
DEVELOPMENT OF A SOCIAL REINFORCEMENT LEARNING BASED
AGGREGATION METHOD WITH A MOBILE ROBOT SWARM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMRE GÜR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

MECHANICAL ENGINEERING

SEPTEMBER 2022

Approval of the thesis:

DEVELOPMENT OF A SOCIAL REINFORCEMENT LEARNING BASED
AGGREGATION METHOD WITH A MOBILE ROBOT SWARM

submitted by EMRE GÜR in partial fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering Department, Middle East Tech-
nical University by,

Prof. Dr. Halil KALIPÇILAR
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Mehmet Ali Sahir Arıkan
Head of Department, Mechanical Engineering

Assoc. Prof. Dr. Ali Emre Turgut
Supervisor, Mechanical Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Buğra Koku
Mechanical Engineering, METU

Assoc. Prof. Dr. Ali Emre Turgut
Mechanical Engineering, METU

Assoc. Prof. Dr. Erol Şahin
Computer Engineering, METU

Assoc. Prof. Dr. Ender Yıldırım
Mechanical Engineering, METU

Assist. Prof. Dr. Kutluk Bilge Arıkan
Mechanical Engineering, TED University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Emre Gür

Signature :

iv

ABSTRACT

DEVELOPMENT OF A SOCIAL REINFORCEMENT LEARNING BASED
AGGREGATION METHOD WITH A MOBILE ROBOT SWARM

Gür, Emre
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Ali Emre Turgut

September 2022, 66 pages

In this thesis, the development of a social, reinforcement learning-based aggregation

method is covered together with the development of a mobile robot swarm of Kobot-

Tracked (Kobot-T) robots.

The proposed method is developed to improve efficiency in low robot density swarm

environments especially when the aggregated area is difficult to find. The method

is called Social Reinforcement Learning, and Landmark-Based Aggregation (SRLA)

and it is based on Q learning. In this method, robots share their Q tables inside

the aggregated area. The developed robot swarm uses mostly off-the-shelf, open

source, additive manufactured components and is extendable, and easily maintainable

by design. Kobot-T is intended to be used together with a three-part heterogeneous

swarm system capable of accomplishing tasks from foraging to aggregation for long

hours. To prove and report the success of SRLA several aggregation methods from

the literature are tested and the result of the comparison is given.

v

Keywords: Swarm robotics, Multi-robot systems, Swarm communication

vi

ÖZ

SOSYAL TAKVİYELİ ÖĞRENME BAZLI BİR TOPLANMA METODU İLE
BİR MOBİL ROBOT SÜRÜSÜNÜN GELİŞTİRİLMESİ

Gür, Emre
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Emre Turgut

Eylül 2022 , 66 sayfa

Bu tezde, sosyal, pekiştirmeli öğrenmeye dayalı bir toplanma yönteminin geliştiril-

mesi, bir Kobot-Tracked (Kobot-T) robot sürüsünün geliştirilmesi ile birlikte ele alın-

maktadır. Önerilen yöntem, özellikle toplanılacak alanın bulunmasının zor olduğu

düşük robot yoğunluklu sürü ortamlarında verimliliği artırmak için geliştirilmiştir.

Yöntem; Sosyal Takviyeli Öğrenme ve Landmark-Based Toplanma (SRLA) olarak

adlandırılır ve Q öğrenmeye dayanır. Bu yöntemde robotlar, Q tablolarını toplu alan

içinde paylaşır. Geliştirilen robot sürüsünde, çoğunlukla kullanıma hazır, açık kaynak,

eklemeli imalat ile üretilmiş bileşenler kullanılmıştır ve genişletilebilir, tasarım gereği

kolayca bakımı yapılabilirdir. Kobot-T, uzun saatler boyunca besin toplamadan top-

lanmaya kadar görevleri yerine getirebilecek şekilde ve üç parçalı heterojen bir sürü

sistemi ile birlikte kullanılmak üzere tasarlanmıştır. SRLA’nın başarısını kanıtlamak

ve raporlamak için literatürden birkaç toplama yöntemi test edilir ve karşılaştırmanın

sonucu verilir.

vii

Anahtar Kelimeler: Sürü robotiği, Çoklu Robot Sistemleri, Sürü içi iletişim

viii

To whom who reads this :)

ix

ACKNOWLEDGMENTS

To begin with I would like to thank Assoc. Prof. Dr. Ali E. Turgut for his support.

As I built my entire system in ROMER laboratory, I would like to thank Assoc. Prof.

Dr. Erol Sahin for his allowance to use ROMER and his support for this thesis.

For their support, Arash Sadeghi Amjadi, Cem Bilaloğlu, Mehmet Şahin, Umutcan

Üstüntaş, and Atakan Botasun will always have a special place in my heart.

All KOVAN staff had hard times while I made my mess during my studies. I would

like to thank their patience.

I would like to thank my family for raising me.

Finally I would like to thank my brother Eren Gür, who will always be my joy in this

