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Abstract—In this work, we propose a novel extended target
tracking algorithm, which is capable of representing a target or
a group of targets with multiple ellipses. Each ellipse is modeled
by an unknown symmetric positive-definite random matrix. The
proposed model requires solving two challenging problems. First,
the data association problem between the measurements and the
sub-objects. Second, the inference problem that involves non-
conjugate priors and likelihoods which needs to be solved within
the recursive filtering framework. We utilize the variational Bayes
inference method to solve the association problem and to ap-
proximate the intractable true posterior. The performance of the
proposed solution is demonstrated in simulations and real-data
experiments. The results show that our method outperforms the
state-of-the-art methods in accuracy with lower computational
complexity.

Index Terms—Extended target tracking, random matrix, vari-
ational Bayes.

I. INTRODUCTION

Recent advances in autonomous vehicles, robotics, and
intelligent systems entail the need to not only estimating the
position of an object but also recognizing its shape. This re-
quirement is usually fulfilled with short-range sensor systems,
where it is possible to collect multiple instantaneous measure-
ments from a single target. In contrast to traditional point
target tracking methods, one can extract more information
from the measurements, such as the shape, size, or orientation
of the target. The special algorithms, which are capable of
estimating these unknowns together with the target’s kinematic
state, are called Extended Target/Object Tracking (ETT/EOT)
algorithms.

A primitive approach to ETT is to represent the target’s
extent as a simple shape and estimate the relevant parameters.
These simple shapes can be a line [1], a circle [2] or a
rectangle [3]. More complex shapes can be defined using
random hyper-surface models which assume that the measure-
ments are generated from an unknown random surface [4]–[6].
More recently, Gaussian Process (GP) based models [7], [8]
were proposed to estimate the extent of targets with unknown
shapes. GP based ETT algorithms define the target’s contour as
an unknown radial function with a GP prior. An advantage of
these models is that the estimated contours are descriptive, i.e.,
the contour representations can be utilized in further purposes
such as classification of targets [9], [10].
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Fig. 1: An extended target representation with multiple ellipses
(solid lines). Classical RM models represent the same target
extent as a single ellipse (dashed black line). The measure-
ments are shown with red stars.

One of the most common approaches in the ETT literature
is the random matrix model (RM) [6], [11]–[16], which
was pioneered by Koch [11]. In RM based methods, the
extent is approximated by an ellipse which is represented
by a symmetric positive definite (SPD) unknown matrix. The
inference in [11] neglects the measurement noise covariance
matrix in order to meet the conjugacy requirement. This
approach was later improved in [12], where the measurement
noise covariance is incorporated into the updates. More recent
studies consider the orientation angle of the target together
with the RM model [6], [14]–[16].

A single ellipsoidal representation of the target can provide
only lumped information about the shape of the target, which
may result in over-simplified representations. To remedy this
problem, more recent works on random matrices focus on
multi-ellipsoidal (ME) models [17]–[20], where the target
extent is represented with more than one ellipse. Each ellipse is
called a sub-object, and as the number of sub-objects increases,
a finer representation of the target’s extent can be obtained.
A representative example of using multiple ellipses for target
extent is given in Figure 1.

ME models in the literature use different inference methods
for estimating a mixture of Gaussian inverse Wishart (GIW)
distributions which represent the kinematic state together with
the extent. In [17], a particle filter is used for inference which
becomes computationally heavy when the number of particles
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Fig. 2: Illustration of the extent estimation for L = 4 where
+ sign denotes the measurements.

is increased. The ME model proposed in [20] does not contain
a unified kinematic model for different sub-objects. In [19],
the kinematics of the sub-objects are unified however, the
method requires computationally heavy partitioning algorithms
to associate the measurements with the sub-objects. Further-
more, mixture reduction algorithms are required to manage
the number of components resulting from different association
hypotheses. In [18], an approach that can handle varying
numbers of sub-objects in time is proposed. In this work,
we present a ME-ETT approach utilizing variational Bayes
inference for solving the measurement association problem
and obtaining an approximate distribution for the intractable
posterior. Our approach does not require any clustering [20],
partitioning [19], mixture reduction [19] and merging meth-
ods [20]. The resulting algorithm has low computational
complexity, and outperforms the state-of-the-art methods in
accuracy.

The rest of the paper is organized as follows. First, the
problem formulation is given in Section II. Then, the varia-
tional inference for the measurement update is explained in
Section III. Section IV presents the time update. In Section V
the simulation results will be shown and discussed. Finally,
we will conclude the article in Section VI.

II. PROBLEM FORMULATION

We consider an extended target composed of L ≥ 1 sub-
objects. At any time k, the extent state of the `th sub-object is
represented by the SPD matrix X`

k ∈ Rny×ny , ` = 1, . . . , L.
We define the kinematic state of the extended object as

xk ,
[
(xck)

T x̃T
k (µ2

k)
T · · · (µLk )

T
]T

(1)

where xck ∈ Rny denotes a reference point on the target
and {µ`k ∈ Rny}L`=1 denote the displacement vectors of
the sub-object centers from the reference point xck [17]. We
assume that µ1

k = 0, i.e., the reference point of the extended
target is at the center of the first sub-object without loss of
generality. The vector x̃k contains all non-positional kinematic

TABLE I: NOTATIONS

• Set of real matrices of size m× n is represented with Rm×n.
• N (x;µ,Σ) represents the multivariate Gaussian distribution with mean

vector µ ∈ Rnx and covariance matrix Σ ∈ Snx++,
• IW(X; v,V) represents the inverse Wishart distribution over the real-

valued positive definite matrix X with degrees of freedom v, and
positive definite scale matrix V

IW(X; v,V)
4∝
etr
(
− 1

2
X−1V

)
|X|v/2

,

where etr(·) , etr(·).
• For the number of measurements Mk ∈ Z+, y

1:Mk
k represents the

measurement set {y1
k, . . . ,y

Mk
k } at time k.

• rk represents the vector [r1k, . . . , r
a
k ]
T with size a ∈ Z+.

