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ABSTRACT

CONTROL OF QUADRUPED WALKING BEHAVIOR THROUGH AN
EMBEDDING OF SPRING LOADED INVERTED PENDULUM TEMPLATE

Yılmaz, Mert Kaan
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. Uluç Saranlı

August 2022, 54 pages

Legged robots require complex dynamical behaviours in order to achieve stable, sus-

tainable and efficient locomotion. Due to their mobile nature, they can neither afford

to provide extensive computational power, nor use anything but the most energy effi-

cient structural designs and algorithms to achieve stability and speed. Consequently,

simple and efficient ways to solve the complex set of problems is one of the key points

of focus in legged robot locomotion research. This thesis offers a novel method that

uses an active embedding of the Spring-Loaded Inverted Pendulum (SLIP) dynami-

cal model within a planar quadruped model in order to reduce the complexity of the

control problem while also keeping the overall locomotion as efficient as possible. In

particular, we hypothesize that the embedding of the SLIP model is particularly effec-

tive when used in conjunction with legs that incorporate compliance in parallel with

the traditionally fully-actuated leg structures in most modern quadruped platforms.

We first show in simulation, using a planar quadruped model with fully actuated

2DOF legs, how the embedding of the SLIP model is performed, and compare the

locomotion performance with other contemporary methods. Subsequently, we show

that the leg force profiles that arise from this embedding can largely be generated pas-
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sively with the incorporation of parallel leg compliance during steady-state running,

with only a small amount of energy expenditure necessary during stance to achieve

stability and compensation of losses. We also provide comparative results to illus-

trate the efficiency of this approach for potential platforms with parallel compliance

incorporated into the leg structure.

Keywords: Legged robots, quadruped, locomotion control, energy efficiency, spring-

loaded inverted pendulum, template-based control
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ÖZ

DÖRT BACAKLI ROBOTLARDA YÜRÜME DAVRANIŞININ GÖMÜLMÜŞ
BİR YAYLI TERS SARKAÇ ŞABLONU İLE KONTROLÜ

Yılmaz, Mert Kaan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Uluç Saranlı

Ağustos 2022 , 54 sayfa

Bacaklı robotlar, istikrarlı, sürdürülebilir ve verimli hareket elde etmek için komp-

leks dinamik davranışlar gerektirir. Mobil yapıları nedeniyle, ne yüksek kapasitede

hesaplama gücü kullanabiliyor ne de denge ve hız elde etmek için enerji açısından

en verimli yapısal tasarımlar ve algoritmalar dışında hiçbir şey kullanamıyor olma-

ları sebebiyle, karmaşık problem setini çözmenin basit ve etkili yolları, bacaklı ro-

bot hareket araştırmalarında odak noktalarından biridir. Bu tez, kontrol probleminin

karmaşıklığını azaltmak ve aynı zamanda genel hareketi mümkün olduğunca verimli

tutmak için Yaylı Ters Sarkaç dinamik modelinin düzlemsel dört bacaklı bir model

içine aktif bir şekilde yerleştirilmesini kullanan yeni bir yöntem sunmaktadır. Özel-

likle, SLIP modelinin gömülmesinin, çoğu modern dört bacaklı platformda bacak

yapılarına paralel olarak uyumu içeren bacaklar ile birlikte kullanıldığında özellikle

etkili olduğunu varsayıyoruz. İlk önce, 2 özgürlük derecine sahip bacakları olan düz-

lemsel dört bacaklı bir model kullanarak simülasyonda, Yaylı Ters Sarkaç modelinin

yerleştirilmesinin nasıl yapıldığını gösteriyoruz ve hareket performansını diğer çağ-

daş yöntemlerle karşılaştırıyoruz. Daha sonra, bu gömülmeden kaynaklanan bacak
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kuvveti profillerinin, kararlı durum çalışması sırasında paralel bacak uyumunun dahil

edilmesiyle büyük ölçüde pasif olarak üretilebileceğini ve duruş sırasında stabilite ve

kayıpların telafisi için gerekli olan sadece küçük bir miktarda enerji harcaması gerek-

tiğini gösterdik. Bacak yapısına paralel uyumluluğa sahip potansiyel platformlar için

bu yaklaşımın etkinliğini göstermek için karşılaştırmalı sonuçlar da sunuyoruz.

Anahtar Kelimeler: Bacaklı robotlar, dört bacaklı robotlar, yürüyüş kontrolü, enerji

verimliliği, yaylı ters sarkaç, kalıp temelli kontrol
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plus is the start of stance, red cross is the end of stance. . . . . . . . . . 37

xv



Figure 5.11 Front Right and Rear Left legs tangential force vs. time during

SLIP embedded planar quadruped example simulation, radial force on

the legs vs. radial length of the legs, starting from initial condition of
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

In recent years, legged robots have received an increasing amount of attention in

robotics research. Even though many robust and efficient wheeled and tracked robots

do exist [1, 2], lack of stable movement through unstructured terrain in wheeled robots

makes legged robots a compelling alternative for many use cases [3]. In harmful

circumstances where humans cannot be at the scene, a robust legged robot can make

sure that no extra lives are at risk [4, 5].

Limited by the current mechanical/computational state of the art, many research

groups focus on finding locomotion control methods that are both efficient and ef-

fective [6, 7, 8]. Recent legged robots have much higher number of degrees of free-

dom as compared to older platforms that were limited by available components and

manufacturing constraints [9, 10]. This means that more complex control methods are

required to make sure that no energy is wasted during locomotion [11, 12]. It has been

the latest trend to take advantage of increasing computational power in the processing

units to solve these complex problems [13, 14]. However, even now, solving full body

dynamics is not yet a feasible approach to this problem. Use of new highly efficient

motors still cannot compensate what control methods lack in that regard [15, 16].

To grasp the underlying dynamics of the locomotion behavior, nature has always

been a starting point [17, 18]. Years of study on the animals and humans has shown

that many of the animal locomotion contains similarities, which helps us reduce the

model to its core components [19, 20]. "Spring Loaded Inverted Pendulum"(SLIP) is

one of the models which greatly reduces the effort to control the system [21] where
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in this model, even though this model merely consist of a mass and a spring, it can

capture the highly complex dynamics of animals, humans or robots. All that’s left for

controllers is to either embed this model as a high level controller or make our robots

closer to this model [7, 8]. Embedding SLIP to the controller is a more common

approach, since we may not be able to change the physical state of the robots [22, 23].

However, the improvements in parallel compliance is showing promising results [24].

Both of these approaches make sure that the robots keep the desired characteristics of

the behavior while preserving natural stable gait of locomotion [25].

A combination of a controller that has embedded SLIP and a mechanical leg design

that takes advantage of parallel compliance would result in the most animal-like loco-

motion behavior observed in the nature. This thesis takes another step by creating an

instance of this controller and showing the efficiency of the locomotion if a quadruped

to use this approach.

1.2 Contributions and Novelties

In this thesis, a high level controller for SLIP and a low level controller where SLIP is

embedded to fully control the quadruped is used. Hence, high level controller oversee

the speed and jump height of the robot, while low level controller takes advantage of

embedded SLIP to solve the inverse dynamics to keep the stability. Not only that, but

the these controllers together takes advantage of the parallel compliancy at the legs of

the robot.

To keep the problem simpler, a planar version of quadruped has been used to show the

controller. This controller aims to reduce the problems size by numerous times, while

keeping the stable gait thanks to its complementary dynamics of SLIP. This controller

is tested on a simulation where the only inputs to the system are the torques to the

motors of quadruped. Moreover, its efficiency is compared between Linear Inverted

Pendulum(LIP) embedded controller, SLIP embedded controller and SLIP embedded

controller with parallel compliancy at the legs.
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1.3 The Outline of the Thesis

Chapter 2 is giving all the needed background, starting from the nature of locomotion.