world.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ALGORITHMS . xviii

LIST OF ABBREVIATIONS . xix

CHAPTERS

1 INTRODUCTION . 1

2 LITERATURE SURVEY . 5

2.1 Literature Survey of Swarm Applicable Robots 5

2.2 Cue-based Aggregation Algorithms Covered by Previous Swarm Robots 8

2.3 Contributions of thesis . 10

3 DEVELOPMENT OF KOBOT-T ROBOT 11

3.1 Architecture . 11

3.1.1 Hardware Architecture . 12

xi

3.1.1.1 High-Level Control Layer 12

3.1.1.2 Sensing Layer . 13

3.1.1.3 Locomotion and Power Layer 13

3.1.2 ROS architecture of Kobot-T 13

3.1.2.1 Extensions . 15

3.2 Details of Kobot-T Hardware . 16

3.2.1 Off-the-shelf Systems . 16

3.2.2 Low-level Control Board . 16

3.2.3 Tracked Locomotion . 17

3.2.4 Mechanical Design . 19

3.3 Software Details of Kobot-T . 21

3.3.1 Communication Interfaces of Kobot-T 23

3.3.2 Controller Parameters . 24

4 METHODOLOGY . 27

4.1 Avoidance Mechanism . 27

4.2 Robot-to-robot Encounter Mechanism 30

4.3 Random action vector selection and reward table calculation 31

4.4 Reward table share and comparison 33

4.5 BEECLUST . 34

4.6 RLA . 35

4.7 SRLA . 35

5 EXPERIMENTAL ANALYSIS . 41

5.1 Metric . 41

xii

5.2 Simulation Platform . 43

5.3 Experimental Setup . 44

6 RESULTS AND DISCUSSION . 49

6.1 Kinematic Simulator Results . 49

6.2 Real Robot Results . 53

6.3 Discussion . 54

7 CONCLUSION . 59

REFERENCES . 61

xiii

LIST OF TABLES

TABLES

Table 2.1 Comparison of Robots that allow swarm applications. 8

Table 3.1 Motor parameters . 19

Table 5.1 Swarm scenario and Kobot-T subsystem tested by. 42

Table 5.2 Kinematic Simulation Experiment Parameters 45

Table 5.3 Experiment parameters . 48

xiv

LIST OF FIGURES

FIGURES

Figure 3.1 Flow diagram showing hardware architecture of Kobot-T, inte-

grated from [1] . 12

Figure 3.2 Flow diagram showing ROS architecture of Kobot-T, integrated

from [1] . 14

Figure 3.3 Marker deck with designed reflection enhancer on top of RnB

Sensor . 15

Figure 3.4 Exploded View of Kobot-T . 20

Figure 3.5 Low-level Control Board . 21

Figure 3.6 Flow diagram showing base computer dependent usage mode of

Kobot-T . 22

Figure 3.7 Flow diagram showing independent usage mode of Kobot-T . . 23

Figure 3.8 Flow diagram showing communication architecture between two

Kobot-T robots . 24

Figure 3.9 Kobot-T physical robot . 26

Figure 4.1 Free Body Diagram of obstacle encounter 28

Figure 4.2 Movement after of two robot encounter 30

Figure 4.3 Abstract Algorithm of BEECLUST 34

Figure 4.4 Abstract Algorithm of RLA . 35

xv

Figure 4.5 Abstract Algorithm of SRLA 36

Figure 5.1 Kinematic simulator test arena, cue in the middle, aruco markers

in side walls . 43

Figure 5.2 Test arena, cue in the middle, aruco markers in side walls 46

Figure 6.1 Comparison of RLA and SRLA in same cue radius of 0.7 [m],

varying experiment area sizes. Dashed line shows results from RLA ex-

periments having 5 iterations and single line shows results from SRLA

experiments having 5 iterations. Experiment arena sizes for red lines

are 2500x5000 [mm], for blue lines are 3540x7070 [mm], for green

lines are 5000x10000 [mm]. 51

Figure 6.2 Comparison of RLA and SRLA in same cue to total area rate

of 0.03, varying cue radii. Arena sizes changes same as Figure 6.1

together with cue area radius. For red lines it is 0.35 [m], for blue lines

it is 0.50 [m], and for green lines it is 0.7 [m]. 51

Figure 6.3 Comparison of RLA and SRLA in same cue to total area rate

of 0.12, varying cue radii. Arena sizes changes same as Figure 6.1

together with cue area radius. For red lines it is 0.69 [m], for blue lines

it is 0.98[m], and for green lines it is 1.38 [m]. 52

Figure 6.4 Comparison of RLA and SRLA in same cue to total area rate of

0.3, varying cue radii. Arena sizes changes same as Figure 6.1 together

with cue area radius. For red lines it is 1.09 [m], for blue lines it is 1.55

[m], and for green lines it is 2.19 [m]. 52

xvi

Figure 6.5 Comparison of RLA, SRLA and BEECLUST in real robot ex-

periment. 1.4x2.8[m] arena with the cue radius of 0.3 [m] is used. Each

algorithm used for three iterations. 1st and 3rd quartiles from the data

gathered from three iterations are shown as faded areas and 2nd on

(mean) is shown as center line. Red line is the result from RLA al-

gorithm. Green line is the result from SRLA algorithm. Blue line is the

result from BEECLUST algorithm. 53

Figure 6.6 Comparison of RLA, SRLA and BEECLUST in kinematic sim-

ulator. Same sizes are used. Each algorithm tested used for five itera-

tions. 1st and 3rd quartiles from the data gathered from three iterations

are shown as faded areas and 2nd on (mean) is shown as center line. Red

continuous line is the result from SRLA algorithm. Red dashed line is

the result from RLA algorithm. Blue line is the result from BEECLUST

algorithm. 54

Figure 6.7 Comparison of RLA and SRLA in same cue radius of 0.7 [m],

varying experiment area sizes. From left to right results from experi-

ment arena sizes for 2500x5000 [mm], 3540x7070 [mm], and 5000x10000

[mm] can be seen with pairs. As the number of robot and arena size in-

creases, stabilized NAS value decreases. 56

Figure 6.8 Comparison of RLA and SRLA in same cue-to-total-area rate

of 0.03, varying cue radii. From left to right results from experiment

arena sizes are the same as 6.7. As the number of robot and arena size

increases, stabilized NAS value decreases. 56

Figure 6.9 Comparison of RLA and SRLA in same cue-to-total-area rate of

0.12, varying cue radii. From left to right results from experiment arena

sizes are the same as 6.7. 57

Figure 6.10 Comparison of RLA and SRLA in same cue-to-total-area rate of

0.3, varying cue radii. From left to right results from experiment arena

sizes are the same as 6.7. 57

xvii

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 1 Avoidance Algorithm . 29

Algorithm 2 BEECLUST Algorithm . 37

Algorithm 3 RLA Algorithm . 38

Algorithm 4 SRLA Algorithm . 39

xviii

LIST OF ABBREVIATIONS

2D 2 Dimensional

3D 3 Dimensional

RnB Range and Bearing Sensor Card

RPi-0 Raspberry Pi Zero W Single Board Computer

OTS Off The Shelf

RFID Radio Frequency Identification

MDP Markov Decision Process

RL Reinforcement Learning

RLA Reinforcement Learning based Aggregation

cRLA Communicated Reinforcement Learning based Aggregation

UAV Unmanned Aerial Vehicles

USV Unmanned Surface Vehicles

UGV Unmanned Ground Vehicles

UUV Unmanned Underwater Vehicles

OTS Off-the-shelf

MCU Micro Controller Unit

STM STMicroelectronics

Kobot-T Kobot-Tracked

LCC Low-Level Control Card

xix

xx

CHAPTER 1

INTRODUCTION

Swarms of ants can construct complex nests [2], keep farms of fungi[3], and build

bridges [4] using their pheromone-based mechanism for self-organization [5]. The

creation of these types of structures in systems composed of few or many components

is called self-organization behavior. It is a concern for researchers that principles of

self-organization exists for nature to solve problems [6] just like ant swarms solving

survival problems.

Besides ants, there are many swarms of animals in nature that exhibit self-organizing

behavior with different mechanisms. Cockroaches and bees use a different mecha-

nism based on their relatively higher environmental sensing capabilities to forage, ag-

gregate, or flock for their survival [7],[8]. Considering how efficient these swarms can

solve their problems in nature with their self-organizing behavior; swarm intelligence

discipline has been introduced [9] to tackle large-scale, distributed, self-organized

natural and artificial systems.

Further, to understand self-organization, researchers have built robotic artificial sys-

tems [10]. In the beginning, these systems have been used to understand mechanisms

of nature, which resulted in the conception of the first swarm algorithms. These were

the algorithms for robots to perform some of the behavior made by animals.

For example, to understand the mechanism behind aggregation, that is gathering of

individuals in an environmental having a cue, the algorithm of BEECLUST has been

developed [11]. In time, the realization that many problems in the field of robotics

can be solved with the introduction of swarm intelligence to robotics, the study of

swarm robotics was born.

1

The scope of this thesis includes the design of groups of robots that operate without

relying on external infrastructure or centralized control. Swarm robotics can be used

when a high degree of redundancy with the lack of single points of failure is desired,

and when building the necessary infrastructure to control the robots is a technological

challenge such as mining, search and rescue, exploration, and surveillance [12]. Re-

cently, swarm robotics has gained popularity and importance due to the high demand

for Unmanned Aerial and Ground Vehicle swarms. Therefore, there is an increas-

ing need for robots to be used in swarm robotics to develop and test novel swarm

algorithms for both understanding nature and from this inspiration from nature, de-

veloping systems for the future of humankind.

Many robot platforms and algorithms have been developed and used in swarm robotics

studies. These robots are generally designed to be used for a specific task and are not

capable enough to be used for the development of different swarm algorithms with

their base design. Some of these robots are covered in the next chapter and some

of them have extensions for different applications later designed. There are also not

many tracked swarm robots capable of moving in uneven terrain. Thus, it is realized

that a robot to be used in swarm robotics studies, that is able to move in uneven terrain

and that is able to implement different swarm algorithms is a challenge in the swarm

robotics field.

To add to these challenges, a behavior that some animals exhibit is selected to be

developed as a swarm algorithm. Bees, inside their hive [13] share information about

foraging areas. It is also known that bees use environmental landmarks for navigation

[14]. Therefore, in this thesis, we have developed an algorithm with these two features

of bees. In addition, we have designed a new mobile robot to conduct swarm robotic

studies on uneven terrain called Kobot-Tracked (Kobot-T) robot. The Kobot-T robot

is able to run different swarm algorithms such as foraging, flocking, or aggregation.

In this thesis, we applied the developed swarm algorithm, which is a novel social

reinforcement learning-based aggregation method, to Kobot-T as well, for both test-

ing the capabilities of Kobot-T and examining the real life application of the devel-

oped swarm algorithm. In order to test the capabilities of the Kobot-T robot, we also

conducted experiments by running some other swarm algorithms from literature on

2

Kobot-T as well.

The thesis starts with a brief literature survey covering robots that are previously used

in swarm robotics research and relevant aggregation algorithms. Later we present the

development of the Kobot-T robot and sub-systems. Then, in Chapter 4, the novel so-

cial reinforcement learning-based aggregation algorithm is introduced together with

other relevant aggregation methods that we run on Kobot-T. In Chapter 5, metrics and

platform setups for simulation-based and real robot experiments are provided. This

is followed by results of conducted experiments in Chapter 6 and in Chapter 7 we

concluded the thesis.

3

4

CHAPTER 2

LITERATURE SURVEY

In this chapter, we discussed a literature survey of robots and several aggregation

methods that are used in swarm robotics research. The chapter starts with a chrono-

logical survey of robots, which were used previously in swarm robotics studies, that

led to the need for Kobot-T. Then we give a comparison table between the Kobot-T

robot and the other robots from this literature survey. The chapter ends with the dis-

cussion of aggregation algorithms that led to the development of the novel algorithm

covered in this thesis.

2.1 Literature Survey of Swarm Applicable Robots

There exist many swarm robots with different approaches to swarm robotics, since

their popularity has increased over swarm robotics applications. Here we give some

of the previously studied robots in a chronology which leads to the need for the pro-

duction of the Kobot-T robot.

An early example of these robots is S-bot [15]. S-bot has two treels that allow locomo-

tion. It is extensible to allow parts to be added or subtracted. This extensibility allows

swarm intelligence to be used not only in the control layer but also in the physical

layer. It has a built-in gripper which leads two or more S-bots to be able to connect

to form a chain of robots that allows passage through large gaps. All systems that

allow regular operations during experiments run onboard this robot. Infrared prox-

imity sensors, light and humidity sensors, accelerometers, and incremental encoders

on each degree of freedom are all included in each S-bot as navigational aids. To

locate and connect with other S-bots, each robot also has sensors and communication

5

equipment, thus two robots can communicate locally without any medium, allowing

robots to easily form different configurations. They feature an omnidirectional cam-

era, color LEDs, local color detectors, sound emitters, and sound receivers. S-Bot is

not fully open source and its mechanical parts are custom designed.