• |A| denotes the determinant of the matrix A.
• c\φ is a generic constant that denotes the constant terms with respect

to variable φ in an equation.
• tr

(
A
)
=
∑n
i=1 aii where aii is the ith diagonal element of A ∈

Rn×n.
• The iterate numbers are shown with parenthesized superscripts, e.g.,
q(i)(·).

• The expectation with respect to a specific variable is shown with a
subscript in the expectation sign, e.g., Ez will show an expectation with
respect z

1:Mk
k . When it is clear from the context which variable we are

taking the expectation with respect to, we will show the expectation
with an overline, e.g., (Xk)−1 will denote EX[(Xk)

−1].
• When it is necessary to take expectations with respect to all random

variables except for one of them, we will use a backslash “\” in the
subscript of the expectation operator, e.g., E\z will denote expectation
with respect to all random variables except z

1:Mk
k .

• In the derivations, the joint distribution
p
(
y
1:Mk
k , z

1:Mk
k , r

1:Mk
k ,xk,X

1:L
k , π1:L

k

∣∣Yk−1

)
is abbreviated

as p(·|Yk−1) for the sake of brevity.
• The quadratic forms xTAx and outer products xxT are written as

xTA(·) and x(·)T, respectively to avoid unnecessarily duplicating long
expressions.

information, such as velocity and acceleration. An illustration
of this kinematic state vector for L = 4 is shown in Figure 2.
The kinematic state vector xk ∈ Rnx is assumed to evolve
with the following linear Gaussian dynamics

xk = Fxk−1 + wk, (2)

where F ∈ Rnx×nx denotes the state transition matrix and
wk ∈ Rnx denotes zero-mean white Gaussian process noise
vector with covariance matrix Q, i.e., wk ∼ N (wk;0,Q).

Suppose at time k, a set of Mk target-originated mea-
surements are captured by the sensor which is denoted as
y1:Mk

k , {yjk}
Mk
j=1. The measurements are assumed to be

conditionally i.i.d. and distributed according to the following
Gaussian mixture.

p
(
yjk
∣∣xk,X1:L

k , π1:L
k

)
=

L∑
`=1

π`kN
(
yjk;H`xk, sX

`
k + R

)
(3)

for j = 1, . . . ,Mk, where
• π1:L

k , {π`k}L`=1 is the set of time-varying, unknown and
random mixture probabilities π`k, ` = 1, . . . , L, satisfying
π`k ≥ 0 and

∑L
`=1 π

`
k = 1.

• H` ∈ Rny×nx , ` = 1, . . . , L are measurement matrices
defined such that H`xk , xck+µ`k. Note that H1 should
be defined such that H1xk , xck since µ1

k = 0.
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• X1:L
k ,

{
X`
k

}L
`=1

is the set of sub-object extent matrices
X`
k, ` = 1, . . . , L.

• R ∈ Rny×ny is the SPM measurement noise covariance
matrix.

• s ∈ R+ is a known positive scaling constant.
• Other necessary notations can be found in Table I.

The likelihood of the set of measurements y1:Mk

k is then given
as

p
(
y1:Mk

k

∣∣xk,X1:L
k , π1:L

k

)
=

Mk∏
j=1

p
(
yjk
∣∣xk,X1:L

k , π1:L
k

)
(4a)

=

Mk∏
j=1

L∑
`=1

π`kN
(
yjk;H`xk, sX

`
k + R

)
. (4b)

The aim is to find the posterior distribution
p(xk,X

1:L
k , π1:L

k

∣∣Yk) recursively where Yk , {y1:Mk
t }kt=0

denotes the cumulative set of measurements obtained from
the sensor up to and including time k. At each time step k,
the posterior distribution p(xk,X1:L

k , π1:L
k

∣∣Yk) is assumed to
be in the form given below.

p
(
xk,X

1:L
k , π1:L

k |Yk

)
=N

(
xk;mk|k,Pk|k

)
×
( L∏
`=1

IW
(
X`
k; v

`
k|k,V

`
k|k
))

×D
(
π1:L
k ;α1:L

k|k
)
, (5)

where mk|k,Pk|k are the mean and covariance of the
kinematic state vector xk, respectively. The notations
IW(X; v,V) and D

(
π1:L, α1:L

)
denote the inverse Wishart

and Dirichlet distributions, respectively

IW(X; v,V)
4∝
etr
(
− 1

2X−1V
)

|X|v/2
, (6a)

D
(
π1:L;α1:L

) 4∝ L∏
`=1

(π`)α
`−1. (6b)

The recursive calculation of the posterior
p(xk,X

1:L
k , π1:L

k

∣∣Yk) will be carried out in two steps,
namely, the measurement update and time update, which will
be investigated separately in the following sections.

III. MEASUREMENT UPDATE

Suppose now that the predicted distribution
p
(
xk,X

1:L
k , π1:L

k |Yk−1
)

has the form in (5) with the
following parameters

p
(
xk,X

1:L
k , π1:L

k |Yk−1
)
= N

(
xk;mk|k−1,Pk|k−1

)
×
( L∏
`=1

IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
×D

(
π1:L
k ;α1:L

k|k−1
)
. (7)

In the measurement update, we would like to update the
predicted distribution in (7) with the likelihood in (4b). Un-
fortunately, such an update is not analytically tractable, and
furthermore, it would not result in a posterior in the form (5).
In order to ensure analytical tractability and to preserve the

form of the posterior, first, we are going to define some latent
variables and then resort to variational approximation.

