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ABSTRACT

A NOVEL AND PRECISE FALSE POSITIVE PROBABILITY
COMPUTATION FOR BLOOM FILTERS IMPLEMENTED WITH

UNIVERSAL HASH FUNCTIONS

Koltuk, Furkan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Ece Güran Schmidt

August 2022, 67 pages

Bloom Filters (BF) are multiple-hashing data structures that are widely used in mem-

bership testing applications. The many-to-one nature of the BF hashing results in

false positive outcomes which have to be further processed at a performance cost.

The computation of the false positive probability of BFs is carried out under the as-

sumption of uniform and independent hash functions. To the best of our knowledge,

all previous work in the literature assume that the hash functions are uniform and

independent without verifying if that is the case in reality.

This thesis focuses on the hash function uniformity and independence for BFs with

universal H3 functions. To this end, we propose a formal framework for defining

and quantifying the uniformity and independence for H3 hash functions in BFs. Fur-

thermore, we define a formal description of the many-to-one outcomes of H3 hash

functions. We then use this framework to precisely compute the false positive prob-

ability for BFs with H3 hash functions which might not be necessarily uniform or

independent. We verify our precise false positive expression with a hardware test bed

v



that can execute 2 · 108 membership queries per second. We perform structured tests

to evaluate the effect of losing uniformity and independence at different levels among

the H3 hash functions. Furthermore, we evaluate the results of our expression for a

range of parameters.

Keywords: Bloom Filter, Universal Hash Functions, False Positive Probability, Hash

Function Uniformity and Independence
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ÖZ

EVRENSEL ÖZET FONKSİYONLARI İLE GERÇEKLEŞTİRİLMİŞ
BLOOM FILTRELERİ İÇİN YENİ VE HASSAS BİR YANLIŞ POZİTİF

OLASILIĞI HESAPLAMASI

Koltuk, Furkan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ece Güran Schmidt

Ağustos 2022 , 67 sayfa

Bloom Filtreleri (BF), üyelik testi uygulamalarında yaygın olarak kullanılan çoklu

özetleme foksiyonu içeren veri yapılarıdır. Bloom Filterelerindeki özet fonksiyon-

larının çoğuldan tekile yapısı yanlış pozitif çıktılara ve neticede performans kayıp-

larına sebep olur. Literatürdeki Bloom Filtresi yanlış pozitif olasılığı hesaplamaları

tekdüze ve bağımsız özet fonksiyonları varsayar. Bildiğimiz kadarıyla, literatürdeki

tüm çalışmalar herhangi bir doğrulama sağlamaksızın özet fonksiyonlarının tekdüze

ve bağımsız olduğunu varsaymaktadır.

Bu tez çalışması, H3 özet fonksiyonuna sahip BF’lerin tekdüzeliğine ve bağımsız-

lığına odaklanmaktadır. Bu amaçla, bu çalışmada H3 BF’ler için tekdüzeliği ve ba-

ğımsızlığı kantitatif olarak tanımlayan muntazam bir çerçeve sunulmaktadır. Buna ek

olarak, H3 özet fonksiyonlarının çoğuldan tekile oluşları muntazam bir tanım ile su-

nulmuştur. Önerilen çerçeve daha sonrasında tekdüze ya da bağımsız olma koşulu ol-

maksızın, H3 özet fonksiyonlarına sahip BF’lerin yanlış pozitif olasılıklarının isabetli

şekilde hesaplanmasında kullanılmıştır. Bu yanlış pozitif hesabının doğrulaması için
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donanım üzerinde saniyede 2 × 108 üyelik kontrolü gerçekleştirebilen bir test yatağı

gerçeklenmiştir. Tekdüzeliğin ve bağımsızlığın farklı seviyerlerde kaybının etkilerini

incelemek için yapılandırılmış testler gerçekleştirilmiştir. Yanlış pozitif hesabı farklı

BF parametre aralıklarında değerlendirilmiştir.

Anahtar Kelimeler: Bloom Filtre, Evrensel Özetleme Fonksiyonları, Yanlış Pozitif

Olasılığı, Özet Fonksiyon Tekdüzeliği ve Bağımsızlığı
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CHAPTER 1

INTRODUCTION

Membership testing problem can be stated as answering the question of "Is string x

an element of a given set S ?". Here, S is sometimes called the dictionary.

Membership testing problem emerges in diverse applications including network packet

processing [1, 2], table look-up and matching [3, 4, 5, 6, 7, 8, 9, 10],detecting mem-

ory address conflicts and errors [11, 12, 13], blockchain applications [14] and human

genome mapping[15]. Among these applications, particularly network packet pro-

cessing and memory access applications require high throughput and low response

time calling for fast, low cost and low complexity implementations in hardware.

Bloom Filters (BF) [16] are widely used data structures which can represent the dic-

tionary and query the inputs for set membership. A BF has k hash functions, h1 . . . hk

and a bit vector v. Each hash function takes a string x as input and produces an out-

put that is an address for v. Representing the dictionary in the BF is carried out by

computing the hash address ∀x ∈ S by each hi and setting the corresponding bit in v.

Membership query is performed for a given x by computing the hash addresses for x

by each hi. If all corresponding bits in v are set, the query result is a match indicating

x ∈ S . The hash functions are desired to be uniform and independent to achieve the

most efficient use of the memory.

BFs detect all set members correctly and they do not produce false negatives or

misses. However, the many-to-one nature of the hashing results in false positive

outcomes where a match result is produced for an x /∈ S . A false positive result

might lead to a wrong address look-up in a router, labeling a legitimate packet as an

intrusion and discarding it, or not allowing a legitimate memory access without any
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address conflicts. The common remedies for such wrong actions include roll backs

and verification of the positive results by using another costly matching engine which

degrade the throughput and response time of the membership queries. To this end,

Computing the false positive probability of the BF is important for estimating its cor-

rectness and performance. The false positive probability computation in the literature

[17, 5] assumes that the hash functions of the BF are uniform and independent.

BFs are implemented on hardware as standalone components or accelerators for high-

throughput, low latency applications and querying very large data sets. In such ap-

plications, partitioned BFs (PBFs) are employed where each hash function k is as-

signed an exclusive block of memory to allow concurrent queries. Furthermore, low-

complexity hash functions are selected. To this end, universal hash functions of H3

family are frequently employed because of their low-cost hardware implementation

and their capability of producing uniform outputs. The input x and output z of an H3

hash function are w bit and y bit row vectors respectively. The output hash address

is computed with z = xH . Here H is a w × y Boolean matrix and the jth bit of the

output is zj = xw−1 · hw−1,j ⊕ xw−2 · hw−2,j ⊕ ...⊕ x0 · h0,j [18]. Here we note that,

[19, 1, 13, 12, 11] are hardware BF implementations with H3 hash functions.

We ask the three following questions in this thesis. Given a partitioned memory BF

with k H3 hash functions that are implemented as w × y Boolean matrices. How do

we test that these hash functions are uniform and independent such that the legacy

false positive probability expression in [17, 5] gives the correct result? Is it possible

to construct uniform and independent H3 functions for any given k, w and y? What is

the precise false positive probability for this PBF if the hash functions are not uniform

and/or independent?

This thesis makes the following novel contributions to answer these questions:

• Formal definitions of uniformity and independence for Universal Hash func-

tions.

• A numeric metric that quantifies the uniformity of an H3 hash function and the

dependence of a set of j H3 functions H1 . . . Hj .

• Two theorems that utilize this metric to determine if given H3 hash functions
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are uniform and/or independent. A result of these theorems is a condition for

uniformity and independence for H3 hash functions in terms of w, k, y param-

eters.

• A mathematical framework that formally defines the many-to-one mapping for

H3 hash functions.

• An exact computation of the false positive probability of a Partitioned Mem-

ory Bloom Filter with k H3 hash functions where the hash functions are not

necessarily uniform and independent.

• A hardware test bench that implements the PBF with desired hash function

parameters and performs 2 · 108 queries per second to validate the proposed

exact false positive computation.

• An experimental study to demonstrate the results of the proposed false posi-

tive computation in comparison with the legacy false positive expression in the

literature by analytical evaluation and hardware simulation.

The remainder of this thesis is organized as follows. In Chapter 2 we present an

overview for the Bloom Filters and H3 hash functions followed by the previous work

in the literature. We observe that all the previous work assume that their hash func-

tions are uniform and independent without actually verifying this assumption or con-

sidering the effects of violating it. In Chapter 3 we introduce our notation and present

the legacy false positive probability computation for Bloom Filters with uniform and

independent hash functions. We further present notation and fundamental properties

of GF (2) vector (sub)spaces in this chapter that are necessary to build our frame-

work. Chapter 4 presents the formal contributions of this thesis that are listed above.

We also present our proofs for the theorems and all formal statements in this chap-

ter. Chapter 5 presents our hardware test bench and then an experimental study. The

first part of this study is structured to show the effects of different hash function de-

pendencies on the precise false positive probability. The second part explores a set

of hash function parameters and the resulting false positive probability. Chapter 6

summarizes our findings, states our conclusions and plans out the future work for this

research.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

Given a universal set of w-bit strings U and a set S ⊂ U with the respective cardinal-

ities of |U| and |S|. Here |U| = 2w. S is sometimes called the dictionary. For a given

x ∈ U , we call x positive if x ∈ S and negative otherwise. The probability of a string

being positive is PS .

A membership test represents S and decides if x ∈ S by returning a match result.

The applications for membership testing include string matching for network in-

trusion detection [1, 2], network applications [3, 4, 5, 6, 7, 8, 9], determining ad-

dress conflicts and error detection in memories [11, 12, 13], file look-ups in large

cluster-based storage systems [10], blockchain applications [14] or human genome

mapping[15].

2.1 An Overview for Bloom Filters and H3H3H3 Hash Functions

Bloom Filters (BF) [16, 17, 5] are frequently employed for implementing member-

ship testing applications. BFs are fast and memory-efficient randomized hashing data

structures which can represent S for approximate membership testing with possible

false positive results.

2.1.1 Standard BF Implementation with Shared Memory

A Bloom Filter (BF) employs k hash functions, H = {h1, h2, . . . , hk}. Each hi has

w bit input, y bit output and maps U into y bits output space, addressing a memory

with a size of M = 2y. We call this implementation with shared memory Monolithic

Bloom Filter (MBF).
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To this end, each string x ∈ S is stored in the BF by setting the bit at address in the

memory z = hi(x) computed by each hash function hi, i = 1, . . . , k.

