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ABSTRACT

DEEP LEARNING BASED SPEED UP OF FLUID DYNAMICS SOLVERS

Acar, Deniz Alper

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. Oğuz UZOL

September 2022, 112 pages

In this thesis, two distinct deep learning-based methods for the speed-up of fluid

dynamics solvers are proposed. The first method called Parametric Encoded Physics

informed neural network (PEPINN), is utilized to solve transient fluid dynamics prob-

lems. PEPINN is an alternative to the Physics informed neural networks (PINN) and

is based on the parametric encoding of the problem domain. In PEPINN the automatic

differentiation for calculation of the problem residual is replaced with finite difference

kernels which improve PEPINN’s time and memory complexity. This model can

achieve up to 40× speed up in wall time for the solution of the Taylor-Green Vortex

problem compared to the best alternative vanilla PINN model with no loss in solutions

mean squared error. It is also shown that PEPINN can be trained on up to 183× larger

data compared to the alternative vanilla PINN methods in a GTX 1080 Ti GPU. The

second proposed method in this thesis is based on the hypothesis that providing the

predicted solution of the steady-state Navier-Stokes equations as their initial condi-

tion might speed up the solution process. In this method, an Unet-based architecture

is trained on a discretized representation of the whole problem domain given its initial

and boundary conditions. The trained model is used to predict the converged solution

of similar cases and the obtained results are transferred to the computational mesh

v



of that problem. This method is tested on the steady, incompressible, subsonic flow

around arbitrary airfoils.

Keywords: Partial Differential Equations, Physics informed neural networks, Deep

learning, Computational Fluid Dynamics, Parametric Encoding
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ÖZ

AKIŞKANLAR DİNAMİĞİ ÇÖZÜCÜLERİNİN DERİN ÖĞRENMEYE
DAYALI HIZLANDIRILMASI

Acar, Deniz Alper

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Oğuz UZOL

Eylül 2022 , 112 sayfa

Bu tezde, akışkanlar dinamiği çözücülerinin hızlandırılması için iki farklı derin öğ-

renme tabanlı yöntem önerilmektedir. Parametrik Kodlanmış Fizik Bilgili Sinir Ağı

(PEPINN) olarak adlandırılan ilk yöntem, geçici akışkan dinamiği problemlerini çöz-

mek için kullanılmaktadır. Fizik bilgili sinir ağları (PINN) için bir alternatif olan Pa-

rametrik Kodlanmış Fizik Bilgili Sinir Ağı (PEPINN), problem alanının parametrik

olarak kodlanmasına dayanır. PEPINN yönteminde, problem kalıntısının (residual)

hesaplanması için otomatik türevlendirme, sonlu fark çekirdekleri (kernels) ile değiş-

tirilir, bu da PEPINN’in zaman ve bellek karmaşıklığını düşürür.

Bu model, Taylor-Green Vortex probleminin çözümü için en iyi alternatif olan orijinal

fizik bilgili sinir ağları (PINN) modeline kıyasla, gerçek zamanda (wall time) 40 kata

kadar hızlanma sağlayabilir ve çözümlerin ortalama karesel hatasında herhangi bir

kayıp olmaz. Ayrıca Parametrik Kodlanmış Fizik Bilgili Sinir Ağı’nın (PEPINN),

GTX 1080 Ti GPU’da alternatif orijinal fizik bilgili sinir ağları (PINN) yöntemlerine

kıyasla 183 kata kadar daha büyük veri üzerinden eğitilebildiği tespit edilmiştir.
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Bu tezde önerilen ikinci yöntem ise, kararlı durum Navier-Stokes denklemlerinin ön-

görülen çözümünün başlangıç koşulu olarak sağlanmasının, çözüm sürecini hızlan-

dırabileceği hipotezine dayanmaktadır. Bu yöntemde, U-net tabanlı bir mimari, baş-

langıç ve sınır koşulları belirlenerek, bütün problem alanının ayrıklaştırılmış bir tem-

sili üzerinden eğitilmektedir. Eğitilen model, benzer durumların yakınsak çözümünü

tahmin etmek için kullanılır ve elde edilen sonuçlar o problemin hesaplama ağına ak-

tarılır. Bu yöntem, gelişigüzel aerodinamik profil etrafındaki kararlı, sıkıştırılamaz,

sabsonik akış üzerinde test edilmiştir.

Anahtar Kelimeler: Kısmi Diferansiyel Denklemler, Fizik bilgili sinir ağları, Derin

öğrenme, Hesaplamalı Akışkanlar Dinamiği, Parametik kodlama
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CHAPTER 1

INTRODUCTION

1.1 Motivation, Problem Definition and Contributions

There is a rapid growth in the application of Deep Neural networks (DN) for solv-

ing differential equations. This newly emerging topic has attracted many researchers

from different disciplines to itself and slowly started to produce fast and comparably

more accurate results. Of course, there is still a substantial gap between the accuracy

of DN models compared to discretization-based differential equation solvers, albeit

a large portion of the DL-based models produces results orders of magnitude faster

compared to their counterparts. The aforementioned DL-based solvers can be divided

into two main categories. The first category learns the internal physics of the problem

given enough data and is sometimes used for extrapolating to other unseen problems,

whereas the second category aims to solve each problem by fitting a non-linear and

differentiable model that satisfies the constraints of the problem setting (residual, ini-

tial, and boundary conditions of a partial differential equation-based problem).

Most of these methodologies either themselves can be sped up, or they can be used

in conjunction with the existing discretization-based methods to make their solution

process faster. Both of these approaches are investigated in this thesis.

In chapter 2, the shortcomings of physics-informed neural networks (PINNs) are in-

vestigated and a new method for training such implicit models is proposed. The moti-

vation behind chapter 2 is that the vanilla PINN training performance suffers from the

application of automatic differentiation (AD) (for both forward and backward modes)

for higher-order differential equations solved by models with deep architectures. The

AD constraints the time and memory complexity of training PINNs as a function of
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the order of PDE and the number of layers of the architecture used for learning the

mapping which will be explored in more detail in section 2.6. In chapter 2 the auto-

matic differentiation in the PINN models is replaced by the finite difference kernels

in order to estimate the derivatives of the solution variables with respect to domain

variables. This removes the dependency of the derivative calculation time complexity

with the model size and order of the PDE. The second motivation behind chapter 2

is that the learning capacity of PINNs can be increased (with no/minimal additional

computational cost) and their training process can be made more robust by introduc-

ing dense parametric domain encoding as a backbone of the architectures used in

training such models. With dense parametric encoding, the domain is divided into

subdomains that are represented by local weights at the bounding vertices of each

division. The (latent) representation of any query points belonging to a subdomain

is then obtained by interpolating the weights representing that subdomain. Thus this

model learns to satisfy the conditions imposed by the residual, as well as the initial

and boundary conditions locally in the sub-domain parametric encoding rather than

globally as the weights of a neural network. Another advantage of using parametric

domain encoding is that it provides additional learnable parameters thus allowing a

smaller decoder model (like multi-layer perceptron (MLP)) to be used for mapping

the latent representation learned by the parametric encoding to the solution domain.

In order to test the performance of the proposed method Taylor-Green Vortex problem

is solved in chapter 2. It is then shown that applying the methods mentioned earlier

speeds up the training process and allows for larger training data to be provided to the

model for the same memory limit.

In chapter 3, a simple methodology for combining the results of the DL-based mod-

els trained on existing data is proposed where the inaccurate results of the prediction

of the DL model are used as the initial and boundary conditions for the solution of

steady-state differential equations. The main motivation in chapter 3 is that during

design processes that involve the solution of differential equations a large number

of candidate cases are needed to be simulated which requires a significant amount

of time and resources to be dedicated in order to search for the best design candi-

dates. Here it is hypothesized that this process can be made faster and reduce its

required resources by simply training an end-to-end neural network that establishes a
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mapping between the inputs of a small number of design candidates to their outputs.

After training such a model, the trained mapping can be used to predict the solu-

tions for the cases among the remaining design candidates. The predicted solutions

will replace the initial and boundary conditions of each case and will be provided

to the discretization-based solver to speed up its convergence process. The perfor-

mance of this method is tested on the solution of Reynolds-averaged Navier–Stokes

(RANS) equations for steady, incompressible, subsonic, and two-dimensional (2D)

flow around airfoil shapes by solving the Spalart Allmaras turbulence model in Open-

FOAM open-source software.

Our contributions can be divided into two categories. In the first category which

involves the speed up of physics-informed neural networks for transient problems,

the following contributions are made:

• The asymptotic time complexity of the PINN models is investigated and it is

shown that the automatic differentiation for calculation of high order derivatives

is not a good choice.

• Proposed a new architecture for training PINNs based on parametric domain

encoding and the finite difference method that speeds up the training process

with a minimum loss in accuracy. This model is named Parametric Encoded

Physics Informed Neural Network (PEPINN).

• A procedure for faster, more robust training of PEPINN models is proposed.

• It is shown that the training process of PEPINN models is robust in terms of

changes in learning rate.

For the second category which involves the speed up of steady state PDEs with

learned solution predictions as the initial condition, the following contributions are

made:

• We propose to learn the whole domain in RANS equations settings solving

flow around 2D airfoils, rather than only the vicinity of the airfoil. And use

the output of the model as the initial condition for existing solvers for steady-

state problems. It is hypothesized that learning the whole domain makes the
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convergence process of the solver more stable thus eliminating the requirement

to iterate over the prediction-solution process for convergence.

• We use a non-uniform grid to learn the flow features around arbitrary airfoils

and argue that using such a setting would allow higher resolution information

about the parts of the domain that change drastically (for instance the vicinity

of the airfoil) to be stored and learned.

• Unlike previous methods a one-to-one mapping between the inputs and outputs

is not learned instead in order to provide more information about the geometry,

the input is created in the vicinity of the geometry while the output is queried

over the whole domain from a non-uniform grid.

1.2 Literature Review

1.2.1 Concepts Introduction

Machine learning approaches for learning to infer the solution or directly solve the

PDEs have become an attractive topic in recent years. Of course, the advances in deep

learning model architectures over the past decade, their astonishing results in process-

ing, synthesis, or mapping signals in different modalities (image, sound, language),

and the new suitable hardware development had a great impact on the adaptation of

such models in a large range of research topics. Supported by the universal approxi-

mation theorem [1, 2, 3] these models achieve astonishing results -which sometimes

surpass human ability- in image classification [4, 5, 6, 81, 8, 9], semantic segmen-

tation [10, 11, 12, 13], image generation [14, 15, 16, 17, 18, 19, 20, 21], natural

language processing and machine translation [22, 23, 24, 25], reinforcement learning

[26, 27, 28, 29, 30] etc. Scientific machine learning has regained new momentum

in recent years in the wake of advances in deep learning. Some of the early work

in the adaptation of neural networks in the solution of differential equations can be

traced back to [31], which used a multi-layer perceptron (A variant of Perceptron [32]

with more than one layer) to estimate unmeasured process parameters in a fed-batch

bioreactor and [33] where they also employed MLPs to solve ordinary differential

equations with initial and boundary conditions by configuring the trial function such
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that it consists of two parts. The first part of this trail function satisfied only the

boundary conditions with no learnable parameters, whereas the second term involved

the transformation of the output of the MLP such that it satisfied the ODE while

being zero at the boundaries. Recently similar models (e.g. physics informed neu-

ral networks [34] by Raissi et al.) have been proposed. These models aim to find

a nonlinear mapping from domain variables to the solution fields such that it satis-

fies given problem constraints. In this approach, similar to the discretization-based

solvers, one model is trained on one problem which upon inference will yield the so-

lution variables at each query point. There exists another approach in the solution of

differential equations that use already available data for different problem settings to

estimate/learn the statistics of the solution of such problems affected by the variations

in problem settings. These methods either aim to find surrogate estimation to some

final attributes of the solution variables like estimating the lift, or drag of airfoils from

their shape (either as points or images) [35, 36, 37, 38] or they directly estimate the

solution variables [39, 40, 41, 42, 43, 44]. In the following sections, the scientific

research done on both of the aforementioned approaches will be discussed in more

detail.

1.2.2 Prediction of the Solution Variables

Learning a mapping from the problem settings to the solution of differential equations

is one way of solving such problems. Because of the complexity of the PDEs, the do-

main they are defined in and their initial and boundary conditions it was generally

hard to obtain an analytical solution for such problems. As a result, a particular solu-

tion for a PDE given its constraints was approximately solved utilizing methods like

finite element or finite volume. Yet for some special cases, other methods surfaced

that could estimate the solution without directly solving the differential equation. For

instance, thin airfoil theory or application of the panel method can be considered as

such methods. The progress in machine learning and their ever-improving accuracy

in learning the mapping between complex domains in an end-to-end manner, moti-

vated researchers to test such models in learning the complex mapping between the

input and solution domains of different types of differential equations. For instance,

Farimani et al, [39] proposed adopting conditional generative adversarial networks
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(cGAN) [45] methodology so that the distribution of possible solutions for a set of

randomly generated problems for simple transport phenomenon to be learned. cGAN

is different from the vanilla GAN model in that it provides some condition c in both

the generator and discriminator/critic. It allows the model to learn the conditional

probability of the generated output given some latent variable z and the conditional

variable c. (A latent variable is a point in a high dimensional space which is referred to

as a latent/unknown space. They are called latent spaces (and points/vectors defined

in these spaces as latent vectors) because these high-dimensional spaces are learned

through optimization and generally there is no clear description of why they turned

out so.) In the case of the "Deep Learning the Physics of Transport Phenomena" [39]

(motivated by [46]) the conditional variable c represented the domain shape as well as

initial and boundary conditions. Thus the discriminator learned the joint probability

between the complex inputs of the problem and its possible solutions. The discrim-

inator in turn guided the generator of the model to output possible solutions to the

specified condition c. Also using the conditional GAN methodology allowed the dis-

criminator to implicitly learn the underlying differential equation in small convolution

patches in their model.

Motivated by [39] Jiang et al. proposed FluidGAN [47] which learned a set of time-

dependent, convective flow problems coupled with energy transport without provid-

ing the underlying governing equations. They showed that FluidGAN can learn the

underlying coupling between pressure and momentum or/and energy and momen-

tum in convective transport without specifically enforcing such an objective. Later

Thuerey et al. [41] proposed to use an encoder-decoder setting utilizing UNet archi-

tecture to find a mapping to the solution of steady, 2D, incompressible flow around

airfoils from UIUC [48] database. They proposed using the airfoil image as one chan-

nel of the input and the initial conditions for velocity components as the other two

channels of the input. This Unet-based model outputs the two components of the ve-

locity as well as the pressure in the vicinity of the 2D airfoil shape. In a similar work,

Obiols-Sales et al [44] proposed CFDNet to solve flow around different shapes (for

RANS simulation) in an iterative manner. They utilized a discretization-based solver

as well as a CNN-based network to predict the steady state solution for flow variables

given the results of the solver at particular iterations. As a result, the loop between
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the discretization-based solver and the CNN-based solver allowed the solution to be

obtained faster.

Another approach in the prediction of the solution of differential equations utilizes

the reduced order latent variables in an encoder-decoder setting. In this approach,

the ultra-high dimensional discretized problem is converted to a reduced-order latent

variable. For instance, each problem with a large number of computational mesh cells

(say 100000) is compressed to a considerably lower dimensional vector (say 128-

dimensional latent vector) via an encoder and then this latent vector is decompressed

to the same problem domain or the solution domain via a decoder. As an example,

Farimani et al used a UNet [49] based network architecture in their generator model

thus reducing the input c ∈ R1×64×64 to a latent representation in R512×1×1 leading to

8 times compression of the information in inputs. Yet [39] did not utilize the reduced

order information represented in the latent space. Wiewel et al. in their paper “Latent

Space Physics: Towards Learning the Temporal Evolution of Fluid Flow” [42] used

a LSTM [50] based model to predict the changes in solution field variables over time

using the latent space representation of the problem. They used a convolution-based

encoder-decoder model (EDM) to encode and decode the domain information. The

encoder in the EDM model was used to convert the problem settings to a latent vector

and the decoder was used to convert the given latent vector representations to their

Spatio-temporal manifestations. The latent representation of the domain and inter-

mediate solutions for the fluid flow then were used in a recurrent model to learn the

variations of the latent vector representation of the flow field in the domain and the

change in its state (its solution) as a function of time.

Similar to [42] Kim et al. proposed Deep Fluids [43] which used a CNN-based au-

toencoder to compress the information in any instance of the fluid flow into a reduced

dimension latent space. Then they trained another network which they refer to as a

latent space integration network to learn the evolution of the flow in time subjected

to the latent representation of the flow at the previous time step. This approach re-

sulted in up to 700x speed up of velocity field generations, and domain information

compression rates of up to 1300x. In addition, Li et al. [51] proposed Fourier Neu-

ral Operator which applies Fourier transform to the input and outputs sampled in a

uniform grid for the inverse problem and then learns their mapping in the Fourier
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space. Using the Fourier transform allows the model to predict higher resolution so-

lutions as such solutions can directly be sampled from the learned Fourier transform

representation of the solution.