We first define the latent variables zjk, j = 1, . . . ,Mk which
represent the noise-free measurements satisfying

p(zjk|xk,X
1:L
k , π1:L

k ) =

L∑
`=1

π`kN
(
zjk;H`xk, sX

`
k

)
, (8a)

p(yjk|z
j
k) =N

(
yjk; z

j
k,R

)
. (8b)

Note that the conditional joint distribution for yjk, z
j
k is given

as

p
(
yjk, z

j
k

∣∣xk,X1:L
k ,π1:L

k

)
= N

(
yjk; z

j
k,R

)
×

L∑
`=1

π`kN
(
zjk;H`xk, sX

`
k

)
. (9)

We also define the association/responsibility vector rjk for
each measurement yjk (or zjk), which is a binary vector of size
L defined as

rjk ,
[
rj,1k rj,2k · · · rj,Lk

]T
(10)

where the elements rj,`k ∈ {0, 1}, ` = 1, . . . , L, which are
called responsibilities in the literature [21, Ch. 10]. These
binary variables satisfy

L∑
`=1

rj,`k = 1. (11)

Note that, with these properties, the elements rj,`k are all equal
to zero except for one of them which is unity. The index `∗

for which rj,`k is equal to unity, i.e., rj,`
∗

k = 1, is the index of
the sub-object which the measurement yjk (or zjk) is associated
to. The distribution of rj,`k is defined as follows.

P
{
rj,`k = 1

∣∣π1:L
k

}
, π`k (12)

for ` = 1, . . . , L. The expression (12) can be written as

P
{
rjk
∣∣π1:L
k

}
,

L∏
`=1

(π`k)
rj,`k (13)

for j = 1, . . . ,Mk. Note that given the association vector
rjk, the noisy and noiseless measurements yjk and zjk are
distributed as

p(yjk|r
j
k,xk,X

1:L
k , π1:L

k ) =N
(
yjk;H`∗xk, sX

`∗

k + R
)
,

(14a)

p(zjk|r
j
k,xk,X

1:L
k , π1:L

k ) =N
(
zjk;H`∗xk, sX

`∗

k

)
, (14b)

for j = 1, . . . ,Mk where `∗ is the index for which the element
rj,`k is equal to unity, i.e., rj,`

∗

k = 1. The expressions (14) can
conveniently be written as

p(yjk|r
j
k,xk,X

1:L
k , π1:L

k ) =

L∏
`=1

N rj,`k
(
yjk;H`xk, sX

`
k + R

)
,

(15a)

p(zjk|r
j
k,xk,X

1:L
k , π1:L

k ) =

L∏
`=1

N rj,`k
(
zjk;H`xk, sX

`
k

)
,

(15b)
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for j = 1, . . . ,Mk. Using these expressions, we can write the
conditional joint distribution for yjk, z

j
k, r

j
k as

p
(
yjk, z

j
k, r

j
k

∣∣xk,X1:L
k , π1:L

k

)
=p
(
yjk
∣∣zjk)

× p
(
zjk
∣∣rjk,xk,X1:L

k , π1:L
k

)
× P

{
rjk
∣∣π1:L
k

}
, (16a)

= N
(
yjk; z

j
k,R

) L∏
`=1

N rj,`k
(
zjk;H`xk, sX

`
k

) L∏
`=1

(π`k)
rj,`k ,

(16b)

= N
(
yjk; z

j
k,R

) L∏
`=1

(π`k)
rj,`k N rj,`k

(
zjk;H`xk, sX

`
k

)
. (16c)

The overall conditional joint distribution for
y1:Mk

k , z1:Mk

k , r1:Mk

k can then be written as

p
(
y1:Mk

k , z1:Mk

k , r1:Mk

k

∣∣xk,X1:L
k , π1:L

k

)
=

Mk∏
j=1

(
N
(
yjk; z

j
k,R

) L∏
`=1

(π`k)
rj,`k N rj,`k

(
zjk;H`xk, sX

`
k

))
.

(17)

Since the posterior for xk,X
1:L
k , π1:L

k given Yk is in-
tractable, we aim for approximating the joint posterior for
z1:Mk

k , r1:Mk

k ,xk,X
1:L
k , π1:L

k given Yk in the following form.

p
(
z1:Mk

k , r1:Mk

k ,xk,X
1:L
k , π1:L

k

∣∣Yk

)
≈ qz

(
z1:Mk

k

)
qr
(
r1:Mk

k

)
qx(xk)qX(X1:L

k )qπ
(
π1:L
k

)
. (18)

We calculate the terms of the approximation above iteratively
using variational approximation with the following true joint
density.

p
(
y1:Mk

k , z1:Mk

k , r1:Mk

k ,xk,X
1:L
k , π1:L

k

∣∣Yk−1
)

=p
(
y1:Mk

k , z1:Mk

k , r1:Mk

k

∣∣xk,X1:L
k , π1:L

k

)
× p
(
xk,X

1:L
k , π1:L

k |Yk−1
)
,

=

Mk∏
j=1

(
N
(
yjk; z

j
k,R

) L∏
`=1

(π`k)
rj,`k N rj,`k

(
zjk;H`xk, sX

`
k

))
×N

(
xk;mk|k−1,Pk|k−1

)
×
( L∏
`=1

IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
×D

(
π1:L
k ; {α`k|k−1}

L
`=1

)
. (19)

The logarithm of the joint density above is given as

log p
(
y1:Mk

k , z1:Mk

k , r1:Mk

k ,xk,X
1:L
k , π1:L

k

∣∣Yk−1
)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
+

L∑
`=1

rj,`k

(
log π`k + logN

(
zjk;H`xk, sX

`
k

)))
+ logN

(
xk;mk|k−1,Pk|k−1

)
+

L∑
`=1

log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

)
+ logD

(
π1:L
k ; {α`k|k−1}

L
`=1

)
. (20)

With this log-distribution, the factors qz(·), qr(·), qx(·), qX(·),
and qπ(·) can be calculated using variational Bayes approach
[21, Ch. 10] as

qz
(
z1:Mk

k

)
=

Mk∏
j=1

N
(
zjk; ẑ

j
k|k,P

z,j
k|k
)
, (21a)

qr
(
r1:Mk

)
=

Mk∏
j=1

L∏
`=1

(
γj,`k|k

)rj,`k , (21b)

qx(xk) =N
(
xk;mk|k,Pk|k

)
, (21c)

qX
(
X1:L
k

)
=

L∏
`=1

IW
(
X`
k; v

`
k|k,V

`
k|k
)
, (21d)

qπ
(
π1:L
k

)
=D
(
π1:L
k ;α1:L

k|k
)
, (21e)

where the parameters ẑjk|k, Pz,j
k|k, γj,`k|k, mk|k, Pk|k, v`k|k, V`

k|k,
α`k|k, j = 1, . . . ,Mk, ` = 1, . . . , L, are found iteratively.
Once the updated distributions in (21) are obtained we can
approximate the updated posterior p

(
xk,X

1:L
k , π1:L

k |Yk

)
as

p
(
xk,X

1:L
k , π1:L

k |Yk

)
≈ qx(xk)qX(X1:L

k )qπ
(
π1:L
k

)
, (22)

which is in the form (5) as required. The derivations for the
distributions in (21) and for the iterations of their parameters
are given in the following subsections. A summary of the re-
sulting iterative update procedure can be found in Algorithm 1.

