a reinforcement learning

algorithm for obtaining an adaptive policy that chooses the optimal blocklength

without actually knowing the system characteristics.

• We propose a deep reinforcement learning (DRL) approach to the MCS se-

lection problem for the minimization of age violation probability. Using deep

Q networks, we adopt a DRL policy that dynamically selects the appropriate

MCS among the available MCSs defined in 5G standards to minimize the age

violation probability.

The structure of the thesis is as follows: In Chapter 2, we present background in-

formation on Age of Information (AoI) and finite blocklength theory. We provide an

overview of reinforcement learning (RL) and go over the dynamic programming (DP)

and RL methods used in the proposed solutions. In Chapter 3, we present the block-

length selection problem with a detailed system model. We explain our DP and RL

based approaches and demonstrate their performances in comparison to fixed block-

length schemes. In Chapter 4, we study age violation probability minimization with
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MCS selection. We describe our deep RL based solution and compare the perfor-

mance of our solution with the baseline methods, namely, ILLA and OLLA. Lastly,

in Chapter 5, we summarize the thesis.

1.3 Scientific Contributions

Part of Chapter 3 was presented at the 30th IEEE Conference on Signal Processing

and Communication Applications (SIU 2022) and has received the IEEE Best Student

Paper Award [58].
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CHAPTER 2

CONCEPTUAL FRAMEWORK

This chapter provides background information on subjects discussed in further chap-

ters. Firstly, we explain the AoI and finite blocklength concepts. Then, we present

an overview of Markov decision processes (MDP), dynamic programming, reinforce-

ment learning (RL) and deep RL methods used in this thesis.

2.1 Age of Information

Age of Information (AoI) is a metric that characterizes the timeliness or freshness of a

monitor’s knowledge about a process or an entity [2] and is an important performance

indicator in status update applications. AoI is expressed as [4]

∆(t) = t− u(t), (2.1)

where u(t) is the time stamp, i.e., the generation time of the last update the monitor

has successfully received. A general model for a status updating system is depicted

in Figure 2.1. The source generates packets to be transmitted to the monitor through

the network. We can observe two AoI processes here: ∆1(t) represents the age of the

packet at the source side, whereas ∆(t) is the age at the monitor side.

Figure 2.2 shows new packets arriving at the system at times t1, t2, .... At each ti,

∆1(t) is reset to zero because of fresh updates. If there is no incoming fresh update,

∆1(t) increases with unit rate at each time instant. t′1, t
′
2, ... in Figure 2.2 denote the

time instants when packets are received successfully at the monitor. At each t
′
j , ∆(t)
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Figure 2.1: A general model of a status update system. The source generates status
updates. ∆1(t) denotes the age of the packet at the source side. The updates are
transmitted to a monitor through the network. The age at the monitor is expressed as
∆(t). (Figure retrieved from [2, Fig.1(a)]

Figure 2.2: The ages at the source side, ∆1(t) and the receiver side, ∆(t) (Figure
retrieved from [2, Fig.1(b)]

is reset to ∆(t
′
j) = t

′
j − tj , i.e., the age of the jth packet when it is delivered. During

the transmission of a packet or when there is no fresh update, ∆(t) also grows at unit

rate. Thus, both ∆1(t) and ∆(t) follow a sawtooth pattern.

There are different metrics related to age. One of the most commonly used metrics is

the time-average age [2]. For large enough T , the time-average age is

⟨∆⟩T =
1

T

∫ T

0

∆(t)dt. (2.2)

Average age analysis has been the topic of discussion in many works in the literature

[59–63]. A method of analyzing the average age is to use graphics such as in Figure

2.2: The area under the ∆(t) curve can be decomposed into trapezoidal areas such

as Qn. Denoted with Yn = tn − tn−1 and Tn = t
′
n − tn are the interarrival time and

10



service time of the nth update, respectively. For a stationary ergodic (Yn, Tn) process,

time average AoI ∆ = limT→∞⟨∆⟩T can be calculated as ∆ = E[Qn]/E[Yn] [2].

Peak age is another important measure of timeliness, indicating the value of age just

before an update is correctly received [64]. In Figure 2.2, peak AoI values are dis-

played as An. Mathematically, peak AoI can be expressed as An = Tn−1 +Dn where

Dn = t
′
n − t

′
n−1 is the interdeparture time. In some applications, such as factory au-

tomation and autonomous driving, ensuring the freshness of data is critical. In such

cases, age of the data received at the monitor should be below a predetermined thresh-

old value, or else it becomes outdated and irrelevant [65]. This situation is called peak

age violation, which is further studied in [24, 66, 67].

In this thesis, we focus on a timeliness measure similar to peak age violation, namely,

age violation, which is defined as the event that the age exceeds a threshold. Age vio-

lation differs from peak age violation as it is concerned on the timeliness of the whole

process instead of only the peak age. Hence, age violation considers the extreme AoI

incidents with a very low probability of happening [66]. Therefore, in applications

with stringent requirements such as URLLC, age violation is a more relevant metric

for measuring the timeliness compared to average or peak age. Our aim is to min-

imize the probability of age violation, as studied in [66, 68–70]. Let us denote the

threshold with ∆max; then the age violation probability is expressed as

Pav(∆max) = P (∆(t) > ∆max). (2.3)

We measure the age violation probability by calculating the ratio of time in which

∆(t) exceeds the threshold to the total time T [2]:

Pav(∆max) = lim
t→∞

1

T

∫ T

0

1(∆(t) > ∆max)dt, (2.4)

where 1(·) is the indicator function.
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2.2 Finite Blocklength Theory

In communication systems, information payload refers to the raw information packet

coming from a source. At the transmitter, the information payload is mapped to a

signal to be transmitted over a wireless channel, and this mapping is called channel

coding. The length of the packet after channel coding is the blocklength, represented

with n. A blocklength of n means that n channel uses are required to transmit the

information payload [14].

In status update applications mentioned before, machine-to-machine communications

and URLLC systems, n values are considerably small; hence the term short packet

transmission is generally used to characterize the transmissions in these systems.

Short packet transmission is a challenge for several reasons. Firstly, traditional wire-

less communication systems are not suitable for transmission of short packets: After

channel coding and transmission through the channel, the information payload needs

to be recovered from the signal distorted by the channel and noise. Shannon’s the-

orem [13] states that for long packets, i.e., for large n, channel codes with a very

high probability of recovering the information payload exist. This is because, with

long packets, the effects of noise and channel distortion are averaged out according

to the law of large numbers. However, this is not the case for short packets. An-

other difference in short packet transmission is that since the information payload in

a coded packet is small, the size of the control information (generally referred to as

metadata) is not negligible as in long packet transmissions. This leads to a decrease

in the efficiency of the transmission [14].

Finite blocklength (FBL) information theory has been a heavily discussed topic in or-

der to address the problems with transmission of short packets. The work of Polyan-

skiy et al. in 2010 [15] has been a great improvement in FBL theory, as it provided

formulations and bounds on maximal achievable coding rate in short packet transmis-

sions.

When an information payload consisting of k bits is mapped to a packet with block-

length n, the ratio k/n expresses the coding rate (R). The packet error probability

(Pe), i.e., the probability of an erroneous transmission is strongly related to the rate.
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The maximum coding rate with packet length n and packet error probability ϵ is

shown with R∗(n, ϵ), implying the largest rate at which an encoder/decoder pair with

packet length n and Pe lower than ϵ exists. [15] provides the following fundamental

formulation of the maximum coding rate for FBL codes in additive white Gaussian

noise (AWGN) channel:

R∗(n, ϵ) = C −
√

V

n
Q−1(ϵ) +O

( log n
n

)
. (2.5)

Here, C denotes the capacity; the largest rate k/n with an arbitrarily small probability

of error when the packet is sufficiently long:

C = lim
ϵ→0

lim
n→∞

R∗(n, ϵ). (2.6)

The capacity depends on the signal-to-noise ratio (SNR) γ:

C(γ) = log2(1 + γ). (2.7)

V denotes the channel dispersion, which is a measure of the stochastic variability of

the channel in comparison to a deterministic channel with the same capacity. It also

depends on the SNR as follows:

V (γ) =
γ(γ + 2)

2(γ + 1)2
log22(e). (2.8)

Lastly, O(log n/n) is the remainder term, and Q(·) is the tail distribution function of

the standard normal distribution:

Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt. (2.9)

The study of finite blocklength theory has been extended to different channel models

such as Rayleigh block-fading channels with multiple antennas [71] and quasi-static
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fading channels [72], and its practical impact on short packet communications were

further discussed in [14, 73, 74].