When an input string x is queried, the BF returns a match result if and only if hi(x)

points to a memory location that is previously set ∀hi ∈ H. To this end, there are no

misses or false negative results making BFs viable pre-processing engines to eliminate

the strings x /∈ S.

However, the many to one nature of the hash functions result in false positives as it

is possible that an input string x /∈ S can be mapped to bits that are set by strings in

S. We demonstrate how a false positive outcome can be produced with an example.

In this example, S = {S1, S2} which is stored in a BF with k = 2, y = 3 and

M = 23 bits. The queried string x1 /∈ S falsely produces a match outcome, because

the vector positions pointed by the calculated hash values for x1 are set by S1 and

S2. Furthermore, x2 /∈ S is a false positive, as its calculated hash values coincide

with the ones of S2. It is important to state the false positive probability of a given BF

because such outcomes can result in performance penalties that manifest as decreased

throughput, increased look-up times or wrong actions taken. [12, 17, 5] present the

false positive probability Pfp of a BF with k uniform and independent hash functions

that stores |S| strings in a memory of M bits as:

Pfp =
(
1− e−

|S|·k
M

)k

. (2.1.1)

We present the derivation of Eq. (2.1.1) in Section 3.2. The optimal number of hash

functions, kopt, that minimizes Pfp for a given S and M is computed as in (2.1.2).

Then, (2.1.3) follows from (2.1.1) by replacing k with kopt.

kopt =
M

|S|
· ln2, (2.1.2)

kopt = −log2(Pfp). (2.1.3)
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Here we note that the BF’s work with fixed length strings of length w. A number of

BFs with different string lengths can be employed to support variable string sizes as

in [6]. A number of Bloom filter variants have been proposed that address some of

the limitations of the original structure, including counting, deletion, multisets, and

space-efficiency [17].

Figure 2.1: Monolithic BF.

2.1.2 Partioned Memory Implementation of BFs

We call the legacy implementation of the BF which features k hash functions that

address a single memory block of M bits, Monolithic Bloom Filter (MBF). Such

implementation requires k read and write ports for the memory to store or query a

string in parallel. However, multiple ports significantly increase the memory area

cost. It is possible to implement the BF with a single ported memory with serial reads

and writes. Such implementation requires multiple cycles and a more complicated

control logic. Furthermore large number of hash outputs increase the size of the

multiplexers, decoders, and the amount of wiring [12].

An alternative implementation is the Partitioned Bloom Filter (PBF) where each hash

function hi, i = 1, . . . , k has w bit input, y bit output and maps to an exclusive block
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of memory of m = 2y bits. Furthermore, in PBF architecture the hash functions

are also less expensive to implement, because they now generate hash values that are

smaller by a factor of k. One can show that, if m = M/k the false positive probability

of the PBF is asymptotically close to that of an MBF with M bits of memory.

Figure 2.2: Partitioned BF.
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2.1.3 Hash Functions for BFs

Previous work on BFs frequently employ H3, MD5 [20], CRC32 hash functions [5,

17]. The false positive probability computation of Bloom Filters that we present Eq.

(2.1.1) assumes uniform hash functions. The assumption of uniformity is the norm for

the analytical model and evaluation of hash-function based schemes [18, 12]. In this

work we focus on hardware implementation of hash functions for realizing Bloom

Filters. To this end, further desired properties for the hash functions are the capability

of realizing different hash functions or dynamically changing the hash function using

the same hardware and low implementation complexity to enable high throughput and

small latency of a few clock cycles [18, 12, 21].

H3 universal family of hash functions produce each bit of the y-bit hash output by

XOR’ing each bit of the w-bit input string with a preset value of 1 or 0. They dis-

tribute the members of U uniformly to the output address space as they are linear

transformations. To this end, H3 hash functions can achieve many uncorrelated and

uniformly distributed hash values. [18, 12] show that BFs with H3 hash functions

achieve false positive rates that are close to the analytical expression while other sim-

ple hardware hash functions such as bit selection deviate from the analytical model

under practical settings. Furthermore, hardwired H3 hash functions are relatively in-

expensive to implement, requiring a tree of 2-input XOR gates per bit of each hash

function. A desired property of the hash function is surjection which means that every

y bit output is generated by some input x ∈ U [21].

2.2 Relevant Previous Work

Next, we present the highly-cited seminal and recent relevant work on different set-

membership applications that utilize Bloom Filters and H3 hash functions.

[19, 2, 1] are hardware string matching applications for deep packet inspection and

intrusion detection systems. In these applications, the detection of certain strings in a

stream of network packets indicate an intrusion. The no-match results of the Bloom

Filter filter out the strings that are not signatures. The match results are further verified

against possible false positives. [19, 1] employ H3 hash functions to support the fast

hardware implementation. [19, 2] suggest extensions of the fixed-size input Bloom
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Filter to variable sized-strings. To this end, [19] implements a dedicated BF for each

possible string length. [2] divides longer strings into multiple fixed length shorter

segments and uses an Aho-Corasick automaton where the Bloom Filter stores the state

transitions. [19, 2] determine k according to the optimal value in Eq. (2.1.2). Their

implementation is with a multiport memory. They select k = 35 for |S| = 10000,

a target Pfp = 10−11 and M
|S| = 50. In [2], implementation is with k = 8. In [1],

architecture features two Bloom Filters. To this end, the first BF works in the legacy

manner to filter-out the negatives. The second Bloom Filter caches a small subset of

S which are the recent positive matches. The result of the second Bloom Filter is not

verified thanks to its very low false positive probability of 10−14. The design aims

for exploiting the temporal locality of input strings where most of the match results

are found in the second Bloom Filter. Verification queries are carried out only for

the match results of the first Bloom Filter. To this end, the number of verification

queries are decreased. They store |S| = 9000 strings of fixed length w = 208.

Both BF’s are implemented with k = 11 hash functions where each hash function

has y = 16 bit output. The implementation environment is SystemC simulation and

FPGA synthesis to demonstrate the hardware resource consumption and achievable

operating frequency. [2, 1] demonstrate their implementation with the signature sets

of Snort [22] for S, which is a popular signature-based NIDS software.

[3, 4] store URLs in BFs. [3] employs Bloom Filters to represent the proxy cache

summaries. A proxy server that has a cache miss queries the summaries to find other

proxies with possible cache hits. The input strings are URLs and the hash functions

are MD5 cryptographic hash functions with 128 bit outputs which are further manip-

ulated by modulus operations. The target false positive ratio is 0.01. The performance

tests are done with software simulation. A final implementation is done with modi-

fied Squid 1.1.4 software where each BF stores 1 Million URLs with M
|S| = 16, 2 MB

memory, k = 10, Pfp = 0.00047. The average URL length is w = 400 bits. [4] pro-

poses URL classification application for Web traffic measurement. They propose a

Bloom-filter-based architecture that supports multiple-set membership testing. Their

classification problem is stated as finding a group id for each input string x ∈ S . To

this end, a false positive is returning a group ID for some x /∈ S and a misclassifi-

cation is returning a wrong group for some x ∈ S . Maximum string length is 256
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Bytes. Their proposed data structure needs more hash functions than a typical Bloom

Filter. To this end, they suggest using XOR-based hardware hash functions. [4] uses

multiple groups of hash functions to differentiate group IDs in one BF. [23] proposes

using one group of hash functions to decrease memory access cost. Their target appli-

cations are network packet processing for routing and attack detection. The modified

BF architecture is implemented with k = 4, k = 5 with Pfp = 0.000049. The

implementation is in software.

[8] aims to represent dynamic sets for network applications including network attack

detection, MAC address lookup, IP longest prefix match and multicast routing. To

this end, they propose an Extended BF (EBF) that supports both item deletion and

expansion. EBF features an elastic bucket array in addition to the BF. The BF is stored

in the fast memory and the cooperative bucket array is stored in the slow memory.

Every insertion is both in the BF and the bucket array. When the false positive of the

BF is above a threshold, the allocated fast memory is increased and rearranged using

the information in the bucket array. A reverse procedure is performed for compaction

of the BF. The implementation is entirely in software with C++. They use Murmur

hash functions with k = 4, y = 32. The allocated BF memory is M = 512MB. Their

max false positive probability that triggers expansion is 0.001 while the minimum

false positive probability that triggers compaction is 0.0001. Their strings are IP data

traces with 5-tuple information yielding w = 104 bits[24]. This 5-tuple consists

of; 32-bit IPv4 / 128-bit IPv6 source address, 32-bit IPv4 / 128-bit IPv6 destination

address, 16-bit UDP, TCP or SCTP source port number, 16-bit UDP, TCP or SCTP

destination port number, 8-bit IPv4/IPv6 protocol number / next header information.

[9, 7] employ Bloom Filters for IP table look-up and evaluate the performance of their

architectures using real routing tables [25]. [9] proposes a data structure for binary

trie-based IP address lookup where every node is programmed in an on-chip Bloom

filter and stored in an offchip hash table. During the look-up, a level-scan is performed

by querying the BF until a negative result is produced which indicates that the level

of the last positive match is a candidate of the best matching level. Then, the off-chip

hash table is probed using the prefix of the candidate level, to verify the result. If

there is a false positive, back-tracking is performed by searching at a shorter level.

The hash function is a CRC generator. They use an optimal number of hash functions
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as indicated in Eq. (2.1.2) with w = 48bits which include 32 bit-prefix, 6-bit length,

8-bit output port, 1 bit valid and 1 bit type fields. They implement 5 routing tables

with the following parameters: (|S| = 82156, y = 21, k = 18), (|S| = 191757, y =

22, k = 15), (|S| = 299899, y = 23, k = 19), (|S| = 411122, y = 24, k = 28),

(|S| = 576370, y = 24, k = 20). The implementation is entirely in software.