A. Calculation of q(i+1)
z (·)

The density q(i+1)
z

(
·
)

is given as [21, Ch. 10]

log q(i+1)
z

(
z1:Mk

k

)
= E\z

[
log p(·|Yk−1)

]
+ c\z (23)

where c\z denotes any constant term(s) with respect to the
variables z1:Mk . The joint log-distribution in the expectation
above is given as

log p(·|Yk−1)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
+

L∑
`=1

rj,`k logN
(
zjk;H`xk, sX

`
k

))
+ c\z, (24a)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
− 1

2

L∑
`=1

rj,`k
(
zjk −H`xk

)T(
sX`

k

)−1( · ))+ c\z. (24b)

Taking the expectation of both sides, we get

E\z
[
log p(·|Yk−1)

]
=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
− 1

2

L∑
`=1

rj,`k
(
zjk −H`xk

)T(
sX`

k

)−1( · ))+ c\z, (25a)
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=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
− 1

2

L∑
`=1

(
zjk −H`xk

)T
rj,`k
(
sX`

k

)−1( · ))+ c\z, (25b)

=

Mk∑
j=1

(
logN

(
yjk; z

j
k,R

)
+

L∑
`=1

logN
(
zjk;H`xk,

(
rj,`k
(
sX`

k

)−1)−1)
+ c\z,

(25c)

=

Mk∑
j=1

logN
(
zjk; ẑ

j,(i+1)
k|k ,P

z,j,(i+1)
k|k

)
+ c\z, (25d)

where

ẑ
j,(i+1)
k|k ,P

z,j,(i+1)
k|k

(
R−1yjk +

L∑
`=1

rj,`k
(
sX`

k

)−1
H`xk

)
,

(26a)

P
z,j,(i+1)
k|k ,

(
R−1 +

L∑
`=1

rj,`k
(
sX`

k

)−1)−1
, (26b)

for j = 1, . . . ,Mk. Hence we have

q(i+1)
z

(
z1:Mk

k

)
=

Mk∏
j=1

N
(
zjk; ẑ

j,(i+1)
k|k ,P

z,j,(i+1)
k|k

)
. (27)

B. Calculation of q(i+1)
r (·)

The density q(i+1)
r

(
·
)

is given as

log q(i+1)
r

(
r1:Mk

k

)
= E\r

[
log p(·|Yk−1)

]
+ c\r (28)

where c\r denotes any constant term(s) with respect to the
variables r1:Mk . The joint log-distribution in the expectation
above is given as

log p(·|Yk−1)

=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k + logN

(
zjk;H`xk, sX

`
k

))
+ c\r,

(29a)

=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k −

1

2
log |2πsX`

k|

− 1

2

(
zjk −H`xk

)T(
sX`

k

)−1( · ))+ c\r, (29b)

=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k −

1

2
log |2πsX`

k|

− 1

2
tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

+ c\r. (29c)

Taking the expectation of both sides, we get

E\r
[
log p(·|Yk−1)

]
=

Mk∑
j=1

L∑
`=1

rj,`k

(
log π`k −

1

2
log |2πsX`

k|

− 1

2
tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

+ c\r, (30a)

=

Mk∑
j=1

L∑
`=1

rj,`k log exp
(
log π`k −

1

2
log |2πsX`

k|

− 1

2
tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

+ c\r, (30b)

=

Mk∑
j=1

L∑
`=1

log

((
exp

(
log π`k −

1

2
log |2πsX`

k|

− 1

2
tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T)))rj,`k )

+ c\r,

=

Mk∑
j=1

L∑
`=1

log
((
γ
j,`,(i+1)
k|k

)rj,`k )+ c\r, (30c)

where

γ
j,`,(i+1)
k|k ,

γ̃
j,`,(i+1)
k|k∑L

`=1 γ̃
j,`,(i+1)
k|k

, (31a)

γ̃
j,`,(i+1)
k|k , exp

(
log π`k −

1

2
log |X`

k|

− 1

2
tr
((
sX`

k

)−1(
zjk −H`xk

)(
·
)T))

, (31b)

for j = 1, . . . ,Mk, ` = 1, . . . , L. Hence, we have

q(i+1)
r

(
r1:Mk

k

)
=

Mk∏
j=1

L∏
`=1

(
γ
j,`,(i+1)
k|k

)rj,`k . (32)

Note that the expression above corresponds to the following
probabilistic characterization.

P
q
(i+1)
r

{
rj,`k = 1

}
= γ

j,`,(i+1)
k|k (33)

for j = 1, . . . ,Mk, ` = 1, . . . , L.