Following the S-bot, a wheeled robot Alice [16] is also not open source and its me-

chanical parts are custom designed. Its extensibility allows several enhancements to

the robot, from different locomotion to control systems. All systems run onboard this

robot and local communication is maintained through infrared signal (IR) communi-

cation.

ZeeRo [17] is similar to the previous two, it has wheels for handling locomotion. In

this robot, systems run onboard. Different from than previous two, sources for this

robot are shared as open source. In this robot communication is achieved through a

Bluetooth module, however, there exists no study on robot-to-robot communication

in the paper. The mechanical parts of this robot are also custom designed.

E-Puck [18], is a mobile robot dedicated for education and has many extensions that

are designed for various applications. In its original form, robot-to-robot communica-

tion is not implemented. However, with an extension module, local communication is

enabled later [19]. Similar to previous studies; parts and components are custom de-

signed, locomotion is achieved through wheels, and systems are controlled onboard.

Even though all of its parts and components are custom-designed complex structures,

their details are shared as open source.

Kilobot [20] uses vibration motors for locomotion. All communication between

robots and programming of Kilobot is handled through IR signaling. It is a custom-

designed open-source robot with an onboard controller. Kilobots are simple in terms

of both hardware and software. They enable many swarm features. No extensions are

available for Kilobots to enable more realistic swarm algorithms such as grippers for

foraging; however, foraging can be implemented through virtual food sources or vir-

tual pheromones can be used with IR signaling [21]. They are used in different swarm

tasks such as collective motion [22], collective decision-making [23] and spatial or-

ganization [24]. Kilobots had a great impact on swarm studies. However, vibration

motors restricted robots to a leveled floor. In addition, depending on IR signaling

6

restricted robots in the experiment arena.

Following Kilobot, ChIPR [25] was built driven by the popularity of additive man-

ufacturing, which researchers to share their custom-designed parts as open source,

hence anyone can quickly build and test these parts without incompatibility issues

from other production techniques. ChIPR has wheels for locomotion.

Duckiebot [26] is mostly designed with off-the-shelf (OTS) components allowing

robots to be built by almost everyone. Similar to ChIPR, this robot has wheels for

locomotion, it is open-source, it has onboard control, and it is extensible for different

studies. It has multi-robot communication capability based on LEDs.

In Crazyflie [27], flying is used for the mode of locomotion. This robot is used as

a platform to carry extensions depending on the application. However, its flight ca-

pacity is a limiting factor. It is used with a motion capture system to operate while

running swarm algorithms since the base robot has no sensor to track other robots.

The robot communicates with the main computer by radio signals for several control

systems. It has an onboard Inertial Measurement Unit (IMU) sensor for significant

radio packet loss. Robot as a whole is a custom-built off-the-shelf (OTS) platform.

Finally, a recent example of such a robot is Mona [28]. In this study, an educational

robot that is adaptable, easy to use, and open source was built. The main robot does

not operate with Robotic Operating System (ROS) onboard to enable swarm super-

vision options however, later researchers developed a separate module rather than

existing as embedded system for using ROS [29]. Mona consists mostly of OTS and

custom-designed parts. It is also extensible with different modules, for example, a

range and bearing module are introduced to Mona [30], which has only one emitter

in front of the robot and is mainly covered with receivers in all directions.

In this thesis, we designed Kobot-T considering multiple swarm applications. There-

fore, we fit a range and bearing system [1] that performs kin and obstacle detection.

Its parts and components are easily replaceable to keep up with the technology. We

designed the whole body for ease of maintenance. The color of the body is selected to

be white so that it is reflective enough for the operation of the range and bearing sen-

sors. We allowed any researcher to add or subtract their application-specific design

7

details by making the design fully open-source. It also has grippers for holding ob-

jects and potentially other robots for tasks such as foraging and chain formation. The

gripper connection, battery placement, and actuator-sensory board are in the lower

part of Kobot-T so that its balance would not be affected by the added extra weight.

We selected tracked locomotion to minimize the effect of experiment arena surface

conditions such as uneven terrain. We designed a custom board handling low level

controls, and used a 3D printed body that allows expansions to be added to the robot.

Table 2.1: Comparison of Robots that allow swarm applications.

Robot Year Locomotion Open Source Extensible Mechanical Parts Onboard Local Communication

S-bot[15] 2004 Treel No Yes Custom Yes Yes

Alice[16] 2005 Wheel No Yes Custom Yes Yes

ZeeRo[17] 2006 Wheel Yes Yes Custom Yes No

E-Puck[18] 2009 Wheel Yes Yes Custom Yes No

Kilobot[20] 2012 Vibrating Yes No Custom Yes Yes

ChIRP[25] 2014 Wheel Yes Yes 3-D Printed Yes No

Duckiebot[26] 2017 Wheel Yes Yes OTS Yes Yes

Crazyflie[27] 2017 Flying Yes Yes Custom No No

Mona[28] 2019 Wheel Yes Yes OTS Yes No

Kobot-T 2022 Tracked Yes Yes 3-D Printed Yes Under development

In Kobot-T design, the robot mostly consists of OTS electronic components. Com-

munication between the electronic boards is done via I2C. This eases the addition of

new boards with newer OTS components by just connecting two wires and simple

software changes. The operation time of Kobot-T is about one hour but it can be ex-

tended with the addition of an extra battery pack. We compared previously designed

robots with Kobot-T in Table 2.1.

2.2 Cue-based Aggregation Algorithms Covered by Previous Swarm Robots

Cue-based aggregation is defined as the gathering of individuals around a cue in

the environment. Thermotactic behavior, that is moving toward a thermal stimulus,

of young honeybees [11] is an example for such behaviour. Schmickl et al. pro-

posed cue-based aggregation method BEECLUST [11] to simulate this behaviour

with robots. In the BEECLUST method, robots move randomly until they encounter

another robot. They stop and wait for a predefined time based on cue intensity. When

8

the waiting time is over, they turn in a random direction and move. Certain aspects

that affect the performance of BEECLUST have been studied; such as the density of

robots [31] and the number of cues. It was implemented in a real-world scenario [32],

in which robots were required to clean contaminated environments where contami-

nated locations were regarded as the cues. These studies showed that as the robot

density in an environment decreases, aggregation performance decreases consider-

ably, since the probability of encountering another robot decreases [31].

The ODOCLUST method was proposed [33] to improve the performance of the

BEECLUST. In this method, a continuously active odometry-based homing process

is used. In this process, the robot records the position of impact with another robot

and then starts to seek this position. Here, the cue that is used to aggregate on was

another robot. This method effectively outperformed the BEECLUST method, how-

ever high aggregation performance is heavily reliant on high-performance odometry

sensors with little noise. Also, dependence on a high density of robots still existed.

This resulted researchers to seek for other sensing capabilities of animals for further

improvements on aggregation with low robot density environments.

Considering the visual and olfactory sensing capabilities, different landmarks such as

flowers [34] or scents [35] are used by the animals, such as honeybees [36]. These

animals frequently use visual and olfactory landmarks during navigation [37]. The

concept of landmarks was also used in robots proving better localization [38], nav-

igation [39], and mapping [40], [41]. In swarm robotics, odometer and landmarks

were both used in foraging behavior, using RFID tags as the landmarks [42]. Follow-

ing this approach, a cue-based aggregation method called landmark-based aggrega-

tion (LBA) was developed to improve the performance of aggregation in low robot

density settings using landmarks and odometery [43]. Since the LBA method heav-

ily depends on the odometry data, it does not perform well whenever there is high

odometry noise.

Later, by using reinforcement learning, susceptibility to noise was aimed to be de-

creased by a method called the reinforcement learning based aggregation (RLA) [44].

In this method, even using noisy odometer data, the performance of aggregation was

high and the swarm was able to adapt to the changes in cue location.

9

In this thesis, the RLA method was extended using communication inside the cue

area, to increase its performance in environments with small cue areas that are rela-

tively difficult to find.

2.3 Contributions of thesis

The contributions of this thesis are:

• The Design of an open-source swarm robotic platform, Kobot-T, using only

OTS components and 3D printed parts, that is capable of moving in uneven

terrain.

• The Design and manufacturing of an electronic board based on STM32 Bluepill

card to handle low-level actuation and sensory needs of the Kobot-T platform.

• An extension of the RLA method using communication, and testing the new

method called the Social RLA (SRLA) systematically in low robot density en-

vironments.

10

CHAPTER 3

DEVELOPMENT OF KOBOT-T ROBOT

This chapter presents the system architecture of Kobot-T for both its hardware and

ROS architectures. The details of the hardware are given together with the dynamic

calculations for the robot where we calculate Kobot-T’s closed loop velocity control

parameters. Lastly, details of the software sub-systems are given where we present

usage types, motor controller software and communication interfaces used in Kobot-

T.

3.1 Architecture

Kobot-T uses a common architecture (CoRe) of the Kobot robotic system [1]. The

hardware architecture of Kobot-T is depicted in Figure 3.1. At the bottom, there

is the locomotion and power layer, and it is responsible for the locomotion of the

robot using the velocity commands from the high level controller. It also supplies

regulated power to all layers. In the middle, there is the sensing layer containing all

the sensors including the novel range and bearing sensor, Raspberry-Pi (RPi) camera,

floor sensors and battery sensor are present. At the top there is the high-level control

layer that runs the main swarm algorithm on a RPi-0. It takes input from the sensing

layer and transmits velocity commands to the locomotion layer via I2C. The Robotic

Operating System (ROS) architecture is given in Figure 3.2 and discussed in detail

later in this chapter.