[7] proposes Parallel Multiple Hashing (PMH) architecture for trie-based IP address

lookup. Each group of prefixes with a distinct length is stored in a separate multihash

table. A prefix is stored into the overflow TCAM when the hash table is already

full. A BF filters out the length of the input that does not have a matching prefix

and eliminates the query to the corresponding hash table. The hash function is with a

CRC generator that is composed of shift-right registers with XOR logic. They suggest

using optimal k in Eq. (2.1.2) with a target Pfp = 0.3. The length of the strings is

w = 38 bits for 32 bit prefix and 6 bit length information. They implement 5 routing

tables with the following parameters:

(|S| = 14553, (y = 14, y = 15, k = 2), (y = 16, k = 3), (y = 17, k = 6), (y =

18, k = 11)), (|S| = 39464, (y = 16, k = 2), (y = 17, k = 2), (y = 18, k = 3), (y =

19, k = 6), (y = 20, k = 11)), (|S| = 112310, (y = 17, k = 2), (y = 18, k =

2), (y = 19, k = 3), (y = 20, k = 6), (y = 21, k = 11)), (|S| = 170601, |S| =
227223, (y = 18, k = 2), (y = 19, k = 2), (y = 20, k = 3), (y = 21, k = 6), (y =

22, k = 11)).

[26] proposes a multi-field packet classification algorithm for SDN, called hierarchi-

cal hash tree (H-HashTree) that is implemented on GPU. An extended Bloom filter is

also proposed to accelerate search process by skipping groups in the hash tree. They

employ XOR-folded hash functions. There are dedicated BFs for different rule types

and the BFs are implemented with k = 2 hash functions. The stored string sets are

rule sets with |S| = 1000, 10000, 100000 rules where each rule is of size w = 424

bits.

[11, 13] use Bloom Filters against memory address conflicts and errors. [11] focuses

on Transactional memory systems (TMs) which execute multiple concurrent trans-

actions. When two concurrent transactions perform an access to the same memory

address and at least one of the accesses is a write, a conflict occurs. [11] propose
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inserting the read/written addresses in a transaction in a BF to track these conflicts.

They propose a locality sensitive BF where similar input strings that represent nearby

memory locations share some bits of the Bloom filter. To this end, the false positives

for transactions that exhibit spatial locality in their read or write sets are reduced with-

out affecting the false positives for transactions that do not exhibit locality at all. The

BFs are implemented with partitioned memory. They use k = 4 hash functions with

w = 32 y = 8, 9, 10, 11, 12, 13. The implementation environment is GEMS simulator

[27] with STAMP[28] benchmark suite. The BF hash functions are H3 where each

hash function is a surjection without stating any implications about uniformity. They

state that the union of matrices by pairs is should be of full rank to achieve different

indexes from all hash functions for a given address. We emphasize that statements

about surjection or the rank of the matrices are not formal but verbal without any

analytical justification.

[13] uses a counting Bloom Filter to mitigate SEU (Single Event Upset) effects in

CAM. To this end, the address is fed to a counting Bloom filter and in parallel is

given to a CAM. If they both give a miss, the BF eliminates the possibility of SEU for

CAM. If CAM output is miss and BF output is a hit, then CAM is checked for SEU.

The counting BF features 2 bit counters, and XOR-based hash functions. The string

sizes are w = 32, 64, 128 bits with |S| = [32, 32K]. The implementation maintains

a fixed ( M
|S| = 8. They use k = 3 hash functions with introduced dependency as in

[29]. The target Pfp = 0.001. The implementation environment is sim-out order

processor simulator [30] with SPECINT benchmarks [31].

[12] uses Cuckoo filter together with Bloom Filters for detecting address conflicts for

transactional memory management. Cuckoo filter [32] is another hash-based approx-

imate set-membership testing data structure. They propose to store the read/write set

of memory addresses of each transaction in a cuckoo hash table, and to convert this

table to Bloom filters when full. They evaluate different hash functions including

simple bit selection and H3 hash functions. The Bloom filter is implemented with

partitioned memory. The implementation parameters are w = 25,k = 4 and y = 10

(per BF). They test upto |S| = 1000. The implementation is with GEMS multipro-

cessor simulator [27] with a memory modeler [33].
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[14] proposes blockchain for network topology protection of Mobile Edge Computing

(MEC) systems. Here BFs store information for multidomain collaborative routing

consensus without exposing topology privacy. There are multiple domains in MEC

systems where each domain usually has a software-defined network (SDN) controller

for centralized software-defined control of the underlying network and routing es-

tablishment. Each controller generates and maintains a credible access identity to

perform the distributed consensus in the blockchain network. To this end, the routing

requests are forwarded among controllers together with a BF that stores the routing re-

sults for verification of the subsequent controller. This subprocedure will be repeated

until the request reaches the destination domain. Finally, the initiating controller re-

ceives all the verified paths from multidomain controllers and combines those paths

into a trusted multidomain routing. The entire implementation is in software.

[10] proposes a two stage BF architecture for decentralized metadata management in

a group of metadata servers. The first stage BF array stores a relatively small amount

of frequently accessed metadata. If there is no unique hit in the first stage, the second

stage BF array that stores all metadata is queried sequentially. The design is evaluated

by simulations and a Linux implementation.

[34] proposes a BF-based solution for file deduplication by eliminating the redundant

data chunks at network edge file storages. Their Lightweight Online File Storage

strategy, LOFS, adopts a three-layer hash mapping scheme where the BF serves as a

preprocessing stage. An online-arriving file is partitioned into several variable-sized

chunks and then stored into a BF. The suggested hash functions are MD5 [20], SHA-1

[35]. The implementation is in software.

[36] proposes BFs to construct Forward Information Base (FIB) tables for forward-

ing the Interest packets of the content seekers to the right store in Information Centric

Networks (ICN). They employ counting BFs (CBF) with d-left hash function [37]. In

this architecture, a Server advertises its content information (Content Advertisement-

CA) and Content Routers (CRs) in the network create FIB tables from the information

in the advertisement. Based on received CA’s the CR prepares the FIB table. The ori-

gin server creates a d-shift CBF that contains the names of its contents, and propagates

this BF across the network. The information stored in the BF conveys the probability
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of availability of the searched content in a path. The implementation is in software

with ndnSim-2.0 simulator [38].

[15] focuses on the genome mapping in Next Generation Sequencing (NGS) appli-

cations. In this context, short-read mapping is the mapping of DNA subsequences

to a known reference genome. They propose a high-throughput hardware accelerator

with a Bloom filter-based candidate mapping location (CML) generator for aligning

the fixed-length sequence segments (seeds) to a reference genome. A hierarchical BF

structure queries a number of seeds in parallel to map a short-read onto a reference

segment. The target false positive rate is less than 0.1. They use H3 hash functions

with partioned memory implementation. The accelerator is realized on a Stratix V

GX FPGA with 16GB external SDRAM which operates at 200MHz.

Our literature survey presents a diverse field of applications for Bloom Filters in set-

membership problems including very recent academic studies. We observe that H3

hash functions are particularly selected for hardware Bloom Filter implementations.

All previous work assume that the hash functions are independent and uniform.

To the best of our knowledge, there is no work in the literature on Bloom Filters

that verify if their hash functions are indeed uniform and independent or explore

the effects on the false positive probability if these requirements are not satisfied.

15



16



CHAPTER 3

PRELIMINARIES AND FORMAL NOTATION

In this chapter we introduce our notations and present the required background infor-

mation for this work that exists in the literature.

3.1 Bloom Filters

Given a universe set of w-bit strings U and a set S ⊂ U with the respective cardinal-

ities of |U| = 2w and |S|. The membership test checks if x ∈ S is true (positive) or

false (negative) for a given x ∈ U . S is sometimes called the dictionary. We define

the probability of a string being positive, PS .

A Bloom Filter (BF) employs k hash functions,H = {h1, h2, . . . , hk}. Each hi has w

bit input, y bit output and maps U into y bits output space, addressing a memory with

a size of M = 2y. To this end, each string x ∈ S is stored in the BF by setting the bit

at address in the memory z = hi(x) computed by each hash function hi, i = 1, . . . , k.

When an input string x is queried, the BF returns a match result if and only if hi(x)

points to a memory location that is previously set, ∀hi ∈ H. The many to one nature

of the hash functions result in false positives as it is possible that an input string x /∈ S
can be mapped to bits that are set by strings in S.

We introduce the following conditional probabilities for BFs regarding the correct-
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ness of the match results:

True positive prob.: Ptp = P (match|positive) = 1,

False positive prob.: Pfp = P (match|negative),

True negative prob.: Ptn = P (no-match|negative),

False negative prob.: Pfn = P (no-match|positive) = 0.

(3.1.1)

Let Pmatch indicate the probability of a match result of a BF, realized by hi(x) = 1

∀hi ∈ H. We can write the following using Eq.(3.1.1).

Pmatch = P (match|positive) · PS + P (match|negative) · (1− PS) (3.1.2)

= PS + Pfp · (1− PS). (3.1.3)

3.2 Bloom Filter False Positive Probability Computation in the Literature

We first present the analytical computation of false positive probability for the the

Monolithic Bloom Filter that we introduce in Section 2.1.1. Here, all k hash functions

have w bit inputs, y bit outputs and map to a shared block of memory of M = 2y

bits. We emphasize that the following requirements should be satisfied for these

computations:

Assumption 1. Each hi ∈ H is uniform over M = 2y.

Assumption 2. All hi ∈ H are independent.

Assumption 3. S and the queried strings x are uniformly distributed over U .
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The false positive probability PfpM of an MBF that stores |S| strings is [12, 17, 5]:

PfpM =

(
1− (1− 1

M
)|S|·k

)k

, (3.2.1)

∼=
(
1− e−

|S|·k
M

)k

when
1

M
≪ 1. (3.2.2)

Proof. Let ρM = (1− 1
M
)|S|·k denote the fraction of bits that are 0 after inserting |S|

strings. Then the probability of a match for x ∈ U is pmatch,M = (1 − ρM)k. We

denote the false positive probability, PfpM = P (match,M|negative). We can write

the following:

PfpM = pmatch,M · (1− PS) by [12],

pmatch,M = PS + PfpM · (1− PS) by [1].

Here one should note that under very small PS (|S| ≪ |U| ), PfpM ∼= pmatch,M

resulting in PfpM = (1− ρM)k.

Taylor Series expansion of the exponential function ex =
∑∞

n=0
1
n!
xn, under

∣∣ 1
M

∣∣≪ 1

yields e−1/M ∼= 1− 1
M

. Then; ρM ∼= e−
|S|·k
M and PfpM ∼= (1−e−

|S|·k
M )k when 1

M
≪ 1

[12].

3.3 False Positive Probability Computation for the Partitioned Bloom Filters

The focus of this thesis is the partitioned Bloom Filters (PBF) that we introduce in

Section 2.1.2. To this end, each hi ∈ H maps U 7→ {0, 1, . . . , 2y − 1} using an

exclusive block of memory with a size of m = 2y. The amount of total memory is

M = k ·m.