1.2.3 Physics Informed Neural Networks

The physics-informed neural networks (PINN) [34] methodology has become an at-

tractive research topic recently. According to [52] only in 2021, about 1300 papers

related to the PINN method have been published. These papers progressively tack-

led different types of partial differential equation-based problems. The vanilla PINN

model proposed solutions for Allen–Cahn equation, the Korteweg–de Vries equa-

tion, or the 1D nonlinear Schrödinger problem. Mao et al. [53] proposed to use

PINNs to solve Euler equations for high-speed aerodynamic flows in forward and

inverse problems for 1D and 2D domain settings. Jin et al [54] proposed NSFNets

to simulate Navier-Stokes Equations . More specifically they experimented on in-

compressible Navier-Stokes flows, including 2D steady Kovasznay flow, 2D unsteady

cylinder wake, and 3D unsteady Beltrami flow as well as turbulent channel flow. Cai

et al [55] used PINN to solve various heat transfer problems.

The first application of the idea behind PINNs dates back to the 1990’s [31, 33] yet

they become popular after the publication of the [34] by Raissi et al. This research

paper was motivated by [56, 57] which introduced methods to handle forward and

inverse problems related to the solution of differential equations. They proposed using

Gaussian processes to either determine the solution of the differential equation given

its constraints or find the differential equation parameters given a set of data. Ever

since the introduction of the PINNs by Raissi et al [34] which utilized MLPs for

solving differential equations some new neural architectures have been proposed. Ren

et al. [58] proposed PhyCRNet; a physics informed convolutional-recurrent neural

network. Their model consisted of an encoder-decoder setting with a convLSTM

[59], where the previous domain state with boundary conditions was provided as the

input of the encoder, which then was passed to a convLSTM before applying the

decoder. The decoder upsampled its input and applied a 2D convolution to its output.

They utilized a recurrent model in order to preserve the previous temporal information
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about the state of the solution thus increasing the accuracy of the model. They utilized

finite difference rather than automatic differentiation as their input was a uniform grid

even so training their model on Burger’s equation took about 24 hours. Sun et al. [60]

proposed physics-constrained neural networks.

This model enforced the initial and boundary conditions directly by the model rather

than using them in the loss. This was done by a transformation of the output of the

network as a function of the distance to the Spatio-temporal boundaries. Jagtap et al

[61] proposed dividing the spatial domain into a set of disjoint domains and applying

different MLP models at each subdomain. This approach requires the conservation

lows to be satisfied in the boundaries of each subdomain. Most recently Wu et al pro-

posed RNN-DCT [62]. This model motivated by Fourier Neural Operators predicts a

parametric encoding of the initial and boundary conditions and then interpolates the

query points in the grid in accordance with PINN methodology.

1.2.4 Domain Encoding

Encoding the inputs to higher dimensional spaces can be seen in the one-hot [63] as

well as the kernel trick [64] where more complex combinations of the data can be

created. A more complicated input encoding was proposed for RNNs in [24]. Later

Vaswani et al. [25] proposed positional encoding in the architecture of the transformer

where scalar positions were represented as a multi-resolution sequence of L ∈ N sine

and cosine function pairs 1.1.

PE(x, 2i) = sin(
x

10000
2i

dmodel

)

PE(x, 2i+ 1) = cos(
x

10000
2i

dmodel

)

i ∈ [0, L) (1.1)

Motivated by the observation by Rahaman et.al. [65] about the spectral bias of the

neural networks which indicates that these models are biased toward learning low-

frequency modes and that higher frequency information gets easier to learn when
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these data are mapped to higher dimensional spaces using high-frequency functions,

[66] proposed using another positional encoding of the form 1.2

γ(x) = (sin(20πx), cos(20πx), ..., sin(2L−1πx), cos(2L−1πx)) (1.2)

Tancik et. al [67] also showed that a standard MLP fails to learn high frequencies

data and in order to overcome that shortcoming they proposed random Fourier feature

mapping and showed that this transformation can drastically improve the performance

of coordinate-based MLPs.

Another type of encoding later emerged where additional trainable parameters in an

auxiliary data structure like octrees or grids are arranged and looked up. These pa-

rameters sometimes are interpolated to estimate the local latent information in each

subdomain. This model trades smaller computational cost for a larger memory re-

quirement. In this approach during updating process of the model, only a subset

of weights of the parametric encoding is changed. For instance, in 2D/3D domain

only four/eight sets of c dimensional encoding weights are updated if bi/tri-linear in-

terpolation is used. This allows for the addition of a larger learning capacity while

keeping the computation cost at each optimization step comparably smaller. Utilizing

parametric encoding, Chabra et al [68] used gird parametric encoding in their model

to locally learn and compress the volumetric signed distance functions of geometric

scenes. Each sub-grid then was used to reconstruct the geometric shapes using a de-

coder. Jiang et al [69] used an auto-encoder to learn the local embedding of the small

shapes in a large 3D scene, then used the trained decoder in a dense grid parametric

encoding setting to solve for the appropriate local latent codes of each subdomain.

Liu et al [70] proposed Neural Sparse Voxel Fields which defines the grid parametric

encoding on the bounds of voxels and uses a sparse octree to organize each subdo-

main and then progressively prune the underlying voxel structure. This allowed them

to achieve an order of magnitude faster 3D scene reconstruction inference compared

to Vanilla NeRF [66]. Peng et al [71] used an encoder to define the local parametric

encoding on a grid, then utilized a bi/tri-Linear interpolation to obtain the features at

each subdomain. Mehta et al [72] proposed Modulated Periodic Activations which

maps the local grid parametric encoding (or local latent variable) corresponding to the
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target signal to the parameters that modulate the amplitude of the periodic activations

of another model called a synthesizer. Similar to [69] this method, by providing the

encoded information of subsets of the domain allowed the model to be able to learn

more generalized representations of the domain as a function of the local informa-

tion. Yu et al [73] instead of utilizing a decoder directly used spherical harmonics

(as a parametric encoding) in a voxel grid to directly infer the attenuation of the light

through the medium and construct a radiance field. This method allowed the model to

be optimized about two orders of magnitude faster than Neural Radiance Fields with

no loss in visual quality. Müller et al [74] proposed a multi-resolution hash table of

trainable parameters that can be optimized for different grid resolutions via gradient

descent. This model reduced the training time of Radiance Field representations to

only a couple of seconds compared to days in vanilla Nerf [66] or minutes in Plenox-

els [73].

1.3 The Outline of the Thesis

In chapter 2 the Parametric Encoded Physics Informed Neural Network (PEPINN)

model proposed in this thesis is presented. In section 2.6, the computation graph

of the vanilla PINN models are investigated and it is shown that using automatic

differentiation is not an efficient method for calculation of the residual of high order

differential equations. Also in that chapter, the adaptation of the PEPINN model to

solve Taylor-Green Vortex problem is presented.

In chapter 3, a methodology for the speed-up of fluid dynamics solvers by providing

a predicted solution as an initial condition is presented. Also, the adaptation of this

method to solve incompressible subsonic steady flow around 2D airfoils subjected to

Reynolds-averaged Navier–Stokes equations is presented in that chapter.

In appendix A the qualitative results of each model is presented.
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CHAPTER 2

SPEED UP OF PHYSICS INFORMED NEURAL NETWORKS

2.1 Introduction

Modern differential equation solvers which utilize the approximation capability of

Neural Networks (NN) based models, automatic differentiation (AD), and gradient-

based optimization techniques have become an attractive domain for scientific ex-

ploration in recent years. The advances in the Machine Learning, deep learning ar-

eas, hardware design and development of platforms that facilitate programming and

training models that run on clusters, multi-GPUs, etc. made the development and

adaptation of NN-based differential equation solvers much faster. Indeed according

to [52] only in 2021 about 1300 related papers have been published. These differen-

tial equation solvers are divided into two different categories. In the first category, a

nonlinear, and differentiable, model is trained to learn the implicit representation of

the solution of a partial differential equation which is constrained by the residual of

the PDE, and its initial and boundary conditions. The second method, on the other

hand, learns the governing relations for solutions of families of problems by training

a model that learns the likelihood of a specific solution given the problem description.

An example of such a method was presented in chapter 3 whereas, in this chapter, the

first method is investigated. Methods that are based on the first idea, constitute a new

scientific machine learning technique for the solution of partial differential equations

(PDE). In this method, the PDE solution is approximated by a Neural Network which

minimizes a loss that consists of some transformation of the residual at random points

inside the problem’s space-time (ST) domain, as well as the initial and boundary con-

ditions on points on the boundaries of ST domain. These models are referred to -in

the literature- as physics-informed neural networks (PINNs). As the NN model used
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in the training of the PINN is nonlinear, continuous, and differentiable, the differen-

tial operators can be directly calculated at each point (for the particular model) via

automatic differentiation thus eliminating the need for the discretization of the do-

main and the governing differential equations. In other words, PINN does not require

a computational mesh to be generated for each problem.

In this chapter, the vanilla PINN model proposed by Raissi et. al [34] will be intro-

duced and adopted for the Taylor-Green Vortex problem which is a particular case of

Navier-Stokes equations with analytical solutions. Later in this chapter, an architec-

ture search will be introduced to select a baseline vanilla PINN model for the solution

to Taylor-Green Vortex problem. Next, the issues with the utilization of automatic

differentiation in the residual calculation for PINNs will be investigated. Also, the

performance of PINN models will be improved by introducing a novel model; Para-

metric Encoded Physics Informed Neural Network (PEPINN) which utilizes Finite

difference kernels and parametric domain encoding to solve the Taylor-Green Vortex

problem. This chapter will be concluded by presenting the performance results of the

PEPINN model for the solution of Taylor-Green Vortex problem.

2.2 PINN Formulation for Forward Problems

Physics-informed neural networks are a subset of implicit neural representation prob-

lems that are interested in a class of functions ϕ that satisfy equations of the form:

F (x, ϕ,∇xϕ,∇2
xϕ, ...) = 0;ϕ : x 7→ ϕ(x) (2.1)

The inputs of the forward problem are the Spatio-temporal coordinates x ∈ Rdx

(Throughout this study it is assumed that the temporal and spatial domains form a

Banach space and any Spatio-temporal point can be represented by a dx dimensional

vector). Here ϕ is defined implicitly which can be parameterized by a neural network

that minimizes function F in equation 2.1. In the subsequent sections, the general

formulation of implicit neural representations and their adaptation to the solution of

partial differential equations will be discussed.
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2.2.1 Formulation

The objective in physics informed neural network models in a general sense is to find

ϕ(x) subject to a set of M constraints Cm 2.2;

Cm(γ(x), ϕ(x),∇(ϕ(x)), ...) = 0,

∀x ∈ Ωm,m = 1, ...,M
(2.2)

Here γ(x) represents the parameters of particular problem, and Ωm ⊂ Ω indicates the

sub-domain for which the constraint Cm(.) applies.

This problem can be reformulated in terms of a loss function that penalizes the devi-

ations of the model from the constraints on their domain:

L =

∫
Ω

M∑
m=1

δm(x)∥Cm(γ(x), ϕ(x),∇(ϕ(x)), ...)∥dΩ (2.3)

δm(x) =

1, x ∈ Ωm

0, otherwise
(2.4)

This integration is intractable but can be approximated by the Monte Carlo integration

for input points xi sampled from a uniform distribution in Ω;

L ≈ cΩ
N

N∑
i=1

M∑
m=1

δm(xi)∥Cm(γ(xi), ϕ(xi),∇(ϕ(xi)), ...)∥ (2.5)

In the equation 2.5 cΩ represents a constant corresponding to
∫
Ω
dΩ which generally

is neglected in the formulation of PINNs.

In a physics-informed neural network, the loss is constructed from a combination of

the constrained defined by the partial differential equation’s residual, boundary, and

initial conditions and measured points. Thus the general loss formulation 2.5 can be

modified to represent the aforementioned factors.
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L = [LR + LB + LI + Lmeasured] (2.6)

with LR, LB, LI , Lmeasured corresponding to the constraint imposed by the PDE

residual, boundary conditions, initial conditions, and measured data respectively.

Each term in 2.6 can further be expanded to conform with the general form of the

vanilla PINN model proposed by [34];

LR ≈ cΩ
N

N∑
i=1

∥R(xr)∥2

∀xr ∈ Ω, cΩ =

∫
Ω

dΩ

(2.7)

In literature the constant term cΩ is generally neglected arriving at the following equa-

tion for residual loss:

LR ≈ 1

N

N∑
i=1

∥R(xr)∥2;∀xr ∈ Ω (2.8)

The boundary loss can be divided into four different categories which represent the

loss for Dirichlet (LBD
), Neumann (LBN

), Mixed (LBM
), and periodic (LBP

) bound-

ary conditions.

LB = LBD
+ LBN

+ LBM
+ LBP

(2.9)

where each loss term can be defined in the form presented in equation 2.10.

LBk
≈
c∂Ωt

k

Nk

Nk∑
i=1

∥fk(xki , ϕ(xki ),∇ϕ(xNi ))− fk(x
k
i ,Φ(x

k
i ),∇Φ(xki ))∥2

∀xki ∈ ∂Ωt
k, c∂Ωt

k
=

∫
∂Ωt

k

d∂Ωt
k

(2.10)

In equation 2.10 the term ∂Ωt
k refers to the spatial boundary of the problem, Φ refers

to the value of the boundary condition at point xki , ϕ represents the model output at
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point xki , and c∂Ωt
k

is the area of the spatial boundary where the boundary condition

k applies. For simplification of the notation, the spatial boundary will be denoted by

∂Ω which spans the whole temporal range of the problem, and ∂Ω0 will represent the

span of all the spatial points at time zero.

Each term in the 2.9 subjected to 2.10 is expanded in equations 2.11-2.14.

LBD
≈ c∂ΩD

ND

ND∑
i=1

∥ϕ(xDi )− Φ(xDi )∥2 (2.11)

LBN
≈ c∂ΩN

NN

NN∑
i=1

∥∇ϕ(xNi )−∇Φ(xNi )∥2 (2.12)

LBM
≈ c∂ΩM

NM

NM∑
i=1

∥[a(xMi )ϕ(xMi ) + b(xMi )∇ϕ(xMi )]−

−[a(xMi )Φ(xMi ) + b(xMi )∇Φ(xMi )]∥2 (2.13)

LBP
≈ c∂ΩP

NP

NP∑
i=1

[∥ϕ(xPi )− Φ(xPi )∥2 + [∇ϕ(xPi )−∇Φ(xPi )]∥2] (2.14)

The initial conditions can be treated in the same manner as the Dirichlet boundary

conditions which lead to the loss 2.15;

LBI
≈
c∂Ω0

I

NI

NI∑
i=1

∥ϕ(xIi )− Φ(xIi )∥2;

∀xIi ∈ ∂Ω0
I

(2.15)

Another term can be added to the loss of the Physics informed neural network models

to fine-tune the implicit representation of the experimental or known results in the

domain. These measured instances are treated as fixed points and thus the mean

squared error of the model results and the measured instances is minimized for these

points 2.16.
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LBF
≈ 1

NF

NF∑
i=1

∥ϕ(xFi )− Φ(xFi )∥2;

∀xIi ∈ D = {xFi ,ΦF
i }

NF
i=1

(2.16)

The final loss for the PINN model is summarized in equation 2.17.

L = LR + LBD
+ LBN

+ LBM
+ LBP

+ LBI
+ LBF

(2.17)

This equation (2.17) refers to the main loss that is used in the vanilla PINN-based

models. If any of the loss terms do not apply to the problem they can be taken out of

equation 2.17. For instance, for steady problems without any points, the terms LBI

and LBF
can be ignored.

In the equation 2.1, it is assumed that there exists a continuous, and differentiable

mapping from the input domain to the solution domain, satisfying a set of constraints

that were defined in the section 2.2.1. In the vanilla PINN multi-layer perceptron

(MLP) is utilized to learn such a mapping. Equation 2.18 presents the recursive for-

mulation of the MLP models.

fi = gi(zi−1) (2.18a)

zi−1 = fi−1Wi−1 +Bi−1 (2.18b)

f0 = x (2.18c)

fL = ϕ(x; θ) (2.18d)

Here Wi and Bi correspond to the weights and biases (trainable variables) of the

model. gi are a set of the nonlinear functions applied to the affine transformation

zi. fi represents the output of each layer thus fL represents the output of MLP. With

this definition, it can be assumed that input to the model is the output of the 0th

layer. The recursive formulation presented in the equation 2.18 also will be used to

construct the computation graph of the set of transformations where traversing this
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graph from inputs to outputs is oftentimes referred to as the forward propagation.