C. Calculation of q(i+1)
x (·)

The density q(i+1)
x

(
·
)

is given as

log q(i+1)
x

(
xk
)
= E\x

[
log p(·|Yk−1)

]
+ c\x (34)

where c\x denotes any constant terms with respect to the
variable xk. The joint log-distribution in the expectation above
is given as

log p(·|Yk−1)

=

Mk∑
j=1

L∑
`=1

rj,`k logN
(
zjk;H`xk, sX

`
k

)
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (35a)

=

L∑
`=1

Mk∑
j=1

rj,`k logN
(
zjk;H`xk, sX

`
k

)
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (35b)

= −1

2

L∑
`=1

Mk∑
j=1

rj,`k
(
zjk −H`xk

)T(
sX`

k

)−1( · )
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (35c)
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= −1

2

L∑
`=1

tr

((
sX`

k

)−1 Mk∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ logN
(
xk;mk|k−1,Pk|k−1

)
+ c\x. (35d)

Taking the expectation of both sides, we get

E\x
[
log p(·|Yk−1)

]
= −1

2

L∑
`=1

tr

((
sX`

k

)−1 Mk∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ logN
(
xk;mk|k−1,Pk|k−1

)
+ c\x, (36a)

= −1

2

L∑
`=1

tr

((
sX`

k

)−1( Mk∑
j=1

rj,`k

)

×
∑Mk

j=1 r
j,`
k

(
zjk −H`xk

)(
·
)T∑Mk

j=1 r
j,`
k

)
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (36b)

= −1

2

L∑
`=1

tr

((
sX`

k

)−1( Mk∑
j=1

rj,`k

)

×

(∑Mk

j=1 r
j,`
k zjk∑Mk

j=1 r
j,`
k

−H`xk

)(
·

)T)
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (36c)

= −1

2

L∑
`=1

tr

((
sX`

k

)−1( Mk∑
j=1

rj,`k

)(
u`k −H`xk

)(
·
)T)

+ logN
(
xk;mk|k−1,Pk|k−1

)
+ c\x,

=

L∑
`=1

logN
(
u`k;H`xk,

(
Λ`
k

)−1)
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (36d)

= logN
(
u1:L
K ;H1:Lxk,Λ

−1
1:L

)
+ logN

(
xk;mk|k−1,Pk|k−1

)
+ c\x, (36e)

where

u`k ,

∑Mk

j=1 r
j,`
k zjk∑Mk

j=1 r
j,`
k

, (37a)

Λ`
k ,
(
sX`

k

)−1 Mk∑
j=1

rj,`k , (37b)

u1:L
k ,

[
(u1
k)

T (u2
k)

T · · · (uLk )
T
]T
, (37c)

H1:L ,
[

HT
1 HT

2 · · · HT
L

]T
, (37d)

Λ1:L ,blkdiag(Λ1
k,Λ

2
k, . . . ,Λ

L
k ). (37e)

for ` = 1, . . . , L. Hence we have

q(i+1)
x (xk) = N

(
xk;m

(i+1)
k|k ,P

(i+1)
k|k

)
, (38)

where

m
(i+1)
k|k =P

(i+1)
k|k

(
P−1k|k−1mk|k−1 + HT

1:LΛ1:Lu1:L
k

)
, (39a)

P
(i+1)
k|k =

(
P−1k|k−1 + HT

1:LΛ1:LH1:L

)−1
. (39b)

D. Calculation of q(i+1)
X (·)

The density q(i+1)
X

(
·
)

is given as

log q
(i+1)
X

(
X1:L
k

)
= E\X

[
log p(·|Yk−1)

]
+ c\x (40)

where c\x denotes any constant terms with respect to the
variables X1:L

k . The joint log-distribution in the expectation
above is given as

log p(·|Yk−1)

=

Mk∑
j=1

L∑
`=1

rj,`k logN
(
zjk;H`xk, sX

`
k

)
+

L∑
`=1

log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

)
+ c\x, (41a)

=

L∑
`=1

(
Mk∑
j=1

rj,`k logN
(
zjk;H`xk, sX

`
k

)
+ log IW

(
X`
k; v

`
k|k−1,V

`
k|k−1

))
+ c\x, (41b)

=

L∑
`=1

(
− 1

2

( Mk∑
j=1

rj,`k

)
log
∣∣X`

k

∣∣
− 1

2
tr

((
X`
k

)−1 1
s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
+ c\x. (41c)

Taking the expectation of both sides, we get

E\X
[
log p(·|Yk−1)

]
=

L∑
`=1

(
− 1

2

( Mk∑
j=1

rj,`k

)
log
∣∣X`

k

∣∣
− 1

2
tr

((
X`
k

)−1 1
s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

))
+ c\x, (42a)

=

L∑
`=1

log IW

(
X`
k;

Mk∑
j=1

rj,`k ,
1

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T)

+ log IW
(
X`
k; v

`
k|k−1,V

`
k|k−1

)
+ c\x,

=

L∑
`=1

log IW
(
X`
k; v

`,(i+1)
k|k ,V

`,(i+1)
k|k

)
+ c\x, (42b)

where

v
`,(i+1)
k|k ,v`k|k−1 +

Mk∑
j=1

rj,`k , (43a)

V
`,(i+1)
k|k ,V`

k|k−1 +
1

s

M∑
j=1

rj,`k
(
zjk −H`xk

)(
·
)T
, (43b)
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for ` = 1, . . . , L. Hence, we have

q
(i+1)
X

(
X1:L
k

)
=

L∏
`=1

IW
(
X`
k; v

`,(i+1)
k|k ,V

`,(i+1)
k|k

)
. (44)

E. Calculation of q(i+1)
π (·)

The density q(i+1)
π

(
·
)

is given as

log q(i+1)
π

(
π1:L
k

)
= E\π

[
log p(·|Yk−1)

]
+ c\π (45)

where c\π denotes any constant terms with respect to the
variables π1:L

k . The joint log-distribution in the expectation
above is given as

log p(·|Yk−1)

=

(
Mk∑
j=1

L∑
`=1

rj,`k log π`k

)
+ logD

(
π1:L
k ; {α`k|k−1}

L
`=1

)
+ c\π, (46a)

=

Mk∑
j=1

L∑
`=1

rj,`k log π`k +

L∑
`=1

(α`k|k−1 − 1) log π`k + c\π,

(46b)

=

L∑
`=1

( Mk∑
j=1

rj,`k + α`k|k−1 − 1

)
log π`k + c\π. (46c)

Taking the expectation of both sides, we get

E\π
[
log p(·|Yk−1)

]
=

L∑
`=1

( Mk∑
j=1

rj,`k + α`k|k−1 − 1

)
log π`k + c\π. (47)

Hence we have

q(i+1)
π

(
π1:L
k

)
= D

(
π1:L
k ;

{
α
`,(i+1)
k|k

}L
`=1

)
(48)

where

α
`,(i+1)
k|k , α`k|k−1 +

Mk∑
j=1

rj,`k , (49)

for ` = 1, . . . , L.