Crucial SLIP related studies shall also be introduced here. The last bit of this chapter

is about contemporary quadruped designs and control methods.

In Chapter 3, template models methods are deeply investigated. Kicking off with

design choices, model and dynamics of both SLIP and LIP, delineating the embedding

controllers of each respective model are also done here.

Chapter 4 starts with the planar quadruped model used to embed template models

on. The model details, dynamics and control problems are addressed here. First,

the LIP embedded control method is introduced. Next, the SLIP embedded model is

elaborated.

Chapter 5 gives clear examples of three different controllers, shows their convergence

to a stable gait, compares them with each other in terms of efficiency and draws

conclusions.

In chapter 6, the resolutions agreed from all the chapters are discussed briefly, verdicts

are cleared and limitations of the work is considered. Future work that can be done

to improve the methods are also here.
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CHAPTER 2

BACKGROUND

2.1 Nature of Locomotion

The nature has always been a starting point for the problems in the physical world.

Running motions of the horse and cheetah were deeply investigated in [17], while

comparing similarities and differences between each other. Authors have also claimed

that they have observed a measuring-worm like motion. Conclusions are stated on

why cheetah’s stride is relatively longer than horse, such as having longer suspension

in flight, two principal suspension periods instead of one, etc. In another article, [18],

it is addressed that how the step length and limb speed during galloping and slower

stepping is effected in cats. In both articles, authors tried to draw conclusions from

nature so that they can understand the underlying principle behind the locomotion.

Although mobile robots with wheels quite popular during the days that these articles

are written, in [3], the author states that in terrestrial environments, rotating systems

are feasible as a form of transportation only on relatively flat, open terrain and become

less useful as the size of the rotating element decreases. The relationship between

wheel diameter and the height of obstacles which can be surmounted poses serious

limitations for the utility of wheels as a general mode of transportation. Whenever

rotating systems are a feasible mode of transportation, organisms have evolved that

use these systems.

One of the most revolutionary research on legged locomotion was [26]. It was done

using a planar one-legged hopper that can actively balance. A quadruped with trotting

performance is demonstrated. Symmetry is stated as an important aspect of simpli-

fication of locomotion, and heuristical approaches have been made for developing

5



of algorithms in locomotion behaviors. Control of running decomposed into parts,

which also applies for multiple dimensions. Following the success of this article,

many articles published on the nature of locomotion. In [27], the effects of com-

pliance in running animals and robots are investigated. Springs in robots, tendons in

animals are claimed to help with the energy savings, reduce unwanted heat production

and provide stability through preventing chatter/noise from the touchdown. Article

starts from animals and build ideas for robots upon that.

In another article, [28], interpretation and analysis of robots that walks without any

input or energy injection provided that they are in a desired initial condition such as

a slope. Dynamics of the robots are analyzed and robot in different perturbations are

tested. the simplest model of running is presented in [29] with just a mass, spring

and parameters such as stride length and peak ground reaction force. Parameters are

tested with experimental data from literature, and it shows that in high forward speed,

leg stiffness is linearly related to forward speed and vertical speed.

2.2 Template Models

By observing energy-like quantities, the authors of [20] found out that there is a dis-

crete dynamical system between the model and the collision between robot and en-

vironment. Using the vertical hopper with the Raibert’s controller from [26], authors

have shown an insight to existence of a high level model for the control of this kind

of robotics tasks. Also in [19], the authors’ analysis showed that vertical ground reac-

tion force and vertical compression did not depend on body mass. Even with different

dynamics, there were comparable energetics of the center of mass. This results in de-

crease of natural frequency with body mass. Using high stiffness legs, small animals

can provide more stable gaits. All in all, these findings show that monopode is a very

universal model for legged terrestrial locomotion.

Another work that was born from Raibert’s work was [8]. A planar one legged robot

has been assembled and controlled with Raibert’s control laws. Authors have con-

cluded that mechanical solutions had to go with the controller solutions and even

though the robot was the best energetic performing robot by that time, it can get even
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better by implementing a passive running with a hip compliance.

At this point, authors were trying to find a high level model to reduce the compu-

tational power required during the locomotion. One of the most important work on

is done In [21]. Here, authors present a template which is made to resolve the re-

dundancy of multiple legs, joints and muscles by seeking synergies and symmetries.

More elaborate models are named as anchors where more detailed models are de-

scribed such as joint torques, neural systems etc. The idea is to start from a template,

use it as an overseer of control, then add several degrees of freedom to couple both

mechanisms. The mechanical system gives passive self-stabilization and the neural

system provides slow but active stabilization.

Starting with the high dimensional problem of stability analysis of bipeds, In [30],

authors provide a model for collapsing the dimensions to the one dimensional-set and

using Poincare analysis on it. Also, zero dynamics of the biped was not invariant,

however, it can be recovered with high gain control. Another work was [7], where a

hexapod robot with compliant legs are designed to demonstrate stable walking over

rough terrain. Using an open-loop controller, three legs are driven simultaneously in

a tripod kind of behavior. Although authors were not able to provide a mathemati-

cally informed analysis of reasons for robots’ movement, empirical results of these

behaviors are shown. Moreover, building upon the RHex work, in [31], two new be-

haviors that utilizes feedback from the environment are introduced. This controller is

adapted to handle sloped terrain and run even more efficiently through synchronizing

the natural frequency of the mechanical system with the controller.

As SLIP is more and more researched, better solvers were introduced. In [22], by

presenting a precise yet approximate solution to SLIP with damping included, au-

thors were able to drop the average predictive error below %2. Also, a gait-level

running controller were designed by taking advantage of this solution method. This

resulted in even more precise embeddings of SLIP model to the real systems. In [32],

pronking behavior is shown on a planar hexapod robot with compliant legs utilizing

template based control. Here, high level control is regulated through SLIP model and

embedding controller provides stability of the robot gait.

In [23], a novel controller is presented to lessen the power requirements and increase
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the energy input in a single step of the system for the linearly actuated compliant leg

systems. The SLIP template is a lossy one with a tunable damping coefficient to the

leg system. Hence, the new controller provides more stable and efficient tracking of

gait template for linearly actuated compliant leg systems. One of the more recent

work is build upon the decoupled nature of SLIP. In [16], the authors have build a

12DoF passive compliant legged robot with four motors, and they have demonstrated

a number of different tasks with it. From the application in parallel of four simple,

completely decoupled 1DoF feedback laws represents some simple but crucial spe-

cific component of the locomotion task at hand to realize the behavior.

2.3 Quadrupeds

Although the quadruped history is believed to start around 400 million years ago in

world history, one of the oldest article on quadruped robots in modern world is [6].

To test many gait types, a quadruped robot was used, and a single control algorithm

was responsible for derivation of different gait types with simple parameter variation.

With hydraulic actuators and 2 degrees of freedom in hips, the four-legged robot was

able to perform trotting, pacing and bounding while also keeping stability between

transitions of these gaits. After several years, in [33], a quadruped with just a single

degree of freedom in each leg and a mechanical switch for ground detection is intro-

duced. This mechanical simplicity makes it cheaper and more reliable. Motors are

RC servos and the robot was able to perform walk, turn, step climb, stair climb and

running behavior.

In [34], BigDog has onboard systems that provide power, actuation, sensing, controls

and communications and the robot’s power comes from a combustion engine. Each

leg has 4 hydraulic actuators that power the joints, as well as a 5th passive degree of

freedom that is provided with a spring on the leg. BigDog is quite noisy and power

hungry, thanks to its combustion engine design.