2.2.1 Modulation in FBL Regime

In this thesis, we aim to minimize the age violation probability not only with block-

length selection, but also with the proper selection of modulation and coding scheme

(MCS). However, in [15], an infinite constellation is assumed; thus, Eqn. 2.5 is not

suitable for practical systems with constellation diagrams consisting of a limited num-

ber of points such as M-ary quadrature amplitude modulation (M-QAM). In such

cases, we can not use the capacity definition in Eqn. 2.7. Instead, we need to use the

following mutual information bound [75]:

I(γ,M) = log2M

− 1

Mπ

M∑
i=1

[ ∫
e−||y−√

γxi||2 × log2

( M∑
k=1

e−||y−√
γxi||2−||y−√

γxk||2
)
dy

]
.

(2.10)

Here, an M-QAM constellation with equiprobable symbols is assumed. γ is the SNR

at the receiver, xi ∈ XM is the M-QAM constellation point from the symbol set XM ,

and y is the received signal. In [76], the authors provide the following approximation

for I(γ,M) based on multi-exponential decay curve fitting (M-EDCF):

I ′(γ,M) ≈ log2M ×
(
1−

kM∑
j=1

ε
(M)
j e−ϑ

(M)
j γ

)
. (2.11)

The coefficients ε(M)
j and ϑ

(M)
j are provided (see Table 2.1 and 2.2) and the approxi-

mation is shown to be in correspondence with the simulation results.

For calculating the maximum coding rate in an equiprobable M-QAM constellation,

the capacity C in 2.5 is replaced with I ′(γ,M) [75], with V and Q defined the same

as in Eqn. 2.8 and 2.9, respectively:
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Table 2.1: Fitting Coefficients for M-QAM in (2.11)

M∗ kM ε
(M)
1 ε

(M)
2 ε

(M)
3 ε

(M)
4 ε

(M)
5 ε

(M)
6

256 6 0.1187 0.3652 0.1658 0.2058 0.1066 0.0379
64 5 0.0435 0.2298 0.1469 0.4452 0.1346 –
16 4 0.2175 0.0486 0.1802 0.5537 – –
4 3 0.7355 0.2402 0.0243 – – –

Table 2.2: Fitting Coefficients for M-QAM in (2.11) - Continued

M∗ kM ϑ
(M)
1 ϑ

(M)
2 ϑ

(M)
3 ϑ

(M)
4 ϑ

(M)
5 ϑ

(M)
6

256 6 0.5817 0.0065 0.1734 0.0497 0.0142 1.770
64 5 1.8741 0.1922 0.6441 0.0262 0.0537 –
16 4 0.7442 2.0559 0.2069 0.1090 – –
4 3 0.5448 1.0226 3.0367 – – –

R∗(n, ϵ,M) = I ′(γ,M)−
√

V

n
Q−1(ϵ) +O

( log n
n

)
. (2.12)

2.3 Reinforcement Learning Overview

Reinforcement Learning (RL) is a type of machine learning (ML) where an agent,

the learner and decision maker, learns to maximize an accumulated reward by trial

and error in an interactive environment. Figure 2.3 shows the interaction between

the agent and the environment, which can be described as follows: At each time step

t, the agent obtains the environment’s state St ∈ S . Based on the current state, it

chooses an action At ∈ A. As a result of this action, the agent observes the new

environment state St+1, and a numerical reward Rt+1 ∈ R in the next time step. The

reward is an indication of the effect of the action on the environment.

Major components of an RL agent are policy, value function, and model [77]:

• Policy is a mapping from state to action, defining the agent’s behavior. Policy

can be deterministic (a = π(s)) or stochastic (π(a|s) = P (At = a|St = s)).
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Figure 2.3: Interaction between the agent and the environment in an RL framework

• State-value function is the discounted accumulation of the future rewards given

state s, following policy π, and it is a measure of the state’s value:

vπ(s) = E[Rt+1 + ΓRt+2 + Γ2Rt+3 + ...|St = s], (2.13)

where Γ ∈ [0, 1) is the discount factor.

• Action-value function is similarly the discounted accumulation of the future

rewards given action a and state s, following policy π, and it implies how good

it is to take action a in state s:

Qπ(s, a) = E[Rt+1 + ΓRt+2 + Γ2Rt+3 + ...|St = s, At = a]. (2.14)

The relation between vπ(s) and Qπ(s, a) is expressed as

vπ(s) =
∑
a∈A

π(a|s)Qπ(s, a). (2.15)

• Model is a description of the environment dynamics, including state transition

probabilities Pa
ss′ ∈ P and expected reward Ra

s ∈ R. Pa
ss′ refers to the proba-

bility of going from state s to state s′ by taking action a whileRa
s is the reward

expected when action a is chosen in state s:

Pa
ss′ = P (St+1 = s′|St = s, At = a). (2.16)

Ra
s = E[Rt+1|St = s, At = a]. (2.17)
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The accumulated discounted reward mentioned before is called return:

Gt = Rt+1 + ΓRt+2 + Γ2Rt+3 + ... =
∞∑
k=0

ΓkRt+k+1. (2.18)

Combining Eqn. 2.13 and 2.18, it can be seen that the expected return starting from

the state s gives us the state-value function of s, and it is possible to evaluate vπ(s) in

a recursive form:

vπ(s) = E[Gt|St = s]

= E[Rt+1 + ΓRt+2 + Γ2Rt+3 + ...|St = s]

= E[Rt+1 + Γ(Rt+2 + ΓRt+3 + ...)|St = s]

= E[Rt+1 + ΓGt+1|St = s]

= E[Rt+1 + Γvπ(s
′)|St = s].

(2.19)

The last part of Eqn. 2.19 gives us the recursive form of the state-value function.

Similarly, Qπ(s, a) can be expressed as

Qπ(s, a) = E[Rt+1 + ΓQπ(s
′, a′)|St = s, At = a]. (2.20)

Both vπ(s) and Qπ(s, a) can be written in terms of the state transition probabilities

Pa
ss′ and reward functionsRa

s :

vπ(s) =
∑
a∈A

π(a|s)
(
Ra

s + Γ
∑
s′∈S

Pa
ss′vπ(s

′)
)
. (2.21)

Qπ(s, a) = Ra
s + Γ

∑
s′∈S

Pa
ss′

∑
a′∈A

π(a′|s′)Qπ(s
′, a′). (2.22)

Eqs. 2.21 and 2.22 are called Bellman expectation equations for state-value function

and action-value function, respectively [77].
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The maximum state-value function over all policies is the optimal state-value func-

tion, v∗(s) = maxπ vπ(s). Likewise, Q∗(s, a) = maxπ Qπ(s, a) is the optimal action-

value function over all policies. For optimal value functions, Eqs. 2.21 and 2.22

become Bellman optimality equations:

v∗(s) = max
a
Ra

s + Γ
∑
s′∈S

Pa
ss′v∗(s

′). (2.23)

Q∗(s, a) = Ra
s + Γ

∑
s′∈S

Pa
ss′ max

a′
Q∗(s

′, a′). (2.24)

There are various iterative methods for solving the optimality equations, some of

which we will explain in detail in the future sections.

2.4 Markov Decision Process

Markov Decision Process (MDP) is a stochastic control process generally used in

RL problems for a complete description of an environment. An MDP is a 5-tuple

⟨S,A,P ,R,Γ⟩ [78]. The elements of the tuple are defined as follows:

• State space S : The set consisting of all possible states the agent can observe.

• Action space A : The set consisting of all possible actions the agent can take.

• Transition probability space P: The transition model of the system that consists

of state transition probabilities Pa
ss′ , as defined in Eqn. 2.16.

• Reward function R : S × A → R. R is the set of possible rewards Ra
s (see

Eqn. 2.17)

• Discount factor Γ ∈ [0, 1]: Discount factor determines the importance given to

future rewards.
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2.5 Dynamic Programming

Dynamic programming (DP) is a set of methods used in problems with optimal sub-

structure and overlapping problems [79]. Having an optimal substructure means that

Bellman’s principle of optimality [80] applies: An optimal solution consists of subso-

lutions that are the optimal solutions of subproblems. On the other hand, overlapping

problems refer to recurring subproblems whose solutions can be saved and reused.