In order to compute the gradients of the loss with respect to the trainable variables,

the vector-Jacobian product is computed at each layer from outputs to the inputs in

the computation graph which is referred to as backward propagation or reverse mode

automatic differentiation. After the gradients are computed the trainable variables

are updated with some form of gradient decent. This procedure is continued until a

satisfactory loss is obtained. More details on the computation graph of the PINNs are

presented in the preceding sections.

2.3 Problem Description

As a test case, Taylor-Green Vortex (TGV) problem is solved in this chapter. It is

used as a benchmark problem for testing the differential equation solvers, as it has

an analytical solution that makes it attractive when the accuracy of such solvers is

investigated. Besides, it is based on Navier-Stokes Equations with the exclusion of

energy terms. The governing equations of the TGV are presented in equation 2.19.

∇.u = 0 (2.19a)

∂u

∂t
+ (u.∇)u = −1

ρ
∇p+ ν∇2u+ f (2.19b)

In equation 2.19, u = {u, v, 0} represents the velocity vector, and f represents the

external forces applied to the fluid which is assumed to be zero. The exact closed

form solution of the Taylor-Green Vortex over the domain Ω = x× y × t ∈ [0, 2π]×
[0, 2π]× [0, T ] are shown in the equation 2.20.

ux = cos(x)sin(y)H(t) (2.20a)

uy = −sin(x)cos(y)H(t) (2.20b)

p =
−ρ
4
(cos(2x) + cos(2y))H2(t) (2.20c)

H(t) = e−2νt (2.20d)
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For this problem, the initial and boundary conditions can be calculated directly from

the analytical solution presented in equations 2.20 by assigning the time as 0 for

initial conditions and spatial boundaries in order to obtain the value of the boundary

conditions.

The PINN loss for TGV consists of the terms presented in equation 2.21. Note that

only the Dirichlet boundary conditions are present in the loss 2.21. It is also possible

to add the Neumann boundary conditions by differentiating the analytical solution but

they are ignored in this study.

L = LR + LBD
+ LBI

(2.21)

The residual term for the loss can be further expanded to accommodate for each term

in its governing equations. It is divided into three terms that represent the loss for

continuity equation LC , and two momentum equations LMx and LMy .

LR = LC + LMx + LMy (2.22)

Then each loss term in LR can be described as shown in equation 2.23.

LC =
1

N

N∑
i=1

∥∂ux
∂x

+
∂uy
∂y

∥2;∀x, y ∈ Ω (2.23a)

LMx =
1

N

N∑
i=1

∥∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+
1

ρ

∂p

∂x
− ν(

∂2ux
∂x2

+
∂2ux
∂y2

)∥2 (2.23b)

LMy =
1

N

N∑
i=1

∥∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+
1

ρ

∂p

∂y
− ν(

∂2uy
∂x2

+
∂2uy
∂y2

)∥2 (2.23c)

2.4 Base Line Model Selection

In this section, the selection process for a baseline PINN architecture to solve the

Taylor-Green Vortex problem is presented. Here a simple architecture search will
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be performed instead of guessing the architecture for the PINN model in order to

arrive at a fairly good model to map the domain variables to the particular solution

of the Taylor-Green Vortex given its initial and boundary conditions. After selection,

this baseline model will be used to investigate and compare the performance of the

Parametric Encoded PINN proposed in this thesis. In order to select the baseline

model, the candidate architectures must be evaluated by an objective function. The

objective function utilized here is similar to the one used in the objective function

used in [81] with some modifications. The original objective function used in [81] is

presented in equation 2.24.

E(m) = ACC(m)× [FLOPS(m)/T ]w (2.24)

With ACC(m) and FLOPS(m) representing the accuracy and number of floating point

operations of the model m and T denoting the training time. The objective function

used here is a modification of the one presented in equation 2.24. The model has three

outputs that have different scaling that needs to be considered in the calculation of the

accuracy. Instead of accuracy, a combination of the residual of the model and its nor-

malized mean squared error (MSE) is used in the calculation of the evaluation metric

for the selection of the most suited architecture. The normalized MSE is presented in

equation 2.25.

M(x) =
1
N

∑N
n=1(x− x̂)2

1
N

∑N
n=1(x)

2
+ ϵ (2.25)

Here the mean squared error of each model output is normalized to have the same

scaling. The ϵ = 10−10 is added to have a strictly positive metric. The architecture

evaluation metric is shown in equation 2.26.

E(m) = [
−log(M(u)M(v)M(p))w1log(LRLILB)

2 ∗ 63
][
NL2n2

T
]w2 (2.26)

In equation 2.26 the high error and high loss values are both penalized in favor of a

lower normalized mean squared error. Both of these metrics are used in order to con-

sider both the model’s performance during training as well as its performance after

the training. The w1 and w2 are hyper-parameters used for controlling the trade-off
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between the different entities in the evaluation metric. Here w1 is used to control the

trade-off between the model error and model loss which is set to the value 2. The w2

is used for controlling the trade-off between the model error indicators (before and

after training), and the model’s FLOPS which is set to the value of 0.07 (opposite of

the value used in [81]). Model FLOPS is approximated by the asymptotic time com-

plexity of calculation of the residual for each model which is discussed in section 2.6.

In the equation, 2.26, N, L, and n represent the number of samples, number of layers,

and number of neurons per layer respectively. As the convergence of PINN models

take a long time the training process is limited to 20000 optimization iterations for all

the cases. As a result, the evaluation metric is slightly modified such that the lowest

loss values during training are used in the metric instead of the convergence/termina-

tion loss values. As the model convergence might not be possible during the limited

number of iterations, the lowest loss is used as an estimate of the lower bounds of the

loss that the model can achieve.

Here each vanilla PINN model is set to learn the solution of Taylor-Green Vortex for

the domain Ω = x× y × t ∈ [0, 2π]× [0, 2π]× [0, 1]. As used in vanilla PINN, here

the MLP architectures are investigated where two different search operations are inde-

pendently performed. The best number of layers and neurons for each layer is chosen

provided Tanh function as the nonlinear activation of each layer. The best activation

then is selected from the set of activation functions presented in equations 2.28-2.50

on a vanilla PINN model with 6 layers and 80 neurons per layer. The general form of

the architectures adopted to the Taylor-Green Vortex problem is presented in equation

2.27.
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fi = g(zi−1) for i = 1, ..., L− 1 (2.27a)

zi−1 = fi−1Wi−1 +Bi−1 (2.27b)

f0 = x (2.27c)

fL = ϕ(x; θ) = zi−1 (2.27d)

Wi ∈ Rn×n; i = 1, ..., L− 2 (2.27e)

W0 ∈ R3×n (2.27f)

WL−1 ∈ Rn×3 (2.27g)

Bi ∈ R1×n; i = 0, ..., L− 2 (2.27h)

BL−1 ∈ R1×3 (2.27i)

With L the number of layers and n the number of neurons in each layer. The variable

g represents the activation function which is set to the following nonlinear functions

for every layer in the model:

Sigmoid(x) = σ(x) =
1

1 + exp(−x)
(2.28)

Tanh(x) = tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

(2.29)

HardTanh(x) =


1 if x > 1

−1 if x < −1

x otherwise

(2.30)

Threshold(x) =

x, if x > threshold

value, otherwise
(2.31)

ReLU(x) = (x)+ = max(0, x) (2.32)

23



LeakyRELU(x) =

x, if x ≥ 0

negative_slope × x, otherwise
(2.33)

RReLU(x) =

x if x ≥ 0

ax otherwise ; a ∼ U(1
8
, 1
3
)

(2.34)

PReLU(x) =

x, if x ≥ 0

wx, otherwise
(2.35)

ReLU6(x) = min(max(0, x), 6) (2.36)

Hardsigmoid(x) =


0 if x ≤ −3,

1 if x ≥ +3,

x/6 + 1/2 otherwise

(2.37)

silu(x) = x ∗ σ(x) (2.38)

Softplus(x) =
1

β
∗ log(1 + exp(β ∗ x)) (2.39)

Mish(x) = x ∗ Tanh(Softplus(x)) (2.40)

Hardswish(x) =


0 if x ≤ −3,

x if x ≥ +3,

x · (x+ 3)/6 otherwise

(2.41)

ELU(x) =

x, if x > 0

α ∗ (ex − 1), if x ≤ 0
(2.42)
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CELU(x) = max(0, x) + min(0, α(e
x
α − 1)) (2.43)

SELU(x) = s(max(0, x) + min(0, α ∗ (ex − 1))) (2.44a)

s = 1.05070098735, α = 1.6732632423 (2.44b)

GELU(x) = x ∗ Φ(x); (2.45)

Where Φ(x) is the Cumulative Distribution Function for Gaussian Distribution.

HardShrink(x) =


x, if x > λ

x, if x < −λ

0, otherwise

(2.46)

The default value of the λ is 0.5.

LogSigmoid(x) = log

(
1

1 + e−x

)
(2.47)

SoftShrinkage(x) =


x− λ, if x > λ

x+ λ, if x < −λ

0, otherwise

(2.48)

The default value of the λ is 0.5.

SoftSign(x) =
x

1 + |x|
(2.49)

Tanhshrink(x) = x− tanh(x) (2.50)
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For activation function selection L = 6 and n = 80 are used. On the other hand the

number of layers and neurons on a set of models obtained from the the permutation

A = L × n = [4, 6, 8, 10] × [20, 40, 60, 80, 100, 120] with activation function Tanh

2.29 are tested. Each model is given the same inputs as all others during the 20000

iterations. These inputs are randomly generated and saved before training the models.

The input size is limited by the largest input set that can occupy the memory of a

Nvidia GTX 1080 Ti for the largest model i.e. L = 10, n = 120. For training the

models Adam optimizer [75] was utilized with lr = 10−3 and default β values.

2.5 Adam Optimizer

In this thesis, Adam [75] optimizer is utilized to update the model parameters. Dif-

ferent types of optimization algorithms based on gradient descent algorithms have

been proposed. Depending on the type of problem, a different optimization algo-

rithm may be used. For updating models with first-order derivatives, gradient descent

or stochastic gradient descent (SGD) [82] may be utilized. Although the SGD is a

popular algorithm and is widely used, its convergence is generally prolonged. One

of the methods proposed to remedy this issue is the momentum idea [83]. This acts

similarly to inertia and limits the rate of change of the gradients.

Even if the momentum algorithm and its alternative Nesterov Accelerated Gradient

Descent [84] improve the convergence performance in a gradient descent setting they

do not modify the learning rate. Many methods for the adoptive modification of the

learning rate during the training process have been proposed. Of these AdaGrad [85],

AdaDelta [86], RMSProp [87], and Adam [75] were widely used.

Adaptive moment estimation (Adam) [75] is another advanced SGD method, which

introduces an adaptive learning rate for each parameter. It combines the adaptive

learning rate and momentum methods. In addition to storing an exponentially decay-

ing average of past squared gradients, like AdaDelta and RMSProp, Adam also keeps

an exponentially decaying average of past gradients. Adam works well in practice

and compares favorably to other adaptive learning rate algorithms. The momentum

term in the Adam optimizer can be computed as an exponentially decaying average
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of the past gradients (equation 2.51).

mt = β1mt−1 + (1− β1)gt (2.51)

With gt referring to the gradient and mt to the momentum term. The exponentially

decaying average of the past squared gradients Vt is presented in equation 2.52.

Vt =
√
β2Vt−1 + (1− β2)(gt)2 (2.52)

In equation 2.52, β1 and β2 are exponentially decaying rates which are generally set

to values of β1 = 0.9 and β2 = 0.999. These two terms (V − t,mt) are combined as

presented in equation 2.53 to update the parameter θ.

θt+1 = mt − η

√
1− β2
1− β1

mt

Vt + ϵ
(2.53)

As Vt ≥ 0 the ϵ = 10−8 is used in the denominator to prevent divisions by zero.

In practice, optimization algorithms perform each update using a number of samples

rather than the whole data set. The training data set can be divided randomly into

batches to speed up the learning process. Then, the objective function can be com-

puted by taking the average over only each batch. However, the use of batches in

training provides a trade-off between the stability, convergence speed, and memory

requirement. The generalization is usually better by utilizing small batches than large

batches. Doing so, however, results in a high variance in gradient estimates. This

situation can lead to the need for small learning rates to prevent instabilities in the

training and the convergence of the training takes more epochs and memory.

2.6 PINN Computation Graph Analysis

In this section, the computation graph of MLP architectures for the calculation of the

residual via automatic differentiation in PINN models is investigated. The recursive

and simplified computation graph of an MLP is presented in equation 2.54.
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zi = fi(zi−1Wi) (2.54a)

fi+1 = gi+1(zi) (2.54b)

In equation 2.54 for simplified calculations, the bias term in affine transformations of

each layer is neglected. Equation 2.55 shows the recursive formula to calculate the

first derivative of outputs with respect to the inputs.

∂fi+1

∂x
=

∂fi+1

∂gi+1(zi)

∂gi+1(zi)

∂zi

∂zi
∂fi

∂fi
∂x

(2.55a)

∂fi+1

∂x
= g′i+1(zi)Wi

∂fi(zi−1)

∂x
(2.55b)

The calculation of the first derivatives requires traversing the computation graph once

for each output. This can be simplified by artificially providing the vector in the

vector-Jacobian product. This vector would have the value one for each element and

will have the same size as the output. In other words, for the Taylor-Green Vortex

problem with the output variables < u, v, p > one may assume a scalar output y =

u+ v + p, Then the partial derivative of y with respect to each of the variables u, v, p

will be 1. As a result, one may provide y instead of the set of outputs< u, v, p > as the

scalar output of the automatic differentiation or provide the pre-computed gradients

[1,1,1] as the vector in the vector-Jacobian product.

Investigating the computation graph of the first derivative, one may notice that for

each layer, now there are two terms that are a function of the inputs, and these terms

are multiplied together. The significance of these multiplied terms can be revealed in

the calculation of higher order derivatives. The recursive computation graph for the

calculation of the second derivatives is presented in equation 2.56.
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∂ ∂fi+1

∂x

∂x
=
∂g′i+1(zi)

∂x
Wi

∂fi(zi−1)

∂x
+ g′i+1(zi)Wi

∂ ∂fi(zi−1)
∂x

∂x
(2.56a)

∂g′i+1(zi)

∂x
=
∂g′i+1(zi)

∂zi

∂zi
∂x

(2.56b)

One may re-arrange equation 2.56 to arrive at the equation 2.57 which is a more

compact representation for the computation graph of the second derivative.

∂ ∂fi+1

∂x

∂x
= g′′i+1(zi)(

∂zi
∂x

)2 + g′i+1(zi)Wi

∂ ∂fi(zi−1)
∂x

∂x
(2.57)

Assuming that the term ∂zi
∂x

is not stored (which is generally the case in backward

mode automatic differentiation), it can be seen in the equation 2.57 that at each level

of the calculation of the second derivative the recursion splits into two sub recursions

in the computation graph. In order to illustrate this, let the following operators I(.)

and G(.) represent two different parts of recursion at each layer (equation 2.58);

I(L) = g′′L(zL−1)(
∂zL−1

∂x
)2

G(L) = g′L(zL−1)WL−1

(2.58)

Using the operators I(.) and G(.) one may write the expanded form of the computation

graph;

∂2fL
∂x2

= I(L) +G(L)
∂2fL−1(zL−2)

∂x2

= I(L) +G(L)I(L− 1) +G(L)G(L− 1)
∂2fL−2(zL−3)

∂x2

= I(L) +G(L)I(L− 1) + ...+G(L)G(L− 1)...I(1)

(2.59)

Thus the calculation of the second derivatives with automatic differentiation would

require the backward traversal of the computation graph of the first derivative 2.55

to be performed L times as a result of the chain rule. The time complexity of the

calculation of the first derivative of the model is O(NLn2) and the second derivative
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is O(NL2n2). With the same procedure, it can be shown that the time complexity of

the calculation dth order derivative of the outputs with respect to inputs is of the time

and memory complexity of order O(NLdn2).

Another observation that can be made here is that the high-order derivatives become

zeros when activation functions with a second derivative equal to zero are used. For

instance, it should be expected that the MLP models utilizing Rectified Linear Unit

(ReLU) family (ReLU [76], LeakyReLU [77], PReLU [78], ...) activation functions

would be faster in terms of performance for the calculation of higher order derivatives.

Yet for those situations, one also should expect higher error values for the residual

calculation that utilizes some transformation of higher-order derivatives of the outputs

of the model with respect to its inputs (as they will be all zeros).

2.7 Finite Difference Kernels

It is evident from the section 2.6 that automatic differentiation is a poor choice for

calculating the higher-order derivative terms in the PDE residual. Indeed the effec-

tiveness of automatic differentiation is appreciated when the derivative of the output

with respect to a large number of weights is to be calculated (e.g. training a neu-

ral network) which renders the alternative methods inefficient. On the other hand

in the calculation of the residuals of partial differential equations, the alternative

discretization-based differentiation methods would perform better as their calcula-

tion depends only on the size of the inputs and outputs of the model rather than the

model size itself. To that end, the finite difference kernels might be used to calculate

the residual independent of the model architecture thus making the training of PINNs

considerably faster while decreasing the memory requirements of the calculation of

higher order derivatives (and eventually the residual).