The false positive probability Pfp,legacy in Eq (3.3.1) of a PBF that stores |S| strings
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is computed under the 3 Assumptions listed in Section 3.2, with a modification of

Assumption 1. To this end, each hi ∈ H is uniform over m = 2y.

Pfp,legacy =

(
1− (1− 1

m
)|S|

)k

. (3.3.1)

Proof. Let ρm denote the fraction of bits that are 0 after inserting |S| strings. We

follow an analogous approach to the derivation of PfpM and write ρm = (1− 1
m
)|S|.

Then, Pfp,legacy = pmatch,m = (1− ρm)
k.

We apply the same Taylor Series expansion of the exponential function ex under k
m
≪

1, 1 − 1
m/k
∼= e−

k
m . This approximation yields, ρm ∼= e−

|S|
m and Pfp,legacy

∼= (1 −
e−

|S|
m )k under k

m
≪ 1 [12].

Remark 3.1. A PBF with k hash functions and m = M/k has asymptotically the

same false positive probability as an MBF. However, since k ≥ 1,
(
1− 1

M/k

)|S|
≤(

1− 1
M

)k·|S| the false positive probability of the PBF with the same amount of mem-

ory as an MBF is always larger. This can also be intuitively be explained with the

larger fill factors of the PBF because of the M/k range restriction[17, 5].

Remark 3.2. In this work, we employ PBFs for fast BF implementations. To this

end, Pfp,legacy is represented in exact form in Eq. (3.3.1). We do not consider the

corresponding MBF with equal amount of memory and treat the exclusive memory

per hash function m as a free design parameter. From this point on, we will refer to

the expression given in Eq. (3.3.1) as the legacy false positive expression, Pfp,legacy.

Remark 3.3. In this work, we consider the shortcomings of this legacy implementa-

tion. More specifically, we elaborate on what happens when uniformity and indepen-

dence requirements are not met. We expect that deviations from these requirements

will result in higher false positive rates than the estimation obtained by the legacy

expression. Consider following exaggerated examples:

1. Violating uniformity: Consider a BF where each hash function maps all inputs
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to the same output. It’s clear that this BF will perform a lot worse than what is

expected by the legacy implementation.

2. Violating independence: Consider another BF with k = 2 hash functions where

two hash functions are identical. Clearly, this bloom filter will behave as if

k = 1 and considering (3.3.1), this deviation in independence will degrade

performance.

It is evident deviations from these assumptions have adverse effects. When deviations

are not as extreme, the consequences will be less significant yet still exist.

3.4 H3 (XOR-based) Hash Functions

In their work, [39] define universal2 hash function family H as follows:

Definition 3.1. Universal Hash Functions

Hash function family, H is a class of functions from A to B with |A| > |B|. H

is universal2, if no pair of distinct keys collide under more than 1
|B| fraction of the

functions in H . Consequently;

∀p, q ∈ A, p ̸= q : P
h∈H

[h(p) = h(q)] ≤ 1

|B|
(3.4.1)

Note that, this definition only considers pairwise collision probability and does not

guarantee the uniformity of an individual hash function.

H3 hash functions are proven to be universal2 in [39] and defined as follows:

Definition 3.2. H3 Universal Hash Function Class

• Q: the set of all possible w × y with w > y, Boolean matrices constitute H3

class.

• H ∈ Q is a w × y Boolean matrix represented with :
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H =


hw−1,y−1 hw−1,y−2 ... hw−1,0

hw−2,y−1 hw−2,y−2 ... hw−2,0

... . . . . . . ...

h0,y−1 h0,y−2 ... h0,0

 ∈ GF (2)w×y

• An input string x ∈ U is represented with a w-bit row vector, x =
[
xw−1 xw−2 . . . x0

]
∈

GF (2)1×w

• Hash output z is a y-bit binary output that is represented with y bit row vector,

z =
[
zy−1 zy−2 . . . z0

]
∈ GF (2)1×y

The hash address z is computed with the following vector matrix multiplication in

GF (2):

xH = z. (3.4.2)

Here zj = xw−1 · hw−1,j ⊕ xw−2 · hw−2,j ⊕ ... ⊕ x0 · h0,j where · denotes bit-wise

AND and ⊕ denotes bit-wise exclusive OR operations according to vector - matrix

multiplication in GF (2).

In the example below, H computes a 2-bit address z =
[
z1 z0

]
for a 3-bit input

string x.

[
x2 x1 x0

]
1 1

1 0

0 1

 =
[
x2 ⊕ x1 x2 ⊕ x0

]

The hashing functions from the class H3 are essentially linear transformations from

2w to 2y and they distribute each x ∈ U into the address range with the decimal

equivalent {0, 1, . . . , 2y − 1}.

Remark 3.4. For the rest of this work, all hash functions are H3 class expressed as a

w × y Boolean matrix.
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3.5 Vector Spaces over GF(2)

We next provide the relevant definitions for GF(2) and then subsequently, the derived

properties of the H3 hash functions expressed as Boolean matrices.

A field is defined as a set with two binary operations addition and multiplication. For

a field, both of the binary operations are commutative and associative. Moreover,

identity elements and inverses are defined for these binary operations. A field with

a finite number of elements is usually called a finite field, or Galois field GF. GF(2)

is the finite field with two elements If F = {0, 1} where addition and multiplication

operations are defined with the Boolean AND (·) and XOR (⊕) the vector space over

GF(2) is constructed according to Boolean Algebra. To this end, many uses of GF (2)

vector algebra exist in computer engineering particularly in coding theory. We make

the following definitions and state the relevant properties of GF (2) vector algebra

[21].

Definition 3.3. GF (2)w vector space

A GF (2)w vector (sub)space with dimension n is a set V of w-bit vectors with |V| =
2n.

Properties:

P3.3.1: Every vector space has the zero vector.

P3.3.2: The space is closed under ⊕.

P3.3.3: A vector space has a set of basis vectors {v1, v2, . . . , vn} which are linearly

independent. α1 · v1 ⊕ α2 · v2 ⊕ . . .⊕ αn · vn ̸= 0, αi ∈ {0, 1}, ∃αi = 1.

P3.3.4: V = span(v1, v2, . . . , vn). The basis vectors span the vector space. Any

x ∈ V has a unique decomposition as a linear combination of the basis vectors.

Definition 3.4. Null space and Column Space of matrix H

The left null space N(H) of a matrix H is a vector space which is defined as the set

of vectors {x : xH = 0}.
The column space col(H) of a matrix is H is a vector space defined as col(H) =

span(c1, c2, . . . , cy) where c1..y are the columns of matrix H .

Properties:

P3.4.1: The column space and null space are orthogonal complements i.e. col(H) ⊥
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N(H) for finite vector space GF (2)w. By the definition of orthogonal complement,

N(H) contains all vectors that are orthogonal to every vector in col(H).

P3.4.2: dim(col(H)) ≤ y as w > y. To this end we use dim(H) ≜ dim(col(H)) for

the remainder of this thesis.

P3.4.3: w = dim(N(H)) + dim((H)) (Rank and Nullity Theorem).

Definition 3.5. H3 hash function surjection [21]

Given a surjective H . All possible hash addresses z ∈ {0, 1, . . . , 2y − 1} are mapped

by some x ∈ U ⇐⇒ dim(H) = y.

Definition 3.6. Equivalence Class The equivalence class ECi(x) for input x and

hash function Hi is the set of inputs that are mapped to same output by Hi[21]:

ECi(x) ≜ {q | xHi = qHi, ∀q ∈ U} with (3.5.1)

ECi(x) = ECi(q)

Properties:

P3.6.1: xHi = qHi ⇐⇒ x⊕ v = q, v ∈ N(Hi) (3.5.2)

Proof.

x⊕ v = q, v ∈ N(Hi)⇒(x⊕ v)Hi = qHi

⇒xHi ⊕ vHi = qHi

⇒xHi = qHi

xHi = qHi, x⊕ v = q ⇒v ∈ N(Hi)

(x⊕ v)Hi = qHi

⇒xHi ⊕ vHi = qHi

⇒vHi = 0

⇒v ∈ N(Hi).
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P3.6.2: xHi = qHi ⇐⇒ x⊕ q = v, v ∈ N(Hi) (3.5.3)

Proof.

xHi = qHi ⇒x⊕ v = q, v ∈ N(Hi)

⇒x⊕ x⊕ v = x⊕ q

⇒v = x⊕ q

x⊕ q = v, v ∈ N(Hi)⇒xHi = qHi

⇒x⊕ q ⊕ q = v ⊕ q

⇒x = v ⊕ q

⇒xHi = qHi

P3.6.3: Equivalence classes are the only reason of collision for H3 type of hash func-

tions [21].

P3.6.4: Each equivalence class have the same size and shape defined by N(H) (Prop-

erty 7.1,[21]).

P3.6.5: Two hash functions hi and hj are equivalent if and only if N(Hi) = N(Hj).

Note that hi and hj may have different outputs for the same inputs.
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CHAPTER 4

PROPOSED ANALYTICAL FRAMEWORK FOR PARTITIONED MEMORY

BLOOM FILTERS IMPLEMENTED WITH H3H3H3 HASH FUNCTIONS

In the scope of this thesis we focus on partitioned Bloom Filters implemented with

H3 hash functions according to Definition 3.2 presented in Section 3.4. This chapter

presents the analytical framework that is entirely developed in the scope of this thesis.

4.1 Definition and Conditions for the Uniformity and Independence of H3 hash

functions

Definition 4.1. Hash function uniformity: Given x ∈ U and hash function h with y

outputs. h is uniform over U if:

P
x∈U

[h(x) = z] =
1

2y
,∀x ∈ U ,∀z ∈ {0, 1, . . . , 2y − 1}.