MDPs fit into the category of problems handled with DP because of the recursive de-

composition provided by Bellman’s equation (see Eqn. 2.23), and the value function

storing and reusing the solutions [77]. Dynamic programming methods require full

knowledge of the system model, i.e., the state transition probabilities and the reward

models.

In this study, we focus on value iteration, which is a DP method for finding an optimal

policy based on the state-value function.

2.5.1 Value Iteration

In a dynamic programming approach, the problem of finding the optimal state-value

function v∗(s) is decomposed into subproblems v∗(s
′). If the solutions to v∗(s

′) are

known, then the solution of v∗(s) can be found (see Eqn. 2.23).

In value iteration (VI) method, v∗(s) is updated iteratively. First, for all s ∈ S, v(s)

are initialized. At each iteration, state-value functions of all states s ∈ S are updated,

using the maximum of all possible actions. The iteration terminates when the changes

in v(s) in consecutive iterations become arbitrarily small. Detailed instructions for

value iteration are given in Algorithm 1.

The outcome of the value iteration is a deterministic policy, mapping the states to

actions:

π(s) = argmax
a
Ra

s + Γ
∑
s′∈S

Pa
ss′v∗(s

′). (2.25)
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Algorithm 1 Value Iteration [81]

Initialize v arbitrarily, e.g. v(s) = 0, for all s ∈ S
Repeat

∆← 0

For each s ∈ S:

v ← v(s)

v(s)← maxa Ra
s + Γ

∑
s′∈S

Pa
ss′v(s

′)

∆← max(∆, |v − v(s)|)

until ∆ < θ (a small positive number)
Output a deterministic policy π such that
π(s) = argmaxa

∑
s′

Pa
ss′ [Ra

s + Γv(s′)]

2.6 Q-Learning

The solution of the optimal action-value function in Eqn. 2.24 requires knowledge of

the state transition probabilities and reward models. However, it may not be possible

to obtain a complete model of the environment dynamics in many problems. In such

cases, model-free methods that learn by trial and error should be used.

One of the most commonly used model-free methods is Q-learning, a reinforcement

learning algorithm that aims to find the optimal action-value function, or Q-function,

Q∗(s, a) (see Eqn. 2.24). Q-learning is an off-policy temporal difference (TD) al-

gorithm. The agent has no prior knowledge about the environment, and it learns

through episodes of trial and error, following a behavior policy that is different from

the learned target policy to generate behavior [81, p.103].

The Q-learning agent faces a trade-off between exploration and exploitation [82]. Ex-

ploitation refers to choosing the action with the highest action-value estimate; hence

it is also called the greedy approach. On the other hand, exploration is choosing a

non-greedy action to improve its estimate. ε-greedy is a simple strategy to balance

the exploration-exploitation trade-off: With probability ε, the agent chooses a random

action, and with probability 1− ε, it chooses a greedy action.
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At each step in an episode of the Q-learning algorithm, the agent chooses an action

according to the ε-greedy policy, and observes the reward r and new state s′. Then

the Q-function is updated according to the following rule:

Q(s, a)← Q(s, a) + α(r + Γmax
a′

Q(s′, a′)−Q(s, a)). (2.26)

The parameter α, 0 ≤ α ≤ 1, is the learning rate or step size. It is a measure of

the prominence given to new value compared to the old value. A higher learning rate

implies more rapid changes in Q(s, a). Under the assumption that all state-action

pairs continue to be updated, and the parameters ϵ and α are set correctly, Q(s, a)

converges to the optimal value Q∗(s, a) [81].

Q-learning algorithm is given in detail in Algorithm 2

Algorithm 2 Q-Learning [81]

Algorithm parameters: step size α ∈ (0, 1], small ε > 0, discount factor Γ ∈ (0, 1]
Initialize Q(s, a) arbitrarily ∀s ∈ S and ∀a ∈ A
Repeat (for each episode)

Initialize s

Loop for each step of episode:

Choose a from s using policy derived from Q (e.g., ϵ-greedy)

Take action a, observe r, s′

Q(s, a)← Q(s, a) + α(r + Γ ∗maxa′ Q(s′, a′)−Q(s, a))

s← s′

until s is terminal

2.7 Deep Reinforcement Learning

In many decision-making problems with large state spaces, traditional RL algorithms

such as Q-learning fails to be an adequate solution. The main reason is that Q-learning

is a tabular method: action-value functions Q(s, a) for all states s ∈ S and actions

a ∈ A are stored in a table, which becomes impractical for large numbers of states or
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actions because the required memory and computation resources are too high. Such

complex problems require using tools of deep reinforcement learning (DRL), i.e., the

integration of deep learning with reinforcement learning [82]. Deep reinforcement

learning is a function approximation technique that uses deep neural networks (DNN).

The action-value function Q(s, a) is approximated by Q(s, a; θ), where θ is the vector

consisting of the weights of the DNN mimicking the actual Q(s, a).

A basic model of the deep neural network used in DRL is shown in Figure 2.4. The

network can also be called a deep Q network (DQN). It consists of an input layer,

L hidden layers and an output layer. The network takes a state as an input, and as

outputs, it gives the action-value functions for all possible actions.

The DQN agent learns with experiences. An experience can be represented with a

(s, a, r, s′) tuple: The state s, the action a taken in state s, the reward r obtained by

taking action a in state s, and the resulting next state s′. A replay buffer with a limited

size stores the experiences, and to train the network, a batch of experiences is sampled

randomly from the buffer. This method improves stability because it eliminates the

correlations between the samples and covers a wider variety of state-action pairs [83].

Another feature of DQN that limits the instabilities is the usage of two networks in

the training process: the main network and the target network. The main network

is represented with the action-value function with weight vector θ (Q(s, a; θ)), and

the target network is shown as Q̂(s, a; θ−). While main network is actively trained,

the target network is updated at every N episodes. The purpose is to prevent rapid

changes in Q̂(s, a; θ−), and avoid chasing a moving target. This improves the stability

and raises the probability of convergence.

Figure 2.5 shows the main components of the DQN and the information flow between

them. At each time step in an episode, the agent chooses an action a with an ε-greedy

approach: with probability ε, a random action is selected. Otherwise, the action with

the maximum Q value is selected. Execution of action a results in reward r and state

s′. The experience (s, a, r, s′) is stored in the replay buffer. The agent is trained with

a minibatch of experiences sampled randomly from the replay buffer. The difference

between the actual and predicted results, i.e., gradient loss (L(θ)), is calculated:
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Figure 2.4: The structure of a deep neural network. The first layer takes the state as
input. Hidden layers are located between the input and output layers. At the output
layer, Q-functions of all of the actions are given.

L(θ) = ((r + Γmax
a′

Q̂(s, a; θ−))−Q(s, a; θ))2. (2.27)

As the training processes, the loss is expected to converge to arbitrarily small values.

Lastly, at every N episodes, the weights of the main network are copied to the target

network. The algorithm for deep Q-learning is given in Algorithm 3.
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Figure 2.5: DRL model showing the information flow between the components. The
main network selects action a according to the state s of the environment. The envi-
ronment responds with reward r and next state s′, and the tuple of (s, a, r, s′) is stored
in the replay buffer. A minibatch of experiences is sampled randomly from the replay
buffer for training. Gradient loss is calculated. At every N episodes, the weights of
the main network are copied to the target network.

24



Algorithm 3 Deep Q-learning with Experience Replay [82]
Initialize replay memory D to capacity L
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with random weights θ−
for episode = 1, M do

Initialize state st

for t = 1, T do

With probability ε, select a random action at

otherwise, select at = maxaQ
∗(st, a; θ)

Execute action at and observe reward rt and state st+1

Store transition (st, at, rt, st+1) in D
Set st+1 = st

Sample random minibatch of transitions (sj, aj, rj, sj+1) from D

Set yj =

{
rj for terminal sj+1

rj + Γmaxa′ Q̂(sj+1, a
′; θ) for non-terminal sj+1

Perform a gradient descent step on (yj −Q(sj, aj; θ))
2

In every N steps, reset Q̂ = Q, i.e., set θ− = θ

end

end
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CHAPTER 3

ADAPTIVE BLOCKLENGTH SELECTION FOR MINIMIZING AGE

VIOLATION PROBABILITY

In this chapter, we demonstrate the system model for the blocklength selection prob-

lem and present our solutions based on dynamic programming and reinforcement

learning. We provide simulation results comparing our methods’ performances with

baseline solutions.