The finite difference kernels can be calculated by manipulating the Taylor series ex-

pansion of continuous functions. Here the uni-variate Taylor series expansion is used

to show the method for estimation of the derivatives. This method then will be ex-

panded for the calculation of multi-variable functions. In equation 2.60 the Taylor

series expansion of a real valued function f(x) which is differentiable at point x = x0
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is presented.

f(x) = f(x0) +
∞∑
i=1

∂if(x0)

∂xi
(x− x0)

i

i!
(2.60)

In the same way the equation 2.60 can be used to obtain the result of function f in the

vicinity of x with some distance h which is shown in equation 2.61.

f(x+ h) = f(x) +
∞∑
i=1

∂if(x)

∂xi
(h)i

i!

f(x− h) = f(x) +
∞∑
i=1

∂if(x)

∂xi
(−h)i

i!

(2.61)

It can be assumed that higher order terms numerically vanish and the Taylor series

can be approximated up to its nth derivative term. For instance equation 2.62 presents

the equation 2.61 approximated up to the second order derivative terms.

f(x+ h) ≈ f(x) + h
∂f(x)

∂x
+
h2

2!

∂2f(x)

∂x2

f(x− h) ≈ f(x)− h
∂f(x)

∂x
+
h2

2!

∂2f(x)

∂x2

(2.62)

The first order derivative of function f(x) can be estimated by subtracting f(x − h)

from f(x+ h) which is presented in equation 2.63.

f(x+ h)− f(x− h) ≈ 2h
∂f(x)

∂x
=⇒ ∂f(x)

∂x
≈ f(x+ h)− f(x− h)

2h
(2.63)

Using equation 2.63 one may configure a FD kernel as follows:

∂f(x)

∂x
= [f(x+ h), f(x− h)] · [1,−1] ∗ 1

2h
(2.64)

Here [f(x+ h), f(x− h)] represent a vector of function values at points x+ h, x− h

and the dervative is estimated by a dot product between function values vector and
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FD kernel κ = [1,−1] scaled by scaling variable 1
2h

. The error of this approxima-

tion is of order O(h2) as the second-order derivative terms were also included in the

calculation.

A more general approach can be followed to obtain the kernel values. It involves

finding a suitable set of multipliers so that only the derivative term of interest remains

in the equation.

Let equation 2.65 be an approximation of the first order derivative of f with respect to

the function variable x. Here coefficients A-E are selected so that the terms including

f(x), ∂2f(x)
∂x2 and,∂

3f(x)
∂x3 be eliminated. The resultant kernel would have an error of

order O(h3).

∂f(x)

∂x
≈

Af(x− 2h) +Bf(x− h) + Cf(x+ h) +Df(x+ 2h)

(2.65)

The expanded approximation of each term in equation 2.65, is presented in equation

2.66. Here the right hand side vector is configured to make all other derivative terms

other than the first derivative vanish in the set of equations.

f(x+ 2h) ≈ f(x) + 2h
∂f(x)

∂x
+

(2h)2

2!

∂2f(x)

∂x2
+ ...

f(x+ h) ≈ f(x) + h
∂f(x)

∂x
+
h2

2!

∂2f(x)

∂x2
+ ...

f(x− h) ≈ f(x)− h
∂f(x)

∂x
+
h2

2!

∂2f(x)

∂x2
+ ...

f(x− 2h) ≈ f(x)− 2h
∂f(x)

∂x
+

(2h)2

2!

∂2f(x)

∂x2
+ ...

(2.66)

One may rearrange equations 2.65, 2.66 to arrive at equation 2.67.


1 1 1 1

−2 −1 1 2

2 1
2

1
2

2

−8
6

−1
6

1
6

8
6




A

B

C

D

 =


0

1
h

0

0

 (2.67)
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This results in the coefficients;


A

B

C

D

 =


1
6

−4
3

4
3

−1
6


1

2h
(2.68)

For multi-variable functions, a similar approach may be employed.

f(x+ dx, y + dy) ≈ f(x, y) + (dx
∂f(x, y)

∂x
+ dy

∂f(x, y)

∂y
) + ... (2.69)

After the Taylor series expansion of the function with respect to the independent

variables is constructed, the partial derivatives of the function with respect to the

inputs can be estimated at each principal direction. for instance for estimation of

partial derivatives in the x direction in equation 2.69, dy will be set to 0 and the same

approach as before is followed keeping the terms in y direction constant.

Of course, utilizing finite difference methods for the calculation of derivatives will

add a source of error to the calculation of the residual as finite difference-based ker-

nels are calculated from a combination of Taylor series expansions of arbitrary func-

tions and as a result have an inherent error (which is of some specific order of the step

size used for calculation of the derivatives). The second problem with the utilization

of finite difference methods is the generation of a uniform grid. Of course, a non-

uniform grid might be used for query points. This on the other hand would require

the modification of the formulation of the finite difference kernels for each set of

points as well as modifying the implementation of cross correlation operation to add

the kernel change for each set of points. In this thesis, the former point query setting,

i.e. using a uniform grid is considered due to the fact that obtaining the derivatives on

a non-uniform grid requires extra calculations to be performed and thus is inefficient.

The creation of a uniform grid might be realized in three different approaches. In the

first approach, one may create a uniform grid over the whole domain. This approach

requires a large number of query points to satisfy the accuracy requirements of the

residual. In the second approach, one may create a set of smaller uniform grids in
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subsets of the domain. This approach requires the optimization methodology and the

loss to be modified. Also, this approach might require more iterations to converge

yet it can be configured such that fewer points can be provided for a more accurate

estimation of the residual. In the third approach, one may apply the model used for

learning a mapping from the input domain to the solution domain, at random points

in the vicinity of each point in different directions. This method for instance requires

11 extra queries of each input point with small perturbations to be able to obtain the

residual for Taylor-Green Vortex via central difference. These extra queries will only

contribute to the calculation of the derivatives for the initial random set of points. In

this chapter, the first method is used to calculate the residual of Taylor-Green Vortex

. The finite difference scheme used for the calculation of the derivatives in residual is

presented in table 2.1.

Table 2.1: Finite difference Kernels.

Differentiation Order Accuracy Order Scheme Kernel scale Error

First Derivative Second order Central difference [-1,0,1] 1
2h

O(h2)

First Derivative Forth order Central difference [1,-8,0,8,-1] 1
12h

O(h4)

First Derivative Second order Forward difference [-3,4,-1] 1
2h

O(h2)

First Derivative second order Backward difference [1, -4, 3] 1
2h

O(h2)

Second Derivative Second order Central difference [1,-2,1] 1
h2 O(h2)

Second Derivative Forth order Central difference [-1,16,-30,16,-1] 1
12h2 O(h4)

Second Derivative Second order Forward difference [2, -5, 4, -1] 1
h3 O(h2)

Second Derivative second order Backward difference [-1, 4, -5, 2] 1
h3 O(h2)

For calculation of the first and second-order derivatives in space, the fourth-order

central difference is used for inner points, and for the boundaries either second-order

forward or backward differences were utilized. The orientation of the kernel was

properly adjusted for the calculation of partial derivatives in each spatial coordinate

for data permutations of the form t × y × x. Here the permutation of x and y was

reversed so the order in which they are represented by the Pytorch tensors resembles

their geometric orientation in the domain. For the first-order derivatives in time, the

second-order central difference was used for inner points. The second order forward

difference was used at time 0 and the second order backward difference was uti-

lized at termination time. In order to calculate the derivatives efficiently in Pytorch,
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the 2D convolution function (Conv2D) was utilized to calculate the space derivatives

overriding the convolution kernel with the finite difference kernels. For temporal dif-

ference calculations, 1D convolution/cross-correlation function (Conv1D) implemen-

tation was used where its kernel was changed with finite difference kernels. Inner and

boundary points’ derivatives were calculated separately and concatenated after the

completion of convolution operations.

2.8 Parametric Domain Encoding

Input/Domain encoding has found popularity as it was used in the Transformer archi-

tecture [25] which is one of the most successful architectures in learning the inter-

relation between tokens. Since then, many more domain encoding models were pro-

posed, tested, and analyzed. One of these models proposed in [79] has found great

success in implicit neural representations. This model referred to as the parametric

domain encoding, allows the encoding of the model to be determined by the opti-

mization and to be stored locally in the domain. This model providing great flex-

ibility in the learning process has been utilized in the neural radiance field domain

which strives to solve the 3D representation of space (density and emitted color at

each point in the volume) given its boundary conditions as 2D images at different

stations solving the equation for the Attenuation. Training a vanilla Neural Radiance

Field (NeRF) generally takes a long time (sometimes days) yet new models based

on various domain parametric encoding decreased this time in orders of magnitude

to somewhere close to a couple of minutes in [73] to even seconds in [74]. Both of

these methods utilize parametric domain encoding to achieve these results. There is

a great similarity between NeRF models and PINNs where the former aims to learn

the implicit representation of the solution of line integrals over the light rays given a

set of boundary conditions, while the latter tries to learn the solution for a more gen-

eralized set of PDE’s given their initial and boundary conditions. This suggests that

the methods used in NeRF can also be utilized in the training of the physics-informed

neural networks. In this thesis, the dense domain parametric encoding with tri-linear

interpolation is used as a backbone for solving partial differential equations. Figure

2.1 shows how different features are interpolated for each query point in the dense
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domain encoding presented in this thesis.

For each query point in the parametric domain encoding, 8 points constituting the

bounds of the corresponding subdomain are interpolated channel-wise to create the

vector that represents the encoding of the any query point inside that subdomain. This

encoding is a higher dimensional representation of the location of the query point that

will be learned by the locally represented model and stored in its 8 bounding vertices

constituting the subdomain. After the calculation of the high-dimensional representa-

tion of query points, an MLP model (decoder) will be applied to this encoding to map

the latent representation of query points to the solution of the differential equation.

One issue that must be noted here is that the Taylor-Green Vortex is an elliptic differ-

ential equation thus it requires the information to travel in all directions. As a result,

the settings where the solution information is presented locally might require some

means to carry the information between different subdomains. This in turn will make

the solver converge in more iterations. The same phenomenon happens in discretized

solvers like finite element and finite volume where this issue is remedied by the intro-

duction of flux term in the solution at each cell of the computational mesh. The same

issue applies to parametric encoding. Yet as the information about the solution of

two adjacent subdomains is shared in the weight matrices on their common boundary

and their representation manifestation also satisfies the PDE, no other means for the

information transfer is required. To speed up the solution and limit the number of

adjusting iterations (for information transfer) the domain is represented by weights

w ∈ R4×4×3×128 thus dividing the domain into 18 subdomains. These weights are

initialized from a normal distribution. An MLP is used as a decoder for the para-

metric encoding to map the interpolated representations to the output variables of the

Taylor-Green Vortex problem.

Note that the decoder used in the parametric encoding can have less parameters and

be substantially smaller than a counterpart MLP that directly maps the domain coor-

dinates to the solution domain. To explain that, assume there exist an MLP with L

layers and n neurons for each layer which maps the input coordinates to the solution

of the differential equation. Also assume that the output of the mth layer of this MLP

which will be called f1:m(x) is the same as the parametric encoding that is learned. In
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other words the L −m final layers of the MLP which for simplicity will be referred

to as fm:L(v) would work as the decoder of the PEPINN model. If one assume that

fm:L(v) is the same for both models then a sufficiently large f1:m(x) 7→ v is required

to learn a mapping from the problem domain coordinates to the latent representation

v. This implies that for a PEPINN model a smaller decoder (less parameters/layers)

can be utilized to learn the solution of the PDE compared to a vanilla PINN.

Figure 2.1: Tri-Linear channel-wise interpolation for parametric encoding. Here the

feature grid represents each channel as well as the configuration of the parametric

domain encoding. Each Block represents the corresponding feature that encompasses

the domain and each smaller block represents the local sub-domain. In other words,

here each block (large cubes) corresponds to the smallest bounding box that encom-

passes the domain. And there are "C" many copies of this bounding box. Also, every

vertex on each block represents a real number. And the values for these real numbers

are different from block to block. For a query point in the Spatio-Temporal domain

corresponding to a sub-block (smaller cubes), the 8 bounding points of the sub-block

are interpolated to obtain the representation of that point for that block. This opera-

tion is repeated for all the blocks to obtain a vector of size "C" that corresponds to the

representation of the query point in the parametric domain.
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2.9 Results

In this section, the performance of the parametric encoded physics-informed neural

network proposed in this thesis is investigated. Its results are compared with the per-

formance of the selected baseline PINN model for the solution of the Taylor-Green

Vortex problem. This part consists of two sections. In the first section, the baseline

model for the solution of the Taylor-Green Vortex problem is selected, and the per-

formance and shortcomings of different PINN architectures are investigated. In the

second section, the performance of the PEPINN model is compared to the selected

baseline PINN architecture.

2.9.1 Baseline Model

In order to select a baseline model a series of experiments with Taylor-Green Vortex

equations given the kinematic viscosity with the value of 0.0001 have been conducted

and the architecture with the highest score is selected as the baseline model. This

baseline model is used to compare the performance of the parametric encoded PINN

architectures. As noted in the chapter 2.4 a series of MLP architectures are tested

with the Tanh activation function for 20000 training iterations given a domain point

query size of [32×32×16], boundary query points of size [32×32×100], and initial

condition query points of size [32×32×1]. Query points are the set of points that are

provided to the model at each iteration. The physical coordinates of these points are

provided to the PINN models. In the case of the PEPINN their coordinates and the

coordinates of the local bounding subdomain are used to interpolate the correspond-

ing latent vector corresponding to the query points. For activation function selection

the same data points are provided to a MLP model with 80 neurons for intermediate

layers with 6 layers in total. This model’s performance in training a PINN for Taylor-

Green Vortex is investigated given the activation functions discussed in chapter 2.4.

In order to select the most suitable architecture, the scoring equation 2.26 presented

in chapter 2 section 2.4 is used.

The score is calculated as a function of minimum residual, initial, and boundary con-

dition losses during training, the wall time, FLOPS approximation, and the accuracy
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of the model at the end of 20000 iterations. The effect of the number of neurons and

the number of the MLP layers in the PINN model training is presented in table 2.2.

Table 2.2: PINN architecture selection results. The model with 8 layers and 120

neurons at the inner layers is selected as the baseline architecture.

n-L Wall-time min Loss min Residual min IC min BC MSE(u) MSE(v) MSE(p) Score

20 - 4 2.04e+03 4.56e-04 3.68e-04 5.01e-05 3.80e-05 1.44e-05 1.47e-05 1.83e-05 1.52e+02

40 - 4 2.16e+03 1.48e-04 1.14e-04 1.81e-05 1.54e-05 6.64e-06 6.06e-06 9.44e-06 2.13e+02

60 - 4 2.23e+03 1.82e-04 1.26e-04 3.78e-05 1.81e-05 6.22e-06 8.29e-06 8.71e-06 2.15e+02

80 - 4 2.66e+03 1.51e-04 1.22e-04 1.67e-05 1.26e-05 6.08e-06 5.30e-06 1.13e-05 2.33e+02

100 - 4 2.86e+03 4.90e-04 2.19e-04 1.93e-04 7.81e-05 6.49e-06 6.29e-06 1.10e-05 2.00e+02

120 - 4 2.95e+03 1.03e-03 3.37e-04 5.33e-04 1.60e-04 4.55e-06 3.43e-06 8.35e-06 2.01e+02

20 - 6 2.25e+03 3.31e-04 2.41e-04 5.34e-05 3.58e-05 1.47e-05 1.61e-05 1.36e-05 1.64e+02

40 - 6 2.49e+03 1.17e-03 5.31e-04 4.55e-04 1.84e-04 4.00e-05 4.59e-05 7.95e-05 1.18e+02

60 - 6 2.65e+03 6.27e-04 4.77e-04 8.08e-05 6.92e-05 4.31e-05 3.21e-05 9.68e-05 1.40e+02

80 - 6 3.50e+03 2.60e-04 1.27e-04 9.42e-05 3.92e-05 7.05e-06 5.33e-06 1.04e-05 2.19e+02

100 - 6 3.81e+03 1.87e-04 9.78e-05 6.08e-05 2.81e-05 4.66e-06 7.15e-06 1.14e-05 2.33e+02

120 - 6 3.99e+03 2.48e-04 9.32e-05 1.10e-04 4.42e-05 5.67e-06 5.49e-06 8.99e-06 2.34e+02

20 - 8 2.30e+03 2.35e-03 8.50e-04 1.32e-03 1.81e-04 3.49e-05 3.54e-05 3.10e-05 1.15e+02

40 - 8 2.79e+03 2.90e-03 9.41e-04 1.50e-03 4.63e-04 3.36e-05 2.43e-05 6.88e-05 1.16e+02

60 - 8 3.08e+03 9.72e-04 3.21e-04 4.87e-04 1.63e-04 1.18e-05 1.09e-05 1.06e-05 1.76e+02

80 - 8 4.23e+03 1.70e-04 9.87e-05 4.67e-05 2.46e-05 6.99e-06 6.88e-06 1.13e-05 2.32e+02

100 - 8 4.67e+03 7.95e-04 1.99e-04 4.08e-04 1.88e-04 3.94e-06 3.99e-06 9.63e-06 2.13e+02

120 - 8 4.89e+03 1.68e-04 4.65e-05 8.79e-05 3.32e-05 2.68e-06 2.47e-06 5.05e-06 2.81e+02

20 - 10 2.58e+03 3.60e-03 2.02e-03 1.33e-03 2.56e-04 2.12e-04 3.08e-04 1.25e-03 6.30e+01

40 - 10 3.18e+03 3.61e-04 2.22e-04 9.92e-05 3.99e-05 1.36e-05 1.18e-05 2.80e-05 1.82e+02

60 - 10 3.47e+03 1.26e-04 7.13e-05 3.83e-05 1.64e-05 4.98e-06 4.40e-06 1.17e-05 2.50e+02

80 - 10 4.97e+03 4.69e-04 1.72e-04 2.09e-04 8.84e-05 7.16e-06 7.36e-06 1.26e-05 2.07e+02

100 - 10 5.58e+03 2.75e-04 1.15e-04 1.12e-04 4.85e-05 3.87e-06 4.30e-06 7.34e-06 2.48e+02

120 - 10 5.90e+03 2.59e-04 1.04e-04 1.20e-04 3.42e-05 2.30e-06 2.88e-06 6.81e-06 2.71e+02

Here the architecture that has six intermediate layers with 120 neurons is selected.