11

3.1.1 Hardware Architecture

3.1.1.1 High-Level Control Layer

RPi0

Kobot Robot

High Level Control
Layer

Sensing Layer

Locomotion, Power
Layer

ActuationSensorsProcessorsPower

Battery

Regulator
Velocity

Controller

Drive
System

Tracks

Kobot-T

Ground Base + Tracks

Time of Flight
Range and

Bearing
Battery sensor

RPi Cam. Floor Sensor

Gripper

Gripper
Controller

I2CMechanical Power

Camera Serial Interface

Figure 3.1: Flow diagram showing hardware architecture of Kobot-T, integrated from
[1]

We used a RPi-0 single board computer with Wi-Fi connectivity in Kobot-T for High-

level controller. It has a small footprint and it has low power consumption. Although

the computational power of RPi-0 is not very high, it is sufficient to operate Kobot-T.

In addition, some simple computer vision tasks such as detecting ArUco markers can

also be executed in this board. Kobot-T is not intended for complex computational

tasks such as complex image processing applications, but if needed, Kobot-T can

connect to its neighboring robots or a host computer and use their computational

resources.

12

RPi-0 communicates with the other layers via I2C bus due to its high speed and ease

of use. Bus-type architecture is preferred since it is straightforward to add new pe-

ripherals without introducing extra complexity to the system. Additionally, many

third-party breakout boards on the market use I2C bus as the communication inter-

face.

3.1.1.2 Sensing Layer

We placed the sensing layer so that it consists of all the sensors present in Kobot-T

robot. In its current configuration, this layer has the RPi camera, range and bearing

sensor, floor sensor, and the battery sensor. All the sensors are connected to the RPi-

0 via I2C bus and the data is sent upon the request of the controller. This makes it

convenient to add different third party sensors such as an IMU or a magnetometer that

uses I2C bus. There is also a spare UART port for legacy sensors such as ultrasonic

sensors.

3.1.1.3 Locomotion and Power Layer

In this layer, all the actuators for locomotion and gripper exist. There is also the

battery and regulator that supply power to the robot. In its current configuration,

Kobot-T uses tracks driven by two motors equipped with optical encoders. Their

speed is controlled at 50 Hz by the mentioned STM32-based card in a closed-loop

fashion. High-level controller calculates and sends reference values for each motor.

3.1.2 ROS architecture of Kobot-T

In Kobot-T, Robotic Operating System (ROS) is used to facilitate the connection be-

tween low-level drivers and developed swarm algorithms [45].

In Figure 3.2, one can see that there are several hardware driver nodes, frameworks,

and hardware that are driven. Hardware driver nodes accomplish tasks for the usage

of hardware that are responsible of. Communication between behaviour algorithm or

UI scripts, and different hardware nodes is accomplished through ROS topics. ROS

13

topics are information packs that are carried from publisher to subscriber. Frame-

works are structures that are used for specific tasks. For example, OpenCV is an

image processing framework, which is used for landmark tracking in this thesis. ROS

TF framework is used to track transformations and coordinate frames., The reason for

ROS tf messages showed differently in Figure 3.2 is that transformations and coordi-

nate frames are published with special information packs other than ROS topics.

User Commands

Range and Bearing

range_n_bearing

ar_track

wheel_odom pose_controllerlandmark_tf

floor_sensor

differential_driver

behaviour

gripper

Landmarks

ROS tf

OpenCV

teleop_key UI

cmd_vel2motors

Kobot-T

gripper

Hardware

3rd Party
Frame
Work

Hardware
Driver Node

Extension

Framework

I2C/GPIO/SPI/SSH

ROS Topics

ROS TFLEGEND

Figure 3.2: Flow diagram showing ROS architecture of Kobot-T, integrated from [1]

Some of the hardware sub-systems, such as RnB, camera, LCC, and gripper, are em-

bedded with their software and their maintenance requires fast response and specific

libraries. Nodes that use I2C library has to run onboard to access regulated addresses.

For example, the floor sensors’ hardware driver node is a low-level driver software

and has to run onboard since it regulates I2C communication between floor sen-

sors with Kobot-T. However, other hardware driver nodes such as "cmd_vel2motors"

node, require minimal information to operate; since they only regulate speed values

coming from different sources to "differential_driver" node. Therefore, it is possible

to run them off-board. This procedure is tested but is not needed for algorithms cov-

ered in this thesis. Only some behavior scripts run off-board, in the base computer,

so that CPU power is kept at low levels. Roscore, the prerequisite collection of nodes

and programs for a ROS-based system to run, runs on the base computer for each

Kobot-T for now for the same reason.

14

From ROS nodes for hardware drivers to hardware, low-level reference inputs or sen-

sory outputs are listened by various ways. Details of these are covered in Subsection

3.3

3.1.2.1 Extensions

Marker Deck

Reflection
Enhancer

RnB Sensors

RnB Hardware
Interface for Kobot-

T

One RnB
Sensor

Figure 3.3: Marker deck with designed reflection enhancer on top of RnB Sensor

For different swarm algorithms, may require different sub-systems. For example,

RnB sensor extension and its interface are used for experiments conducted in this

thesis to supply Kobot-T with robot and kin detection.

Two interfaces for two subsystems for Kobot-T are designed. These are RnB and

gripper extensions. In Figure 3.3, RnB extension complex is shown.

15

3.2 Details of Kobot-T Hardware

3.2.1 Off-the-shelf Systems

Being open-source hardware to let any researcher build the Kobot-T, different OTS

products are utilized in the robot such as:

• An RPi Cam for image acquisition particularly for landmark detection.

• A 5V Step-Up Voltage regulator to increase the voltage of the battery to 5V and

regulate the voltage at 5V.

• A Tello battery, simple and reliable high capacity battery.

• An RPi-0, high-level controller of the robot used both to implement swarm

algorithms and to run simple image processing routines for landmark detection.

• A battery sensor, to keep track of the state of the battery.

• A servo controller, to add additional actuators, grippers sensors, etc, and dis-

tribute power to the actuators.

3.2.2 Low-level Control Board

In Kobot-T, a custom low-level control (LLC) board is designed for motor control,

motor actuation and ground sensing. This choice is made to save space and decrease

the cost of the robot. Since using four different boards each floor sensor, two motor

driver boards, and a microcontroller for motor control increase the footprint and price

considerably. We made the design of the LLC board open source.

The LLC board has two motor drivers, four analog IR sensors for ground reflectivity

measurement, and a Bluepill controller board based on STM32 microcontroller. The

LCC board also has a UART connection as shown in Figure 3.1 for connecting legacy

sensors. The board is placed at the bottom of the chassis of the robot. A/D conversion

of the floor sensors are performed in the LLC board and data is sent to the main con-

troller via I2C. Reference velocity commands are received from the main controller

16

via I2C and actual motor speeds are measured using optical encoders and fed to the

LCC board via input capture port; in which, speeds of the motors are controlled on

STM32.

3.2.3 Tracked Locomotion

In Kobot-T, we used high torque and low speed gearhead motors with magnetic en-

coders to drive tracked locomotion. These motors are controlled by LLC board at

50Hz in closed loop and speed measurements from these motors are demanded at

10Hz by High Level Control Layer. The motor parameters are given in Table 3.1.

As previously mentioned, High Level Control Layer sends reference values to LLC

board. Controller parameters and how LLC closed loop control is achieved is given

in another section.

In order to understand position and orientation of the robot, measured encoder count

per revolution values are evaluated. Since tracked locomotion is a type of differential

drive locomotion, position and orientation of the robot is calculated considering the

rotation of the driving wheel. Forward kinematic equation of differential drive, ζrobot,

is modeled at Equation 3.1 relates rotation of track-driving wheel to translation of the

body [46].

ζrobot =

ẋr

ẏr

θ̇r

 =

(rṙϕ̇r + rlϕ̇l)/2

0

(rṙϕ̇r + rlϕ̇l)/2dwb

 (3.1)

Here ẋr, ẏr and θ̇r, represents forward, lateral and angular velocities that robot can

follow. Kobot-T is unable to move laterally without turning so it is equal to zero at all

times. The parameters of ϕ̇r and ϕ̇r are angular speed of driving wheel, while calcu-

lating the resolution, they are dependent on encoder resolution (δenc) for one wheel.

It should be noted that the left and right wheel radii (rl = rr = r = 18, 25 [mm]) are

the same and dwb represents the driving axle distance that is dwb = 99 [mm]

Using Equation 3.1, one can calculate theoretical resolution of position and orien-

tation. The same evaluation is used inside High Level Controller for position and

velocity control of Kobot-T. ẋr can be divided to an infinitesimal parameter of δxr,

17

together with infinitesimal angle parameter δθ for pure rotation resolution. Using

given information one can now write a resolution equation for position control using

first line of Equation 3.1.