3.1 System Model

We consider a single-server queue with capacity 2, where information packets are

generated at the source according to Bernoulli distribution. The probability of a new

packet arrival in one channel use (CU) is λ. The queue works with Last Come First

Serve (LCFS) policy, specifically, LCFS with preemption in the queue (LCFS-Q)

as defined in [67]. According to the policy, if a new packet generated at the source

arrives at the queue while it is empty, it is immediately sent to the server. On the other

hand, if the queue is non-empty at the time of the new arrival, the packet waiting in

the queue is discarded, and replaced by the newly arrived packet in the queue. It has

been shown in [64] that LCFS policy is advantageous compared to First Come First

Serve (FCFS) policy in applications where the main concern is AoI or delay.

The packet generated at the source consists of k information bits. At the server, it

is mapped to a codeword with blocklength n, and then transmitted to the receiver

through the wireless channel. Figure 4.1 depicts our system model.

The channel model is assumed to be a memoryless block-fading Rayleigh channel:
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Figure 3.1: System model for the blocklength selection problem

the fading coefficient stays constant for a block of symbols [84]. Here we assume that

each transmitted packet experiences identically and independently distributed (IID)

fading coefficients. The input-output relation of the channel is

y = x · h+ w, (3.1)

where x and y are the transmitted and received symbols, respectively. h denotes the

fading coefficient of the channel, and lastly, w is the additive noise.

Channel state information at the transmitter (CSIT) is assumed. Let us denote the

transmit power with P . Assuming noise with standard normal distribution (N (0, 1)),

instantaneous SNR is expressed as

γ = P |h|2. (3.2)

We denote with ϵ the block error rate (BLER), i.e., the probability that the transmitted

packet is not decoded correctly at the receiver. According to finite blocklength theory,

rewriting Eqn. 2.5, BLER for a code with rate R = k/n and SNR γ is [85]:

ϵ(γ) ≈ Q

C(γ)− k
n√

V (γ)
n

 , (3.3)

where C(λ) denotes the channel capacity and V (λ) is the channel dispersion as de-

fined in Eqs. 2.7 and 2.8, respectively.

At any time instant t, the age at the receiver ∆r(t) is defined as the time elapsed since

the generation of the last packet that was successfully received:
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∆r(t) = t− u(t), (3.4)

where u(t) is the time stamp of the packet. Hence, if there is no packet in the system,

the age at the receiver keeps increasing. Similarly, an erroneous transmission also in-

creases the age. Figure 3.2 shows the changes in ∆r(t) resulting from packet arrivals

and successful/unsuccessful transmissions.

Figure 3.2: Age at the receiver (∆r(t)) continues to increase until the packet in service
is transmitted successfully. When a transmission error occurs, the packet in service
is discarded, and the packet in the queue gets service. ∆r(t) is reset to the age at the
queue when a packet is transmitted correctly. When there is no packet in the queue,
∆r(t) keeps increasing.

Our purpose is to minimize the probability that ∆r(t) exceeds a threshold ∆max by

choosing the blocklength dynamically. To calculate the age violation probability, we

use the following formulation:

Pav(∆max) = lim
t→∞

P (∆r(t) > ∆max),

= lim
t→∞

1

T

T∑
t=1

1(∆r(t) > ∆max),
(3.5)

where 1(·) is the indicator function. This is slightly different from the age violation
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probability expression in Eqn. 2.4: Since time is discrete, instead of integration, we

use summation. We count the total number of age violations in a sufficiently long

time T , and dividing it by T gives the age violation probability.

3.2 Proposed Solutions

We propose two solutions for the blocklength selection problem; the first one is based

on value iteration method, while the second one utilizes Q-learning. In both ap-

proaches, we consider our system as a Markov decision process and define the states,

actions, and reward as follows:

• S = (∆q,∆r, CQI)

– Age of the packet in the queue (∆q(t)): The time elapsed since the last

packet arrival to the system.

– Age at the receiver (∆r(t)): Time elapsed since the arrival of the last

successfully decoded packet to the system.

– Channel quality indicator (CQI): A measure of the channel condition de-

pending on the SNR, defined as in [46]:

CQI =


0, SNR ≤ SNRmin,

(Ncqi − 1), SNR ≥ SNRmax,

(SNR−SNRmin)(Ncqi−1)

SNRmax−SNRmin
, otherwise,

(3.6)

where SNRmin and SNRmax are the minimum and maximum SNR val-

ues, respectively, and Ncqi is the total number of CQI states.

In the construction of the state space, we apply state aggregation [86]: we

combine similar states into groups to reduce the number of states, hence

reducing the complexity of the problem. Here, although the time unit is

one channel use, ∆q(t) and ∆r(t) components of the state does not point

to a single value, but a collection of m values. Hence, the mapping from

ages at the queue and the receiver to the states ∆q(t) and ∆r(t) is not

direct.
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• A: The set of blocklengths, plus stay idle action.

• R: The reward includes a function of the age at the receiver, but it also takes

into account the states in which the queue is empty, which we express as

∆q(t) = −1. In these states, since there are no packets to transmit, there should

be no blocklength selection. The system should stay idle until a new packet ar-

rives. Thus, the corresponding state-action pair is given a reward of zero. To

prevent the agent from choosing a blocklength when the queue is empty, we

assign large negative rewards to the corresponding state-action pairs. Similarly,

staying idle when a packet is waiting in the queue also results in such rewards.

Denoting the action of staying idle as a = a0, we formulate the reward function

as follows:

Ra
s =



−1000, ∆q(t) = −1 & a ̸= a0,

−1000, ∆q(t) ̸= −1 & a = a0,

0, ∆q(t) = −1 & a = a0,

−
n∑

k=1

1(∆r(t) > ∆max), otherwise.

(3.7)

3.2.1 Value Iteration Based Adaptive Blocklength Selection

As a dynamic programming method, value iteration requires knowledge of the state

transition probabilities Pa
ss′ and reward function Ra

s given in Eqs. 2.16 and 2.17, re-

spectively. Thus, we need to consider all possible state transitions and mathematically

express their probabilities.

Let us start with the case where the queue is empty (∆q(t) = −1). When in this

state, the system remains idle for one CU. The next state depends on whether there is

a new arrival or not in the current CU. Let us define a function f(i, j) for j ≤ i where

f(i, j) = 1 means that in a time duration of i CUs, the last packet arrival occurred

during the jth CU. Whereas, f(i, j) = 0 ∀j refers to the case of no packet arrivals

throughout the i CUs. For an arrival rate of λ, corresponding probabilities of these

two events can be written as
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P (f(i, j) = 1) = λ · (1− λ)i−j. (3.8)

P (f(i, j) = 0) = (1− λ)i. (3.9)

The change in state ∆q depends on the outcome of f(1, 1):

∆q(t+ 1) =

−1, ∆q(t) = −1 & f(1, 1) = 0,

0, ∆q(t) = −1 & f(1, 1) = 1.
(3.10)

In both scenarios (packet arrival or no packet arrival), there is not any successful

transmission, hence the age at the receiver increases:

∆r(t+ 1) = ∆r(t) + 1. (3.11)

When ∆q(t) ̸= −1, i.e., there is a packet at the service, the probabilities about ∆q

and ∆r need to be calculated. ∆q(t+ n) depends on whether a new packet arrived to

the queue during n CUs, while ∆r(t+ n) depends on whether a block error occurred

or not:

∆q(t+ n) =

−1, ∆q(t) ̸= −1 & f(n, j) = 0 ∀j,

n− j, ∆q(t) ̸= −1 & f(n, j) = 1.
(3.12)

∆r(t+ n) =

∆r(t) + n, with probability ϵ,

∆q(t) + n, with probability (1− ϵ).
(3.13)

Different from ∆q(t) and ∆r(t), the change in the CQI state is completely indepen-

dent of other states and the previous CQI state. SNR is calculated as γ = P |h|2

where the channel coefficient h is a Rayleigh random variable. Since the probability

density function of the Rayleigh distribution is known, probabilities corresponding to
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the defined SNR, hence CQI, intervals can be calculated.