As electrical motors become more and more common, quadruped designs also started

to evolve towards using them. In [9], design principles and analysis of MIT Cheetah

robot are stated, and these principles are derived from energy losses from running
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behavior. With their solutions to the stated problems, robot is built and was able

to demonstrate fast trotting behavior with deep analysis of energy efficiency. At this

point, there were still novel hydraulically actuated robots were designed, such as [35].

This robot was able to demonstrate behaviors such as self-rightening, stair climbing,

etc. A meticulous research is done on optimizing actuator areas, and the article itself

is a deep cover of hydraulically actuated robots.

One of the most impacting works on quadruped design were [36]. Born from high

engineering, MIT Cheetah 3 deployed with a new leg design that leverages high band-

width proprioceptive actuators. The robot is shown to have a very low cost of trans-

port and with the help of the novel controller, the robot is able to blindly climb stairs.

It was also low-cost, which meant that many researchers around the globe can cre-

ate theirs own quadrupeds with ease. Some other groups also created their own open

source quadruped designs, such as [37]. This robot that utilizes low gear ratio DC mo-

tors with 3D printable and off-the-shelf parts is designed to be distributed in masses

inexpensively. The robot demonstrates with a controller that combines feedforward

contact forces computed from a kino-dynamic optimizer with impedance control of

the center of mass and base orientation.

2.4 Quadruped Control Methods

As the design of quadruped was iteratively getting better, control of these quadruped

designs are fairly new topic. High degree of freedom of quadrupeds with small time

period to compute a meaningful action makes them hard to control robots. How-

ever, In [11], a model predictive control(MPC) implementation is used to predict the

ground reaction forces. A simplified version of the robot model that captures the

whole 3D dynamics is in the core of the system to formulate the convex optimization.

Demonstrations of stand, trot, flying-trot, pace and many other behaviors are shown

meticulously. In [15], building upon [11] and using the MPC model that predicts the

reaction forces of legs introduced in that article, this new controller combines Whole

Body Control(WBC) with MPC to compute joint torques, position and velocity com-

mands based on optimal reaction forces that are computed from the MPC. A number

of different gaits are presented on MIT Mini-Cheetah with this novel controller.
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In [12], using two fundamental component, the authors were able to create a novel

strategy for when there is only on-board mapping for terrain morphology. First a safe

foothold location is found using convolutional neural networks and then a model pre-

dictive control method is used to find optimal reaction forces for the found foothold

locations. This strategy is tested on hydraulically actuated HyQReal quadruped robot.

Another controller was shown in [10]. Similar to [11], an MPC that is based on the

centroidal dynamics, which computes desired optimal reaction forces for the sake of

following the reference velocity. With differing at state estimation and whole body

controller, this novel controller is tested on the reliable low-cost robot SOLO-12.

One of the latest works includes learning methods, such as [14]. Using reinforcement

learning that is trained for contact schedules of each foot while MPC optimizes motor

torques to make robot walk in the desired velocity. This novel framework is shown

to be performing well with automatic gait transitions from walking to fly-trotting.

Moreover, it is stated that energy efficiency is higher for a wide range of locomotion

speed than baseline controllers.

10



CHAPTER 3

TEMPLATE MODELS

3.1 The Linear Inverted Pendulum Template

Linear inverted pendulum(LIP) model is used in robotics as a high-level trajectory

model [38, 39, 40]. This model aims to keep the height of the center of mass constant

throughout the motion and tries to control the velocity of the system. LIP has been

adopted by many researchers as it is a very simple model that doesn’t require approx-

imate solutions for the center of mass trajectory [41, 42]. There have been researches

on its stability and efficiency, which proves LIP as a powerful and easy-to-use model

under disposal [43, 44].

3.1.1 System Model and Dynamics

Figure 3.1: LIP Model and related parameters

An illustration of the model can be seen in figure 3.1. Here, we can witness how the
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Variable Definition

[xc, zc] LIP CoM of body position (in W )

[zd, ẋd] Desired LIP CoM height and velocity (in W )

m Total body mass

Table 3.1: Parameters of the LIP model

model tries to keep the CoM above the desired target. The legs of the model, in this

case, can be imagined as a linear motor that changes with the position of the CoM.

The parameters of the model can also be identified at the table 3.1.

LIP model either does not have flight phase. This is because to keep the CoM on a

horizontal axis, there has to be a constant force which can only be supplied during

the touchdown. During the flight, gravity will pull the mass downwards and as there

is no counter that is applicable, the body will go down unless it is stance. Hence, the

controller will try to keep a constant stance phase. This makes sure neither potential

nor kinetic energy is lost during locomotion.

As it can be seen from the figure 3.1, CoM moves along a horizontal line. This means

that the total force along the vertical direction is zero on the body. Therefore, the

dynamic differential equation of the CoM could be obtained asẋc
żc

 =

ẋd
0

 (3.1)

where the system is first order.

3.1.2 LIP Model Control

LIP model does not require a controller as it does not have an input that we can give

to the system to control the desired speed or height in this case. But the selection of

system parameters are important. The height of the model should be a distance where

CoM can safely follow. If it is a distance longer than maximum leg length, it would

be illogical to expect the quadruped to follow the trajectory in a stable sense. If this

distance is too short, then some motors of the robot will have to use a lot of power to
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create the required forces on the ground that follows the trajectory. The sweet spot is

the distance when both legs are around the same angle when standing straight. In our

case, this was around 0.3 m.

The desired speed is also chosen by the characteristics of the motors we have on

the quadruped. Considering the time to get one leg to in flight to stance position or

applying the required forces in the stance phase, 1 m/s is giving the motors a suitable

time to reposition themselves.

3.2 The Spring Loaded Inverted Pendulum Template

3.2.1 System Model and Dynamics

Figure 3.2: SLIP Model and related parameters

We model the SLIP dynamics the same as it is generally defined in the literature, con-

sisting of a point mass m and a freely rotating massless leg, endowed with a linear

spring pair of compliance ks and rest length r0. Throughout locomotion, the model al-

ternates between stance and flight phases, which are further divided into the compres-

sion, decompression and ascent, descent subphases, respectively. These phases can

be easily observed at the figure 3.3. In addition to the phases, four important events
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Variable Definition

[xc, zc] SLIP CoM of body position (in W )

[zd, ẋd] Desired SLIP CoM height and velocity (in W )

[xt, zt] SLIP toe position (in W )

[ξ, ψ] SLIP leg length and angle

ks SLIP leg stiffness

r0 SLIP leg rest length

m Total body mass

Table 3.2: Parameters for SLIP model

define discrete transitions between these sub phases: touchdown, bottom, liftoff, and

apex. During flight, the body is assumed to be a projectile acted upon by gravity,

whereas in stance, the toe is assumed to be fixed on the ground and the mass feels

radial forces generated by the leg. An illustration of the SLIP can be seen in figure

3.2 where the parameters of in the figure can be found in more detail in table 3.2.

Figure 3.3: SLIP phases visualized

The state

SSLIP =
[
xc yc ẋc ẏc xt yt

]
(3.2)
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is used in the different system equations in different states. SLIP model has 4 events.