δxr =
r(δenc + δenc)

2
(3.2)

Here, magnetic encoder counts 900 pulses per one wheel revolution (cwheel = 900).

Since one rotation is 2π, encoder resolution for the wheel can be calculated as in

Equation 3.3.

δenc =
2π

cwheel

= 6, 981317.10−3[rad] (3.3)

Therefore, the forward resolution becomes δxr = 1, 2740903525.10−1[mm] Using

the third row of Equation 3.1, pure rotation resolution can be found.

δθr =
r(δenc + δenc)

2.dwb

= 1, 28695995.10−3[rad] (3.4)

Another important parameter for tracked locomotion is the calculation of the max-

imum linear and rotational speeds of the robot. Since the maximum speed of the

motor is ωmax = 100 [RPM] = 10, 4719755 [rad/s], the maximum linear speed can

be calculated by using the first line of Equation 3.1. That being said, the calculation

of ẋrmax = r.ωmax is equal to 0, 191114 [m/s]. The maximum rotational speed for

robot to turn around itself can be calculated by using the third line of Equation 3.1.

θ̇rmax = r.ωmax/dwb = 0, 193044[rad/s] = 11, 060606 [deg/s]. (3.5)

These maximum speed values are not possible to achieve in real life due to physical

limitations of the robot and due to limitation of the maximum peak voltage supplied

to the motors. Kobot-T is never able to supply motors its peak voltage value which

is 6V. Instead, it can supply a maximum of 5V. Therefore, the maximum linear and

rotational speeds are 0, 12 [m/s] and 6, 58 [rad/s], respectively. From the datasheet,

the torque value at this maximum speed can be calculated as follows.

τ = (RPM − 100)/2, 6 = 8, 2740887[kg.mm] = 0, 0827[N.m] (3.6)

At the maximum efficiency of the motor, the torque, τmax is 0, 065 [N.m]. Taking the

mass of the robot as 360 [gr], the maximum acceleration can be calculated and used

18

to calculate the time to reach the maximum linear speed as follows.

feffmax = τmax/r = 3, 33[N] (3.7)

aeffmax = 2.feffmax/m (3.8)

ẋrmax/aeffmax = 0, 01[sec]; (3.9)

It is important to note that many parameters that are calculated in this part are purely

theoretical since non-lineer effects whereas slippage in the tracks, backlash in the

gearbox, and tolerances between the parts are not considered in the model. However,

robot is accurate enough to conduct required rotations and linear movements.

Table 3.1: Motor parameters

Voltage [V] 6

Min. Current [A] 0.07

Max. Current [A] 1.6

Stall torque [Nm] 0.4

Max. Velocity [RPM] 100

Ratio 1:298

3.2.4 Mechanical Design

We designed Kobot-T in three mechanical sections. The bottom section has two tracks

driven independently by two DC gearhead motors. The tracked driving part is from

Polulu’s Zumo robot. At the very bottom of the robot, originally there was the battery

case for 4 AA NiMH batteries. In Kobot-T, instead of using these batteries, we de-

cided to use one cell LiPo battery. This freed more space and increased run time of the

robot. Therefore, we removed the battery case and fit the LLC board there as shown

in Figure 3.5. In the middle section, Kobot-T has its battery and this part also pro-

vides a mechanical interface to connect a gripper. We designed this section such that

cables are easily accessible without the need to disassemble the top section. There are

mainly the OTS parts in the top part including the voltage regulator, camera, RPi-0,

19

Enclosure andWeight Pockets

Rotatable
Cap

RPi Gripper Controller
Board

Camera

Battery
Sensor

Gripper
System

Tracks

Motors

Custom
Designed Board

STM32
BluePill

Battery
Pack

Bottom
Layer

Middle
Layer

Top Layer

Figure 3.4: Exploded View of Kobot-T

gripper control board, battery sensor, and a rotatable hat to ease calibration of any

system fixed to it. In the current setting of Kobot-T, we fixed the RnB sensor to this

hat with the help of spacers. This hat also provides a fastening interface for anything

to be put on top with the help of spacers and fasteners. The hat has locking teeth side

with enough resistance so that it would not shift its position during the experiment.

Metric nuts, spacers, and fasteners are selected in Kobot-T to ease maintenance. It

is possible to see all three sections in the exploded view shown in Figure 3.4. We con-

nected all three sections with the help of metric bolts and nuts. Anyone can change

any section with ease as long as the main connector parts are provided. Also, new

sections can be added on top with the help of vertical spacers. For example, the hat

can be removed, and instead, a new part can be added using vertical stand-offs. To

solve balancing problems, when needed extra weights can be added to the pockets

to lower center of gravity. In its original configuration, Kobot-T already has a lower

center of gravity with its battery, gripper holder section, and motors that are placed

20

Motor Drivers

Floor Sensors

Voltage RegulatorSTM32 BluePill

Figure 3.5: Low-level Control Board

close to the ground.

3.3 Software Details of Kobot-T

Kobot-T’s software architecture consists of layers. These layers mainly work with

their upper and lower peers only with input-output relation and details of low-level

parts of the software are given in the sources file. Although having algorithms run on

a base computer would allow further improvements in communication and run-time;

it is not necessary. Kobot-T does not need a base computer to operate algorithms.

Kobot-Ts can communicate with each other through Wi-Fi. A router is needed for

the preliminary application but it is possible to apply the same system with Wi-Fi

direct. CoRe [1] is used in Kobot-T, allowing supervisor options and a higher level

of control over swarming. In addition, algorithm performance increases significantly

while using a base computer to run swarm algorithms. However, the same algorithms

can be run over any robot itself, and parameter changes, thus supervisor options can

be enabled without a loss. Since communication is also another issue of Kobot-T, if

communication is required, a decentralized structure allows it throughout the Wi-Fi

21

network; if all robots are connected to a router. If base computers or any single robot

need to connect and communicate with the swarm, it first has to establish an SSH

connection with others and publish topics using ROS. Swarm operation, observation,

and parameter change can be done in this way. Both a completely decentralized

multi-robot flow diagram and a base computer using an old version can be seen in

the figures. Using ROS and Linux OS on RPi, ease of access to experimental and

parameter data is established to further ease experiments done by the researcher.

differential_driver

Launch Files
Parameter Server

Logs

Shell Scripts

Base Computer

Behaviour

Velocity Control Loop

MCU,Motor,Motor Driver,
Encoder

Kobot-T Robot 1

Subsystem MDrive Subsystem

Kobot-T Robot N

Swarm Higher Level Control
and Supervision

Hardware Drivers (kobot)Embeded Firmware (i.e. RnB,
STM32 motor controller..)

Behaviorial Programming

Hardware

Figure 3.6: Flow diagram showing base computer dependent usage mode of Kobot-T

Since the purpose of using CoRe software is that it can distribute the workload of the

algorithm that is tested, away from behavior; a single higher-level Python file is used

for each tested behavior, while anything related to low-level control is handled by

22

differential_driver

Launch Files
Parameter Server

Logs

Shell Scripts

Aggregation

Velocity Control Loop

MCU,Motor,Motor Driver,
Encoder

Kobot-T Robot 1

Subsystem MDrive Subsystem

Kobot-T Robot N

Swarm Higher Level Control
and Supervision

Hardware Drivers (kobot)Embeded Firmware (i.e. RnB,
STM32 motor controller..)

Behaviorial Programming

Hardware

Figure 3.7: Flow diagram showing independent usage mode of Kobot-T

launch files and low-level control nodes embedded inside a robot. Calibrations and

parameter changes can be done through ROS parameter change. To test an algorithm

researcher can simply change these parameters or change the algorithm completely

as wished.

3.3.1 Communication Interfaces of Kobot-T

Different communication schemes are used in Kobot-T as depicted in Figure 3.8.

Communication between different layers (RPi-0, gripper controller, RnB sensor, and

the LLC board) of Kobot-T is facilitated by I2C bus. It allows a data stream using

only two wires. In Kobot CoRe, the default I2C bus speed is 100Kbit/s and it is

23

determined by the I2C master, which is RPi-0 in Kobot-T. Bus messages are parsed

into bytes if they are more than 8bit (i.e. 16bit, 32bit like float or long). Whenever I2C

read is requested by the master if the slave is not responding fast enough (determined

by SCL line baud rate) slave performs clock-stretching. There is also a UART port in

the LLC board to connect some legacy sensors.

Communication between different Kobot-T robots is achieved using WiFi via a router

allowing robots to send a messages to another robots directly. This is discussed in the

SRLA method in the next chapter. WiFi is also used to transfer log files and deploy

the latest software in robots remotely. An indirect communication scheme between

the robots exists due to range and bearing sensor. When IR signals of two range and

bearing sensors collide, each robot indirectly communicates its presence to the other.