Knowing Pa
ss′ , we can calculate the expected reward and find the optimal policy using

Algorithm 1. First, we initialize the state-value function v(s) for all s ∈ S . At each

iteration, state-value functions of all states are updated. In each state, we calculate

the following for all actions a ∈ A:

Ra
s + Γ

∑
s′∈S

Pa
ss′v(s

′). (3.14)

Then we find the action that maximizes 3.14, and update v(s) according to the fol-

lowing rule:

v(s)← max
a
Ra

s + Γ
∑
s′∈S

Pa
ss′v(s

′). (3.15)

After completing the iterations, we obtain a deterministic policy, i.e., a mapping from

the states s to the actions a:

π(s) = argmax
a

∑
s′

Pa
ss′ [Ra

s + Γv(s′)]. (3.16)

Table 3.1 lists the parameters we use in value iteration based adaptive blocklength

selection method.

3.2.1.1 Simulation Results

Before displaying the performance of our value iteration based adaptive blocklength

selection method (VI-ABM), we first show the existence of the optimal blocklength

in various scenarios. With a fixed number of information bits (k = 100), different

blocklengths n imply different coding rates R = k/n. In Figure 3.3, we plot the

coding rate versus age violation probability for different transmit powers P . The

minimum Pav values for each P are shown with red circles. It is clear that, the

rate, hence, the blocklength that minimizes Pav differs as P increases. Similarly, as
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Table 3.1: Simulation parameters of value iteration based adaptive blocklength selec-
tion method

Parameter Value
Number of information bits (k) 100
Blocklengths (n) (100, 125, 150, 175, 200, 225, 250, 275, 300)
Transmit power (P ) 0 dB
SNRmin -20 dB
SNRmax 10 dB
Packet arrival rate (λ) 0.01
Age threshold (∆max) 800 CUs
Number of iterations 200
Discount factor (Γ) 0.95

seen in Figures 3.4 and 3.5, changing the packet arrival rate λ or the threshold ∆max

changes the optimal rate. These figures illustrate the motivation behind our adaptive

blocklength scheme: we aim to find and use the optimal blocklength according to the

current condition of the system so that Pav is minimized.

Let us now inspect the blocklength selection policies obtained with VI-ABM. Figure

3.6 shows the effect of ∆r(t) and the SNR on the selected blocklength, where ∆q(t)

is constant. It can be seen that when SNR is low, a small blocklength is selected

because the probability of a successful transmission is low for all blocklengths. When

SNR increases, larger blocklengths are used as they can guarantee low BLER. For

highest SNR levels, the chosen blocklengths are small again, as they can provide low

error probabilities at this point. For varying ∆r(t), the blocklength selection can be

explained as follows: when ∆r(t) is low, it is reasonable to use the large blocklengths

because the threshold is not exceeded. As ∆r(t) increases, smaller blocklengths are

selected.

Figure 3.7 displays the effect of ∆r(t) and ∆q(t) on blocklength selection for con-

stant SNR. The effect of ∆r(t) is the same as in Figure 3.14 while the changes in

∆q(t) causes a certain pattern in the selected blocklength for fixed ∆r(t): As ∆q(t)

increases, the blocklength of choice becomes smaller. This is because when a suc-

cessful transmission happens, ∆r(t) is reset to ∆q(t), hence it is reasonable to prevent

∆q(t) from becoming too large. The leftmost side of ∆q(t) axis shows the empty
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Figure 3.3: Coding rate versus Pav for different transmit power levels (λ = 0.01,
∆max = 800 CUs)

Figure 3.4: Coding rate versus Pav for different arrival rates (P = 0 dB, ∆max = 800
CUs)
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Figure 3.5: Coding rate versus Pav for different transmit power levels (λ = 0.01,
∆max = 800 CUs)

Figure 3.6: Blocklength selection according to ∆r(t) and SNR in VI-ABM for fixed
∆q(t)
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Figure 3.7: Blocklength selection according to ∆r(t) and ∆q(t) in VI-ABM for fixed
SNR

queue case, i.e., ∆q(t) = −1. In this case, there is no transmission and the system

waits for a new packet arrival.

After displaying the blocklength selection, we now compare VI-ABM with the fixed

blocklength schemes. Figure 3.8 shows the results obtained with different transmit

power (P ) levels where the arrival rate and threshold are fixed (λ = 0.01 and ∆max =

800 CUs). Low transmit power means the states where SNR is low are seen more

frequently. It can be seen that for low P values, among all the fixed blocklength

schemes, large blocklengths (n ≥ 200) result in lower Pav. This is because more

redundancy bits are needed for reliable transmission, i.e., low BLER, in low SNR

cases. As the transmit power P increases, smaller n values such as 100 and 125

become advantageous. On the other hand, our adaptive blocklength method provides

much lower Pav since it chooses the optimal blocklength in all conditions.

In Figure 3.9, the results of varying packet arrival rate λ are displayed where P = 0

dB and ∆max = 800 CUs. When λ is small, the packet arrivals are sparse, and the

main factor increasing the age is the idle periods where the system waits for new
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Figure 3.8: Comparison of Pav for VI-ABM and fixed blocklength schemes for dif-
ferent transmit power levels (λ = 0.01, ∆max = 800 CUs)

Figure 3.9: Comparison of Pav for VI-ABM and fixed blocklength schemes for dif-
ferent arrival rates (P = 0 dB, ∆max = 800 CUs)
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Figure 3.10: Comparison of Pav for VI-ABM and fixed blocklength schemes for
different age thresholds (P = 0 dB, λ = 0.01)

packet arrival. Thus, for both the fixed blocklength schemes and our method, Pav is

very high. As λ increases, these idle periods are shortened; hence Pav decreases for

all schemes. When λ = 0.1, the probability of discarding a packet in the queue with

a newly-arrived packet is high. This leads to smaller ∆q; therefore, smaller ∆r and

Pav. The performance of VI-ABM is superior to fixed blocklength schemes for all

arrival rates, while the performance gap is more significant for larger λ.

In Figure 3.10, age violation probabilities for different age thresholds are demon-

strated. Transmit power P is kept constant at 0 dB and arrival rate λ is 0.01. For

low ∆max values, Pav is large for all cases, as expected. As ∆max is increased, Pav

decreases steadily for all schemes. For all threshold values, VI-ABM outperforms the

fixed blocklength schemes and provides considerably lower age violation probabili-

ties as threshold increases.
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Table 3.2: Simulation parameters of Q-learning based adaptive blocklength selection
method

Parameter Value
Number of information bits (k) 100
Blocklengths (n) (100, 125, 150, 175, 200, 225, 250, 275, 300)
Transmit power (P ) 0 dB
SNRmin -20 dB
SNRmax 10 dB
Packet arrival rate (λ) 0.01
Age threshold (∆max) 800 CUs
Number of iterations 100000
Discount factor (Γ) 0.9
Maximum exploration rate (ϵmax) 0.5
Minimum exploration rate (ϵmin) 0.01
Maximum learning rate (αmax) 0.5
Minimum learning rate (αmin) 0.3
Decay rate 0.9999

3.2.2 Q-Learning Based Adaptive Blocklength Selection

The second solution we propose is adaptive blocklength selection based on Q-learning.

As Q-learning is a model-free method, state transition probabilities are not required;

the agent only learns from trial and error. Firstly, we initialize the action-value func-

tions Q(s, a) to zero for all states s ∈ S and all actions a ∈ A. We follow an

ε-greedy policy with a decaying exploration rate: at each iteration, the exploration

rate ε is multiplied by a decay rate. In each iteration, according to the observed state

s, the agent has to select either to use a blocklength n or to stay idle for one CU. After

the action is executed, the environment goes to the next state s′, and returns reward r.