Definition 4.2. Independence of hash functions: Given x ∈ U and hash functions

h1, h2, ..., hj are independent if:

P
x∈U

[h1(x) = z1 ∧ h2(x) = z2 ∧ . . . ∧ hj(x) = zj] =

P
x∈U

[h1(x) = z1] · P
x∈U

[h2(x) = z2] · . . . · P
x∈U

[hj(x) = zj] =
1

2j·y
, (4.1.1)

∀zi ∈ {0, 1, . . . , 2y − 1}, i ∈ {1, . . . , j}

Remark 4.1. Given a hash function h with a w×y matrix H , rank(H) = dim(H) =

dim(col(H)). For h to be surjective, it is required that dim(col(H)) = y, i.e, all

columns of h are independent [21]. By the rank and nullity theorem in P3.4.3. maxi-

mizing the dimension of the column space up to y, number of inputs that are mapped

to the same output can be decreased.
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Theorem 1. Uniformity of H3H3H3 Hash Functions

Given a hash function h that belongs to H3 family that is represented as a w × y

Boolean matrix H with w > y.

h is uniform over |U| = 2w ⇐⇒ dim(H) = y.

Proof

⇒ Definition 4.1 states that all 2y hash addresses are mapped by an equal (and non-

zero) number of strings in U . To this end, H should be surjective with dim(H) = y

by Definition 3.5 [21].

⇐ The cardinality of ECi(x) is |ECi(x)| = 2dim(N(Hi)) = 2w−dim(Hi) by P3.6.4.

The number of ECs for Hi is 2w

2dim(N(Hi))
= 2dim(H) by P3.6.4. and P3.4.3

Now, pick an arbitrary x ∈ U . It holds that x belongs to a unique EC. Since the strings

in each EC are mapped to a unique address (this should be known from somewhere),

this means that x is mapped to some address z ∈ {0, 1, . . . , 2y}. That is, indeed,

P[h(x) = z] = 1
2y

, which shows that hi is uniform over U . This is also the number of

hash addresses that are are mapped by some x ∈ U .

if dim(H) = y then 2y addresses are mapped.

Properties:

P4.2.1: dim(H1, H2, ..., Hj) ≤ min(w, jy) is the dimension of the subspace spanned

by columns of H1, H2, ..., Hj .

P4.2.2: dim(H1, H2, . . . , Hj, Hj+1) ≤ dim(H1, H2, . . . , Hj) + dim(Hj+1)

≤ dim(H1, H2, . . . , Hj) + y. We define the following metric.

Definition 4.3. Dependence Metric: Given hash functions h1, h2, ..., hj . dep(H1, H2, . . . Hj) ≜

j · y − dim(H1, H2, . . . Hj)

Theorem 2. Independence of H3H3H3 Hash Functions

a)dep(H1, H2, . . . , Hj) = 0 ⇒ Each of the hash functions h1, h2, ..., hj are uniform

b)dep(H1, H2, . . . , Hj) = 0 ⇐⇒ Hash functions h1, h2, ..., hj are independent.

Proof. (a): dep(H1, H2, . . . , Hj) = 0⇒ Each of the hash functions h1, h2, ..., hj are

uniform.

By Definition 4.3, dep(H1, H2, . . . , Hj) = 0 ⇐⇒ dim(H1, H2, . . . , Hj) = j · y
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By P4.2.2, dim(H1, H2, . . . , Hj) = j · y ⇒ dim(H1) = y ∧ dim(H2) = y ∧ . . . ∧
dim(Hj) = y

By Theorem 1, dim(H1) = y ∧ dim(H2) = y ∧ . . . ∧ dim(Hj) = y ⇐⇒ Each of

the hash functions h1, h2, ..., hj are uniform.

(b): dep(H1, H2, . . . , Hj) = 0 ⇐⇒ Hash functions h1, h2, ..., hj are independent.

⇒: We assume that dep(H1, H2, . . . , Hj) = 0. That is, by Definition 4.3, it follows

that dim(H1, H2, . . . , Hj) = j · y. Specifically, the matrix [H1H2 · · ·Hj] that is

obtained by horizontally appending all matrices H1, H2, . . . , Hj has rank j · y and is

hence uniform. Using Theorem 1, this implies that
1

2j·y
= P

x∈U
[h1(x) = z1 ∧ h2(x) = z2 ∧ . . . ∧ hj(x) = zj] =

P
x∈U

[h1(x) = z1] · P
x∈U

[h2(x) = z2] · . . . · P
x∈U

[hj(x) = zj],

∀zi ∈ {0, 1, . . . , 2y − 1}, i ∈ {1, . . . , j}

Hence, the Hash functions h1, h2, . . . , hj are independent in line with Definition 4.2.

⇐: We assume that the Hash functions h1, h2, ..., hj are independent. Now let dep(H1, H2, . . . , Hj) >

0. That is, dim(H1, H2, . . . , Hj) < j · y. There are two possible cases. In the first

case, dim(Hi) < y for some i ∈ {1, . . . , j}. However, this implies that P
x∈U

[hi(x) =

zi] ̸= 1
2y

by Theorem 1, which contradicts the assumption that

P
x∈U

[h1(x) = z1] · P
x∈U

[h2(x) = z2] · . . . · P
x∈U

[hj(x) = zj] =
1

2j·y
,

∀zi ∈ {0, 1, . . . , 2y − 1}, i ∈ {1, . . . , j}

In the second case, dim(Hi) = y for all i ∈ {1, . . . , j} but dim([H1H2 · · ·Hj]) <

j · y. Again, using Theorem 1, this contradicts the assumption that

P
x∈U

[h1(x) = z1 ∧ h2(x) = z2 ∧ . . . ∧ hj(x) = zj] =
1

2j·y
,

∀zi ∈ {0, 1, . . . , 2y − 1}, i ∈ {1, . . . , j}

Together, this proves that the assumption

dep(H1, H2, . . . , Hj) > 0

leads to a contradiction. Hence, it must be the case that dep(H1, H2, . . . , Hj) = 0.

Corollary 2.1. Given dep(Hj+1) = d, dep(H1, H2, . . . Hj) = a

⇒ dep(H1, H2, . . . Hj, Hj+1) ≥ (d+ a).
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Proof. By Definition 4.3, dim(Hj+1) = y − d and dim(H1, H2, . . . Hj) = j · y − a.

By P4.2.2, dim(H1, H2, . . . , Hj, Hj+1) ≤ dim(H1, H2, . . . , Hj)+ dim(Hj+1) ≤ (j ·
y − a) + y − d ≤ (j + 1) · y − (d+ a).

By Definition 4.3, dep(H1, H2, . . . Hj, Hj+1) = (j + 1) · y − dim(H1, H2, . . . Hj+1)

dep(H1, H2, . . . Hj, Hj+1) ≥ (j + 1) · y − ((j + 1) · y − (d+ a)) ≥ d+ a

4.2 Definitions for the Precise False Positive Probability of H3H3H3 Hash Functions

Definition 4.4. Collision Class The collision class CCi(x) for input x and hash

function Hi is the set of inputs other than x that are mapped to the same output by hi.

CCi(x) ≜ ECi(x) \ {x} (4.2.1)

By its definition, the size of a collision class is:

|CCi(x)| = |ECi(x)| − 1 = 2w−dim(Hi) − 1 (4.2.2)

Definition 4.5. Intersection of ECs in H3H3H3 BF

In Section 3.5, the behaviour of a single hash function is explained through GF (2)

vector algebra. Here we use a similar approach to elaborate on the combined be-

haviour of multiple hash functions.

Properties:

P4.5.1: Strings in the intersection of the ECs of multiple hash functions are mapped

to the same output for all of these hash functions:

Let x, q ∈ U

q ∈ (EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)) ⇐⇒

h1(x) = h1(q) ∧ h2(x) = h2(q) ∧ . . . ∧ hj(x) = hj(q)

(4.2.3)

Proof. By definition of set intersection,

q ∈ (EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x))

⇐⇒ q ∈ EC1(x) ∧ q ∈ EC2(x) ∧ . . . ∧ q ∈ ECj(x)
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By definition of equivalence classes in Eq. (3.5.1),

q ∈ EC1(x) ∧ q ∈ EC2(x) ∧ . . . ∧ q ∈ ECj(x)

⇐⇒ h1(x) = h1(q) ∧ h2(x) = h2(q) ∧ . . . ∧ hj(x) = hj(q)

Hence,

q ∈ (EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x))

⇐⇒ h1(x) = h1(q) ∧ h2(x) = h2(q) ∧ . . . ∧ hj(x) = hj(q)

P4.5.2: |EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)| = 2w−dim(H1,H2,...,Hj), ∀x ∈ U
(4.2.4)

where dim(H1, H2, ..., Hj) is the dimension of the space spanned by columns of

H1, H2, ..., Hj .

Proof. Using properties P3.6.1, P3.6.3 and P4.5.1 one can write the following:

∀q ∈ EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)

x⊕ v = q, v ∈ N(H1) ∩N(H2) ∩ . . . ∩N(Hj)

Hence,

|EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)| = |N(H1) ∩N(H2) ∩ . . . ∩N(Hj)| (4.2.5)

Note that null space itself is also an equivalence class which is mapped to output 000.

Therefore P4.5.1 applies to null spaces. Adding to that, the definition of null spaces,

one can write the following:

v ∈ N(H1) ∩N(H2) ∩ . . . ∩N(Hj) ⇐⇒ vH1 = vH2 = . . . = vHj = 000

col(H1, H2, . . . , Hj)
⊥ = N(H1) ∩N(H2) ∩ . . . ∩N(Hj)

where col(H1, H2, . . . , Hj) is the subspace spanned by columns of matrices H1, H2, . . . , Hj

and N(H1) ∩N(H2) ∩ . . . ∩N(Hj) is its orthogonal complement, therefore,

|N(H1) ∩N(H2) ∩ . . . ∩N(Hj)| = |EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)|

= 2w−dim(H1,H2,...,Hj)
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P4.5.3: CC1(x) ∩ CC2(x) ∩ . . . ∩ CCj(x) = (4.2.6)

(EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)) \ {x}, ∀x ∈ U

Proof. First we introduce the following property of set algebra: For any set A,B and

C where Cc is the complement of set C.

(A ∩B)\C = A ∩B ∩ Cc

= A ∩B ∩ Cc ∩ Cc

= (A ∩ Cc) ∩ (B ∩ Cc)

= (A\C) ∩ (B\C)

Using the definition of collision classes in Eq. (4.2.1) and aforementioned property

for sets,

CC1(x) ∩ CC2(x) ∩ . . . ∩ CCj(x)

= (EC1(x)\{x}) ∩ (EC2(x)\{x}) ∩ . . . ∩ (ECj(x)\{x})

= ((EC1(x) ∩ EC2(x))\{x}) ∩ . . . ∩ (ECj(x)\{x})
...