IR Signal Collision

Camera

LLC

RnB

RPi-0/WiFi

Indirect

Direct

High Bandwidth, High Range

Kobot-T
I2C

Camera

LLC

RnB

RPi-0/WiFi

Kobot-T

Figure 3.8: Flow diagram showing communication architecture between two Kobot-
T robots

3.3.2 Controller Parameters

The tracked driving system consists of two motors with encoders. These motors are

controlled by the LLC board at 50 Hz. The feedback is taken from the magnetic

encoders and reference input is taken from the high-level controller that are fed to the

24

PID controller for speed control. PID controller is designed using the Ziegler-Nichols

method [47]. The controller parameters are then fine-tuned for the robots.

25

Figure 3.9: Kobot-T physical robot

26

CHAPTER 4

METHODOLOGY

In this chapter, details of swarm algorithms used in the thesis are discussed. First,

several functions that are used during run time of swarm algorithms are explained

then the swarm algorithms that are used in this thesis are introduced.

4.1 Avoidance Mechanism

For any swarm algorithms, avoidance of other objects is an important mechanism

to accomplish. For the implementation of avoidance behavior, range and bearing

information gathered from environment is required. Classification of the object en-

countered is also important since avoidance is only done from non-robot obstacles.

The range and bearing (RnB) sensor used in Kobot-T can distinguish between obsta-

cles and robots by comparing IR sensor signals. Mechanism behind this is not in the

scope of this thesis. In this section robot-to-obstacle encounter and robot’s reaction

mechanism to this encounter is covered. Robot-to-robot encounters require different

mechanism that is covered in next section.

In this mechanism, robot avoids obstacles by creating a virtual "force" that pushes

it away from obstacles [48]. A desired distance value σdo is set by researcher to the

maximum desired range that robot should stay away from obstacle. The force is gen-

erated after a certain threshold distance is passed according to given desired distance

value. The threshold value is also a parameter to be set by researcher. Calculated

virtual force of fk is applied to robot by nearby objects for each sensor that detects

an obstacle. Magnitude of this force can be proportional to the square of difference

from the desired distance and is given by Equation 4.1.

27

Heading vector

Detected obstacle
direction

Line of Sight

Kobot-T

RnB

Calculated avoidance
vector

Figure 4.1: Free Body Diagram of obstacle encounter

fk =
−(σ − σdo)

2

C
(4.1)

Where, σ is the distance of object, σdo is desired distance from object and C is the

scaling constant for normalization of fk between 1 and -1.

It is also possible to calculate and use another force magnitude without the square,

and use only difference from the desired distance, if used sensor has higher resolution

and more linear response. In this case magnitude of this force would be as

fk =
(σ − σdes)

C
(4.2)

Desired distances from obstacles are set 800 [mm], no desired distance values are

used for avoiding robots. Since there are ’N’ many sensors for gathering distances,

and they are placed in a circular path with ϕk = 2π/N angular distances; resultant

28

force of p⃗ to be calculated as Equation 4.3

p⃗ = 1/N.
N∑

n=1

fk.e
iϕk (4.3)

Data: Ranges: obstacle range and robot range values

while true do
/*Resultant force vector*/

p⃗ = get_vf(ranges)

/*Resultant heading vector (this is always [1,0] for now to always go

forward when no object is visible, since Kobot-T does not follow any

heading information yet)*/

h⃗ = get_vh(headings)

/*Desired heading vector*/

a⃗des =
h⃗+βp⃗o

|(⃗h+βp⃗o)|

eh = atan2(a⃗c)− atan2(⃗ades)

ω = Kp.eh

if abs(eh < π/2 then
u = (⃗ades .⃗ac)

γumax

else
u = 0

end

go(u,ω)
end

Algorithm 1: Avoidance Algorithm

In Figure 4.1 this mechanism is explained briefly. Here the robot sees an obstacle and

avoids it by the created virtual force vector. Blue colored arrow is the resultant virtual

force actiong on robot. Red colored arrow is the first velocity vector. Black colored

arrow is the resultant velocity vector. Force vector to be generated when obstacle is

inside of the line of sight area that is detectable by robot.

Further more, in Algorithm 1, avoidance mechanism is explained in detail. Here,

desired heading vector calculation is given. It should be noted that this algorithm can

be converted to a flocking algorithm if there exists a heading vector feed from other

29

robots. However, there exists no such communication in Kobot-T yet, thus heading

vector is now taken only to correspond forward velocity vector.

4.2 Robot-to-robot Encounter Mechanism

When a robot encounters another robot, it performs a maneuver by randomly selecting

an angle value in which robot can escape from. Boundaries of this selection are

predetermined. Experiments in this thesis are conducted by determining these values

in between [π, 3π/4] for robot to easily avoid other robot. After robot selects the

random angle, the desired rotation is achieved by turning ϕo + random(π, 3π/4).

Heading vector

Line of Sight

Kobot-T

RnB

Heading vector

Line of Sight

Kobot-T

RnB

Decided random
movement

Decided random
movement

Choose-able area

Choose-able area

Figure 4.2: Movement after of two robot encounter

30

Here ϕo is the obtacle detection angle. This maneuver starts after cue waiting period,

if robots encountered inside the cue area. Waiting period is calculated by checking

the illumination of cue area and mapping it between zero to maximum waiting time

set by user.

In Figure 4.2, two robots detect each other by blue arrows when one enters other’s

line of sight (the purple area). Perpendicular blue detection arrow, blue area shows

ϕo + random(π, 3π/4). The obtacle detection angle is the blue vector’s angle with

respect to the red shown forward heading vector. This heading vector is considered

to be the 0th angle.

4.3 Random action vector selection and reward table calculation

RLA makes random motions and avoids obstacles just like BEECLUST. However,the

random action vector selection process differs from the previous only robot-to-robot

based random angle generation. In RLA, the randomness for exploration is given also

from landmarks. The moment a robot sees a landmark, it collects its ID and position

for the landmark and stores it for further use. After facing a landmark, robot randomly

selects an action vector from predetermined list of action vectors with a probability

function. This process using a probability function allows robot to learn cue area in

time.

Markov Decision Process (MDP) is a mathematical framework where outcomes are

partly random and partly controlled. State space for this framework can be S =

{landmark1, landmark2, ..., landmarkm} for every landmark in the testing ground

where Kobot-T chooses an action vector depending on these landmarks. For finite

MDP problems including unknown reward function and unknown transition function,

like experiment arena; it is possible to use the Q-learning method [49]. It is an off-

policy reinforcement learning method that can be used to derive optimal behavior for

an agent [50]. Using this method, a definition of action space for each landmark is first

defined including discrete action vectors for translation motion from one landmark to

its n number of movable points inside the environment. These are defined as A =

{a⃗1, a⃗2, ..., a⃗n} and their start point is always center of landmark. Because of this,

31

there has to be an addition of vectors to compensate for the position vector between

landmark position and action vector. For instance, an R⃗ position of landmark center

relative to the robot, it compensates for this divergence by following the sum of R⃗+a⃗i.

It is possible to have infinitely many action vectors inside a movable area; however,

in this study, in order not to overwhelm the system, discretized and relatively sparsely

populated action endpoints are used. These points are referred to with their polar

coordinates so that odometer data can be used to move the robot from its landmark

sight position to the action end point position.

Since Q learning requires a reward table, its calculation depends on the ground sensor

to sense the cue intensity value of Ic resulting the reward to be between 0 to 255. The

reward is what is seen by the ground sensors, and its value is updated into the Q table

by recursive Equation 4.4. Similar to BEECLUST, robot-robot encounter results in

random turning without reward; however, obstacle encounter results in a reward, or

punishment, of rt = −1

Qnew(st, at)←− (1− α)Q(st, at) + α[rt] (4.4)

RL techniques, while in application, have two phases. One is training and the other

is testing. The trained RL algorithm can perform better with its updated rewards in

the test and sometimes these two phases are separate. However, in RLA these are not

separate since many features of the test area are mystery for robot such as cue texture,

land conditions, size of the area, starting location, etc.

In the recursive equation of Equation 4.4 it can be seen that Q includes two param-

eters. Q is dependent on st, the state vector of the robot representing the landmarks

in close vicinity of it at time t, and at, the action vector of the robot representing

the action capabilities of the robot for state transitions at time t, in correspondence

to the detected landmarks in st. While calculating Q table, α is an important pa-

rameter for the Q table recursive update rule. It is the parameter to determine the

learning rate. This rate is between 0 and 1, and if it is close to one, the robot’s

learning speed becomes superior but the response becomes very oscillatory similar

to the overshooting problem in classical control systems yet the other end keeps the

robot back from learning at all [50]. In the original form of Equation 4.4, a parame-

ter of γmax
a
{Q(st+1, a)} exists where Q(st+1, a) refers to future predictions. Since

32

Kobot-T needs to move freely after completing an action vector; it is not possible to

predict any future reward, resulting a non-continuous state transition. Therefore, we

set gamma to zero using this equation for calculating Q table.

In detecting a landmark, a robot requires a policy function to choose an action. That

being said, the policy function’s work is to map state space to an action space like

in Equation 4.5. The action can be chosen randomly or by adding stability with the

usage of the value function (explore or exploit). The previously mentioned explore or

exploit dilemma can be seen here as well while choosing an experience-based action

or exploring the environment’s possibilities. For example, reward value can get stuck

in a local minimum or maximum rather than having a global maximum value by

exploring. In RLA this problem is solved by the ε − greedy method [49]. In this

method, a parameter 0 ≤ ε ≤ 1 is defined for the randomness of taken action where

1-ε defines greedy action. Here for ε = 1 actions are randomized always and for the

other end, where ε = 0, the actions are always the learned actions.