We update the corresponding Q-table entry Q(s, a) according to Bellman’s rule:

Q(s, a)← Q(s, a) + α(r + Γmax
a′

Q(s′, a′)−Q(s, a)). (3.17)

Algorithm 4 gives detailed instructions for the Q-learning based adaptive blocklength

selection method and Table 3.2 lists the related parameters.
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Algorithm 4 QL-ABM

Initialize Q(s, a) ∀s ∈ S and ∀a ∈ A
for each blocklength selection point do

Observe state s = (∆q(t),∆r(t), CQI)

Select action a according to ε-greedy policy: choose a blocklength n or stay
idle

Go to next state s′ and receive reward r:

if queue is empty (∆q(t) = −1) and action is not stay idle
r = −1000

else if queue is not empty (∆q(t) ̸= −1) and action is stay idle
r = −1000

else if queue is empty (∆q(t) = −1) and action is stay idle
r = 0

else

r = −
n∑

k=1

1(∆r(t) > ∆max)

Update the Q-table:
Q(s, a)← Q(s, a) + α(r + Γmaxa′ Q(s′, a′)−Q(s, a))

s← s′

end for each
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3.2.2.1 Simulation Results

Referring to our Q-learning based adaptive blocklength selection method as QL-

ABM, we demonstrate its performance in comparison to the fixed blocklength scheme.

Figure 3.11 depicts the QL-ABM performance compared with fixed blocklength schemes

for varying transmit power P . Threshold ∆max and packet arrival rate λ are fixed at

800 CUs and 0.01, respectively. Low transmit power implies that the probability of

experiencing low SNR levels is high. Thus, it can be seen that for low SNR, the

largest blocklengths achieve the smallest age violation probability among all block-

length schemes. Meanwhile, QL-ABM is clearly the most advantageous as it can dy-

namically select the optimal blocklength to use in each different channel realization.

As P increases, small values of n provide lower Pav, while using large blocklength

constantly becomes inefficient as higher SNR levels are frequently seen. QL-ABM

also shows worse performance compared to fixed blocklength schemes with n = 100

and n = 125. This can be explained as follows: since low SNR levels are rarely ex-

perienced, it is possible that the Q-learning agent cannot learn about them thoroughly

and does not know which action is optimal in the states corresponding to low SNR.

This affects the age violation probability as the block error rate changes substantially

according to the blocklength when SNR is low. Thus, we conclude that QL-ABM is

advantageous in low transmit power, i.e., low SNR regions.

In Figure 3.12, results obtained for various packet arrival rates are shown while P = 0

dB and ∆max = 800 CUs. When λ = 0.001, Pav is high for all fixed blocklength

schemes and QL-ABM, as packet arrival is very infrequent. With higher λ, the idle

periods in which the system waits for a packet arrival are shorter. Therefore, Pav drops

significantly in all cases. QL-ABM yields lower Pav than fixed blocklength schemes

for the whole range of λ values, but the performance gap becomes more visible with

increasing λ.

Lastly, Figure 3.13 displays Pav for various threshold values with fixed packet arrival

rate (λ = 0.01) and transmit power (P = 0 dB). Similar to the results with vary-

ing λ, increasing the threshold value ∆max leads to a substantial decrease in Pav for

QL-ABM and the fixed blocklength schemes. Also, the performance of QL-ABM
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Figure 3.11: Comparison of Pav for QL-ABM and fixed blocklength schemes for
different transmit power levels (λ = 0.01, ∆max = 800 CUs)

becomes superior for higher ∆max values.

3.2.3 Comparison of Solution Methods

After demonstrating the performances of value iteration and Q-learning based adap-

tive blocklength selection methods compared to fixed blocklength schemes, in this

section we compare the two solutions. As a baseline performance, we use the lowest

age violation probability values obtained with fixed blocklength schemes.

Figure 3.14 shows the performances of VI-ABM and QL-ABM along with the fixed

blocklength scheme for varying transmit power P . Threshold ∆max and arrival rate λ

are constant at 800 CUs and 0.01, respectively. It can be seen that VI-ABM achieves

significantly lower Pav for all P values compared two the other two schemes, and

QL-ABM is better than the fixed blocklength scheme for P up to around 5 dB.

In Figure 3.15, age violation probabilities of VI-ABM, QL-ABM and the fixed block-

length scheme are given for varying packet arrival rate λ. Transmit power P is 0 dB
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Figure 3.12: Comparison of Pav for QL-ABM and fixed blocklength schemes for
different arrival rates (P = 0 dB, ∆max = 800 CUs)

Figure 3.13: Comparison of Pav for QL-ABM and fixed blocklength schemes for
different age thresholds (P = 0 dB, λ = 0.01)
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Figure 3.14: Comparison of Pav for VI-ABM and QL-ABM for different transmit
power levels (λ = 0.01, ∆max = 800 CUs)

and threshold ∆max is 800 CUs. Again, VI-ABM is superior to fixed blocklength and

QL-ABM, and the performance gap is significant for high λ values. Although not as

good as VI-ABM, QL-ABM achieves lower Pav than the fixed blocklength scheme

for all packet arrival rates.

Lastly, Figure 3.16 depicts the performances of VI-ABM, QL-ABM, and fixed block-

length for varying threshold ∆max while transmit power P and packet arrival rate

λ are fixed at 0 dB and 0.01, respectively. Supporting the previous results, again

the lowest age violation probability for all threshold values is achieved by VI-ABM,

followed by QL-ABM.

It is clear that for all scenarios, VI-ABM is superior to QL-ABM. Nevertheless, it is

important to recall that value iteration is a model-based method; hence it requires full

knowledge of the environment dynamics, such as state transition probabilities and

reward models. On the other hand, Q-learning learns with trial and error, as it has no

prior knowledge about the environment, and suffers from the exploration-exploitation

trade-off mentioned in Section 2.6. Thus, it is reasonable that VI-ABM shows better

performance than QL-ABM, considering its prior knowledge and higher complexity.
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Figure 3.15: Comparison of Pav for VI-ABM and QL-ABM for different arrival rates
(P = 0 dB, ∆max = 800 CUs)

Figure 3.16: Comparison of Pav for VI-ABM and QL-ABM for different age thresh-
olds (P = 0 dB, λ = 0.01)
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CHAPTER 4

ADAPTIVE MCS SELECTION FOR MINIMIZING AGE VIOLATION

PROBABILITY

In this chapter, we present the system model for the modulation and coding scheme

selection problem. With a deep reinforcement learning approach, we propose a solu-

tion based on deep Q-networks to minimize the age violation probability. We demon-

strate the simulation results comparing the performance of our solution with the base-

line methods.

4.1 System Model

We consider a system model very similar to the one in Chapter 3, with the addition

of modulation (see Figure 4.1). We have a single-server queue with capacity 2 that

accepts information packets from a source. The source generates packets according

to the Bernoulli distribution, where the packet arrival rate, i.e., the probability of

a packet arrival in one channel use (CU), is denoted with λ. The queue follows a

Last Come First Serve (LCFS) policy: A new packet arriving at an empty queue gets

served immediately. However, if the queue is non-empty, the packet already in the

queue is replaced with the new one.

Figure 4.1: System model for the MCS selection problem
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The information packet from the source consists of k bits. When it is taken to service,

it is modulated and encoded according to the chosen MCS index. We use M-ary

quadrature amplitude modulation (M-QAM). The number of bits transmitted in one

CU with M-QAM is equal to log2M , which is also called the modulation order. Thus,

with M-QAM, the transmission of a packet with blocklength n takes n/ log2M CUs.

Figure 4.2 shows the constellation diagrams for 4-QAM, 16-QAM, and 64-QAM.

It can be seen that higher modulation order means the points on the constellation

diagram are closer; thus, the probability of decoding error is higher [87, p.200]. So;

when channel conditions are bad, lower modulation orders should be used, and vice

versa. In this study, we use one of three MCS tables defined in the 5G standards.

While one of the tables lists MCSs with modulation up to 256QAM, the other two

tables define MCSs with 64QAM at most. In this work, we use the third table [1, Table

5.1.3.1.-3], which is used for low spectral efficiency cases. Table 4.1 lists the MCS

indexes we use with the corresponding modulation orders, code rates, and spectral

efficiencies.

(a) 4-QAM (b) 16-QAM (c) 64-QAM

Figure 4.2: M-QAM constellations for M = 4, 16, 64

After modulation and coding, the packet is transmitted through the wireless channel.