= (EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)) \ {x}

P4.5.4: |CC1(x) ∩ CC2(x) ∩ . . . ∩ CCj(x)| = (4.2.7)

|EC1(x) ∩ EC2(x) ∩ . . . ∩ ECj(x)| − 1, ∀x ∈ U

Remark 4.2. For j = 1, dep(H1) = y − dim(H1). To this end, when used with

individual hash functions, we use dep(.) as a metric to quantify the uniformity for the

remainder of this thesis.

4.3 Computation for the Precise False Positive Probability of H3 Hash Func-

tions

Here we present a novel expression for false positive probability of H3 PBFs that does

not suffer from the following shortcomings of the legacy expression:
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• Assumption of hash uniformity

• Assumption of hash independence

As explained in Section 3.3, the legacy expression focuses on the fraction of bits that

are set in the memory vectors after the programming and the probability of mapping

a random input x into the fractions that are set to 1. Whereas, in this work we focus

on the behaviour of the hash functions and the probability of existence for a member

string s ∈ S in collision classes for a given random input x.

For the purposes of this work we redefine the following:

• Match probability (Pmatch): Given random input x, what is the probability

that at all of the k hash function outputs are mapped by at least one member

string s ∈ S?

• False positive probability (Pfp): Given random input x that is not a member,

what is the probability that at all of the k hash function outputs are mapped by

at least one member string s ∈ S?

Note that assuming |S| << |U| these probabilities are nearly equal. In this work, we

refrain from this assumption and directly focus on false positive probability Pfp.

4.4 Method Derivation

An input string x is mapped to the same location only with members of its equivalence

class (P3.6.3). In addition, it is given in the false positive probability definition that

x /∈ S . Considering these two properties, the following is derived for a given x /∈ S ,

and s ∈ S :

hi(x) = hi(s) ⇐⇒ CCi(x) ∩ S ̸= ∅, (4.4.1)

hi(x) ̸= hi(s) ⇐⇒ CCi(x) ∩ S = ∅. (4.4.2)
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PBF yields a match result for an input x if all of the memory locations addressed by

hash functions are set by a member string s ∈ S. Therefore, for this non-member

x, a false positive result does not occur when at least one of the hash functions have

hi(x) ̸= hi(s),∀s ∈ S.

Considering the conditional expression of false positive probability, the precedent

requires us to use CCi(x) ≜ ECi(x) \ {x}, because if the shared element of ECi(x)

and S is x, this would violate the precedent that is (x is not a member).

Hence, using Eq. (4.4.2) we can define the following:

1− Pfp = P
x∈U

[
k∨

i=1

CCi(x) ∩ S = ∅

]
= (4.4.3)

P
x∈U

[CC1(x) ∩ S = ∅ ∨ CC2(x) ∩ S = ∅ ∨ · · · ∨ CCk(x) ∩ S = ∅]

Logically ORed events in the probability expression in Eq. (4.4.3) are not necessarily

independent. To this end, we use inclusion & exclusion [40] principle which is a

counting method for the number of members in set unions. Accordingly, we divide

the expression into simpler components as follows:

1− Pfp =
k∑

i=1

P
x∈U

[CCi(x) ∩ S = ∅]

−
∑

1≤i<j≤k

P
x∈U

[CCi(x) ∩ S = ∅ ∧ CCj(x) ∩ S = ∅]

+
∑

1≤i<j<t≤k

P
x∈U

[CCi(x) ∩ S = ∅ ∧ CCj(x) ∩ S = ∅ ∧ CCt(x) ∩ S = ∅]

· · ·

+ (−1)k−1 P
x∈U

[CC1(x) ∩ S = ∅ ∧ CC2(x) ∩ S = ∅ ∧ . . . ∧ CCk(x) ∩ S = ∅]

(4.4.4)
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In order to compute probabilities given above individual additive components in Eq.

(4.4) can be expressed as follows:

P
x∈U

[CC1(x) ∩ S = ∅ ∧ CC2(x) ∩ S = ∅ ∧ . . . ∧ CCn(x) ∩ S = ∅] =

P
x∈U

[S ∩ (CC1(x) ∪ CC2(x) ∪ . . . ∪ CCn(x)) = ∅]

Proof. First we introduce the following property for sets. For any sets A, B and C,

A ∩ (B ∪ C) = ∅

(A ∩B) ∪ (A ∩ C) = ∅

Union of two sets is empty set if and only if both of the sets are empty. Therefore,

A ∩ (B ∪ C) = ∅ ⇐⇒ (A ∩B) = ∅ ∧ (A ∩ C) = ∅

Using this property, events in Eq. (4.4) can be shown to be equal as follows:

CC1(x) ∩ S = ∅ ∧ CC2(x) ∩ S = ∅ ∧ . . . ∧ CCn(x) ∩ S = ∅

(CC1(x) ∪ CC2(x)) ∩ S = ∅ ∧ . . . ∧ CCn(x) ∩ S = ∅
...

S ∩ (CC1(x) ∪ CC2(x) ∪ . . . ∪ CCn(x)) = ∅

For the sake of simplicity following is defined:

C ≜ CC1(x) ∪ CC2(x) ∪ . . . ∪ CCn(x) (4.4.5)

Since all of the collision classes are identical in terms of shape and size, the expression

in Eq. 4.4 can be restated as, what is the probability that S strings randomly selected

out of 2w strings are disjoint from C. Assuming that S is uniform over U ,
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P
x∈U

[S ∩ C = ∅] =

(
2w−|C|

|S|

)(
2w

|S|

) (4.4.6)

Here,
(
2w

|S|

)
is the total number of possible selections of |S| strings out of 2w total

number of strings where we are selecting |S| strings out of 2w − |C| total number of

strings. This is a formulation of unordered sampling without replacement [41], that

is once a string is selected in S it cannot be selected again.

When |S| ≪ 2w, Equation 4.4.6 can be simplified to

P
x∈U

[S ∩ C = ∅] =
(
2w − |C|

2w

)|S|

(4.4.7)

Here, |S| independent selections are made repeatedly out of the subset with 2w − |C|
strings. Since the size of collision class intersections can be computed with aforemen-

tioned properties, the size of set C can be computed using set inclusion & exclusion.

Hitherto, everything required to compute the false positive probability of a BF without

the assumptions of uniformity and independence is presented. The only assumption

used in this method is that S is uniformly distributed over U .
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4.5 Example Computation of Pfp for k = 2

1− Pfp = P
x∈U

[CC1(x) ∩ S = ∅] + P
x∈U

[CC2(x) ∩ S = ∅]

− P
x∈U

[S ∩ (CC1(x) ∪ CC2(x)) = ∅]

P
x∈U

[CC1(x) ∩ S = ∅] =

(
2w−|CC1(x)|

|S|

)(
2w

|S|

)
P

x∈U
[CC2(x) ∩ S = ∅] =

(
2w−|CC2(x)|

|S|

)(
2w

|S|

)
P

x∈U
[S ∩ (CC1(x) ∪ CC2(x)) = ∅] =

(
2w−|CC1(x)∪CC2(x)|

|S|

)(
2w

|S|

)
|CC1(x)| = 2w−dim(H1) − 1

|CC2(x)| = 2w−dim(H2) − 1

|CC1(x) ∪ CC2(x)| = |CC1(x)|+ |CC2(x)| − |CC1(x) ∩ CC2(x)|

|CC1(x) ∩ CC2(x)| = 2w−dim([H1H2]) − 1
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4.6 Pseudocode for the Novel False Positive Computation

Algorithm 1 False Positive Computation
Input: hash_matrices[w][y][k], |S|
Output: Pfp

1: 1− Pfp ← 0

2: w ← size(hash_matrices, 1)

3: y ← size(hash_matrices, 2)

4: k ← size(hash_matrices, 3)

5: hash_idx_list← [1 : 1 : k]

6: for i = 1 : k do

7: sign_pr ← (−1)i−1

8: combs_pr ← nchoosek(hash_idx_list, i)

9: for j = 1 : size(combs_pr, 1) do

10: ec_union_size← 0

11: for t = 1 : size(combs_pr, 2) do

12: sign_ec← (−1)t−1

13: combs_ec← nchoosek(combs_pr(j, :), t)

14: for v = 1 : size(combs_ec, 1) do

15: rank_of_col_union← gfrank_hash_union(hash_matrices,

combs_ec(v, :))

16: ec_union_size ← ec_union_size + sign_ec ×
2w−rank_of_col_union

17: end for

18: end for

19: 1 − Pfp ← 1 − Pfp + sign_pr ×
intersect_prob_expr(ec_union_size, w, |S|)

20: end for

21: end for

22: Pfp ← 1− (1− Pfp)

nchoosek(v, k) is the MATLAB function that returns every possible k element com-

binations of elements in list v. Note that return value is a matrix where each combi-
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nation is placed in a row.

gfrank_hash_union(hash_matrices, idx_list) returns the dimension in GF(2) of

the matrix obtained by horizontally concatenating hash matrices where hash indexes

given in idx_list and hash_matrices is a w × y × k matrix containing binary hash

matrices.

intersect_prob_expr(ec_union_size, w, |S|) is the custom function that returns the

numeric value for the expression given in either Equation 4.4.6 or 4.4.7.

4.7 Algorithmic Complexity

Algorithm 1, has two main time consuming parts. Namely, these are gfrank_hash_union()

and intersect_prob_expr() where GF rank computation is found to be more compu-

tationally expensive by profiling the algorithm for various parameters.