1) apex event has the conditions

ẏc = 0 (3.3)

ẏc → 0+ (3.4)

that need to be satisfied to signal a successful gait behavior. 2) fall down event signals

a failure and has the condition

yc < 0 (3.5)

to show that the body hit the ground. 3) touchdown event requires

yt = 0 (3.6)

to end the first flight phase and start the stance phase. 4) liftoff event, which is the last

event, has the condition

ÿt > 0 (3.7)

to be satisfied. Liftoff indicates the end of stance phase and start of second flight

phase. These motions can also be witnessed in figure 3.3. As the model starts in the

apex position, flight dynamics should be expressed as

˙SSLIP =
[
ẋc ẏc 0 g ẋc, ẏc

]
(3.8)

and the toes are set to target angle of attack at the apex. This flight model makes sure

that the toes are moving along with the CoM. Until liftoff event, stance dynamics is

given by

˙SSLIP =



ẋc

ẏc

−ks
m
(r0 −

√
(xc − xt)2 + (yc − yt)2) sinψ

ks
m
(r0 −

√
(xc − xt)2 + (yc − yt)2) cosψ − g

0

0



T

(3.9)

where all the parameters can be found in table 3.2 and the rest of the motion till the

apex will be another flight phase where the dynamics are the same as 3.8. The apex

is a terminal event, which means that the next cycle starts from this point.
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3.2.2 SLIP Model Control

One of the first things to decide for the controller of SLIP is the touchdown angle for

the leg. At the apex of the flight phase, a new touchdown angle shall be decided to

further maximize the stability of the gait. Raibert’s heuristic method

xf0 =
ẋcTs
2

(3.10)

Ts = Tsi(1 + (zd − zc)− (ẋd − ẋc)) (3.11)

where xf0 is the forward displacement of the foot with respect to the center of mass,

ẋc is the velocity of center of mass, Ts is the stance period, Tsi is the initial stance

period, is what we have used in this controller. This angle of touchdown selection

plays a huge role in the stance period. Convergence of the periodic running behavior

to the desired state varies greatly with the selection of this parameter.

The next is the control of energy levels throughout the gait. The system has a starting

energy, and there is no loss of energy as no damping or friction exists. To control the

height of the model, we can control the energy of the system. The desired energy of

the model in the apex moment, is defined as

Ed = mgzd (3.12)

where Ed is the desired energy level, zd is the desired apex height. When the model

is in the apex level, we can calculate its current energy level

Ec =mgzc (3.13)

and the energy difference between desired and current state of the model

∆E =Ed − Ec (3.14)

shall be injected to or taken out from the system. One of the easiest methods to do it is

the variable stiffness method where at the maximum leg compression, a step change

in stiffness is forced. This unrealistic approach is not the most efficient method there

is, but it makes sure that the stable gait is achieved upon enforcing

k(t) =

ks ż < 0 (compression)

ks +Kps∆E ż > 0 (decompression)
(3.15)

during stance where Kps is the SLIP controller leg stiffness constant.
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CHAPTER 4

PLANAR QUADRUPED

Figure 4.1: Planar quadruped model with realistic leg model

4.1 System Model and Dynamics

The quadruped model, whose illustration can be seen in figure 4.1, consists of a rigid

body with inertia I and mass m, to which two legs with one motor on the hip, another

on the knee are attached. The position and orientation of the body are represented by

a body-fixed frame B with respect to an inertial world frame W . We also define a

“virtual leg” extending from the body center of mass (COM) to a stationary point on

the ground in coincidence with the virtual toe frame V having the same orientation

as the world frame. Legs are considered massless during stance, with the toe position

fixed on the ground at fi, but very small toe masses mt << m are used to represent

protraction dynamics during flight. Each leg is attached to the body through a pin joint

with independently controllable torque τi, located at ai in body coordinates. These
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Variable Definition

cb = [xb, zb] Body CoM position (in W )

a Hip position (in B)

I Body Inertia

α Body pitch angle

F Force variables (in W )

f Toe position (in W )

m Total body mass

Table 4.1: Parameters for planar quadruped model

parameters can be inspected in detail in 4.1.

For the sake of embedding SLIP which is 2D, we use a planar version of the quadruped

where the robot can be imagined as if it was linked to an XY-stage therefore can only

move in x-y directions and have pitch angle. In this scenario, the flight state vector

Sqf =
[
xb zb α θ1 θ2 θ3 θ4 ẋb żb α̇ θ̇1 θ̇2 θ̇3 θ̇4

]T
(4.1)

is used in flight phase dynamics

d

dt
Sqf =

[
ẋb żb α̇ θ̇1 θ̇2 θ̇3 θ̇4 0 g 0 τFR/I τFL/I τRR/I τRL/I

]T
(4.2)

to solve the system dynamics. Stance state vector

Sqf =
[
xb zb α ẋb żb α̇

]T
(4.3)

is used during stance phase in

d

dt
Sqs =



ẋb

żb

α̇

(FxFR
+ FxFL

+ FxRR
+ FxRL

)/m

(FzFR
+ FzFL

+ FzRR
+ FzRL

)/m+ g∑
((f − cb)× F )


(4.4)
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to solve the system dynamics. Also, in the equation 4.4, the total torque on the body

angle is calculated with∑
(f − cb)× F = ((fFR − cb)× FFR + (fFL − cb)× FFL+

⇒ (fRR − cb)× FRR + (fRL − cb)× FRL)/I (4.5)

4.2 Control of the System

4.2.1 LIP Embedding Controller for Quadruped

As it was mentioned in the section 3.1.1, in an ideal case, LIP should not have a

flight phase or should have an infinitesimally small flight phase so that model almost

always stay in a stance phase indefinitely by changing legs one by one. However, in

this implementation, those infinitesimally small time periods, are not infinitesimally

small anymore. This is mainly because we do not want 3 or 4 legs to touch ground at

any moment of the locomotion. It would slow down the movement. Hence, for each

leg, there are two states: flight phase, stance phase.

Flight phase: Forward toe target position is defined asfx
fz

 =

xu + ρ sinϕ

zu − ρ cosϕ

 (4.6)

where xu is x-axis component of upper hips positional component and zu is z-axis

component of upper hips positional component, ρ is the length of virtual leg, ϕ is the

angle of touchdown. This is a simple, yet effective method to calculates the target

swing position. Then, inverse kinematics is used for calculating target angles of the

legs. For this purpose, first the newly found position is transformed usingfB
x

fB
z

 = BTW

fx
fz

 (4.7)

from world coordinates to body coordinates, then inverse kinematics equations
θdknee

θdhip

 =


arccos (

fB2

x + fB2

z − l21 − l22
2l1l2

)

arctan (
fB
z

fB
x

)− arctan (
l1 sin θdknee

l2 + l1 cos θdknee

)

 (4.8)
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are used to calculate angles required for this position. In equation 4.8, fB
x is the new

toe position in x-axis in body coordinates, fB
z is the new toe position in z-axis in

body coordinates, BTW is the transformation matrix from body coordinates to world

coordinates, θdknee
is the desired knee angle, θdhip is the desired hip angle for the

swing phase. After this point, the torques are calculated with a PD controller that is

expressed as τknee
τhip

 =

Kp(θdknee
− θknee)−Kdθ̇knee

Kp(θdhip − θhip)−Kdθ̇hip

 (4.9)

where τknee is the torque that will be commanded to the knee motor, τhip is the motor

torque that will be commanded to the hip motor, θknee is the current knee angle, θhip

is the current hip angle, θ̇knee is the current knee angular velocity, θ̇hip is the current

hip angular velocity.

The same method is applied for the both legs.