As in Chapter 4, we assume a memoryless block-fading Rayleigh channel. Each

packet transmission goes through IID fading coefficients h. For transmitted signal x,

received signal y and additive noise w, the input-output relation of the channel is

y = x · h+ w. (4.1)
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Table 4.1: MCS index table [1]

MCS Index Modulation order Code Rate R x 1024 Spectral Efficiency
0 2 30 0.2344
1 2 40 0.3770
2 2 50 0.6016
3 2 64 0.8770
4 2 78 1.1758
5 2 99 1.4766
6 2 120 1.6953
7 2 157 1.9141
8 2 193 2.1602
9 2 251 2.4063

10 2 308 2.5703
11 2 379 2.7305
12 2 449 3.0293
13 2 526 3.3223
14 2 602 3.6094
15 4 340 3.9023
16 4 378 4.2129
17 4 434 4.5234
18 4 490 4.8164
19 4 553 5.1152
20 4 616 5.3320
21 6 438 5.5547
22 6 466 5.8906
23 6 517 6.2266
24 6 567 6.5703
25 6 616 6.9141
26 6 666 7.1602
27 6 719 7.4063
28 6 772 4.5234
29 2 Reserved Reserved
30 4 Reserved Reserved
31 6 Reserved Reserved

49



We assume channel state information at the transmitter (CSIT) and noise with stan-

dard normal distribution (N (0, 1)). For a transmit power P , instantaneous SNR is

expressed as

γ = P |h|2. (4.2)

We calculate the block error rate (BLER) by rewriting Eqn. 2.12 in the following

form:

ϵ(γ) ≈ Q

I ′(γ,M)− k
n√

V (γ)
n

 , (4.3)

where I ′(γ,M) is the approximation to the mutual information in Eqn. 2.11, and

V (γ) is the channel dispersion:

I ′(γ,M) ≈ log2M ×
(
1−

kM∑
j=1

ε
(M)
j e−ϑ

(M)
j γ

)
. (4.4)

V (γ) =
γ(γ + 2)

2(γ + 1)2
log22(e). (4.5)

The coefficients ε
(M)
j and ϑ

(M)
j in Eqn. 4.4 are given in Tables 2.1 and 2.2, respec-

tively.

We inspect the age at the receiver, ∆r(t) = t−u(t) where u(t) is the generation time

of the last packet that was delivered to the receiver without error. As shown in Figure

3.2 before, the age at the receiver increases until a packet is successfully received,

then it is reduced to the age at the queue. If the transmission is unsuccessful or the

system is waiting idly for a new packet arrival, ∆r(t) increases linearly.

We aim to minimize the probability of age violation by dynamically selecting the

modulation and coding scheme. We calculate the age violation probability as follows:

We find the number of age violations in a sufficiently long time interval T . Then the
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ratio of the resulting number to the total time T gives the age violation probability:

Pav(∆max) = lim
t→∞

P (∆r(t) > ∆max)

= lim
t→∞

1

T

T∑
t=1

1(∆r(t) > ∆max),
(4.6)

where 1(·) is the indicator function.

4.2 DQN-based Adaptive MCS Selection Method

The selection of modulation and coding scheme is a more complex problem com-

pared to blocklength selection. This is because the number of actions and states is

significantly larger. Thus, Q-learning fails to be a satisfactory solution, and we uti-

lize deep Q networks. Here we consider two approaches: in the first one, the state

includes CQI information, as in Chapter 3. In the second approach, however, the state

includes only the ages at the queue and receiver. Actions and reward are the same for

the two approaches. Denoting the state spaces of the first and second methods as S1
and S2, respectively, we define the states, actions, and reward as follows:

• S1 = (∆q,∆r, CQI), S2 = (∆q,∆r)

– Age of the packet in the queue (∆q(t)): The time elapsed since the last

packet arrival to the system. ∆q(t) = −1 if the queue is empty.

– Age at the receiver (∆r(t)): Time elapsed since the arrival of the last

successfully decoded packet to the system.

– Channel quality indicator (CQI): Instead of quantization as in Chapter 3,

here we obtain the CQI simply by rounding the SNR to the nearest integer.

The evolutions of ∆q(t) and ∆r(t) in time are the same as in Chapter 3: The

age of the packet at the queue is affected only by the new packet arrivals to the

system. When a packet arrives at the queue, ∆q(t) is reset to zero. Otherwise, it

increases with unit rate. The age at the receiver ∆r(t), on the other hand, grows
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until a transmission is completed successfully. Let n denote the blocklength

used according the chosen MCS index, and n = 1 imply the action of staying

idle for one CU. Then, the changes in ∆q(t) and ∆r(t) after n CUs can be

expressed as follows:

∆q(t+n) =

−1, no packet in the queue,

j, the freshest packet in the queue arrived j CUs ago.
(4.7)

∆r(t+n) =

∆q(t) + n, ∆q(t) ̸= −1, n ̸= 1, successful transmission,

∆r(t) + n, otherwise.
(4.8)

Unlike ∆q(t) or ∆r(t), the CQI state after n CUs does not depend on the pre-

vious CQI state or the other states. According to our channel model, the fading

coefficient h realized in each packet transmission is an IID Rayleigh random

variable. With transmit power P , the corresponding SNR is γ = P |h|2. Since

it is a rounded version of SNR, the CQI state changes randomly according to

Rayleigh distribution.

• A: The MCSs in Table 4.1, plus stay idle action.

• R: Here, we use a different reward function than Chapter 4. In each iteration,

we count the number of age violations because of the selected action. However,

this is not a sufficient solution: The reward of applying an action a is the same

whether ∆r(t) is above the threshold or not. Thus, the reward should include

information about how much the threshold is exceeded. Also, as in blocklength

selection problem, the DQN agent should not choose to stay idle unless the

queue is empty and vice versa. Again, rewards corresponding to these cases are

large negative values. On the other hand, the reward of choosing to stay idle

when queue is empty is zero, as it is the optimal action to take in that state. We

follow the same notation as Chapter 3 here, where a0 means staying idle. Then,

the reward function is expressed as
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Ra
s =



−5000, ∆q(t) = −1 & a ̸= a0,

−5000, ∆q(t) ̸= −1 & a = a0,

0, ∆q(t) = −1 & a = a0,

−
n∑

k=1

1(∆r(t) > ∆max)

+ max(0,∆r(t)−∆max), otherwise.

(4.9)

For both DQN-based solutions, we construct a deep Q network with three layers:

the input and output layers, and a hidden layer. An ε-greedy policy with a decaying

exploration rate is followed. As the loss function, we use Huber loss [88]:

Lδ(y, f(x)) =


1
2
(y − f(x))2, for ≤ δ,

δ(|y − f(x)| − 1
2
δ), otherwise.

(4.10)

Eqn. 4.10 states that if the loss value is less than δ, Huber loss is equal to the mean

squared error (MSE); however, for loss values greater than δ, Huber loss equals the

mean absolute error (MAE). As MSE loss squares the difference, it puts more weight

on outliers, i.e., observations that differ substantially from the others. On the other

hand, MAE loss weighs all errors with a linear scale, ignoring the outliers. By com-

bining MSE and MAE, Huber loss balances the weight given to outliers.

The algorithm for our DQN based adaptive MCS selection method is described in

detail in Algorithm 5.

4.3 Baseline Solutions

For assessing the performance of our DQN-AMC solutions, we compare them with

two baseline methods: inner loop link adaptation (ILLA) and outer loop link adapta-

tion (OLLA) [55]. ILLA is a basic method used for adaptive MCS selection based on

a fixed lookup table. Given the current SNR, ILLA selects an MCS that satisfies the
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Algorithm 5 DQN-based Adaptive MCS Selection
Initialize replay memory
Initialize main network Q with random weights θ
Initialize target network Q̂ with random weights θ−
for each episode do

Initialize state s = (∆q(t), ∆r(t), CQI)

for each step do

Select an action a following an ε-greedy policy: select an MCS index
or stay idle for 1 CU

Execute action a and observe state s′

Receive reward r:

if queue is empty (∆q(t) = −1) and action is not stay idle
r = −5000

else if queue is not empty (∆q(t) ̸= −1) and action is stay idle
r = −5000

else if queue is empty (∆q(t) = −1) and action is stay idle
r = 0

else

r = −
n∑

k=1

1(∆r(t) > ∆max) + max(0,∆r(t)−∆max)

Store transition (s, a, r, s′) in replay memory

Sample random minibatch of transitions (sj, aj, rj, s
′
j) from replay

memory

Set yj = rj + Γmaxa′ Q̂(sj+1, a
′; θ)

Calculate the loss Lδ(yj, Q(s, a; θ))

Update target network at every N episodes

end

end
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target block error rate (BLER) requirement. While it is straightforward, ILLA fails

to be an efficient solution: The variations in the wireless channel along with delays

and quantization errors cause instability in the measured SNR. In such cases, OLLA

is applied in addition to ILLA for improvement. In OLLA, based on the positive or

negative acknowledgment (ACK/NACK) about the transmitted packet, an offset ∆olla

is used to adjust the measured SNR γ, and the MCS is selected from the lookup table

according to the resulting value of SNR γolla:

γolla = γ −∆olla. (4.11)

∆olla is updated in each transmission according to the following rule:

∆olla ← ∆olla +∆up · 1nack −∆down · 1ack, (4.12)

where 1(·) is the indicator function and ∆up and ∆down are the step up and step down

parameters, related to each other in terms of the target BLER denoted as BLERT :

∆down =
∆up

1
BLERT

− 1
. (4.13)

OLLA algorithm is also given in detail in Algorithm 6.