Analyzing the ranges of nested for loops, one can see that, the number of times these

subroutines are called is as follows:

• gfrank_hash_union() : 3k − 2k

• intersect_prob_expr() : 2k − 1

As it turns out, the implementation in Algorithm 1 recomputes the rank of same ma-

trices more than once. Alternating the implementation, in a way that rank of every

combination of every size for all hash functions at the beginning once the function is

called, one obtains the algorithm in Algorithm 2.
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Algorithm 2 False Positive Computation with Precomputation of Ranks
Input: hash_matrices[w][y][k], |S|
Output: Pfp

1: 1− Pfp ← 0

2: w ← size(hash_matrices, 1)

3: y ← size(hash_matrices, 2)

4: k ← size(hash_matrices, 3)

5: hash_idx_list← [1 : 1 : k]

6: for hash_comb in all possible HF combinations of all sizes do

7: hash_rank_array(hash_comb)← gfrank_hash_union(hash_matrices,

combs_ec(v, :))

8: end for

9: for i = 1 : k do

10: sign_pr ← (−1)i−1

11: combs_pr ← nchoosek(hash_idx_list, i)

12: for j = 1 : size(combs_pr, 1) do

13: ec_union_size← 0

14: for t = 1 : size(combs_pr, 2) do

15: sign_ec← (−1)t−1

16: combs_ec← nchoosek(combs_pr(j, :), t)

17: for v = 1 : size(combs_ec, 1) do

18: rank_of_col_union← hash_rank_array(combs_ec(v))

19: ec_union_size ← ec_union_size + sign_ec ×
2w−rank_of_col_union

20: end for

21: end for

22: 1 − Pfp ← 1 − Pfp + sign_pr ×
intersect_prob_expr(ec_union_size, w, |S|)

23: end for

24: end for

25: Pfp ← 1− (1− Pfp)
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In the version of implementation given in Algorithm 2, the number of subroutine calls

is as follows:

• gfrank_hash_union() : 2k − 1

• intersect_prob_expr() : 2k − 1

Note that the computational complexity of gfrank_hash_union() is also dependent

of the matrix size which in this case depends on k, y, w. However the exact complex-

ity depends on the implementation which is beyond the scope of this work.
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CHAPTER 5

EVALUATION

5.1 Hardware Simulation Environment

5.1.1 Problem Definition

In the previous section, we have come up with a new false positive probability ex-

pression for bloom filters with H3 hash functions that do not assume hash uniformity

or independence, unlike the legacy expression.

Our new expression aims to produce correct false positive results in the presence of

non-uniform, dependent hash functions. We expect that as the amount of dependence,

and non-uniformity is increased, the actual false positive probability will deviate from

the legacy expression output while our expression will still yield accurate results.

Therefore, we need a method to estimate/measure the false positive rate of a given

bloom filter so that we can compare our expression with legacy expression with a

reference.

Our initial attempt at this problem was to build a soft simulation environment where

uniformly randomly generated members were programmed into a BF implemented

on software and stored in memory for referencing. After the programming, randomly

generated inputs are queried with BF for membership. During the simulation, the

numbers of true positives, false positives and true negatives are counted and the ob-

served false positive rate is computed.
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The problem with this approach was that it was computationally expensive. Assuming

that n queries are to be made on a BF with k hash functions, Θ(kn) hash computations

are required. Depending on the application, the required false positive probability for

a BF can be as small as 10−8. Therefore, to estimate the false positive probability with

significant confidence, the number of queries n required is found to be infeasible with

this approach.

As a result, instead of performing these simulation runs on software, we employed

a new approach in which we perform these experiments on an FPGA where bloom

filter query complexity for an individual query is O(1) and run time is only deter-

mined by the number of queries. Since each query can be completed in a single clock

cycle, around 5ns, hardware simulation provides a throughput way beyond the range

achievable on software.

In order to use this hardware simulation environment as a reference, we need to

demonstrate that it operates properly. For this purpose, the hardware simulation envi-

ronment is verified where legacy false positive expression is known to operate accu-

rately, i.e. where its assumptions are met.

In the remainder of this section, we will introduce the hardware test bench architecture

in detail. After that, we will discuss the implementation of this design. Finally, we

will provide results that suggest the proper operation of this test suite.

5.1.2 Testbench Design

The hardware simulation design is composed of the following modules: Stimulus

Generator, BF Under Test, and Scoreboard. The overall structure including submod-

ule interconnections is given in Figure 5.1.
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Figure 5.1: Block design of test bench.

Stimulus generation module contains the following modules:

• Member LFSR (Linear Feedback Shift Register): A w-bit wide LFSR to

randomly generate the members, x ∈ S, where w is the size of BF inputs.

• Query LFSR: Another LFSR with rank r > w, that randomly generates inputs

for queries.

• Stimulus Controller: A stimulus controller that drives the BF inputs during

programming and query phases.

To this end
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At the beginning of the simulation, Stimulus Controller uses Member LFSR to gener-

ate the member set S to be programmed into the BF. The characteristic polynomial of

Member LFSR is a prime polynomial, and LFSR is initiated with a random non-zero

seed value. In addition, the size of the LFSR is w bits. Since a prime polynomial of

size w produces the same output only after 2w − 1 iterations, members generated by

Member LFSR are uniform and distinct.

After the programming phase, Stimulus Controller begins to use Query LFSR to gen-

erate random inputs to BF under test. The characteristic polynomial of Query LFSR

is also a prime and has a rank r, larger than w. Query LFSR is also seeded with a

random non-zero seed. The output of Query LFSR is a sequence that repeats itself

in 2r − 1 iterations. BF input is taken from a w bit portion of the LFSR output. In

each cycle of LFSR output sequence, each potential non-zero value of w bits portion

is observed 2r−w times and 0 is observed 2r−w − 1 times. Hence, it is safe to say that

the queried inputs are uniform by design.

BF under test is a bloom filter implementation with partitioned memory. The imple-

mented bloom filter has an interface that provides programming and query function-

alities. Query outputs are produced once every clock cycle with a latency depending

on the amount of pipelining.

Scoreboard module contains a scoreboard controller that monitors the BF program-

ming interface and enables the score counters when the programming phase is over.

Score counters count the number of times the bloom filter generates positive and nega-

tive outputs without considering the inputs. The values in score counters are retrieved

to test PC through a virtual I/O module with JTAG interface.

At the end of each simulation run following raw results are obtained:

• # of positive outputs

• # of negative outputs
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From these results, the total number of queries can be easily computed,

total# of queries = # of positive outputs+# of negative outputs

In order to distinguish between true and false positives, either there needs to be an

exact matching mechanism or the stimulus needs to be produced in a manner that

considers member and non-member strings which at least requires the storage of the

member set. Instead of such resource and/or memory intensive approaches, the fol-

lowing approximation is used to estimate the false positive rate resulting from the

simulation.

Since the queried inputs are uniformly generated, the probability that an input is ac-

tually a member programmed into BF under test is as follows:

Pmember =
|S|
2w

As a result, the expected number of queried inputs which are also a member is as

follows:

E{# of queried members} = Pmember × total# of queries

BF false positives are defined as positive outputs when the queried inputs are not

members. Therefore, the false positive probability can be computed from the raw

simulation results as follows:

Pfp,test =
# of positive outputs−E{# of queried members}
total# of queries−E{# of queried members}

5.1.3 Implementation

Modules for this test suite are implemented on VHDL. Required inputs such as LFSR

polynomials, LFSR seed values, and BF parameters are implemented as VHDL pack-

ages.
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For each test, VHDL packages with configuration parameters and required TCL scripts

are generated in Matlab. Generated TCL scripts perform the following operations:

1. Create a Vivado project and add all of the design files to the project.

2. Synthesize and implement the project.

3. Check the result of static timing analysis and ensure that there are paths with

timing errors.

4. Program the hardware device and collect test results through virtual I/O.

ion module The connection between the test PC and the evaluation kit is made with a

USB Type A to USB Micro B with the help of USB-JTAG converter residing on the

evaluation kit.

Figure 5.2: Photograph of the test setup.

5.1.4 Evaluation of Testbench

In order to verify our test suite, we conducted tests on a set of bloom filters where the

assumptions made for the legacy expression can be met. To this end, we expect the

measured Pfp to be the same as the result of the legacy Pfp. The test set is created

as follows:

1. Initial test set is created with all combinations in following dimesions:

• k = 2, 4, . . . , 18
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• w = 32, 64, 200

• y = 15, 16, . . . , 30

• S = 103, 104, 105, 2× 105

where k is the number of hash functions, w is BF input width, y is hash output

size, S is the size of the member set.

2. Eliminate all candidates that do not satisfy w ≥ ky, which is a hard constraint

for hash independence for BF with H3 hash functions.

3. Compute l, the number of BRAM blocks that will be addressed by each of the

hash functions. Considering that the address width of an individual BRAM

block is 15 in the target FPGA, the number of BRAMs for each hash function

is computed as l = log2(y − 15).

4. Eliminate all candidates that do not satisfy kl ≤ 540, which states that the total

number of BRAMs should be smaller than what FPGA offers, which is, in this

case, 540.

5. Eliminate all candidates that do not have a legacy false positive probability be-

tween 10−6 and 0.15. The lower bound is determined considering the feasible

run times for tests with enough confidence in the estimated false positive rate.

The upper bound is determined by the practicality of a BF by means of com-

monly observed applications.

The final size of the test set was found to be 93. For each BF in this set, a hardware

test is conducted. Each test is performed for approximately 60 seconds where 2×108

queries are performed each second. During each test, Score Counts are logged for 6

times once every 10 second.

After completing the test, the false positive rate, Pfp,test is computed as explained

in Section 5.1.2. In order to show that the number of queries applied is sufficient,

confidence interval deltas over 6 measurements of false positive rates for each test

point is calculated as follows:

δ = Z95
s√
n

49



where Z95, s, and n are Z-score, the standard deviation of computed false positive

rates, and the number of tests conducted which is 6 in this case. For each test point,

δ is found to be always compusmaller than 1% of the mean false positive rate. This

suggests that the number of queries applied to each test point is large enough to yield

consistent results.

For each test point, percentage error (ep) with respect to the legacy false positive

probability (Pfp,leg) is computed as follows:

ep =
Pfp,test−Pfp,leg

Pfp,leg
× 100

Figure 5.3: Histogram of percentage errors.

Histogram of the percentage errors can be seen in Figure 5.3. It can be seen that in

only 2 of the test points, the absolute value of percentage error is larger than 5. The

mean value of the absolute percentage error is found to be 0.56. In addition, some of

the percentile values for the absolute value of percentage errors can be found in Table

5.1.
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Table 5.1: Percentiles for absolute value of ep.

Percentile epepep

50 0.193

60 0.256

70 0.334

80 0.461

90 0.918

95 2.11

As can be seen from Table 5.1, in 80% of test points, the error between simulated and

computed false positive rates is smaller than 0.461%. In a similar manner, in 95% of

test points, the absolute value of percentage error is smaller than 2.11%.

In only two of the test points, the percentage error is found to be larger than 5%.

The likely cause of this is that the test is conducted for one member set and one hash

function which are selected randomly and can affect the results. These results are

presented to demonstrate that the hardware test environment behaves as expected,

and the results strongly suggest this point.