Stance phase: For this phase, a desired force is calculated with

F =

Fx

Fz

 =

 Kp(ẋd − ẋc)

Kp(zd − zc) +Kd(żd − żc) +mg

 (4.10)

where Kp is the proportional component of the stance controller, Kd is the deriva-

tive component of the stance controller, m is the mass and g is the gravity. Stance

controller proportional and derivative components are found by manual tuning. In

addition to these forces, another desired force

Fθ = Kpθ −Kdθ̇ (4.11)

is also added to balance the robot body. The force in 4.11 will be added to the front

leg’s z-axis forces and subtracted from the rear leg’s z-axis forces. This will ensure

the balance of the body. The commanded torques of the joints are calculated as

J =

−l1 sin(θ + θhip)− l2 sin(θ + θhip + θknee) −l2 sin(θ + θhip + θknee)

l1 cos(θ + θhip) + l2 cos(θ + θhip + θknee) l2 cos(θ + θhip + θknee)


(4.12)

where J is the jacobian of the front leg toe to the center of mass of the body. Com-
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bining all these equations in
τFhip

τFknee

τRhip

τRknee

 =

JF 0

0 JR

T


FFx

FFz + Fθ

FRx

FRz − Fθ

 (4.13)

results in the torques needed for the legs. In this equation τF is the torques of the

front legs, τR is the torques of the rear legs, JF is the jacobian of the front legs, JR is

the jacobian of the rear legs.

4.2.2 SLIP Embedding Controller for Quadruped

To control the system through embedding SLIP, a hybrid mode is used. This approach

can be seen in figure 4.2. Here, the legs of the model are not 2 degree-of-freedom, but

instead they are just a spring like the SLIP model. The parameters of the new model

can be found in detail in table 4.2. Some of the physical parameters that are shared in

the template SLIP model and quadruped model can also be found in table 4.3. As

Figure 4.2: Planar quadruped mode with virtual SLIP leg model

it was in the last section, this controller also has two phases: a flight phase where legs

move to their new target angle in the air and a stance phase where legs apply force at

the foot through torques in its leg joints. Here, flight phase takes a lot longer than LIP

embedding controller.
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Variable Definition

[ρ, ϕ] Virtual leg length and angle

Table 4.2: Parameters for planar quadruped model with virtual leg

ξ ks m a1 a2 I

SLIP 0.35 5000 10 - - -

Quadruped 0.35 5000 10 [−0.24, 0] [0.24, 0] 0.26

Table 4.3: Physical Parameters for SLIP and quadruped models

Flight phase: Control of model in this phase is not different from the method that

was proposed in the last chapter 4.2.1.

Stance phase: For this phase, let’s consider polar coordinates stationed at the touch-

down position for the stance duration of SLIP. This can be seen in figure 3.2. Then

the relation between Cartesian coordinates and polar coordinatesξ
ψ

 =

√(xc − fx)2 + (zc − fz)2

atan2((zc − fz), (xc − fx))

 (4.14)

will be used to express stance dynamics as ξ̈
ψ̈

 =

ξψ̇2 − g cosψ − (ks/m)(ξ − r0)

(−2ξψ + g sinψ)ξ

 (4.15)

so that the embedding of SLIP in the quadruped dynamics can be much smoother.

However, before that, virtual leg variables for each leg shall be introduced. The leg

vector Ii is defined as

Ii = RT (α)(fi − [xc, zc]
T )− ai (4.16)

and these virtual leg vectors are transformed into polar coordinates. Usingρi
ϕi

 =

 √
I2i,x + I2i,z

atan2(I2i,z, I
2
i,x)

 (4.17)

the transformation can be done. Utilizing the chain rule on jacobian

J = Dcθ =
∂θ

∂ϕ

∂ϕ

∂c
+
∂θ

∂ρ

∂ρ

∂c
(4.18)
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we can embed SLIP dynamics in the planar quadruped dynamics. First virtual leg

length partial derivatives with respective to polar SLIP state

∂ϕ

∂c
=


∂ϕ1

∂ξ

∂ϕ1

∂ψ

∂ϕ1

∂α

∂ϕ2

∂ξ

∂ϕ2

∂ψ

∂ϕ2

∂α

 (4.19)

where

∂ϕi

∂x
=

1

ρ2
ITi

 0 1

−1 0

 ∂Ii
∂x

(4.20)

and then virtual leg angle partial derivatives with respective to polar SLIP state

∂ρ

∂c
=


∂ρ1
∂ξ

∂ρ1
∂ψ

∂ρ1
∂α

∂ρ2
∂ξ

∂ρ2
∂ψ

∂ρ2
∂α

 (4.21)

where

∂ρ

∂x
=

1

ρ
ITi
∂Ii
∂x

(4.22)

needs to be calculated. Here x is one of the polar SLIP state variables ξ, ψ or α,

where ∂Ii
∂x

is calculated with

∂Ii
∂ψ

= RT (α)

 sinψ

− cosψ

 (4.23)

∂Ii
∂ξ

= RT (α)ξ

cosψ
sinψ

 (4.24)

∂Ii
∂α

= DαRT (α)

(
fi − fv + ξ

 sinψ

− cosψ

) (4.25)

Partial derivatives of hips to virtual leg angle

∂θ

∂ϕ
=


∂θfu
∂ϕ1

∂θfl
∂ϕ1

∂θru
∂ϕ1

∂θrl
∂ϕ1

∂θfu
∂ϕ2

∂θfl
∂ϕ2

∂θru
∂ϕ2

∂θrl
∂ϕ2


T

=


1 0 0 0

0 0 1 0


T

(4.26)
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and partial derivatives of hips to virtual leg length

∂θ

∂ρ
=


∂θfu
∂ρ1

∂θfl
∂ρ1

∂θru
∂ρ1

∂θrl
∂ρ1

∂θfu
∂ρ2

∂θfl
∂ρ2

∂θru
∂ρ2

∂θrl
∂ρ2


T

=


∂θfu
∂ρ1

∂θfl
∂ρ1

0 0

0 0
∂θru
∂ρ2

∂θrl
∂ρ2

 (4.27)

where

∂θfu
∂ρ1

=
(l21 − l22)/ρ

2
1 + 1

2l1

√
1−

( l22 − l21 − ρ21
−2l1ρ1

)2 (4.28)

∂θfl
∂ρ1

=
ρ1

−l1l2
√

1−
(ρ21 − l21 − l22

−2l1l2

)2 (4.29)

∂θru
∂ρ2

=
(l21 − l22)/ρ

2
2 + 1

2l1

√
1−

( l22 − l21 − ρ22
−2l1ρ2

)2 (4.30)

∂θrl
∂ρ2

=
ρ2

−l1l2
√

1−
(ρ22 − l21 − l22

−2l1l2

)2 (4.31)

are combined in equation 4.18 to calculate the jacobian. The force vector in SLIP

polar coordinates using acceleration calculation from 4.15 is defined as

F =



Fx

Fz

Fα


=



mξ̈ −Kpx(xc − xb)−Kdx(ẋc − ẋb)

mψ̈ −Kpz(zc − zb)−Kdz(żc − żb)

−Kpαα−Kdαα̇


(4.32)

(4.33)

given the condition that

Fz ≤0 (4.34)

which finally, is used in calculation of commanded torques

τ = S(JT )†F (4.35)

where + is the pseudo-inverse operator and S is the touchdown matrix which indicates

whether the leg touches the ground. As the Jacobian matrix here is 4× 3, we cannot
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take the inverse. Nevertheless, the pseudo inverse is sufficient for the same effect.

Also, the selection matrix makes sure that even if a single leg touches the ground,

the quadruped can still apply force if it is beneficial. However, we still wait for

double stance for even better stability, as it was observed to perform better during the

simulations.
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CHAPTER 5

EXPERIMENTS

In this section, we will delineate the capability of the embedding controllers of the

last section, by supporting with data from simulation studies during walking behavior.

We believe that these data will prove the capability of the producing stable gait. After

showing each controller on its own section, we will provide another study where a

SLIP embedding controller is combined with a parallel compliant spring in the leg

joints that stores the energy for liftoff.