F. Expected Values Required for Iterations

The expected values required in the previous subsections
can be calculated as follows.

(sX`
k)
−1 ,EX

[
(sX`

k)
−1]

=
(
v
`,(i)
k|k − ny − 1

)(
sV

`,(i)
k|k
)−1

, (50a)

xk ,Ex

[
xk
]
= m

(i)
k|k, (50b)

rj,`k ,Er

[
rj,`k
]
= P

q
(i)
r

{
rj,`k = 1

}
= γ

j,`,(i)
k|k ,

(50c)

log π`k ,Eπ
[
log π`k

]
=ψ
(
α
`,(i)
k|k
)
− ψ

( L∑
`=1

α
`,(i)
k|k

)
, (50d)

log
∣∣X`

k

∣∣ ,EX

[
log
∣∣X`

k

∣∣]

= log
∣∣V`,(i)

k|k
∣∣− ny log 2

−
ny∑
d=1

ψ

(
v
`,(i)
k|k − ny − d

2

)
, (50e)

zjk ,Ez

[
zjk
]
= z

j,(i)
k|k , (50f)(

zjk −H`xk
)(
·
)T

,Ez,x

[(
zjk −H`xk

)(
·
)T]

=
(
z
j,(i)
k|k −H`m

(i)
k|k
)(
·
)T

+ P
z,j,(i)
k|k

+ H`P
(i)
k|kH

T
` , (50g)

for j = 1, . . . ,Mk, ` = 1, . . . , L where ψ(·) denotes
the digamma function (i.e., the logarithmic derivative of the
Gamma function or polygamma function of order zero.).

Algorithm 1 Measurement Update for ME-ETT Model

1: Given: mk|k−1, Pk|k−1, {v`k|k−1,V
`
k|k−1, α

`
k|k−1}L`=1 and

y
1:Mk
k , calculate mk|k, Pk|k, {v`k|k,V`

k|k, α
`
k|k}L`=1 as follows.

2: Initialization at time k = 0:
3: m

(0)

k|k ←mk|k−1

4: P
(0)

k|k ← Pk|k−1

5: for ` = 1, . . . , L do
6: v

`,(0)

k|k ← v`k|k−1

7: V
`,(0)

k|k ← V`
k|k−1

8: α
`,(0)

k|k ← α`k|k−1

9: for j = 1, . . . ,Mk do
10: γ

j,`,(0)

k|k ←
α`k|k−1∑L
`′=1

α`
′
k|k−1

11: end for
12: end for
13: for j = 1, . . . ,Mk do
14: z

j,(0)

k|k ← yjk
15: P

z,j,(0)

k|k ← R
16: end for
17: Iterations:
18: H1:L =

[
HT

1 HT
2 · · · HT

L

]T
19: for i = 0, . . . , imax − 1 do
20: for j = 1, . . . ,Mk do
21: for ` = 1, . . . , L do
22: W

(i)
j` ,

(
z
j,(i)

k|k − H`m
(i)

k|k
)(

z
j,(i)

k|k − H`m
(i)

k|k
)T

+

P
z,j,(i)

k|k + H`P
(i)

k|kH
T
`

23: γ̃
j,`,(i+1)
k|k = exp

(
ψ
(
α
`,(i)
k|k

)
− 1

2
log

∣∣V`,(i)
k|k

∣∣ +

1
2

∑ny
d=1

ψ

( v`,(i)
k|k −ny−d

2

)
−
v
`,(i)
k|k −ny−1

2
tr
((
sV
`,(i)
k|k

)−1W
(i)
j`

))
24: end for
25: for ` = 1, . . . , L do

26: γ
j,`,(i+1)

k|k =
γ̃
j,`,(i+1)
k|k∑L

`
′
=1

γ̃
j,`
′
,(i+1)

k|k
27: end for
28: end for
29: for j = 1, . . . ,Mk do
30: P

z,j,(i+1)

k|k =

(
R−1 +

∑L
`=1

[
γ
j,`,(i)

k|k
(
v
`,(i)

k|k − ny −

1
)(
sV

`,(i)

k|k
)−1

])−1

31: z
j,(i+1)

k|k = P
z,j,(i+1)

k|k

(
R−1yjk +

∑L
`=1

[
γ
j,`,(i)

k|k
(
v
`,(i)

k|k − ny −

1
)(
sV

`,(i)

k|k
)−1H`m

(i)

k|k

])
32: end for
33: for ` = 1, . . . , L do
34: v

`,(i+1)

k|k = v`k|k−1 +
∑Mk
j=1 γ

j,`,(i)

k|k
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35: V
`,(i+1)

k|k = V`
k|k−1 +

1
s

∑Mk
j=1

[
γ
j,`,(i)

k|k W
(i)
j`

]
36: α

`,(i+1)

k|k = α`k|k−1 +
∑Mk
j=1 γ

j,`,(i)

k|k

37: u`k =

∑Mk
j=1

[
γ
j,`,(i)
k|k z

j,(i)
k|k

]
∑Mk
j=1 γ

j,`,(i)
k|k

38: Λ`
k =

(
v
`,(i)

k|k − ny − 1
)(
sV

`,(i)

k|k
)−1∑Mk

j=1 γ
j,`,(i)

k|k
39: end for
40: u1:L

k =
[
(u1
k)

T (u2
k)

T · · · (uLk )
T
]T

41: Λ1:L = blkdiag(Λ1
k,Λ

2
k, . . . ,Λ

L
k )