5.2 Evaluation Results

The legacy expression provides an estimate on false positive probability under the as-

sumptions of uniform and independent hash functions. However what happens when

these assumptions are violated is a question that cannot be answered by the legacy

expression. This work presents an attempt to analyze and analytically express the

behaviour of Bloom Filters when these assumptions are violated.

For this purpose, three experiments are designed and performed. The parameters of

these three experiments are w = 64, k = 2, 3 and y = 20. Here we note that w > k ·y
for these experiments which allows all hash functions to be uniform and independent.

We select the numerical values for these parameters to be in the range of the appli-
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cations presented in the previous work of hardware BFs with H3 hash functions as in

[13, 12, 11].

5.2.1 Experiment 1

First experiment is constructed with the following parameters:

• w = 64

• k = 2

• y = 20

• |S| = 10539

When computed with the legacy expression, this bloom filter has a false positive

probability of approximately 10−4. In the initial design points all dependencies are

equal to zero. From that point on, test points are constructed in two paths. These

paths are as follows:

1. In the first path, test points are constructed by increasing dep(H2) one by one

while maintaining dep(H1) as zero. Note that due to P9.3, dep(H1, H2) also

increases as we increase dep(H2).

2. In the second path, test points are constructed by increasing only dep(H1, H2)

while both dep(H1) and dep(H2) remains as zero.

In the first path, since the dimension of a matrix is decreased from y, we gradually

lose uniformity of H2 and independence of H1, H2. On the other hand, in the second

path both hash functions are uniform, however in each step hash functions become

more and more dependent.

The result of the experiments are presented in Figures 5.4 and 5.5. Figure 5.4 presents

the legacy false positive probability Pfp,leg, false positive probability computed with

our expression Pfp and false positive rates obtained from hardware simulations Pfp,test
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Figure 5.4: False positive rates obtained from legacy expression, our expression and

tests with respect to dep(H1, H2)

.

for path 1 and 2. Figure 5.5 present the same information divided by the constant

legacy value.

It can be seen that when dependencies are not present, i.e. dep(H1, H2) = 0, both

Pfp and Pfp,test complies with the legacy expression. In Path 1, where uniformity is

gradually disrupted, when dep(H2) is increased from 0 to 1, actual false positive rate

is doubled compared to the one computed with the legacy expression. In addition, as

dep(H2) exceeds 10, actual false positive rate converges to approximately 0.01. This

behaviour can explained by legacy false positive probability computed for a BF with

k = 1 and where all of the other design parameters are the same. This false positive

probability is approximately 0.0095, which suggests that as dep(H2) is increased be-

yond a point, H2 becomes useless compared to H1.

In Path 2, as dep(H1, H2) is increased both Pfp and Pfp,test diverge from the legacy
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Figure 5.5: False positive rate ratios obtained from legacy expression, our expression

and tests with respect to dep(H1, H2)

.

value. Compared to Path 1, the effect of increasing dep(H1, H2) becomes significant

later. This suggests that the loss of uniformity can have a more adverse effect on

performance compared to the loss of independence. As dep(H1, H2) becomes 20, the

false positive rate again reaches 0.01, which makes sense since both hash functions

are totally dependent and they effectively behave as only one hash function.

So why does increasing dep(H2) has more adverse effect than increasing dep(H1, H2)?

The answer to this question again lies in the the size of collision classes and their in-

tersections. As we increase dep(H2), the size of the collision class for H2 becomes

exponentially larger which increases the probability of collision for that hash func-

tion. In addition, increasing dep(H2) also increases dep(H1, H2) which means the

size of the collision class intersection also gets larger. On the other hand, in Path 2,

we only increase dep(H1, H2) while the size of individual collision classes remains

the same. Note that, when dep(H1H2) reaches 20, sizes of CC1(x), CC2(x) and

CC1(x) ∩ CC2(x) becomes identical, which indicates that collision classes are actu-
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ally one and the same. Hence, when dep(H1, H2) = 20, BF behaves as if k = 1.

5.2.2 Experiment 2

In the second experiment, we work on BFs with following parameters:

• w = 64

• k = 3

• y = 20

• |S| = 49836

As in Experiment 1, member set size is deliberately selected to yield a legacy false

positive probability of approximately 10−4.

In the initial design points all dependencies are equal to zero. From that point on, test

points are constructed in three paths. These paths are as follows:

1. In the first path, test points are constructed by increasing dep(H3) one by one

while maintaining dep(H1), dep(H2) as zero, while all other dependencies are

ensured to be their corresponding minimum. For instance, dep(H1, H3) also

increases by one as we increase dep(H3) by one.

2. In the second path, test points are constructed by increasing dep(H2, H3) while

both dep(H1), dep(H2) and dep(H3) remains as zero and other dependencies

are kept at their minimum.

3. In the third path, test points are constructed by increasing only dep(H1, H2, H3)

while all other dependencies are equal to zero.

As can be seen in Figures 5.6 and 5.7, loss of uniformity in Path 1 and increased

dependency between two matrices in Path 2 behave very similarly to Experiment 1.
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Figure 5.6: False positive rates obtained from legacy expression, our expression and

tests with respect to dep(H1, H2, H3)

.

Comparing Paths 2 and 3, one can see that when dep(H1, H2, H3) is same increased

dependency among two hash functions have a more significant effect compared to

the increased rank among three hash functions. This is again caused by P9.3. When

dep(H1, H2) is increased by one, dep(H1, H2, H3) increases at least by one. As a re-

sult, when dependencies are not avoidable, for instance when w < ky it is preferable

to have them only among large number of hash functions.

As can be seen in Experiments 1 and 2, as the dependencies are increased actual

false positive rate of the Bloom Filter deviates from the one computed by the legacy

expression. In addition, these experiments demonstrate that our false positive proba-

bility expression can yield accurate results in the presence of dependencies.
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Figure 5.7: False positive rate ratios obtained from legacy expression, our expression

and tests with respect to dep(H1, H2, H3)

.

5.2.3 Experiment 3

In this experiment, we try to answer the following question: Is it enough to only check

dep(H1, H2, H3) to estimate the effect of dependencies?

Table 5.2: Test points and results for Experiment 3.

w k y S dep(H1) dep(H2) dep(H3) Pfp,leg Pfp Pfp,test

64 3 20 49836 0 0 6 10−4 0.0021 0.0020

64 3 20 49836 0 3 3 10−4 0.0046 0.0047

64 3 20 49836 2 2 2 10−4 0.0052 0.0052

From Table 5.2, one can see that the answer to this question is negative. In all the

experiments, dep(H1, H2, H3) = 6. However the amount of deviation from the legacy

false positive probability is significant.
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5.2.4 Experiment 4

In this experiment, we aim to analyze the effect of pairwise dependency, e.g. dep(H1, H2),

for BFs with different k.

The BF parameters are selected as follows:

• w = 256

• y = 20

• k = 2 . . . 10

• |S| is selected to yield Pfp,legacy = 10−4 for each BF.

Notice that since w = 256, y = 20 and maximum value of k = 10, w > ky is always

satisfied. For all BFs with different number of hash functions, base designs are created

with all dependencies equal to zero. Then dependencies are introduced only between

hash pairs h1 and h2 such that dep(H1, H2) is increased to 10, 15 and 20. Note that

during this operation all of the other dependencies are maintained at their correspond-

ing minimum, e.g. dep(H1)) = dep(H2) = 0, dep(H1, H2, H3) = dep(H1, H2),

dep(H4, H5, H6, H7) = 0 etc.

For all the BFs when dependencies are zero, Pfp/Pfp,legacy = 1.0. This indicates that

legacy computation and our expression yield identical results as expected.

The rest of the results are presented in Table 5.3. For all dep(H1, H2), it can be seen

that as k increases the effect of single pair dependency over BF performance gets

smaller. For instance, when dep(H1, H2) = 10, change in actual false positive rate is

found to be 9.6% for k = 2 but as k exceeds 6, the increase in the false positive rate

becomes less than 0.5%.

In addition, for all BFs with different k, as the dependency between h1 and h2,
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dep(H1, H2) increases, Pfp/Pfp,legacy becomes larger as expected.

Table 5.3: Ratio of Pfp/Pfp,legacy for k = 2..10, w = 256 when dep(H1, H2) is 0, 10,

15 and 20.

Pfp/Pfp,legPfp/Pfp,legPfp/Pfp,leg

kkk |S||S||S| dep(H1, H2) = 10dep(H1, H2) = 10dep(H1, H2) = 10 dep(H1, H2) = 15dep(H1, H2) = 15dep(H1, H2) = 15 dep(H1, H2) = 20dep(H1, H2) = 20dep(H1, H2) = 20

2 10539 1.096 4.078 100

3 49837 1.019 1.627 21.54

4 110479 1.008 1.267 10

5 180939 1.005 1.152 6.3

6 254423 1.003 1.1 4.6

7 327516 1.002 1.073 3.7

8 398596 1.0017 1.056 3.2

9 466953 1.0014 1.045 2.8

10 532337 1.0011 1.037 2.5
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we focus on the shortcomings of the legacy false positive expression

for Bloom Filters that use H3 hash functions. In this sense, we have used GF(2)

vector algebra to derive properties for H3 BFs. These properties are then used to de-

fine a measure of dependency on and among the hash functions of BFs. Moreover,

we present a novel method to estimate the false positive probability accurately when

assumptions made by legacy expression is violated such as uniformity and indepen-

dence.

We implement our method and compared its accuracy with the results of legacy ex-

pression for a variety of structured test points. Furthermore, we design and imple-

ment a test suite on actual hardware and use it as a reference for the aforementioned

comparisons between our method and legacy expression. We observe that when the

assumptions of legacy false positive expression are violated, the actual false positive

probability may be quite different from the one computed with the legacy expression.

In all cases presented, our method yields results that comply with the ones obtained

from the tests.

Furthermore, we observe that for a BF with k hash functions, loss of uniformity is the

strongest type of dependency in terms of impact on false positive probability. Depen-

dencies among pairs of hash functions have weaker effects on results compared to the

loss of uniformity. Dependencies among three and more hash functions are found to

be insignificant. Moreover, as k increases the effect of dependencies becomes weaker.

To sum up, it is presented that the proposed framework and resulting false positive
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rate estimation method can provide one the means to analyze H3 BF in the absence

of uniformity and independence.

As a future work, we are planning to use GF(2) vector algebra on H3 BFs to create

collision free hash functions and false positive free BFs for a given member set.
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