5.1 LIP Embedding Controller in Planar Quadruped

Below plots are the experiment results of linear inverted pendulum embedding con-

troller. Given a target of (zd = 0.35, ẋ = 1.0) starting from a state of (zd = 0.4, ẋ =

0.9), the controller tries to keep the CoM at the desired height and desired velocity

constantly.

In figure 5.1a, we can observe that the controller keeps track of the desired velocity

with small deviations during leg swaps. These deviations are less than %1 of the

desired speed, and they do not seem to be diverging, rather converging. The reason

for selection of a highly stiff controller is that LIP should keep the state of the model

close to the target state at all times. We can also observe that in figure 5.1b, CoM

cannot keep a straight line, but rather move upwards and downwards in relatively

small amounts. These periods are when leg swap happens. As we have mentioned

before, we did not want more than 2 legs to touch the ground at the same time. This

would result in lowered performance in higher speeds.
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Figure 5.1: State variables during LIP embedded planar quadruped example simula-

tion, starting from initial condition of ẋ = 0.9, z = 0.4 and targeting apex state of

ẋ = 1.0, z = 0.35.

Figure 5.1c shows that the body angle during LIP embedding controller has oscilla-

tions. This is because in the flight phase, the control of the body angle is not possible.

During the stance phase, the legs are used to keep the body angle steady. We can also

see this in figure 5.2.

The torques at the start of stance phase is stepping, as we can spot it in figure 5.2.

This is because the body is moving downwards during flight phase with the help of

gravity. As soon as the legs touch the ground, the controller tries to stop the current

state diverging from the target state. This results in a high torque output. Because

we do not limit the motor torque, we can see impulses instead of saturations. The

controller significantly lowers the output as the state of the quadruped gets closer to
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Figure 5.2: Rear Right leg output torques during LIP embedded planar quadruped

example simulation last stance phase, with starting from initial condition of ẋ = 0.9,

z = 0.4 and targeting apex state of ẋ = 1.0, z = 0.35

the target state. However, during the liftoff, motors torques oscillate to launch the

robot from the ground.

5.2 SLIP Embedding Controller in Planar Quadruped

Below plots are the experiment results of spring linear inverted pendulum embedding

controller in planar quadruped. Given a target of (zd = 0.35, ẋ = 1.0), starting from

the initial condition of ẋ = 0.9, z = 0.4, the controller tries to apply SLIP motion to

the CoM. Note that, SLIP by its nature does not enforce a constant speed or height.

The apex state of the robot is the evidence of whether the system is converging to the

desired state or not.

In figure 5.3a, it can be seen that the velocity of the apex converges to the desired
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(a) ẋ vs. t with desired ẋ
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Figure 5.3: State variables during SLIP embedded planar quadruped example simu-

lation, starting from initial condition of ẋ = 0.9, z = 0.4 and targeting apex state of

ẋ = 1.0, z = 0.35.

velocity of 1m/s. The deviations are a lot larger compared to the LIP embedding

controller in figure 5.1a. This is expected behavior for this controller as LIP tries to

keep a constant velocity, however, in SLIP only the apex state matters to keep the

stability of the system. Also, considering the figure 5.3b which shows the height time

relation of the CoM of the quadruped body, we can say that clearly see the motion

of the body throughout the time period, and it is important to visualize the gait for

understanding the difference between LIP and SLIP motions. We can notice larger

oscillations for the CoM when compared with 5.1b. Another important plot that we

should pay attention here is the figure 5.3c. When compared to the figure 5.1c, we

can see larger oscillations as expected. The body can be subject to harsh changes

in body angle to keep embedding SLIP template in this model, especially during the
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start of stance after a longer flight phase. However, the controller manages to keep

the oscillations at much larger magnitude after a more stable gait is achieved.
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Figure 5.4: ẋ vs. z with desired apex state in SLIP embedded planar quadruped

example simulation, starting from initial condition of ẋ = 0.9, z = 0.4 and targeting

apex state of ẋ = 1.0, z = 0.35

Another important figure that can be inspected to capture the stability of the system

is the figure 5.4. Although the figure shows ẋ vs z, it only has the data of the apex

moments of the motion. This gives a better understanding of the system’s conver-

gence. In this figure, it is observed that quadruped follows quite close relations with

the position and speed values of SLIP model. The target is marked with a star marker.

Even though the system start from a far point, it converges to a point which is close

to the desired state. This indicates that the gait is becoming more stable after some

time.

The output torques after the locomotion is converged to a stable gait can be seen in

figure 5.5. This figure by itself does mean anything. But it will make a lot more sense
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Figure 5.5: Legs’ knee and hip output torques during a single step after converging to

a stable locomotion in SLIP embedded planar quadruped example simulation, starting

from initial condition of ẋ = 0.9, z = 0.4 and targeting apex state of ẋ = 1.0,

z = 0.35.

when it is compared to in the oncoming experiments. Nevertheless, we can see that

almost all the work is done by the knee motors, and they follow a smooth increase

in power towards the maximum compression of the virtual springs. From this point

onwards, the torques gradually degrade till the liftoff of the toes from the ground.

As the convergence of the stable gait can be a little hard to see from the motion of the

CoM, another useful plot is the figure 5.7 and 5.6. These plots show the difference

of the state of the system at the apex to apex point and the desired state. As it can

be spotted from the figure 5.6, the difference from the target state during the apex

moments is getting lower and lower till a point where it just oscillates. This oscillation

is around %1 of the desired height, and we consider this to be a low variation. Hence,

we can say that the system is converged to a point. Note that this point might or might

not be that target state. But it is a close point in this case.

In addition to the figure 5.6, figure 5.7 can also give insight about the convergence of

the system. Similarly, it also has oscillations that are lower than %1 of the desired

speed, and we believe that it has converged to a stable point.

For the purpose of proving the stability of the controller, we have generated a domain
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Figure 5.6: Robot CoM height moving average of apex points during SLIP embedded

planar quadruped example simulation apex convergence, starting from initial condi-

tion of ẋ = 0.9, z = 0.4 and targeting apex state of ẋ = 1.0, z = 0.35

of attraction figure in 5.8. This shows that from varying different initial conditions,

the controller can reach the target state in a feasible time. In this case, the apex state

convergence should be within %10 of the target state and timeout is 10 seconds. After

400 tests, we can see that the controller has the green area as initial states that model

can go to the target state of targeted apex state of ẋ = 1.0, z = 0.35.

One last figure is whether the controller can reach different target states from different

initial conditions. We have decided to select 4 points that are ±%5 of zd and ẋd. We

check whether the gait is converged to %10 of the target state and timeout is 10

seconds. Even if one of the points fail, we consider that point is not satisfactory.

These conditions resulted in the figure 5.9. We can see that the controller can handle

different target state for a good portion of the space.
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Figure 5.7: Robot CoM ẋ moving average of apex points during SLIP embedded pla-

nar quadruped example simulation apex convergence, starting from initial condition

of ẋ = 0.9, z = 0.4 and targeting apex state of ẋ = 1.0, z = 0.35

5.3 SLIP Embedding Controller in Planar Quadruped with Parallel Compli-

ance

There have been many papers on how animals in nature implements the SLIP be-

havior, however, these animals also takes advantage of their compliant limbs. The

efficiency of the SLIP lie in taking advantage of this compliant behavior. This section

will try to prove this thesis in our experimental system.