42: P
(i+1)

k|k =

(
P−1
k|k−1 + HT

1:LΛ1:LH1:L

)−1

43: m
(i+1)

k|k = P
(i+1)

k|k

(
P−1
k|k−1mk|k−1 + HT

1:LΛ1:Lu1:L
k

)
44: end for
45: Set final estimates:
46: mk|k = m

(imax)

k|k

47: Pk|k = P
(imax)

k|k
48: for ` = 1, . . . , L do
49: v`k|k = v

`,(imax)

k|k

50: V`
k|k = V

`,(imax)

k|k

51: α`k|k = α
`,(imax)

k|k
52: end for

IV. TIME UPDATE

With the target dynamics given in (2), the time update of
the kinematic state is performed following the regular Kalman
filter time update equations

mk|k−1 = Fmk−1|k−1, (51a)

Pk|k−1 = FPk−1|k−1F
T + Q. (51b)

The parameters of the inverse Wishart distribution of each
sub-object are updated with a forgetting factor λIW ,

v`k|k−1 = λIW v
`
k−1|k−1, (52a)

V`
k|k−1 = λIWV`

k−1|k−1, for ` = 1, . . . , L. (52b)

The forgetting factor is used to obtain the maximum entropy
prediction density of the extent states when the dynamics of
the extent state is slowly varying and unknown [22, Theo-
rem 1]. Similarly, the sufficient statistics of the Dirichlet dis-
tributed mixture weights π1:L

k are propagated with a forgetting
factor λD,

α`k|k−1 = λDα
`
k−1|k−1 for ` = 1, . . . , L. (53)

If the true parameter evolution model is slowly varying, the
time update equations (52) and (53) will not underestimate
the uncertainty by maximizing the entropy. Note that, for the
special case of stationary parameters forgetting factors are set
to 1, i.e., λIW = λD = 1.

The proposed algorithm is also versatile to perform under
alternative random matrix time update schemes.

V. EXPERIMENTAL RESULTS

In this section, we will demonstrate the performance of the
proposed algorithm in various experiments and compare its
performance with the algorithms presented in [6], [12], [17],
[20]. In the sequel, we will denote the proposed algorithm
as VB and the methods in [17] and [20] as VPF and JL,
respectively.

To assess the performance of the algorithms, we consider
the Intersection-Over-Union (IOU) similarity measure [3], [7],
[23] together with Gaussian Wasserstein (GW) distance [24],
[25] for the extent estimates and the root-mean-square error
(RMSE) for the kinematic state estimates. The RMSE between
the true and the estimated states is defined as

RMSE(xtrue,x) =

√√√√ 1

N

N∑
k=1

||xtrue
k − xk||22, (54)

where N is the number of time steps in a single run.
The IOU measure between the estimated extent and the true

extent is calculated as

IOU(Xtrue
k ,Xk|k) =

area(Xtrue
k ∩Xk|k)

area(Xtrue
k ∪Xk|k)

∈ [0, 1], (55)

IOU(Xtrue,X) =
1

N

N∑
k=1

IOU(Xtrue
k ,Xk|k), (56)

where Xtrue
k and Xk|k denotes the true and estimated extent

matrices at time k, respectively. Note that IOU takes values
between 0 and 1, where 1 corresponds to the perfect match,
while 0 indicates no intersection between the true and the
estimated extents. The GW distance [25] can be expressed as

GW(ctruek ,Xtrue
k , ck,Xk|k)

2 ,
∥∥∥ctruek − ck|k

∥∥∥2
2

+ tr
[
Xtrue
k + Xk|k − 2(Xtrue

1
2

k Xk|kX
true

1
2

k )
1
2

]
. (57)

GW(ctrue,Xtrue, c,X)

=
1

N

N∑
k=1

GW(ctruek ,Xtrue
k , ck|k,Xk|k), (58)

where ctruek , ck|k and Xtrue
k , Xk|k stand for true and estimated

center locations and true and estimated extent matrices at time
k, respectively.

The comparison metrics above are formulated for a single
simulation run. In the sequel, all simulation experiments
are performed 100 times with different realizations of the
measurement noise at each run. The presented numbers in the
simulations are the averages of the 100 Monte Carlo (MC)
runs.

A. Simulations

The first simulation experiment consists of two co-centered
elliptical objects moving according to the near constant veloc-
ity model with parameters given in Table II. Throughout the
simulation, 7 measurements are generated from each object per
time step. We compare the performances of VB, VPF (with
N=100 particles), and JL algorithms over 100 MC runs. An
example MC run is illustrated in Figure 3. The comparison
metrics and the computation time of the algorithms are given
in Table III. VB algorithm estimates both the kinematic and
extent states better than other approaches in terms of RMSE,
IOU, and GW distance.

Note that the number of association events in the JL algo-
rithm grows exponentially as the number of the sub-objects
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TABLE II: The simulation parameters for the first scenario.

Xtrue

[
800 700
700 800

] [
800 −700
−700 800

]
m0 [0, 0, 200, 0, 0, 0]T

P0 blkdiag(50I2, 10I4)

V0 1500I2
v0 10

Fc

[
1 T
0 1

]
⊗ I2

Fµ,` I2
F blkdiag(Fc,Fµ,2)

Qc σ2

T3

3
T2

2
T2

2
T

⊗ I2

Qµ,` I2
Q blkdiag(Qc,Qµ,2)

R 10I2
σ2 0.1

T 0.1

TABLE III: The RMSE, IOU, GW values and the computation
times for the first scenario.

Sub-obj IOU RMSE GW Comp. Time
Per Time Step

JL 1st 0.70 3.89 9.68 13.96 s
2nd 0.70 4.26 9.69

VPF 1st 0.70 1.95 8.64 298.56 ms
2nd 0.70 2.12 8.57

VB 1st 0.77 1.64 5.06 25.91 ms
2nd 0.77 1.92 5.08

and measurements increases [20]. Hence the JL algorithm’s
computation time is significantly higher than the other methods
as shown in Table III. Being a sequential Monte Carlo method,
VPF algorithm is also computationally costly. On the other
hand, the computation time of VB is linear in both number
of measurements Mk and number of sub-objects L. The
computational complexity of the proposed solution isO(LMk)
at time k. Consequently, the computation time of the VB
algorithm is significantly lower than the alternatives as shown
in Table III.