This model achieves a moderate loss with a value of 1.68e-04 and a residual loss with

a value of 4.65e-05. The accuracy of the model which achieves the lowest loss value

during training is presented in figure 2.2. As it can be seen the error of the solution

increases rapidly (especially for the pressure) as the time increases. Yet the average

values for the MSE are within satisfactory margins.
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Figure 2.2: The mean squared error of selected architecture with 8 layers and 120 in-

termediate neurons at each time station. Here the MSE for both velocity components

ux = u (Blue), uy = v (Orange), as well as the pressure P (Green) is presented. The

MSE is calculated for a spatial cross-section of the solution at different values of time

(time stations)

The second experiment for the selection of the baseline model involves the selection

of a proper activation function. here it is assumed that the performance of the model

due to architecture parameters (number of neurons and number of layers) is indepen-

dent of the activation function selection. To that end, for activation function selection

the model with 80 neurons and 6 layers is used. The comparison of the highlighted

results of using different nonlinear activation functions in the training of the PINN

model on the Taylor-Green Vortex problem is presented in the table 2.3. Note that

the ReLU-based activation functions are still used in the activation function selection

experiments. They do not produce considerable results as they are not able to return

a valid residual as the second order terms will always be zero for MLPs using these

activation functions (see chapter 3 section 2.6).
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Table 2.3: PINN activation function selection results for architecture with 80 neurons

and 6 layers.

Activation Wall-time min Loss min Residual min IC min BC MSE(u) MSE(v) MSE(p) Score

Tanh 3.50e+03 2.60e-04 1.27e-04 9.42e-05 3.92e-05 7.05e-06 5.33e-06 1.04e-05 2.19e+02

LeakyReLU01 3.00e+03 7.37e-03 6.65e-03 4.97e-04 2.23e-04 5.26e-04 4.40e-04 4.39e-04 6.89e+01

LeakyReLU02 3.01e+03 6.91e-03 6.27e-03 4.25e-04 2.18e-04 2.01e-04 2.16e-04 5.97e-04 7.82e+01

LeakyReLU03 3.01e+03 9.14e-03 7.43e-03 1.16e-03 5.49e-04 3.01e-04 2.85e-04 5.54e-04 6.70e+01

ReLU 3.03e+03 8.37e-03 7.52e-03 5.81e-04 2.65e-04 2.52e-04 3.66e-04 5.72e-04 7.12e+01

ELU 3.68e+03 1.07e-03 5.14e-04 4.12e-04 1.47e-04 8.17e-06 7.06e-06 1.52e-05 1.77e+02

Hardshrink 3.02e+03 3.11e-02 4.03e-03 2.10e-02 6.07e-03 2.52e-02 1.65e-02 2.82e-02 1.15e+01

Hardtanh 3.01e+03 3.18e-02 2.39e-02 5.15e-03 2.85e-03 2.64e-03 2.16e-03 4.52e-03 2.81e+01

LogSigmoid 3.64e+03 1.62e-04 1.11e-04 3.34e-05 1.74e-05 5.35e-06 5.50e-06 6.11e-06 2.44e+02

PReLU 3.88e+03 6.82e-03 6.17e-03 4.28e-04 2.22e-04 2.03e-04 1.72e-04 4.54e-04 7.99e+01

RELU6 3.03e+03 7.48e-03 6.73e-03 5.18e-04 2.32e-04 2.06e-04 2.06e-04 5.31e-04 7.78e+01

RReLU 3.05e+03 1.89e+00 3.71e-05 1.17e+00 7.14e-01 2.04e-01 2.29e-01 3.56e-01 1.08e+00

SELU 3.67e+03 2.06e-03 1.90e-03 1.04e-04 5.89e-05 2.18e-04 2.72e-04 1.91e-04 9.76e+01

CELU 3.68e+03 2.56e-04 2.12e-04 2.88e-05 1.47e-05 6.66e-06 7.35e-06 6.82e-06 2.33e+02

GELU 4.85e+03 1.39e-05 1.11e-05 1.55e-06 1.20e-06 5.96e-07 7.12e-07 1.81e-06 4.00e+02

Sigmoid 3.56e+03 3.04e-04 1.23e-04 1.37e-04 4.42e-05 4.53e-06 3.75e-06 5.83e-06 2.32e+02

SiLU 4.31e+03 1.36e-04 3.68e-05 7.26e-05 2.63e-05 4.64e-07 4.49e-07 1.33e-06 3.33e+02

Mish 5.07e+03 6.35e-05 2.35e-05 3.01e-05 1.00e-05 9.34e-07 7.97e-07 3.32e-06 3.19e+02

Softplus 3.74e+03 4.32e-04 1.51e-04 2.12e-04 6.90e-05 4.47e-06 3.57e-06 4.44e-06 2.26e+02

Softshrink 3.03e+03 7.96e-01 0.00e+00 6.02e-01 1.94e-01 2.50e-01 2.50e-01 1.02e-01 -

Softsign 6.04e+03 3.60e-04 3.12e-04 2.91e-05 1.97e-05 2.05e-05 1.08e-05 1.15e-05 1.95e+02

Tanhshrink 3.75e+03 1.56e-03 4.15e-04 7.07e-04 4.38e-04 1.81e-05 2.05e-05 2.56e-05 1.45e+02

According to the scoring function presented in 2.26, the GELU nonlinear activation

function has the highest score in learning the solution domain of the Taylor-Green

Vortex problem. Another noteworthy activation function here is the softshrink which

does not permit the model to learn the solution domain. It should be noted that the

residual of the model with softshrink is equal to zero yet the loss for the initial and

boundary conditions have high values. This happens when the gradient vanishes dur-

ing the training steps. Reconsidering the Navier-Stokes equation for Taylor-Green

Vortex 2.19 it can be seen that if the gradients with respect to the input are zero then

the residual also becomes zero. The error of the model chosen for the activation

function is presented in figure 2.3.
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Figure 2.3: The mean squared error of selected architecture with GELU activation

function provided an MLP with 6 layers and 80 intermediate neurons. Here the MSE

for both velocity components ux = u (Blue), uy = v (Orange), as well as the pres-

sure P (Green) is presented. The MSE is calculated for a spatial cross-section of the

solution at different values of the time.

It can be seen that the MSE error of the architecture with the GELU activation func-

tion is one order of magnitude lower than that of the Tanh-based architecture. After

the selection of the number of neurons and number of layers for the MLP as well

as its activation function, this new model is trained on the same data. The error of

the baseline model with 8 layers and 120 neurons for internal layers with the GELU

activation function is presented in figure 2.4. As it can be observed the MSE for the

pressure is about 5 times less than that of the model results (the model with 6 layers

and 80 Neurons per layer) presented in figure 2.3.
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Figure 2.4: The mean squared error of selected architecture with GELU activation

function provided an MLP with 8 layers and 120 intermediate neurons. Here the

MSE for both velocity components ux = u (Blue), uy = v (Orange), as well as the

pressure P (Green) is presented. The MSE is calculated for a spatial cross-section of

the solution at different values of the time.

2.9.2 Parametric Encoded PINN

There have been many proposed approaches for the architecture design of PINN mod-

els. As the objective of this thesis is to speed up such models (with minimum loss in

accuracy) a multipurpose method based on the parametric encoding of the domain is

proposed and tested. This model -which will be referred to as PEPINN or parametric

encoded PINN- divides the Spatio-temporal domain into a set of subdomains via local

parametric encoding. A decoder is then used to translate the latent space represented

by the local encoding to the solution variables. One such architecture is presented in
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table 2.4. This simple architecture will be used for all the comparisons in this section.

Table 2.4: Architecture of Parametric PINN.

Layer Act. Output Shape

- - NTY X × 3

PE CX × CY × CT × C - NTY X × 128

Linear 128× 128 Tanh NTY X × 128

Linear 128× 128 Tanh NTY X × 128

Linear 128× 128 Tanh NTY X × 128

Linear 128× 3 Tanh NTY X × 3

With N representing the batch size and T, Y, and X corresponding to the permuta-

tions of the data points in time, and spatial y and x directions. Here CX, XY, and CT

represent the divisions of the Saptio-Temporal coordinates in x, y, and t directions re-

spectively. C represents the feature size of each weight in the parametric encoding. In

other words, the x-axis will be represented by CX many trainable vectors of length C.

The same applies to the y and t principal axes of the problem. The default value for N

is set to 1 on the other hand the values of the TYX permutation might change during

the training. The loss values are calculated in the same manner as PINN yet the finite

difference method is used for derivative calculations thus disconnecting the residual

calculation time and memory complexity from the architecture size and its number

of parameters. Of course, the application of the finite difference can be considered

as an additional source of error albeit this extra error can be compensated by a larger

size of query points available to the PEPINN model. In this section, two possible sce-

narios are investigated. The first scenario is related to the speed-up performance of

the model given the same data query size used for the baseline model selection. The

second scenario involves providing a proper number of query data and controlling the

accuracy of the residual calculation. After testing the aforementioned cases the train-

ing performance of the proposed model under different learning rates is investigated

and this section is concluded by comparing the accuracy of PEPINN vs the accuracy

of vanilla PINN.
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Figure 2.5: Comparison of the PEPINN with signature 4×4×3×128 with the selected

baseline model and the MLP architecture used in RNN-DCT paper[62] when query

point permutations of size TY X = [16× 32× 32] is provided to all of the models for

20000 training iterations.

In figure 2.5 the residual of the PEPINN model with domain encoding of size CX =

4, CY = 4, CT = 3, C = 128 is compared with the residual of the selected baseline

model as well as the MLP architecture used in RNN-DCT paper [62]. All the cases

are trained for 20000 iterations where query points with size [16 × 32 × 32] are

provided to each model. The learning rate with a value of 0.0005 is provided to the

Adam optimizer for all the cases. According to the results, the PEPINN takes 256s

to perform 20k iterations with the negative log of the sum of squared residuals of

4.64 whereas the baseline model takes 7633s to reach the maximum value of 5.6 for

residual loss and the model used in [62] takes 3813s which results in a solution with

value 4.05 for residual metric. As it can be seen in the figure 2.5 the value of the

negative log of squared residuals of the PEPINN model is slightly lower than that of

45



the selected baseline model. Yet using PEPINN results in a 29.8× speed up compared

to the baseline model and 14.9× speed up compared to the baseline used in the RNN-

DCT paper.

Another way of examining the performance of the PEPINN is to train the model with

a higher number of query points. To that end, an 8 times larger set of query points

is provided to the PEPINN, and its performance is compared to both baseline models

which include the baseline model selected here, the one used in the RNN-DCT paper

with the originally selected set of query points of size [16 × 32 × 32]. Figure 2.6

shows the performance of this model.

Figure 2.6: Comparison of the PEPINN with signature 4× 4× 3× 128 with baseline

model and the model used in [62] when a query points permutation of size 16 ×
32× 32 is provided to selected baseline models and query points permutation of size

32× 64× 64 is provided for the PEPINN model during 20000 iterations.

The PEPINN model takes 868s to perform 20k iterations with the negative log of the

sum of squared residuals of 4.98. This model reaches similar residual values about 8.8
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times faster compared to the selected baseline and 4.4 times faster than the baseline

model used in RNN-DCT given an 8 times larger set of data points. Here for training

the PEPINN model the learning rate is slightly increased to the value of 0.001 for

faster convergence on larger data (The effect of the optimizer’s learning rate will be

discussed later).

The performance of the PEPINN can further be improved by scheduling the number

of data points provided to the model during training. Motivated by [65] initially a

smaller number of query points is provided to the model and the number of these

points is increased gradually during the training of the PEPINN model. With this

procedure, low-frequency solution representation under the problem constraints is

learned by the model which in turn allows it to converge faster. Of course, a low

number of query points would imply a higher residual calculation error at the initial

stages of the training. The error in the calculation of the residual and thus the PEPINN

error can then be minimized by gradually increasing the number of the query points.

Providing a large number of query points decreases the error bounds for the calcu-

lation of the derivatives via the finite difference method. This procedure results in

faster and more stable convergence of the PEPINN model which achieves lower loss

values compared to when this procedure is not used with minimum loss in accu-

racy. The performance of this training procedure is presented in figures 2.7, 2.8. The

PEPINN model presented in figure 2.7, finishes training in 191s and achieves a nega-

tive log of the sum of squared residuals value of 5.27 at 20k iterations. While training

this model, initially a query point permutation of size [5 × 5 × 5] is provided to the

PEPINN model. The number of permutation points at each dimension is increased

by one increment every 600 iterations for spatial coordinates, and 1200 iterations for

temporal coordinates until the maximum permutation size of 16× 32× 32 is reached.

For this case, for instance, the model is trained with the maximum number of query

points (i.e. query point permutation of size 16 × 32 × 32) after the 16200th training

iteration is performed. Thus during 16201-20000 iterations, the model trains on the

lowest error data permutation provided. This model achieves 40× speed up compared

to the selected baseline model while achieving about 20× speed up compared to the

vanilla PINN model used in the RNN-DCT paper. A similar improvement in results

is obtained when a query point with a larger size is provided to the model. The model
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presented in figure 2.8, takes 335s to train compared to 868s when the scheduled

training method was not used and achieves a negative log of the sum of squared resid-

uals value of 5.42 compared to the value 4.98 presented in figure 2.6 at 20k iterations.

This indicates a significant improvement in both training time and the negative log

of the sum of squared residuals achieved. While training this model, initially a query

point permutation of size [5× 5× 5] is provided to the PEPINN model. The number

of permutation points at each dimension is increased by one increment every 300 it-

erations for spatial coordinates, and 600 iterations for temporal coordinates until the

maximum permutation size of 32× 64× 64 is reached. Comparing the training time

of this model with the selected baseline a 22.8× speed up is achieved.

Figure 2.7: Comparison of the PEPINN with signature 4× 4× 3× 128 with baseline

model and the model used in [62] when a query points permutation of size 16× 32×
32 is provided to baseline models and maximum query points permutation of size

16× 32× 32 is provided for the PEPINN model during 20000 iterations.
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Figure 2.8: Comparison of the PEPINN with signature 4× 4× 3× 128 with baseline

model and the model used in [62] when a query points permutation of size 16× 32×
32 is provided to baseline models and maximum query points permutation of size

32× 64× 64 is provided for the PEPINN model during 20000 iterations.

One issue that needs to be considered is that the size of the query points directly af-

fects the training and accuracy of the PEPINN model. As the Spatio-temporal domain

in PEPINN is divided into subdomains represented by the dense parametric encod-

ing weights, enough data needs to be presented to the model so that a viable latent

representation on each subdomain is learned. This raises an issue in learning the para-

metric encoding in the PEPINN as the generated query points are required to lie on a

uniform grid (assuming a Banach space for the Spatio-temporal domain). For a more

general case, the number of domain subdivisions for a PEPINN might be larger than

that of the query points supplied to the model. This poses an issue as some of the

subdomains parameterized by the parametric encoding will not be trained to conform

to the constraints imposed by the loss on the model which in turn will result in high
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loss values for that solution. This phenomenon can also be intuitively observed. Let

us assume that the domain encoding divides the space and time to N subdivisions

along each principal direction thus obtaining a representation ω ∈ RN×N×N×C in 2D

space. If this model is trained by query points from a uniform grid of size n× n× n

where n « N then a large portion of the domain with the parametric encoding weights

will not be affected thus the accuracy of the model will be low. One solution for this

problem is to use query points that belong to a smaller bounding box in the domain

(where this bounding box is presumably generated randomly). This remedy is not

investigated here instead a domain encoding with fewer subdivisions is tested.