First, let’s define the radial forces that are applied on the leg so that we can find

the force that can be stored on a compliant spring that will be added to the planar

quadruped system. Considering the leg vector from 4.16, we transform

IW =WTBI (5.1)
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Figure 5.8: Convergence to a stable locomotion of different initial conditions. Initial

ẋ vs. initial z tested in SLIP embedded planar quadruped example simulation and

targeted apex state of ẋ = 1.0, z = 0.35 with a timeout of 10 seconds. Green color

indicates that starting from the given initial state, the robot is able to converge to the

target state.

and use it in

FR =
IWF
∥F∥

∗ F (5.2)

to project the reaction force vector on to the leg vector, which results in the radial

forces for the planar quadruped model. For a spring which has

F = kx (5.3)

as its system model, the radial forces are in a linear relationship between the radial

length and radial force. In the figure 5.10, the interaction between these forces and

lengths can be seen. In the figure 5.10, the forces of that belong to legs are generated

by the motors. However, spring stores the energy in and releases it back at the rest
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Figure 5.9: Target state analysis to a stable locomotion of different initial conditions.

Initial ẋ vs. initial z is ±% 5 different from target condition. The cases are tested in

SLIP embedded planar quadruped example simulation with a timeout of 10 seconds.

Green color indicates that starting from the given initial states, the robot is able to

converge to the target state.

length. If the motor has a parallel compliancy in the leg joint, the motors would only

have to create the force required to move the force from the linear line of spring to

the current required motor forces. This would result in a lot less torque requirements.

In addition to this force, motors should also create a tangential force

FT = F − FR (5.4)

which is the force that cannot be generated by the spring as these forces are per-

pendicular to it. This force can also be seen in figure 5.11. Another important

observation from the figure 5.11 is that the tangential forces are dropping to 0 near

the maximum compression of the spring. This is because at around this point in time,

radial forces and the reaction forces are aligned. Hence, almost no tangential forces
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Figure 5.10: Rear Left and Right legs radial force vs. radial length, during SLIP

embedded planar quadruped example simulation, radial force on the legs vs. radial

length of the legs, starting from initial condition of ẋ = 0.9, z = 0.4 and targeting

apex state of ẋ = 1.0, z = 0.35. Green plus is the start of stance, red cross is the end

of stance.

are required. Therefore, unlike the radial forces, which are almost always required to

keep the body floating, tangential forces are mostly required at the start and the end of

the stance phase. In figure 5.12, we can see the torques of the planar quadruped with

a parallel compliant joint, after converging to a stable gait during stance. When we

compare it with 5.5a which is torques during SLIP embedding controller but with-

out spring, we can clearly see a better distribution of the torques among the joints.

Moreover, we can see that the torques near the maximum compression of the system

is almost zero. This is again because the parallel spring compensates all the required

forces to embed SLIP at this point and also cancels the gravity. Remembering the
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Figure 5.11: Front Right and Rear Left legs tangential force vs. time during SLIP

embedded planar quadruped example simulation, radial force on the legs vs. radial

length of the legs, starting from initial condition of ẋ = 0.9, z = 0.4 and targeting

apex state of ẋ = 1.0, z = 0.35. Green plus is the start of stance, red cross is the end

of stance.

jacobian formula from 4.12, motors try to create the torques by the following:

τ = J(FT + FR − kx) (5.5)

which means that when the better the system embeds a spring, the fewer torques it

will require. If we imagine the system with real motors, we can also get a grasp of

the power spent by the motors to get a clear picture of the efficiency of the control

methods. The power spent at a single point in time can be calculated by:

P = V (τFRhip
+ τFRknee

+ τRLhip
+ τRLknee

) (5.6)

where P is the power spent in watts, V is the speed of the motors in rad/s and τ is

the torque in Nm commanded by that joint. We can see the efficiency of the parallel
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Figure 5.12: Front Left and Rear Right legs output torques during a single step after

converging to a stable locomotion with a parallel spring placed in the physical legs in

SLIP embedded planar quadruped example simulation, starting from initial condition

of ẋ = 0.9, z = 0.4 and targeting apex state of ẋ = 1.0, z = 0.35

compliant joints in the figure 5.13 where the power spent by the planar quadruped

with different controllers’ is plotted. Although the SLIP embedding controller with

spring seemed to be spending more power at the start and end, during most of the

time, it spends a lot less than the version without the spring. This is because at the

start and end of stance, the quadruped motion is far from the SLIP model. Hence, we

see a lot more energy is pumped to the system to make sure the template is followed.

In addition to this, similar to figure 5.12 and 5.11, near maximum compression, the

power spent drops as the motors’ speed lowers and the spring follows a very close

relation to the template model.

Another figure that gives insight regarding the efficiency of the methods is the total

power figure 5.14. This plot shows that amount of power spent from that start of a
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Figure 5.13: Power spent by motors during a single step after converging to a sta-

ble locomotion with & without a parallel spring placed in the physical legs in SLIP

embedded planar quadruped example simulation, starting from initial condition of

ẋ = 0.9, z = 0.4 and targeting apex state of ẋ = 1.0, z = 0.35

stance period till the end of it. We can see that LIP model start with a high power

consumption and that is followed by a stable low consumption which can also be

referred from the figure 5.13. However, we can see it clearly from figure 5.14 that

SLIP embedded controller without the spring is a lot worse at efficiency than LIP

embedded version. But with the parallel compliancy added to the system, we can

observe a decrease in the total spent power by almost half.

Till this point, we were talking about efficiency, but in a single example. We can now

increase the number of examples to see if this case is true in general. To achieve this,

we need to use a metric for efficiency. We have selected

Pavg = Ptotal/ttotal (5.7)

as the average power metric to compare different controllers in different initial and
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Figure 5.14: Total Power spent by motors during a single step after converging to

a stable locomotion with & without a parallel spring placed in the physical legs in

SLIP embedded planar quadruped example simulation, starting from initial condition

of ẋ = 0.9, z = 0.4 and targeting apex state of ẋ = 1.0, z = 0.35

target conditions. In table 5.1 and 5.2, we have simulated used the initial state and

target state as the same value, which ensured that all the controllers were close to the

stable locomotion behavior.

In table 5.1 and 5.2, we notice that SLIP model with parallel compliancy make the

planar quadruped model more efficient than other methods. We can see the most

efficient methods in bold and in all the test cases, SLIP with parallel compliancy is

the bold one. Sometimes LIP embedded controller and sometimes SLIP embedded

controller were better than the other. As the target height increases or decreases a lot

from some optimal point, LIP embedded controller performs worse overall. This is

most likely because of the short flight phase and trying to keep CoM in a straight line

with extended or retracted legs. All in all, SLIP embedded controller with parallel
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Target State LIP SLIP SLIP-spring Target State LIP SLIP SLIP-spring