Policy function: πt(st) : st −→ at (4.5)

In other words, for a state (landmark) st, the agent chooses the action according to a

probabilistic predetermined rate at which its rate determines the exploration and ex-

ploitation difference, with the increase in rat, increasing the chance of random vector

selection, and decreasing rate, increasing the chance of previously rewarded action

selection.

at =

random selected ar ∈ action space, with probability ε

max
a

Q(st, a), with probability1− ε
(4.6)

4.4 Reward table share and comparison

If two robots coincide with each other inside the cue area and start to sleep, they will

broadcast their previously gained Q table rewards. It is logical to think that some

landmarks and actions taken would not have any rewards as they enter the cue area

and, they will be left empty. Comparison for each st and at will be done by their

reward value comparison. If one landmark/action space combination has a higher

33

reward value than another, that will be the one dominating the other and the other

reward will be deleted.

4.5 BEECLUST

The BEECLUST algorithm is implemented on Kobot-T. For aggregation algorithm;

floor sensor, sense cue area intensity to determine the waiting time; odometer, to un-

derstand the orientation of the robot; RnB, to detect range, bearing and robot sensing

systems are used with velocity motion control. For the BEECLUST algorithm that is

studied, two types of motions are crucial. One is a turn in the case of object encounter,

to explore; and the other is sleep depending on cue intensity, to result in aggregation.

The algorithm of BEECLUST can be summed up in Algorithm 2

Detect obstacle

Launch

Detect a robot

Go Forward

Empty
heading
direction

Turn Random

Obstacle away

from detection

Turn following
generated vector

Waiting time
finished

Wait, depending on cue
brightness

No obstacle
 or robot

Waiting
period

Figure 4.3: Abstract Algorithm of BEECLUST

34

4.6 RLA

RLA algorithm is a landmark and reinforcement learning based aggregation algorithm

from literature, is tested with Kobot-T. The floor sensor and RnB are used similarly

to BEECLUST. However, odometry data is used to understand the orientation and

action vector follower of the robot; a camera is used to detect landmarks. For the

RLA algorithm to be studied, two functions are crucial. One is random action vector

selection, to explore, and the other is reward table calculation. The algorithm of RLA

can be summed up in Algorithm 3

Go Forward

Turn Random

Turn following
generated vector

Wait, depending on cue
brightness

Choose an action
vector

Update Q
table

Detect a
landmark

Action completed:
Robot Seen in Cue
Area

Action incomplete:
Detect an obstacle

No obstacle
 or robot

Empty
heading
directionWaiting time

finished

Waiting
period

Obstacle away
from detection

Detect an obstacle

Action
completed

Update Q
table

De
te

ct
a

ro
bo

t

Launch

Empty
heading
direction

Figure 4.4: Abstract Algorithm of RLA

4.7 SRLA

We proposed novel method as the SRLA algorithm; which is a decentralized land-

mark and reinforcement learning-based aggregation algorithm where Q tables are

35

Go Forward

Turn Random

Turn following
generated vector

Wait, depending on cue
brightness

Choose an action
vector

Update Q
table

Detect a
landmark

Action completed:
Robot Seen in Cue
Area

Action incomplete:
Detect an obstacle

No obstacle
 or robot

Empty
heading
directionWaiting time

finished

Waiting
period

Obstacle away
from detection

Detect an obstacle

Action
completed

Update Q
table

De
te

ct
a

ro
bo

t

Launch

Empty
heading
direction

Q table share sequence

Figure 4.5: Abstract Algorithm of SRLA

shared between robots when they are in the cue area. The floor sensor and RnB

are used similarly to BEECLUST. However, the odometer is used to understand the

orientation and action vector follower of the robot; the camera is used to detect land-

marks. For the SRLA algorithm to be studied, one function is crucial; the sharing of

reward table calculation and comparison. Algorithm of SRLA can be summed up in

Algorithm 4

36

Data: Intensity (I) from ground sensors, RnB and Odometry

while true do

forward_motion(umax);

if object_detected then

object_angle = ϕo;

if not_robot then
generate(p⃗o) #Force vector generation according to object’s

angular position, details of this generation of vector is covered in

avoidance mechanism section

h⃗ = [1, 0] #Heading generation always forward

a⃗des =
h⃗+βp⃗o

|(⃗h+βp⃗o)|
#Desired heading generation;

θ = atan2(⃗h)− atan2(⃗ades);

if abs(θ) < π/2 then

forward_motion(umax.(⃗h.⃗ades));

else
forward_motion(0)

end

turn(θ);

end

if robot then

if I > 0 then
Waiting time is calculated for intensity value measured:

t = I
I+Icalibrated

.tmax;

forward_motion(0);

wait(t);

end

θ = ϕo + random(π/2, π + π/2);

turn(θ)

end

end

end
Algorithm 2: BEECLUST Algorithm

37

Data: Intensity (I) from ground sensors, RnB, ID of Aruco marker, Reward

table and Odometer

while true do

forward_motion(umax);

if landmark_detected then

choose(⃗ai) # Choose action vector a⃗i;

go_through(⃗ai);

if action_completed then

#Update Q(st, at) with rt = I;

break;

else

if robot_detected then

wait(t);

turn(θrandom) # Selected random angle mechanism is given in

Random Vector Decision Mechanism and BEECLUST
else

turn(θreflection) # Reflection angle found by calculating force

vector previously covered in avoidance mechanism and

BEECLUST

#Update Q(st, at) with rt = −1
end

end

else

if robot_detected then

wait(t);

turn(θrandom);

else

turn(θreflection);

end

end

end
Algorithm 3: RLA Algorithm

38

Data: Intensity (I) from ground sensors, RnB, ID of Aruco marker, Reward

table, Shared reward table and Odometer

while true do

forward_motion(umax);

if landmark_detected then

choose(⃗ai)#Choose action vector a⃗i;

go_through(⃗ai);

if action_completed then

#Update Q(st, at) with rt = I;

break;

else

if robot_detected then

wait(t);

Take_Q_shared(Q(spt, apt));

Compare_Q_tables(Q(spt, apt), Q(st, at));

share_Q(Q(st, at));

turn(θrandom);

else

turn(θreflection);

#Update Q(st, at) with rt = −1
end

end

else

if robot_detected then

wait(t);

turn(θrandom);

else

turn(θreflection);

end

end

end
Algorithm 4: SRLA Algorithm

39

40

CHAPTER 5

EXPERIMENTAL ANALYSIS

In this chapter, we examine metric, setup, and simulation platform details of con-

ducted three swarm behavior experiments to prove the designed Kobot-T. While prov-

ing the capabilities of Kobot-T we proposed and tested a novel cue-based aggregation

method based on reinforcement learning and cue communication, SRLA. We con-

ducted experiments on two platforms. First, we performed kinematic simulations on

the algorithms so that they provide what is to be expected from real robot experi-

ments. Also, we tested the novel SRLA method in kinematic simulation experiments

with different settings to clarify its distinction from the RLA algorithm. Next, Kobot-

T’s capability of realizing these algorithms is shown with a real setup. There, real

and simulated values are compared. The chapter stars with metric parameters used in

simulators to measure performances. This is followed by the details of experimental

setup and simulation platform details.

5.1 Metric

Normalized Aggregation Size (NAS) data is a commonly used metric for measuring

the success rate of aggregation in swarm behavior experiments. Mean NAS data after

reaching a steady state is a common parameter to understand which algorithm is better

than the other. NAS values while robots are reaching steady state from transience, and

their mean NAS values after reaching steady state are evaluated to compare overall

performance of each algorithm. This procedure is followed for different settings.

For kinematic simulation experiments, a steady state is declared if the mean value

of the moving averaged metric parameter is within the range of 5% for the last 500

41

time-steps and waited enough to prove steadiness further. Calculation of NAS data

is given in Equation 5.1. Both data collected in software simulations and real robot

experiments are calculated and plotted.

NAS =
ncue

ntotal

(5.1)

All experiments are repeated for a given number of Monte-Carlo trials to deny un-

wanted behaviors caused by initial conditions and noise. Experiments conducted

in both kinematic simulation experiments and real robot experiments have the same

specifications for Kobot-T. Both experiments have the same arena specification of

consisting 6 landmarks, allowing the RLA action cluster to include cue and empty

action points, for each arena size. Three of these landmarks are located at equal dis-

tances from each other on one side of the experiment arena and the other three are

located on the opposite side. Both experiments have a cue modeled as a grey-scale

gradient at which its distribution of the intensity along radial direction was considered

to be 2D Gaussian, centered at the cue.

Table 5.1: Swarm scenario and Kobot-T subsystem tested by.