In the second simulation scenario, we have a target with
a shape similar to an airplane (see: Figure 4.). The object
performs a constant velocity motion on a straight line.

The relevant parameters of the scenario are given in Ta-
ble IV. Throughout the simulation, the number of measure-
ments is set to 2 for each sub-object, yielding 8 measurements
in total per time step. The performance evaluation metrics are
given in Table V. The VB algorithm outperforms JL and VPF
algorithms in terms of accuracy in the extent estimates and
provides results which exhibit smaller variation over time.

B. Occlusion Scenario

In this section, we illustrate the capabilities of the algorithm
in the presence of an occlusion problem which is frequently
encountered in various target tracking applications. For in-
stance, aerial objects might be partly or fully occluded by
thick clouds while tracking with a day camera. Many practical
systems resort to multiple complementary sensors, such as a

TABLE IV: The simulation parameters for the second sce-
nario.

Xtrue
Body:

[
6000 0
0 500

]
Bottom Wing:

[
300 500
500 2000

]
Top Wing:

[
300 −500
−500 2000

]
Tail:

[
150 0
0 3000

]
m0 [−10, 0, 400, 0, 0,−120, 0, 120,−200, 0]T
P0 blkdiag(10I4, 100I6)

V0 3000I2
v0 30

Fc

[
1 T
0 1

]
⊗ I2

Fµ,` I2
F blkdiag(Fc,Fµ,2, . . . ,Fµ,5)

Qc σ2

T3

3
T2

2
T2

2
T

⊗ I2

Qµ,` I2
Q blkdiag(Qc,Qµ,2, . . . ,Qµ,5)

R 10I2
σ2 0.1

T 0.1

TABLE V: The RMSE, IOU, GW values and the computation
times for the second scenario.

Sub-obj: 1st 2nd 3rd 4th
Comp. Time

Per
Time Step[s]

JL
RMSE 6.98 12.46 11.54 14.24

15.97 sIOU 0.65 0.65 0.65 0.65
GW 26.98 16.15 16.13 18.04

VPF
RMSE 5.35 11.46 9.86 6.44

351.44 msIOU 0.65 0.70 0.71 0.76
GW 32.27 16.76 15.75 11.48

VB
RMSE 2.58 8.61 7.71 6.73

27.87 msIOU 0.71 0.75 0.75 0.75
GW 18.60 11.73 11.02 12.37

thermal and a day camera, to prevent track loss during such
occlusions.

In this simulation scenario, we simulated a group of co-
ordinated targets, which contains 5 individuals moving on a
straight path in a V-shape formation1. During a certain part
of the simulated trajectory, the line of sight of the sensor
is partly blocked. It is assumed that no measurements can
be obtained from the top two targets of the formation at the
corresponding time instances. During the occlusion period, the
group of targets gradually slows down. Then, they increase
their velocity incrementally back to their regular pace. A
visualization which describes the corresponding scenario is
depicted in Figure 5.

We compare the performance of the proposed approach,
VB, against the algorithm in [12], referred to as FFK in the
sequel. The VB algorithm incorporates a unified kinematic
model, i.e., the sub-objects depend on a common kinematic
state as described in Section II. However, FFK treats each
sub-object as a different target and tracks them individually
without considering the interactions between them. During the
occlusion period, FFK relies only on time update equations to
estimate the kinematic and extent state of the occluded targets.

1Note that, the data generated in this scenario can also be interpreted to
originate from a single solid object whose extent is composed of five ellipses.
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Fig. 3: The estimation results for the first scenario where two co-centered objects move along a straight line. The extent
estimates of VB, VPF, and JL are shown in purple, orange, and yellow lines, respectively. The ground truth is depicted by
black dashed lines.
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Fig. 4: The posterior means of the estimation results for the second scenario where four sub-objects with distinct extents move
along a straight line. The extent estimates of VB, VPF, and JL are shown in purple, orange, and yellow lines, respectively.
The ground truth is depicted by black dashed lines.
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Fig. 5: The extent estimates of VB (purple solid line) and FFK (yellow solid line) together with the ground truth (black dashed
line). The top two targets are occluded between t = 36 and t = 51. During this interval, no measurements are acquired from
these targets. The occlusion region is represented by the green area.

On the contrary, VB can utilize the measurements that are
collected from the visible targets to extract information about
occluded targets’ state. Consequently, it can provide much
better performance as shown in Figure 5.

C. Experiments with Real Data

In this subsection, the performance of the proposed algo-
rithm is demonstrated with real data. The data are extracted
from aerial footages of a delta-wing aircraft and a glider.
Throughout the experiments, each frame of the videos is pro-
cessed to generate point measurements. In order to distinguish
the airplanes from the background, a thresholding is performed
in the HSV color space and a median filter is used to reduce
the clutters and to eliminate distant measurements. After this
pre-processing step, the pixel coordinates belonging to the
airplanes are uniformly sampled to obtain the measurements.

The first real data experiment consists of a delta wing
airplane [26]. A representative example of VB algorithm’s
performance is illustrated in Figure 6a. Note that, the camera
zoom is not constant throughout the scenario, which introduces
additional challenges for the algorithm.

The second scenario is an air-footage of a glider in mo-
tion [27]. The performance of VB algorithm is illustrated in
Figure 6b.

In Figure 6a and 6b, we also depict the extent estimates of
two different single ellipsoidal target tracking algorithms [6],
[12]. For the sake of clarity, only the estimates in the final
frames of the video sequences are plotted. Both results demon-
strate that modeling the extent with multiple ellipses provides
a more accurate representation of the target extent.

VI. CONCLUSION AND FUTURE WORK

In this study, a novel extended target tracking algorithm
that is capable of representing a target or a group of tar-
gets with multiple ellipses while simultaneously estimating
the kinematics is presented. The proposed solution involves
approximating the intractable posterior distribution with the
variational Bayes method to estimate kinematic and extent
states. We demonstrated the performance of the approach in
simulations and real data experiments. The results of the exper-
iments show that the proposed method significantly improves
the computation time while achieving better kinematic and

extent state estimation performance compared to the existing
approaches in the literature.
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