0.35m 0.55m/s 57 68 35 0.35m 1.05m/s 67 75 43

0.36m 0.55m/s 67 75 33 0.36m 1.05m/s 77 83 47

0.37m 0.55m/s 76 83 36 0.37m 1.05m/s 88 93 57

0.38m 0.55m/s 83 89 37 0.38m 1.05m/s 95 94 58

0.39m 0.55m/s 74 85 36 0.39m 1.05m/s 84 87 57

0.35m 0.6m/s 58 68 36 0.35m 1.1m/s 68 75 45

0.36m 0.6m/s 68 76 31 0.36m 1.1m/s 78 84 46

0.37m 0.6m/s 78 84 34 0.37m 1.1m/s 89 93 59

0.38m 0.6m/s 85 90 38 0.38m 1.1m/s 97 92 51

0.39m 0.6m/s 76 85 37 0.39m 1.1m/s 85 87 59

0.35m 0.65m/s 59 69 37 0.35m 1.15m/s 69 77 47

0.36m 0.65m/s 69 76 35 0.36m 1.15m/s 80 86 49

0.37m 0.65m/s 79 84 35 0.37m 1.15m/s 90 96 63

0.38m 0.65m/s 86 90 39 0.38m 1.15m/s 96 92 54

0.39m 0.65m/s 77 86 41 0.39m 1.15m/s 84 82 53

0.35m 0.7m/s 60 69 38 0.35m 1.2m/s 71 78 49

0.36m 0.7m/s 70 77 35 0.36m 1.2m/s 81 87 54

0.37m 0.7m/s 80 84 36 0.37m 1.2m/s 91 96 56

0.38m 0.7m/s 88 91 38 0.38m 1.2m/s 97 93 61

0.39m 0.7m/s 77 86 37 0.39m 1.2m/s 86 82 54

0.35m 0.75m/s 62 70 40 0.35m 1.25m/s 71 80 52

0.36m 0.75m/s 72 77 34 0.36m 1.25m/s 81 89 57

0.37m 0.75m/s 82 86 37 0.37m 1.25m/s 91 99 64

0.38m 0.75m/s 88 92 49 0.38m 1.25m/s 99 94 68

0.39m 0.75m/s 79 87 41 0.39m 1.25m/s 86 81 55

0.35m 0.8m/s 63 71 42 0.35m 1.3m/s 73 82 55

0.36m 0.8m/s 72 78 35 0.36m 1.3m/s 83 92 62

0.37m 0.8m/s 82 85 38 0.37m 1.3m/s 93 101 71

0.38m 0.8m/s 90 92 44 0.38m 1.3m/s 99 95 71

0.39m 0.8m/s 78 86 39 0.39m 1.3m/s 88 82 62

Table 5.1: Average power usage of the different controllers in Watts, 1st batch of

experiments. In these simulations, target state and initial state are chosen the same.

Bold number is the most efficient controller in that test case.
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Target State LIP SLIP SLIP-spring Target State LIP SLIP SLIP-spring

0.35m 0.85m/s 63 71 40 0.35m 1.35m/s 74 83 61

0.36m 0.85m/s 74 79 36 0.36m 1.35m/s 84 94 69

0.37m 0.85m/s 83 87 43 0.37m 1.35m/s 94 103 70

0.38m 0.85m/s 90 92 42 0.38m 1.35m/s 100 95 63

0.39m 0.85m/s 80 87 44 0.39m 1.35m/s 88 83 59

0.35m 0.9m/s 64 72 46 0.35m 1.4m/s 74 86 64

0.36m 0.9m/s 75 80 38 0.36m 1.4m/s 84 95 63

0.37m 0.9m/s 85 88 42 0.37m 1.4m/s 95 102 67

0.38m 0.9m/s 91 93 43 0.38m 1.4m/s 102 95 66

0.39m 0.9m/s 80 88 53 0.39m 1.4m/s 88 84 56

0.35m 0.95m/s 65 73 45 0.35m 1.45m/s 75 89 67

0.36m 0.95m/s 77 81 43 0.36m 1.45m/s 86 99 73

0.37m 0.95m/s 86 88 44 0.37m 1.45m/s 96 102 76

0.38m 0.95m/s 93 93 53 0.38m 1.45m/s 103 95 73

0.39m 0.95m/s 82 88 56 0.39m 1.45m/s 89 86 65

0.35m 1.0m/s 66 73 45 0.35m 1.5m/s 110 90 67

0.36m 1.0m/s 77 82 45 0.36m 1.5m/s 88 101 77

0.37m 1.0m/s 87 91 46 0.37m 1.5m/s 95 101 79

0.38m 1.0m/s 93 93 52 0.38m 1.5m/s 103 91 68

0.39m 1.0m/s 82 86 50 0.39m 1.5m/s 90 87 68

Table 5.2: Average power usage of the different controllers in Watts, 2nd batch of

experiments. In these simulations, target state and initial state are chosen the same.

Bold number is the most efficient controller in that test case.
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compliancy is much more efficient.

For better interpretation of the table 5.1 and 5.2, we have plotted the heat map of

average power spent during simulations.
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during SLIP embedded controller simulation
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Figure 5.15: Average power spent heat map of different controller for different initial

and target states

In figure 5.15, we show the average power spent of different controller with different

initial and target states. Figure 5.15a, 5.15b and 5.15c have different scales due to

the fact that the maximum average power spent for each controller is different. When

inspected one by one, each plot shows a similar result: low height, high speed means

in less energy.
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The last conclusion is not the proof of efficiency of the controller. Therefore, we have

chosen a different method to show it: the differences of average power spending of

each controller is shown in a heat map in figure 5.16.

In figure 5.16a, when the SLIP embedding controller is more efficient, the color be-

comes darker and when the LIP embedding controller is more efficient it becomes

brighter. Looking at the plot, we can observe that LIP is more efficient in many of the

test cases.

However, when we inspect 5.16b and 5.16c, we see that the scale never goes negative.

This means that the SLIP embedding controller with parallel compliance is more

efficient in every case. Hence, we can conclude that total power spent is a less with

parallel compliance.
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Figure 5.16: Average power spent differences of different controller for different ini-

tial and target states
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we have introduced a new controller that provides stable gaits for the

quadruped based on embedding spring loaded inverted pendulum as template model

which captures the natural characteristic of the locomotion behavior. Using SLIP

as the template model provides easy and simple access to many distinctive aspects

of the locomotion. This template model offers many efficient and reliable method

of control and by embedding this behavior to its full extent, we can take advantage

of the new parallel compliant joint designs where the efficiency of the quadruped

system can be increased drastically while also making sure of a stable gait without

high computational effort.

We illustrate the powerful aspects of the technique by comparing it with different

controllers embedded in a planar quadruped simulation. The models are expected to

demonstrate a stable locomotion behavior, all the while provide the most efficient con-

trol that the embedded controllers can present. First linear inverted pendulum (LIP) is

used as the embedding controller for the planar quadruped. This template is selected

because it is adopted by many in recent times due to its simplicity and computational

cheapness. Spring loaded inverted pendulum (SLIP) was the next controller that was

embedded. This model is believed to be representing the motion of locomotion bet-

ter than the LIP model, but it requires more work to embed on a quadrupedal model

as this morphology does not feature such passively decoupled coordinates. We have

proposed a method to fully capture the nature of SLIP in the model. We have then

shown the same model with a spring on the leg joints to further boost the efficiency.

We have evaluated the proposed method in a walking scenario where the motion starts

from an undesired state, and we wait till the gait convergences to the desired state.
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First, the convergence to a stable gait, the domain of attraction and stability of the

controller is shown on a single example. Next, The efficiency of the controllers are

compared to the proposed method. A detailed example and different test results are

provided to support this claim. This evaluation shows promising results when the

controller is used with a parallel compliant joint, as the efficiency of the technique

was higher than the other state-of-the-art methods.

6.1 Limitations and Future Work

This thesis introduced a novel control method for quadruped locomotion that takes

advantage of the dynamics of natural walking behavior. Nevertheless, this thesis

requires some assumptions to simplify the problem at hand. This section gives insight

on how it can be improved further.

One of the most fundamental assumptions is that the system model is selected as two-

dimensional to simplify the calculations and to show the results in a more focused

manner. This choice indeed resulted in better evaluation of the proposed method, but

it also made it require future work to embed it in a 3D model.

In the evaluation section, we have only focused on the comparison with the current

template models. But currently, there are many other methods that can be used in

comparison to further boost the validity of the proposed method.

Another work that can be done was to further optimize the motor torques using the

null space of the jacobian matrix at the SLIP embedding controller. We have tuned

the parameters by hand to find a good value, however, motor torques can be optimized

using this method.
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