Figure 2.9: Training PEPINN for 30000 iteration using different learning rates in

Adam [75] optimizer. As it can be seen the model training is not affected by the

learning rate value.

Another factor to be considered is the training performance of the PEPINN model

under different learning rates. Generally, the learning rate (lr) is set as an optimizer

hyper-parameter for DL architectures and the training performance of those models
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is greatly affected by how the learning rate is set up during training. A model elim-

inating such a hyper-parameter would make the design and training of those models

more efficient and make the training more robust by eliminating the process of hyper-

parameter search. Figure 2.9 shows the training performance of the model provided

three different lr values to the Adam optimizer with default Beta values.

As it can be observed in the figure 2.9 PEPINN model is robust under different learn-

ing rate values and converges to almost the same result. Even though they converge

to almost the same loss value, the residual of the lr = 10−4 (case 3) seems the most

stable among the three whereas the training loss behavior under lr = 10−2 (case 1) has

the fastest settling time. Yet the lowest residual value is achieved when the learning

rate is set to 10−3 (case 2).

So far it was shown that the PEPINN architecture can achieve about 40 times the

speed-up compared to the selected baseline model. In terms of memory usage, the

PEPINN can be trained on query points of size 3,579,096 on an RTX 1080 Ti GPU

while the baseline model with automatic differentiation can accept only 19456 query

points. It allows about 183× larger set of query points to be trained on PEPINN.

Another important aspect of PEPINN that must be investigated is its accuracy com-

pared to the baseline model. To that end, the mean squared error (MSE) of the model

at different time points is calculated for PEPINN as well as the baseline model se-

lected in this thesis and the baseline model tested in [62]. For error calculations, at

each time a uniform grid of size (256×256) is generated and fed to the solution model

and its result is compared to the analytic solution of the Taylor-Green Vortex. Figures

2.10, 2.11, 2.12 compare the accuracy of PEPINN vs vanilla PINNs with 100/120

neurons and 6/8 layers subjected to Tanh/GELU nonlinear activation functions. For

the calculation of the accuracy of the vanilla PINN architectures, the models saved at

the training termination are used. From these figures, it can be observed that in most

cases the vanilla PINN model trained on a set of query points of size [32 × 64 × 64]

yields lower mean squared errors for the velocity components. For the pressure ac-

curacy on the other hand the PEPINN model performs worst compared to the vanilla

PINN after the time 0.8s. Generally, in initial condition-based solutions, the error

increases as the solution proceed in time. This phenomenon is also observed in solu-
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tions based on vanilla PINN. Yet except for pressure the error of the PEPINN model

stays the same or even decreases as time increases. For the pressure accuracy on the

other hand, at time 0.5s and the interval closer to the termination time a surge in error

is observed. Both time t = 0.5s and t = 1.0 s are where each subdomain divided by

the local parametric encoding weights share a common face. As the local weights in

these faces are shared between two subdomains, they require a longer time to be op-

timized. The same phenomenon can be observed in faces where spatial subdomains

share a common face. Indeed it can be observed in figures A.17 and A.16 where the

highest error is observed at the locations where different subdomains share a common

face.

Figure 2.10: Accuracy of PEPINN vs Vanilla PINN models with 100/120 neurons

and 6/8 layers with Tanh/GELU for x component of velocity.
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Figure 2.11: Accuracy of PEPINN vs Vanilla PINN models with 100/120 neurons

and 6/8 layers with Tanh/GELU for y component of velocity.

Figure 2.12: Accuracy of PEPINN vs Vanilla PINN models with 100/120 neurons

and 6/8 layers with Tanh/GELU for pressure.
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CHAPTER 3

SPEED-UP OF SOLUTION OF STEADY-STATE PDES

3.1 Introduction

There is a rapid growth in the application of Deep Neural networks (DN) for model-

ing physical simulations. However, these models lack the robustness, reliability, and

accuracy of discretization-based (DB) solvers. On the other hand, there is a substan-

tial gap between the simulation time of DN models compared to DB solvers. In this

section, the effect of utilizing the predicted solution variables of PDE-based prob-

lems obtained through trained DN models as initial conditions for DB solvers, with a

focus on the reduction in time and number of iterations is investigated. The hypothe-

sis presented in this chapter is tested for the solution of the Navier-Stokes equations.

More specifically, the model presented here is trained on a modest dataset of 1400

samples, created via the open source physics solver OpenFOAM , for a collection of

two-dimensional, steady, subsonic, in-compressible flow solutions around randomly

generated airfoils at a randomly selected angle of attack and Reynolds numbers. Here

the Spalart-Allmaras turbulence model was used for all solutions and a custom DN

model was trained on the data to predict the velocity, pressure, νt, and ν̃ fields which

are then interpolated to the computational mesh of the CFD solver only once as its ini-

tial condition. This hypothesis is motivated by the observation that if a close enough

solution is provided to the solver as the restart condition then the number of required

iterations for convergence of the solution decreases. This process previously was ap-

plicable only in a restricted number of cases. For instance, this approach was used

in CFD problems when the solution for an angle of attack close to that of the test

case on the same mesh was available, or when the solver has performed a number

of iterations but has not yet converged and its states were saved. For both of these
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situations, providing the values of their flow variables as initial and boundary condi-

tions to the problem would generally result in a speed-up of the solution. Here it is

assumed that the applicability of this approach can be extended with the help of the

method proposed in this chapter.

3.2 Problem Description

Machine learning (ML) has become one of the most popular research directions,

which yields astonishing results in many areas such as computer vision, natural lan-

guage processing, decision making, and synthetic data generation. One of these re-

search areas, where deep learning is slowly being integrated to, is the physical simu-

lations domain. Albeit most of the methods that utilize ML models trade accuracy for

speed and are mostly used in situations where fast, low fidelity but realistic-looking

simulations are required. On the other side of this spectrum lies the de-facto method

for physical simulations which are based on the discretization of both the domain and

the simulation’s governing equations. These methods (e.g., finite element and finite

volume-based solvers) are relatively more accurate but require significant time to set

up and produce solutions. In this chapter, an alternative to the methods that are used

to speed up the performance of steady-state Navier-Stokes solutions in subsonic, in-

compressible regions is presented. Specifically, the performance of the solution of

Reynolds-Averaged Navier-Stokes (RANS) equations utilizing the Spalart-Allmaras

turbulence model to solve the flow around two-dimensional (2D) airfoils is investi-

gated. Here a DL model is trained on a small dataset of randomly generated samples.

This model then is used to predict the solutions for a set of test cases that were unseen

during training. The predicted solution fields then are transferred to the computa-

tional mesh of the same problem cases and will be used as the steady-state solution’s

initial condition.

To that end, a training and a test set are generated. For the training set, a num-

ber of randomly generated airfoils are created via Class/Shape Transformation (CST)

method. These airfoils then are used to generate a computational mesh to be utilized

in the finite volume-based solver configured to solve the Spalart-Allmaras turbulence

model. A number of query points are then extracted from solution fields in the com-
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putational mesh to obtain the solution array that the DL-based model will be trained

on. After the model is trained, its inference results for new cases will be transferred

to the computational mesh as an initial condition of the corresponding solution field

in cell centers for internal meshes. The solutions at the boundary faces are also trans-

ferred to the face centers to construct the proper boundary conditions. These cases

then are solved in the same manner given both the original initial conditions as well

as the inferred initial conditions and their solution time and the number of iterations

are compared.

3.3 Airfoil Generation

Any airfoil shape can be represented using Class/Shape Transformation (CST) method-

ology [88]. CST is a decoder that utilizes Bernstein polynomials and is based on two

arrays of coefficients. The coefficients in arrays represent the upper and lower sur-

faces/curves of the airfoils. As these coefficients directly correspond to the shape of

the airfoil, a large variety of the geometries can be generated by sampling these coef-

ficients from a distribution with a large variance. Equations for these curves in CST

are given as:

ζU(ψ) = C(ψ)SU(ψ) + ψ∆ζU (3.1a)

ζL(ψ) = C(ψ)SL(ψ) + ψ∆ζL (3.1b)

Where ψ = x/c, ζ = z/c. In equation 3.1 subscripts U and L represent the upper and

lower curves of the airfoil.

A 2D airfoil geometry can be constructed in CST via the following class function:

C0.5
1.0 = ψ0.5.(1− ψ)1.0 (3.2)

In Equation 3.2, coefficients of 0.5 and 1.0 are constants to produce 2D airfoil shape

in CST. The final shape function to define the specific shape for the upper and lower
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curves is defined in 3.3.

Sk(ψ) =

Nk∑
i

Ak.S(ψ, i), k = U,L (3.3)

In Equation 3.3, A is the weight input coefficient and decisive parameter in CST

method. S is called the component shape function. The component shape function is

represented by a Bernstein polynomial 3.4 of degree N.

S(ψ, i) = KN
i .ψ

i.(1− ψ)N−i (3.4)

Here the binomial coefficient (K) in equation 3.4 is defined in equation 3.5. These

coefficients can be easily computed by constructing the Pascal’s triangle where the

binomial coefficient K would correspond to the elements in the N th row of the Pascal

triangle.

KN
i =

N !

i!(N − i)!
(3.5)

The final equation representing the upper and lower curves are obtained by combining

the previous equations:

ζU = ψ0.5.(1− ψ)1.0
NU∑
i=0

[AU(i).
NU !

i!(NU − i)!
.ψi.(1− ψ)NU−i] + ψ.∆ζU (3.6a)

ζL = ψ0.5.(1− ψ)1.0
NL∑
i=0

[AL(i).
NL!

i!(NL − i)!
.ψi.(1− ψ)NL−i] + ψ.∆ζL (3.6b)

In equation 3.6, the first and last weighting coefficients for the upper and lower surface

(AU andAL) are known to determine the leading edge radius and the trailing edge an-

gle, respectively. The rest of the weighting coefficients vary the thickness distribution

in general [89]. Since the main objective of this study is to train a neural network for

learning the correlation between the variation in shapes and their corresponding aero-

dynamic footprint, a wide range of airfoil shapes based on randomly selected values
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for the weighting coefficients (AU and AL), and for the order of Bernstein polyno-

mials (NL and NU in equation 3.6) as well as for the exponents of the class shape

functions (equation 3.2) are generated.

Figure 3.1: First 6 airfoils out of 1000 generated airfoils using CST method. It can

be observed that even in this small subset of the generated airfoils some are similar

to the airfoils used in practical applications while others are just airfoil-like shapes

that might be impractical to use in engineering applications. Yet even in this limited

number of cases a large range of variations in shape is present.

The random selection process is performed using a uniform distribution in order to

sample a stochastic range of shapes. The order of Bernstein polynomials are ran-

domly selected from integers between 2 and 10, and the class function exponents are

selected from the ranges 0.45 to 0.55 and 0.95 to 1, instead of using constant values

of 0.5 and 1. The first weighting function that determines the leading edge radius is

selected within a range of 0.01 to 0.05, and the last weighting function for the trailing
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edge angle is selected from integers between -10 to 20. The rest of the weighting

coefficients are selected within a range of -0.1 to 0.6 for the upper curve and -0.6 to

0.1 for the lower curve. The upper and lower boundaries for these ranges were se-

lected such that the upper and lower curves will not cross and intersect with each other

(except at leading and trailing vertices). The selection of these ranges allowed us to

create a wide range of airfoil shapes, some of which actually can be “impractical” for

aerodynamic applications. However, this wide range of airfoils would provide large-

enough shape variations for the neural network to establish a good mapping between

the variations in shape and the flow field around it. As a result, the “impractical”

airfoils were intentionally not excluded from the training samples.

Using the methodology described above a set of 1000 airfoil shapes was generated

and analyzed using OpenFoam software which is discussed in the subsequent sec-

tions. The first 6 generated airfoils are presented in figure 3.1.

3.4 Mesh Generation

The finite volume, finite element, and finite difference solvers require the problem

domain to be discretized and the partial differential equation to be modified accord-

ingly. In this part of the thesis, the OpenFOAM solver was used to obtain the re-

sults of RANS equations on steady, two-dimensional problems investigating the flow

around the airfoils. In order to set up each problem case, a discretization of the prob-

lem domain with proper boundary and initial conditions is required to be specified.

This discretization is referred to as either line mesh (for the discretization of curves),

shell mesh (for the discretization of surfaces bounded by its surrounding curves), or

volume mesh (for the discretization of the spatial volume surrounded by its bound-

ing surfaces) in the literature. For this thesis, two open source software GMSH and

blockMesh are investigated for the generation of the computational meshes and the

latter is selected to minimize the time spent constructing the mesh around airfoils for

each training or test problem. The generated meshes are bounded by a far field, large

enough not to be affected by the change in flow properties around the airfoil shapes.

In this study, the size of the airfoil and the far field is kept constant as is shown in

figure 3.6 and the Reynolds Number is changed via variations in velocity, density,
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and viscosity. Also instead of the rectangular far-field, here a combination of a half

circle and rectangle is used to obtain a more general domain representation (see 3.7

for the justification of why such a far field was selected).

The blockMesh software generates structured meshes by mapping a hexagonal do-

main to a shape with eight points and twelve curves connecting each point/vertex to

their three neighboring points (These spatial entities are referred to as a geometric

block). In order for the mapping to be proper, the points and the curves must be or-

dered complying with the setting represented in figure 3.2. Each block has a local,

right-handed coordinate system (x1, x2, x3). A right-handed 3 dimensional coordi-

nate system with axes (x1, x2, x3) can be defined by equation 3.7.

Figure 3.2: Ordering for mapping from a hexagon to a blockMesh block. The Black

integers represent vertex numbering and the Red integers show the edge numbers. A

block is represented in the code by ordering the vertices in accordance with the num-

bering presented above. The edges then are automatically assigned between the ver-

tices in the presented order. Note that the edges represent curves rather than straight

lines and thus are arc-length parameterized.

x̄T3 (x̃1x̄2) > 0. (3.7)
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With x̄i the column vector representation of axis i and x̃j as the skew-symmetric

configuration of the axis j. More intuitively, a right-handed 3-dimensional coordinate

system is defined such that to an observer looking down the x3 axis, through the

coordinate system origin O, the arc from a point on the x1 axis to a point on the

x2 axis is in a clockwise sense. The ordering of the points in a geometric block is

to be defined such that the desired local coordinate system and the coordinate system

presented in 3.2 coincide (assuming that the 12 bounding curves are the same). Figure

3.3 represents the block sectors used for meshing the domain around the airfoil.

Figure 3.3: Top view of the blockMesh settings for generation of mesh around the

airfoil. The blocks in this setting are configured such that the x3 direction is defined

span-wise. The mesh in this direction corresponds to extrude mesh of constant thick-

ness.

Table 3.1: Ranges for initial condition values of variables of RANS equations. Here

the turbulence viscosity is set to be in accordance with OpenFOAM defaults for faster

convergence.

Variable Unit Range Description

U m
s

[20, 200] Magnitude of the velocity

α degrees [−10, 10] Angle of attack

P kg
ms2

0 Pressure

νt
m2

s
calculated from ν̃ turbulence viscosity

ν̃ m2

s
[0.13, 0.15] modified turbulence viscosity
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The inside of the airfoil is treated as a hole and no blocks are defined for it. Each block

is created such that the x1 and x2 directions lie on the curves of the block presented

in 3.3 and the x3 direction is perpendicular to the plane facing towards the viewer.

The final mesh is presented in 3.5, 3.4. Far-field and airfoil chord sizes, as well as

boundary annotations, are presented in figure 3.6.

Figure 3.4: Generated mesh around an arbitrary airfoil. The spacing of edge meshes

over the airfoil in blocks B3 and B4 are non-uniform. They are selected such that

more points are assigned to the nose with a shorter distance. Also, the spacing be-

tween the edge divisions increases geometrically as the airfoil upper and lower curves

are traced from the leading edge to the trailing edges. This allows for a smoother tran-

sition in meshes from the nose radius to the arc created in front of the leading edge.

The boundaries with annotation inlet, outlet, top, and bottom were assigned a patch-

type boundary condition. In contrast, the boundaries with annotation wall were set

to have nutUSpaldingWallFunction type boundary condition for nut variable, fixed

value for the nuTilda, zeroGradient for pressure, and noSlip for the velocity. The rest

of the boundary conditions are set to freestream. Initial conditions are sampled from

a uniform distribution in the ranges provided in Table 3.1 with the exception of νt
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Figure 3.5: Generated mesh around an arbitrary airfoil.

which is calculated from the value of ν̃ for each case. Here the turbulence viscosity is

set to be in accordance with OpenFOAM defaults for faster convergence of original

cases. For more accurate results ν̃ should be set to a range between 3ν∞ − 5ν∞.