Algorithm 6 Outer Loop Link Adaptation (OLLA)
Algorithm parameters: ∆up,∆down

Initialize offset to zero (∆olla = 0)
At each transmission

if ACK then

∆olla ← ∆olla −∆down

else

∆olla ← ∆olla +∆up

end
γolla = γ −∆olla

MCS = MCS(γolla)
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Table 4.2: Simulation parameters of DQN-based adaptive MCS selection method

Parameter Value
Number of information bits (k) 256
Transmit power (P ) 0 dB
Packet arrival rate (λ) 0.005
Age threshold (∆max) 5000 CUs
Number of layers in the DQN 3
Number of neurons in each layer 32,64,32
Activation function Rectified Linear Unit (ReLU)
Optimizer Adam optimizer
Loss function Huber loss
Number of episodes 5000
Episode length 100
Discount factor (Γ) 0.95
Maximum exploration rate (ϵmax) 0.1
Minimum exploration rate (ϵmin) 0.0001
Decay rate 0.99
Learning rate (α) 0.005
Target network update frequency 10
Replay buffer size 3000
Minibatch size 64

4.4 Simulation Results

We compare the performances of the two DQN-based solutions with the baseline

methods ILLA and OLLA. Three target BLER values (10−1, 10−3, 10−5) are used

with the ILLA method, and for OLLA we set BLERT to 10−1. We name our solu-

tions DQN-AMC-1 and DQN-AMC-2. In DQN-AMC-1, CQI is included in the state,

whereas in DQN-AMC-2 the state consists of the ages at the queue and the receiver.

Table 4.2 summarizes the simulation parameters.

Figure 4.3 shows the age violation probability Pav of different schemes for various

transmit power levels P . Age threshold ∆max and arrival rate λ are fixed at 5000

CUs and is 0.005, respectively. When P is low, the probability of having bad channel

conditions is higher; thus, the frequently seen SNR values are low, and Pav is heav-

ily influenced by erroneous transmissions. As ILLA and OLLA schemes use low

MCS indexes to achieve the target BLER, age violation probability is high because

of the large blocklengths, so the DQN-AMC schemes provide lower Pav. As P in-
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Figure 4.3: Comparison of Pav for DQN-AMC, ILLA and OLLA methods for differ-
ent transmit power levels (∆max = 5000 CUs, λ = 0.005)

creases, the superior performance of DQN-AMC becomes more visible. However,

for transmit powers above around 4 dB, ILLA and OLLA schemes become more ad-

vantageous as higher MCS indexes with small blocklengths are used. It is notable

that while the ILLA schemes have similar performances, as BLERT of ILLA goes

from 10−1 to 10−5 the age violation probability increases since a lower MCS index

with a larger blocklength satisfies the lower BLER requirement at a certain SNR.

Meanwhile, it is evident that using OLLA does not have a significant effect on the

age violation probability. Comparing the two DQN-AMC schemes, it can be seen

that DQN-AMC-1 clearly outperforms DQN-AMC-2 for most of the P levels. Still,

considering that DQN-AMC-2 does not know the SNR and has lower complexity in

terms of the number of states, it stands as a feasible solution.

Figure 4.4 demonstrates the age violation probability for different packet arrival rates.

At the lowest arrival rate (λ = 0.001), DQN-AMC schemes are insufficient. The

reason is that, the DRL agent mainly encounters the states in which the queue is

empty, even with high exploration rate. Therefore, it cannot fully learn the optimal

actions for when the queue is non-empty. Increasing λ to about 0.005 leads to a
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Figure 4.4: Comparison of Pav for DQN-AMC, ILLA and OLLA methods for differ-
ent arrival rates (P = 0 dB, ∆max = 5000 CUs)

substantial reduction of Pav in all schemes, but the difference is much higher for

DQN-AMC schemes. For λ values above 0.005, changes in Pav become negligible

for all schemes. As in the previous results, ILLA with BLERT = 0.1 and OLLA

perform very similary, and for ILLA with smaller target BLER, we observe higher

Pav.

In Figure 4.5, Pav is plotted for different age thresholds ∆max while the transmit

power P is fixed at 0 dB, and arrival rate λ is 0.005. As can be seen, DQN-AMC

schemes surpass the performances of ILLA and OLLA schemes. Also, DQN-AMC-

1 achieves lower Pav than DQN-AMC-2 for almost all threshold values. Consistent

with the previous results, ILLA scheme with BLERT = 10−5 has the highest age

violation probability, and the difference between the ILLA schemes are visible. Again

the OLLA scheme improves the performance negligibly. As the threshold increases,

the probability of age violation is reduced for all schemes.

To conclude, we can say that our DQN-AMC methods achieve lower age violation

probabilities for most of the test scenarios. DQN-AMC-1, which includes CQI in-
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Figure 4.5: Comparison of Pav for DQN-AMC, ILLA and OLLA methods for differ-
ent thresholds (P = 0 dB, λ = 0.005)

formation in the state, generally performs better than DQN-AMC-2. This is under-

standable, as SNR, hence CQI, is one of the main factors determining the probability

of error and affecting the action selection process. Nevertheless, DQN-AMC-2 is an

efficient method considering that it does not require knowledge about the SNR and

has a lower number of states, thus lower complexity.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, our main aim is to minimize the age violation probability by dynam-

ically choosing the blocklength and the modulation and coding scheme (MCS) in a

short packet transmission framework. Firstly, we provide a detailed background on

Age of Information (AoI) and finite blocklength (FBL) theory and review the rein-

forcement learning (RL), dynamic programming (DP), and deep RL (DRL) methods

we use in this study.

In Chapter 3, we define our first problem, which focuses on blocklength selection

in FBL regime. Our first solution to the blocklength selection problem is based on

a state-aggregated value iteration method. We show that this solution provides age

violation probability much lower than optimal fixed blocklength schemes in differ-

ent scenarios such as varying transmit power, packet arrival rate, and age threshold.

Our second solution based on Q-learning also shows superior performance in various

scenarios compared to fixed blocklength schemes, although it could not achieve age

violation probabilities as low as value iteration based method. Nevertheless, consid-

ering that it assumes no prior knowledge on the system characteristics and has lower

complexity, Q-learning based solution has a satisfactory performance.

In Chapter 4, we address the adaptive MCS selection problem with a deep reinforce-

ment learning (DRL) approach. Utilizing finite blocklength approximations and deep

Q networks (DQN), we exploit policies for choosing the appropriate MCS among the

MCSs defined in 5G standards. Compared to the baseline solutions, namely, inner

loop link adaptation (ILLA) and outer loop link adaptation (OLLA), our DQN based

adaptive MCS selection methods yield lower age violation probability in various sce-

narios.
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In this thesis, we have shown that the solutions we have proposed for blocklength and

MCS selection based on dynamic programming and reinforcement learning are effi-

cient and promising for optimizing semantic communication metrics. In future work,

we suggest that the methods proposed in this thesis can be extended to more complex

systems, such as more realistic 5G environments with multiple users. The flexible nu-

merology and frame structure of 5G communications can be utilized. A cell-free net-

work with multiple distributed access points can be considered. The channel model

can be time-correlated or slow fading, and a long-term adaptation method can be

formed. Instead of direct transmission, relay schemes can be studied. For status up-

date generation, a generate-at-will model can be considered, in which the source can

generate status updates at any time. Also, exploiting retransmission schemes such as

hybrid automatic repeat request (HARQ) in order to improve the performance can be

considered. In addition to blocklength/MCS selection, dynamic resource allocation

and adaptive power control can also be investigated.
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