The mesh around the airfoil is generated so that the first cell size is equal to 300 y+.

This size is estimated by the ∆y =
√
74Re

−13
14 y+. As the internal arc around the

airfoil is generated by a shape offset of value 0.8, the size of the first mesh layer can

be easily calculated. The reason for selecting a large y+ is that a wall function is

used on the airfoil thus permitting a larger mesh size to capture the boundary layer.

In order to limit the solution time a fairly coarse mesh is used where the number of

mesh elements in the x-direction are 120 (over the airfoil curves), 40 (in sector B7),

80 (in sectors B12), and in the y direction are 80 (from airfoil LE to the inner offset),

60 (from inner arc to outer arc), 8 (at the TE of the airfoil in sectors B7 and B12). The

mesh expansion in sections B3 and B4 are controlled by the first cell size, whereas

the expansions of the other sectors is selected to have a smooth transition between

joining sectors.
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Figure 3.6: Generated mesh around an arbitrary airfoil.

3.5 OpenFOAM Solver Setup

For the solution of Reynold-Averaged Navier-Stokes (RANS) equations around two-

dimensional (2D) airfoils, the Spalart-Allmaras turbulence model was utilized. The

OpenFOAM software implementation of this model is used for all the solutions. The

Spalart-Allmaras is a one equation model based on a modified turbulence viscosity

ν̃. The modified version of this equation is presented in equation 3.8. In the original

Spalart-Allmaras equation there exists another term (denoted by ft2) which is not

added in the OpenFOAM implementation of this equation. As a result, this term is

ignored in 3.8.

D

Dt
(ρν̃) = ∇.(ρDν̃ ν̃) +

Cb2

σνt
ρ|∇ν̃|2 + Cb1ρS̃ν̃ − (Cw1fw)ρ

ν̃2

d̃2
+ Sν̃ (3.8)

In equation 3.8, ν̃ represents the viscosity like variable whereas the Cb2, σνt , Cb1, Cw1
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are constants. Here, the turbulence viscosity "νt" is obtained by νt = ν̃fv1 where the

derivation of function fv1 is presented in equation 3.9.

fv1 =
( ν̃
ν
)
3

( ν̃
ν
)
3
+ C3

v1

(3.9)

For all the solutions the default values of the OpenFOAM implementation of Spalart-

Allmaras were used. In addition to the constants used for the Spalart-Allmaras equa-

tion, the density is set to 1.225 kg
m3 and the kinematic viscosity is set to 10−5m2

s
Also,

the default finite volume scheme used in the airFoil2D case in simpleFOAM is used

for the solution of RANS equations.

3.6 Trainable Model

In order to learn a mapping from the initial conditions and the domain properties to the

solutions of RANS equations a CNN-based encoder, decoder pair model is utilized.

This model is a modified version of the UNet [49] architecture. The basic architecture

for this model is presented in the Figure 3.7 and Table 3.2. In Figure 3.7 a specific en-

coding is used to indicate different building blocks of the model with the encoding of

type CCXKXSXPXCX and DCXKXSXPXCX to represent different model blocks.

The initial letter in the encoding indicates if the block is a convolutional block (C)

or a transposed convolution block (D). The rest of the letters and numbers describe

the kernel shape where the number after letters C, K, S, and P represent channel size,

2D kernel size, strides, and padding. The first integer after the letter C represents the

input channels and the second number proceeding with the same letter C indicates the

output channel size. Each single digit number after letters K, S, and P represents a

network layer For instance encoding CC4K33S11P11C32 means that the block is a

2D convolution block that accepts 4 channels and outputs a result with 32 channels. It

consists of two layers with encoding CC4K3S1P1C32 and CC32K3S1P1C32. Each

layer has a kernel size (3,3), stride (1,1), and padding (1,1). After each layer through-

out the network, the Leaky-ReLU activation function with a slope of 0.1 is used. This

model is implemented in Pytorch and trained using its automatic differentiation.
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Table 3.2: Modified UNet Encoder and decoder model architectures for learning the

solution of RANS equations for incompressible, subsonic, steady state flow around

2D airfoils. (left) Encoder architecture building blocks. (right) Decoder Architecture

building blocks.

Encoder Layers Act. Stride Padding Output Shape Decoder Layers Act. Stride Padding Output Shape

- - - - 4 x 256 x 256 - - - - 128 x 8 x 8

Conv3x3 LReLU 1x1 1x1 32 x 256 x 256 DConv3x3 LReLU 1x1 1x1 128 x 8 x 8

Conv3x3 LReLU 1x1 1x1 32 x 256 x 256 DConv3x3 LReLU 1x1 1x1 128 x 8 x 8

Conv3x3 LReLU 2x2 1x1 32 x 128 x 128 DConv3x3 LReLU 2x2 1x1 128 x 16 x 16

Conv3x3 LReLU 1x1 1x1 32 x 128 x 128 DConv3x3 LReLU 1x1 1x1 128 x 16 x 16

Conv3x3 LReLU 1x1 1x1 32 x 128 x 128 DConv3x3 LReLU 1x1 1x1 128 x 16 x 16

Conv3x3 LReLU 2x2 1x1 64 x 64 x 64 DConv3x3 LReLU 2x2 1x1 64 x 32 x 32

Conv3x3 LReLU 1x1 1x1 64 x 64 x 64 DConv3x3 LReLU 1x1 1x1 64 x 32 x 32

Conv3x3 LReLU 1x1 1x1 64 x 64 x 64 DConv3x3 LReLU 1x1 1x1 64 x 32 x 32

Conv3x3 LReLU 2x2 1x1 64 x 32 x 32 DConv3x3 LReLU 2x2 1x1 64 x 64 x 64

Conv3x3 LReLU 1x1 1x1 64 x 32 x 32 DConv3x3 LReLU 1x1 1x1 64 x 64 x 64

Conv3x3 LReLU 1x1 1x1 64 x 32 x 32 DConv3x3 LReLU 1x1 1x1 64 x 64 x 64

Conv3x3 LReLU 2x2 1x1 128 x 16 x 16 DConv3x3 LReLU 2x2 1x1 32 x 128 x 128

Conv3x3 LReLU 1x1 1x1 128 x 16 x 16 DConv3x3 LReLU 1x1 1x1 32 x 128 x 128

Conv3x3 LReLU 1x1 1x1 128 x 16 x 16 DConv3x3 LReLU 1x1 1x1 32 x 128 x 128

Conv3x3 LReLU 2x2 1x1 128 x 8 x 8 DConv3x3 LReLU 2x2 1x1 32 x 256 x 256

- - - - - Conv3x3 LReLU 1x1 1x1 5 x 256 x 256

3.7 Model Inputs and Outputs

The model accepts an array of size RN×4×256×256 and returns an output of size RN×5×256×256

with N representing the patch size. Treating these four-dimensional arrays as a stack

of N images with shapes RN×feature size×height×width one can describe the underlying ele-

ments of both inputs and outputs which will be provided to the model. Each element

in height and width of input and output describes a quantity measured at a specific

position on a uniform grid. Each measured quantity is stored in the feature vector of

the input or output. The input of the model is created by concatenation of the airfoil

shape representation and the initial conditions at the same query points that were used

to obtain the shape representation. Figure 3.8 shows the airfoil shape representation

which for simplicity will be referred to airfoil mask.

The airfoil mask is created by querying if each point in a uniform 256x256 grid in the

bounding box [(-1.2, 0.35), (0.2, -0.35)] lies outside the airfoil or not (It is assumed

that the airfoil spans the x-axis from -1 to 0). For a continuous setting, the points
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Figure 3.8: Uniform grid representation of airfoils which is referred to as airfoil mask

in the text. The image is in grey scale where 1 is mapped to white color and 0.0 is

mapped to black color.

outside the airfoil are given a value of 1.0 and the elements inside the airfoil are set to

0.0. On the other hand, a discretized setting requires the calculation of the common

area between each pixel and the domain covered by the airfoil. If this area is larger

than half of the area of that pixel its value is set to zero otherwise its value will remain

1.0. The airfoil map used in the inputs is created via the discretized setting. The first

feature in the feature vector of the input is the airfoil mask and the other features are

two velocity components and ν̃. The input configuration is presented in figure A.12.

Here the reference outputs for training are not queried from a uniform grid. These

points are obtained from a different position permutation. This is done because of the

fact that a large portion of the change in solution variables happens in the vicinity of

the airfoil and the deviation from the initial conditions decreases as the query points
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Figure 3.9: Input configuration of the model. For presentation purposes, the place-

ment of channels is shown in a reversed order here. The mathematical representation

precedence is the order with airfoil map, u, v, ν̃ values for each query point stacked

channel-wise.

get farther from the airfoil surface (in a physical domain bounded by a sufficiently

large far field). Thus for a more accurate solution, more query points are required in

the vicinity of the airfoil shape whereas, fewer and fewer points are required traveling

farther from the airfoil. Indeed during the process of creating the computational mesh

representation of the domain, almost the same logic is applied. Generally, a higher

density of mesh cells is added closer to the airfoil than to the far field. In this study,

a uniform grid of size R128×128 is queried in the bounding box (BB) [(-1.4, 0.5), (0.4,

-0.5)] (which is in the vicinity of the airfoil) and the rest of the points are generated

with an exponential growth rate of 1.1 in both x and y directions. The generated

exponentially spaced points are fitted to their corresponding bounding box starting

from one or two vertices of the bounding box of the uniform grid to a vertex or

edges of the smallest bounding box that encloses the whole problem domain (i.e. a

bounding box with corner vertices [(-10,10),(15,-10)] which will be referred to as

outer bounding box in the rest of the thesis). The query points placement for the

output is presented in figure 3.10.

After the query points are generated and probed or interpolated from the solution
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mesh to create the training reference outputs (objective arrays), the points that are

inside the airfoil are set to zero. In order to do so, the airfoil mask instead of the

airfoil geometry is used. This is because some points in the output query list might

be outside the airfoil but have a value of 0.0 in the airfoil mask. In other words, these

points are geometrically outside the airfoil but are represented in the airfoil mask as

if they were inside the spatial domain enclosed by the airfoil. This happens when

the physical domain surrounded by the airfoil shape occupies more than 50 percent

of a pixel and the query point that physically lies outside the airfoil also lies inside

that pixel. In such a case, in order to enforce the consistency between the inputs and

outputs, the value of the output should be affected by the discretized version of the

input rather than the continuous version of it. The same procedure is applied for the

query points that are outside the problem domain. In other words, the points that are

not enclosed by the far-field are also set to zero for all feature vector values in the

output.

There are some other points that need to be clarified for the model’s input and output

settings. Firstly, one may notice that the spatial ranges that the input and outputs

represent are not the same. The input’s airfoil mask represents a bounding box in the

vicinity of the airfoil while the output query points represent the whole spatial bounds

of the problem. This will not be an issue as there is no reason to learn a one-to-one

mapping from input physical locations to the same output locations. Also as the

vicinity of the airfoil is provided in the airfoil mask -rather than the whole domain-, it

would contain more information about the airfoil shape compared to when a one-to-

one mapping is established. This in turn would result in a more accurate prediction of

the solution features as more information about the geometric variations of the input

shape is provided to the model. The other point that needs to be clarified here is the

fact that the non-uniform property of the output query points might negatively affect

the training as the distances are not known by the model and the non-uniform query

points are treated as uniformly distant ones by the model (The model treats the inputs

as images thus it assumes that each entry in height and width are equidistant). Yet

this would not pose a problem here as the query point locations are the same for all

simulations thus the variations in the same locations are learned. The non-uniform

query setting not only does not affect the training process negatively but also allows
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Figure 3.10: Probe/interpolation query points. After generation, these points are

queried in the solutions computation mesh to create the model’s output references

to be learned.

more variation in output features to be captured and a more accurate mapping to be

learned.

3.8 Training Set Generation

The training set consists of 1400 converged samples created by permuting the previ-

ously generated airfoils with different initial and boundary conditions (sampled from

the ranges provided in table 3.1) and the 1000 generated airfoils. The airfoils are

sampled uniformly by their ID (from 1 to 1000 ), thus some airfoils might not ap-

pear in the data set while some others might have appeared more than once. For each

case, the mesh is generated in accordance with instructions provided in section 3.4.

Then its initial and boundary conditions are set in their corresponding files. All the
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information about the mesh settings (the instructions for generating the mesh), ini-

tial and boundary conditions, and the airfoil shape are also stored in a JSON file to

be used later. For the solution of RANS equations, OpenFOAM software’s Simple-

FOAM solver with the settings described in section 3.5 is used for all the solutions.

When the solver is converged the query points are provided to the OpenFOAM post-

processing unit. Its output then is parsed to create the output reference array which

is stored in a pickle file in binary format. In order to minimize the size of storage

required for each input-output pair, the input arrays are not stored and are directly

generated from the JSON files at the beginning of the training.

3.9 Training

There are some modifications that are applied to the inputs and outputs in order to

facilitate the training of the model. These modifications as well as the training setup

and procedure are described in this section. The ranges of the initial conditions that

are provided in table 3.1 indicate that the scale of different inputs varies in differ-

ent orders of magnitude which would result in some problems during optimization.

The same problem is present in the outputs as well. The scaling issue is solved by

introducing scaling factors for both inputs and outputs. These scaling factors are ap-

plied channel-wise to their corresponding location in the feature vector. The scaling

formula applied to each variable in input and output is presented in table 3.3.

Table 3.3: Scaling operations for model inputs and outputs.

Variable Unit Range Scaling formula Variation Range

ux
m
s

[19.69, 200] ux := ux

100.
[0.196, 2]

uy
m
s

[−34.72, 34.72] uy :=
uy

100(sin(10))
[−2, 2]

P kg
ms2

[0, Umax
∞ ] P := P

Umax
∞

[0, 1]

νt
m2

s
[0.13, 0.15] νt :=

νt
0.15

-

ν̃ m2

s
[0.13, 0.15] ν̃ := ν̃

0.15
-

With Umax
∞ corresponding to the maximum dynamic pressure.
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Umax
∞ =

ρ×max(U)2

2.
(3.10)

The Adam [75] optimizer with learning rate lr = 10−3, and β1 = 0.95, β2 = 0.99

is utilized to update the model parameters. The batch size is decreased from 200

samples to 5 samples gradually during the training and the model is trained until the

MSE of the target and the predicted solution for all the cases fell below 1e-6 threshold.

Figure 3.11 shows the input and reference output channels used for the training of the

model.

3.10 Results Inference and Updating the Initial and Boundary Conditions

To prepare the new initial and boundary conditions for the solver the results of the

model have to be transferred to mesh center points and boundary faces. As the out-

put query points are constructed by permutation of two vectors corresponding to the

points in the x and y directions, the pixel containing any point in the problem do-

main can be easily found via binary search in O(N log N) time complexity. This in

turn speeds up the process of transferring the solutions to the mesh. After the model

prediction for the solution of a specific case is obtained (inference), these results are

transferred to the cell centers for the inner cells and the face centers for the boundary

faces of the computational mesh. Here for each cell center (or face center) in the com-

putational mesh of the problem, the corresponding pixel which contains that point is

queried. Then the corresponding values of the solution variables in the feature vec-

tor of that pixel are transferred to the cell center (or face center) by interpolating the

values of four results bounding that cell.

3.11 Results

In this part, the performance of the model explained in this chapter is explored. For

the reader’s reference, the intermediate results of the model are also presented in

Appendix A.1. After obtaining the intermediate results, they are transferred to the

mesh and a traditional finite volume-based solver is used to obtain the converged
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solution of the RANS equations. The predicted initial/boundary conditions that are

transferred to the computational mesh of the solver as well as the converged results for

randomly selected airfoil geo115 given the initial flow conditions, ν̃, νt = 0.145m2

s
,

ux = 36.60m
s

, and uy = 2.56m
s

are also provided in the appendix (A.2).

In order to test the speed-up performance of the procedure proposed 2795 random

cases are solved. These test cases are generated by sampling the airfoils from UIUC

airfoil database [48]. The initial conditions of the problem are selected from a uniform

distribution from the same ranges used for the training shown in table 3.1. Here the

only difference is that the airfoils are refined before mesh generation whereas for the

training set the original randomly generated airfoils are used. The process of refining

airfoil shapes is adopted from open source software PyAero by Andreas Ennemoser

[90]. For each airfoil first, a b-spline is fitted to the provided points, and a set of new

points for the upper and lower curves are generated that are homogeneously distanced.

This is done using the arc length of each curve as b-splines are arc-length parame-

terized. After the generation of these equidistant points, the algorithm traverses the

edges of the airfoil and checks if the angle between two adjacent edges does satisfy

a specific criterion. Here instead of storing the edges, the vertices constituting each

edge are stored consecutively in a counter-clockwise manner in a doubly-linked list

thus the angle between two edges can be simply calculated using each set of three

successive entries in the list. The criterion is set to 172 degrees threshold, in other

words, if the angle between two adjacent edges on the airfoil has a value less than 172

degrees, they will not meet the criterion. If the criterion is not met, two new points

are sampled in the half distance within the segments represented by those two edges

and added to the list. This process is iterated 3 times (The number of iterations is

defined as a parameter). Then the trailing edge is refined by selecting a predefined

number of points in both upper and lower airfoil curves, and sampling a new number

of equidistant points in the segments represented by that number. Here for the airfoil

trailing edge refinement, the last 3 points on both the upper and the lower curves of

the trailing edge are re-sampled to 6 points. An example of the refined version of the

Goe115 is presented in figure 3.12. In this example, the algorithm refines both the

leading and trailing edges of the airfoil as can be seen by the high density of the circle

markers in those areas. This refinement in the leading edges allows the mesh genera-
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tion algorithm to discretize a smoother shape conforming to the previously explained

criterion.

Figure 3.12: Original (top) and Refined (bottom) versions of the Goe115 airfoil shape.

After the airfoils are refined, the computational mesh for the random set of test cases

containing the initial and boundary conditions of the problem is created. For each

configuration in the test set, two different cases are created where the first one contains

only the original initial and the boundary conditions and the second one contains

the predicted solution as its initial and boundary condition. Both of these cases are

then solved by the finite-volume method-based solver and then their performance

is compared to each other. Here two metrics are defined to provide the means to

compare the performance of the solver when each set of two different cases discussed

above is supplied to the solver. The first metric is the speed up in the number of

iterations which is defined as the ratio of the number of iterations it takes for the solver

to converge given the original initial and boundary conditions vs when the predicted

initial and boundary conditions are provided. Here the number of time steps the solver

takes to converge to a steady solution (given the convergence criteria) is referred to as

the number of iterations instead of the exact number of iterations. This is because the

exact number of internal iterations is not known. The second metric is the speed up in
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the wall time, which is defined in the same way by changing the number of iterations

by the wall time. In the next section, both of these metrics are used to compare the

speed up of the method presented in this chapter.

3.11.1 Speed up Results With OpenFOAM Normalized Residuals

The OpenFOAM software uses normalized residuals in its solvers’ implementations.

In order to change the residual calculation, each specific solver has to be modified and

the software to be recompiled. Here the default residual calculations methodology in

OpenFOAM software is used in this section. More detail on the residual calculation

methodology in OpenFOAM as well as the analysis of the results of this section in

terms of the absolute residuals is presented in the following section.

The speed up (in the number of iterations and Wall time) of the results of the proposed

model on each test case is provided in figures 3.13, and 3.14. It can be seen that

for all the cases that are tested, the process results in a speed-up of the solution of

that particular case for the investigation of subsonic, incompressible, 2D flow around

airfoils given the RANS equations. The results in this moderate test set show that

an average of 2.28× speed-up in the number of iterations and 2.61× speed-up in

wall-time can be obtained. According to the results presented in figures 3.13, and

3.14, there is a difference between the speed-up attained for the number of iterations

and the Wall-time. These results should be generally close to each other but many

factors may lead to the difference between these two metrics. A part of this difference

might be due to the interference of system processes in the wall-time calculation. Yet

as each pair of the solutions are performed in parallel such a dominant difference

is not likely to be due to system process scheduling interference. Another reason

might be due to the iterative manner of convergence of the smooth-solver at each

time step (iteration) of the solution. It is observed that the smooth-solver performs

more iterations at each time step of the solution when the original initial and boundary

conditions is provided compared to when the predicted solution is used as the initial

and boundary conditions. Indeed this observation can be validated by providing the

final converged solution of each case to the solver as initial and boundary conditions.

For instance when the solution of the Goe155 airfoil with the initial and boundary
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conditions ν̃, νt = 0.145m2

s
, ux = 36.60m

s
, and uy = 2.56m

s
is provided to the solver

it converges at 42 time steps on 1.11s wall time. The same case converges at 884

time-steps in 27.45s wall time which is indicative of the similar difference in speed-

up metric results. The exact reasons why there is a difference between the speed-up

metrics in wall time and the number of iterations are out of the scope of this thesis

and are not further investigated here.

The best speed-up in the number of iterations attained in the test set solutions was

4.86× whereas the worst case had just a 3 percent improvement in the number of

iterations. This method also achieved 5.69× and 1.08× speed up for the best and

worst case in wall time.

Figure 3.13: Speed-Up ratio in the number of iterations for each test case. The dashed

line (Red) represents the mean speed-up for all the cases in the test set.
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Figure 3.14: Speed-Up ratio in Wall-time for each test case. The dashed line (Red)

represents the mean speed-up for all the cases in the test set.

Other interesting observations can be made when the speed up in the number of iter-

ations or wall time is investigated as a function of the number of iterations and wall

time of the original initial and boundary conditions respectively. These results for the

test set are presented in figures 3.15, 3.16. For the rest of this part, the cases with

original initial and boundary conditions will be referred to as the original cases. The

cases where the predicted solution is provided as the initial condition will be referred

to as predicted cases for the rest of this section.

One may observe that there exists a correlation between the number of iterations it

takes for the solution of the original cases to converge and the speed up attained with

the proposed cases. In other words, in figure 3.15 one can observe the following

trend. Here as the number of iterations required for convergence of the original cases

increases the speed up obtained by providing the predicted initial and boundary con-

ditions to the solver also increases. A similar trend can be seen in figure 3.16 where

the speed up of wall time as a function of wall time of the original cases is presented.

79



Figure 3.15: Speed-Up in iterations vs number of solution iterations to converge with

the original initial conditions.

Figure 3.16: Speed-Up in wall-time vs simulation Wall-time to converge with the

original initial conditions.
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Indeed investigating the time or the number of iterations it takes for each case to

converge one can observe that a large portion of the predicted cases converge almost at

the same time no matter how many iterations it took for the original cases to converge.

These results can be observed in figures 3.17, 3.18. It is a very interesting observation

that suggests that the proposed method makes the solutions more robust. It might be

argued that the reason for the convergence delay in some of the original cases is

due to the causes of instability in the solution convergence, as the generated mesh

is almost similar in all the cases (neglecting the airfoil shape) and the initial values

for the flow variables are from a fairly limited range. One might also argue that the

solutions obtained when the proposed method is used, are not affected by these causes

of instability in the solution convergence as almost all the cases where the predicted

solution is provided as the initial and boundary conditions to the solver, converge at

almost the same time.

Figure 3.17: Number of iterations before convergence (red) original cases, (blue)

proposed cases for each test case.

81



Figure 3.18: Wall-time before the convergence of (red) original cases, (blue) proposed

cases for each test case.

Another parameter that can be investigated here is the predicted and the converged

values of the pressure coefficient on the airfoil shapes. The pressure coefficient "cp"

is defined in equation 3.11 and is the measure of the ratio of pressure forces to inertial

forces which is measured on the surface of the airfoil.

cp =
P − P∞

P0 − P∞
=
P − P∞
1
2
ρU2

∞
(3.11)

Here the pressure distribution for the case with the highest speed up is presented in

figure 3.19. The airfoil shape used in this case is naca65206 with ν̃, νt = 0.148m2

s
,

ux = 32.66m
s

, and uy = −2.28m
s

.
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Figure 3.19: "cp" distribution over the airfoil for the highest speedup in test case

(naca65206, u=32.66, v=-2.28).

The "cp" distribution for the predicted initial condition (red) and the final converged

solution (black) are in agreement for most of the upper and lower curves of the airfoil,

whereas they show differences in the vicinity of the stagnation point. As expected the

highest error in the model’s prediction is present where the highest curvature in airfoil

shape is observed. These parts are where the highest rate of change in flow variables

is observed. On the other hand, due to the discretization of the airfoil shape to the

airfoil map, most of the information about the curvature is lost, resulting in higher

error in those areas. Yet even if there exists an error in the pressure coefficient in the

predicted solution, using them as the initial and boundary conditions for the model

both improves the stability and convergence performance of the solution.

3.11.2 Residual Analysis

The OpenFOAM software uses normalized residuals for each solution variable to

terminate the solution. The residual normalization procedure is presented in equation

3.12.
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r̄ =

∑
|b− Ax|∑

(|Ax− Ax̄|+
∑

(|b− Ax̄|)
(3.12)

The solution is terminated when the normalized residual falls below a predefined

tolerance for each variable. This poses a problem when testing the hypothesis behind

this chapter. As the residual is normalized by the deviation from the average of the

solution vector, a large absolute residual for any variable might be normalized to a

value close to the termination tolerance.

To that end, the source code of the OpenFOAM software is modified for both "GMAG"

and "smoothsolver" so that they use the absolute residual instead of its normalized

version. It turns out, in the beggining the residual of the predicted case, is larger than

that of the original case.

Figure 3.20: Pressure absolute residual of predicted vs original case.

Figure 3.20 compares the absolute values of initial residual for pressure during the

first 300 iterations of the simpleFoam solver for the Goe155 airfoil with the initial
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and boundary conditions ν̃, νt = 0.145m2

s
, ux = 36.60m

s
, and uy = 2.56m

s
. Here it is

evident that the actual residual of the predicted case is initially higher but gets closer

and closer to the residual of the original case in a couple of iterations. On the other

hand, when the normalized residuals are used, due to a larger normalization factor

the residual of the predicted case starts from a smaller value compared to 1.0 in the

original case. This is shown in figure 3.21.

Figure 3.21: Pressure normalized residual of predicted vs original case.

Although both of these cases are terminated for the same termination residual toler-

ances, the converged residual of the predicted case is higher than that of the original

case. Yet this residual decreases rapidly in the first couple of time iterations for the

predicted case. This phenomenon can be explained by considering how the error is

decreased during each simulation iteration for both cases. In the original case, the

main cause of the error is the deviation of the uniform initial conditions from the

solution of the RANS equations in both the vicinity of the airfoil and its wake. How-

ever, the main cause of the error in the predicted case is generally the disruption of
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residual during the results transfer (to mesh) phase of this method. For the predicted

case, the error is mitigated by simple local adjustments of the solution vectors while

for the original case, this happens by slowly adjusting the solution vector from the

airfoil shape towards the free stream.

Figure 3.22: Pressure absolute residual of predicted vs original case.

Even if the initial value of the predicted case starts from a comparably higher value,

it converges to the absolute residual of the original case as can be observed in figure

3.22. Another observation that can be made here is the fact that the rate of change

of the absolute residual for the predicted case is higher than that of the original case

which suggests that there is some speed up even when the absolute residual is used.
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CHAPTER 4

CONCLUSIONS

The main objective of this thesis is to speed up PDE solvers by utilizing state-of-

the-art deep learning methods. The main motivation behind this idea is the fact that

for the design of systems that involve solutions of differential equations (like flow

over objects, heat transfer, etc.) a large set of viable candidates must be analyzed

which generally takes a long time to achieve. As a result, it would of advantageous

if the solution time of these solvers could be decreased significantly. To that end,

two distinct methods for speed-up of two different paradigms for the solution of fluid

dynamics problems are presented in this thesis.

In the first paradigm nonlinear, differentiable, and trainable models are utilized to

solve transient problems by minimizing a loss that is a function of the residual of

the governing equations, and error in initial and boundary conditions and as well

as the measured data, The trainable parameters of these models are optimized with

a gradient descent-based optimizer utilizing automatic differentiation. The second

paradigm, on the other hand, involves the speed-up of the solution process of steady-

state problems with discretization-based solvers

In case of transient problems, a parametric domain encoding-based physics-informed

neural network is proposed which utilizes the finite-difference method to estimate the

PDE’s residual. It is shown that automatic differentiation is not a suitable method for

the calculation of the residual for high-order derivatives as its time and memory com-

plexity increases with the model size and the order of the derivatives to be calculated.

As a result, to improve the performance of the proposed PEPINN model, the auto-

matic differentiation is only used for updating the model parameters and the derivative

calculations for residual are handled via finite difference kernels. The PEPINN model
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utilizing the parametric domain encoding allows the solution to be locally stored in

the latent encoding vectors, instead of globally in weights of a MLP for the whole do-

main. Here by globally, it is meant that the same weights are applied for all the points

in the domain whereas in the locally stored weights each subdomain would have its

own interpretation of the solution and thus different weights. In order to test the

PEPINN model, Taylor-Green Vortex problem with Dirichlet boundary conditions is

solved and the performance of the proposed model is compared to the baseline PINN

model selected to solve the same problem. Also, it is shown that the performance of

the PEPINN model both in terms of the speed-up and loss minimization, can be fur-

ther improved by gradually increasing the number of query points sent to the model

during the training process.

In the case of steady problems, the solution of the PDE is learned for a small dataset,

then the trained model is used to obtain predictions of the solutions for unseen but

similar cases, and these predictions are supplied to the solver as its starting conditions.

It is empirically observed that if a close enough prediction of the problem variables

is provided to the solver it will speed up the solution’s convergence time. This idea

is tested for the solution of the RANS equation for steady, subsonic, incompressible

flow over 2D airfoils where a custom Unet-based model is trained on the solution of

randomly generated samples with random airfoil shapes. The trained model later is

used to predict the solution of samples generated using the UIUC airfoil database.

Later these solutions are transferred to the computational mesh of the problem as its

starting conditions. This process has yielded satisfactory results, by speeding up all of

the 2795 cases tested for this thesis under the normalized residual calculation metric

of the OpenFOAM software.

4.1 Future Work

The training of the PEPINN model proposed in this thesis requires a large number

of query points covering the whole problem Spatio-temporal domain in order to both

achieve high accuracy (as a result of the application of finite difference for derivative

calculations) and lower loss values. As an alternative training method, a stochastic

query point generation method and its training process can also be investigated in the
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context of PEPINN models. In other words instead of a uniform grid covering the

whole domain a batch of randomly generated smaller bounding boxes that are not

disjoint with the problem domain can be used to train PEPINN models. Of course,

this would require more iterations to satisfy the residual of the differential equation

as well as initial and boundary conditions but can be made more accurate by selecting

shorter point spacings at each batch. Also, the performance of this model can be

investigated for the solution of other partial differential equations.
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Appendix A

QUALITATIVE RESULTS

A.1 Qualitative Results of Custom UNet Architecture

Here the result of the model described in 3.6 is presented in figures A.1-A.5. As it was

explained this model outputs a set of points concatenated in five channels which are

the two components of the velocity, pressure, νt, and ν̃. Each pixel in these images

corresponds to a query point of the same order in the probe query points list 3.10.

Figure A.1: ux component of the predicted field.

Because there are more query points in the vicinity of the airfoil this section almost

takes up half of the provided images also notice that the wake gets an abrupt angle
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in the images and the reason for that is the fact that a large distance aft the airfoil is

presented by points which their distance increases exponentially yet here this expo-

nentially increasing distance is re-scaled to a uniform distance.

Figure A.2: uy component of the predicted field.

Figure A.3: P ; Pressure component of the predicted field.
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Figure A.4: νt component of the predicted field.

Figure A.5: ν̃ component of the predicted field.
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A.2 Qualitative Results of speed up of DE solvers by initial condition

This section presents the qualitative results of the inferred initial conditions and con-

verged results in figures A.6-A.13. As described in section 3.10 the predicted results

of the query points are interpolated back to the mesh points to construct the initial con-

dition for that particular problem. These interpolated initial conditions are referred to

as predicted initial condition in the figures A.6-A.13.

Figure A.6: Predicted initial condition for magnitude of the velocity over the whole

domain.
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Figure A.7: Converged results for magnitude of the velocity over the whole domain.

Figure A.8: Predicted initial condition for pressure over the whole domain.
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Figure A.9: Converged results for pressure over the whole domain.

Figure A.10: Predicted initial condition for the magnitude of the velocity in the vicin-

ity of the airfoil.
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Figure A.11: Converged results for the magnitude of the velocity in the vicinity of

the airfoil.

Figure A.12: Predicted initial condition for pressure in the vicinity of the airfoil.
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Figure A.13: Converged results for pressure in the vicinity of the airfoil.

A.3 Qualitative Results of the Parametric PINN model

In this section, the results of the PEPINN model at different time steps are presented

and compared to the analytical solution starting from the initial condition up to t=1s

with 0.2s step-sizes.
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Figure A.14: Converged results for ν̃ in the vicinity of the airfoil.

Figure A.15: Converged results for ν̃ in the vicinity of the airfoil.
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Figure A.16: Converged results for ν̃ in the vicinity of the airfoil.

Figure A.17: Converged results for ν̃ in the vicinity of the airfoil.
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Figure A.18: Converged results for ν̃ in the vicinity of the airfoil.

Figure A.19: Converged results for ν̃ in the vicinity of the airfoil.
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Figure A.20: Converged results for ν̃ in the vicinity of the airfoil.
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