Subsystem tested BEECLUST RLA cRLA

Motor Position Control - + +

Motor Velocity Control + + +

Odometry + + +

Floor Sensors + + +

Camera - + +

Communication node - - +

Range and Bearing Sensor Integration + + +

On-Board High Level Control + - -

Since landmarks and action vectors represent states in the Q-learning algorithm, their

number is proportional to learning time. As the learning time increases, the time

to reach a steady state for an algorithm increases. Thus landmark sizes are selected

considering this trade-off.

42

From different swarm scenarios, different subsystems of Kobot-T are tested. These

subsystems and their corresponding tested scenarios are given in Table 5.1.

Finally, backward motion was disabled in all experiments for Kobot-T in order not to

confuse the robot during encountering operation.

5.2 Simulation Platform

Figure 5.1: Kinematic simulator test arena, cue in the middle, aruco markers in side
walls

In kinematic simulations, the physical properties of robots are ignored and robots are

modeled only as disk-shaped objects without dynamics. The gradient of cue area was

detected by center illumination of the robot’s position and robots calculate the waiting

time and Q table rewards according to their detection of this gradient. The mechanism

of this procedure is given in previous sections. The action vector size is selected as

44 for each landmark, having four lengths and eleven degree values. This number

of action vectors is selected because of the previously mentioned trade-off. Since

kinematic experiments are conducted on a computer, there is no physical limitation;

thus, the action vector size is kept larger than in real experiments. However, since it

limits the computational time, a larger value is not selected.

Python programming language is used in kinematic simulator experiments. The num-

43

ber of robots used in kinematic simulation experiments was kept low for each arena

size. In these experiments, robots’ maximum waiting time inside the cue after en-

countering another robot is 90 [secs]. Kinematic simulation experiments are con-

ducted with different arena and cue sizes to show performance change corresponding

to different settings. In addition, these experiments laid the path for understanding

the novel method of SRLA covered in this thesis and its performance difference from

other methods.

Each experiment is shown with the 1st and 3rd quartile between each iteration. In

every plot, the center line means the 2nd quartile (or median) of all iterations of

that experiment. These experiments are conducted for 5.105 seconds and the initial

positions of robots are selected as random. For 5.105 seconds, 5.104 data points are

taken. To show a smoother result graph, a moving average procedure with a window

number of 1000 is appointed. In every plot, dashed lines show the performance of

RLA and the same colored continuous lines show the performance of SRLA.

In every time step t of 0.512[sec], the location of nth robot was updated as

xn
t+1

yn
t+1

θnt+1

 =

1 0 0 un

t cosθ
n
t

0 1 0 un
t sinθ

n
t

0 0 1 ωn
t

xn
t

yn
t

θnt

∆t

 (5.2)

Where general parameters used in the experiments are given in Table 5.2. Note that

each length for the action vector is calculated with a percent of the diagonal length of

experiment area, and given "t" value represents each time step.

5.3 Experimental Setup

Since the number of robots is few to conduct high and medium-density swarm algo-

rithms, only low-density swarm experiments are conducted. Parameters for experi-

ments are as shown in Table 5.3. Three different algorithms are used in the exper-

iments as mentioned before. To compare these values, kinematic simulator experi-

ments with the same settings are placed in the results section. Each experiment using

a different algorithm is repeated 3 times and the results are depicted as 1st and 3rd

44

Table 5.2: Kinematic Simulation Experiment Parameters

Parameter name Parameter magnitude

Arena widths {2.5,3.54,5} [m]

Arena heights {5,7.07,10}[m]

Diagonal lengths {5.59, 7.91, 11.18} [m]

Cue radii {0.35,0.5,0.69,0.7,0.98,

1.09,1.38,1.55,2.19} [m]

Radius of a robot 0.06 [m]

Range for robots and obstacles 0.06[m]

Cue intensity [0 255]

Maximum waiting time at the cue 90 [sec]

Total length of each experiments 500000 [sec]

Maximum linear speed 0.12 [m/s]

Number of robots {5,10,20}

Number of landmarks 6

Discount factor of RLA 0

Learning rate of RLA 0.1

Length of action vectors Diagonal length * {0.25,0.50,0.75,1}[m]

Angle of action vectors {0,18,36,54,72,90,108,

126,144,162,180}[deg]

Time step 0.512[sec]

quartiles between each iteration. In every plot, the center line means the 2nd quartile

(or median) of all iterations of that experiment. These experiments are conducted for

5400 seconds and the initial positions of robots are selected as random. For 5400

seconds, 648000 NAS data points are taken from Vicon. From these, re-sampling

is conducted every 10 seconds. Thus, only 540 data points remained. To show a

smoother graph, a moving average procedure with a window of 10 data points is ap-

pointed. In every plot, dashed lines show the performance of RLA and the same

colored continuous lines show the performance of SRLA.

To test algorithms on actual robots, we put landmarks for the RLA and SRLA meth-

45

Figure 5.2: Test arena, cue in the middle, aruco markers in side walls

ods, a tracking system for experimental data collection, four walls to fixate test arena

size, and a gradually changing cue area was needed. In addition, robots need to distin-

guish obstacles and neighboring robots. The RnB system in [1] is used for detection

of robots and obstacles. It uses the reflected signal for discrete range values. It is ca-

pable of high-resolution RnB detection thanks to ToF (time-of-flight) sensors. With

this sensor, robots are capable of detecting obstacles and robots while distinguishing

robots from obstacles.

AruCo markers are used for environmental landmarks [51] since they are easy to

implement and use. For them to be held steadily, holder parts are produced. AruCo

46

markers are held in an inclined position so that their orientation is easily understood

by RPi cam.

For the tracker system to be applied successfully, it should be able to collect time and

pose data together accurately so that it is used for the resulting data for experimental

data collection. Considering this, one of the best tracking systems is used consisting

of 12 IR-capable, Vicon Vantage v16 [52] cameras. From Vicon GUI, users can define

any specific object and track its orientation change with its time stamps. For Vicon to

understand objects and distinguish one object from another; it requires retro deflective

ball markers. These markers reflect any oncoming light array directly to its source so

that it is distinguished by IR Cameras. Since robots’ movements sometimes occlude

some of the markers to be seen and this situation interferes with the data collected; a

separate ball marker deck is added on top of the Range and Bearing system; together

with a retro-reflective sight enhancer for robots to see each other better. The ball

marker deck is an OTS product that is originally designed for CrazyFlie drones

For every robot, objects are created from Vicon GUI, and time-stamped location data

is collected with 120 Hz. The collection process was simple; the origin of the Vicon

arena is set to be in the middle of the cue arena and robots’ position data was collected

by collecting log data of created ROS node for Vicon. In order not to interfere robot’s

location information and prove that Vicon does not position control robots, a separate

computer was used to collect data. Collected data is then stored as an array and

time corrections, and further calculations over data are done throughout this separate

computer.

A cue arena for robots to understand was created as a grey-scale gradient as previ-

ously mentioned. This gradient was detected by floor sensors and robots calculated

the waiting time and Q table rewards according to their detection of this gradient.

Before experiments, floor sensors are calibrated to reject any noise and to sense in-

side the desired cue radius. To understand aggregation, the collected pose data that

coincides with the desired cue radius was selected from the overall collection of the

pose data and counted (ncue). Since Vicon sees every robot inside the experiment

area, the number of robots (nrobot) used in the experiment can be counted by it. Be-

fore the experiment, since it is arranged that cue is the origin of the Vicon map, and

47

robots entering and exiting the cue are automatically recorded with this selection.

This recorded data is then calculated as normalized aggregation size data (NAS). Pa-

rameter sets used during experiments are given in Table 5.3

Table 5.3: Experiment parameters

Parameter name Parameter magnitude

Maximum linear speed 0.12 [m/s]

Maximum angular speed 0.8[rad/s]

Number of landmarks 6

Area lengths 1400 x 2800 [mm]

Number of robots 4

Radius of a robot 0.06 [m]

Experiment time 5400 [sec]

Cue Radius 0.3 [m]

Cue intensity [0 255]

Maximum waiting time at the cue 90 [sec]

Number of landmarks 6

Discount factor of RLA 0

Learning rate of RLA 0.1

Length of action vectors 1,1.4[m]

Angle of action vectors 36,90,144[deg]

Discount factor of RLA 0

Learning rate of RLA 0.1

Data collection speed (from Vicon) 120[Hz]

48

CHAPTER 6

RESULTS AND DISCUSSION

In this chapter, experiment results of both kinematic simulator and real robot experi-

ments are reported. The chapter describes kinematic simulator experiments followed

by robot experiments. Lastly, all the experimental results are discussed in detail.

6.1 Kinematic Simulator Results

To understand the differences in performance between RLA and SRLA, different cue

radii and cue to total area rates settings were applied.

At first, SRLA and RLA are compared with the same cue radius size and different

total areas. Here the effect of different arena sizes is used to see the change in per-

formance of SRLA compared to RLA. In this experiment; five robots in the arena

of 2.5x5 [m] stabilized around 0.61 NAS value using SRLA and 0.57 for RLA, ten

robots in the arena of 3.54x7.07 [m] stabilized around 0.47 NAS value using SRLA

and 0.36 for RLA,twenty robots in the arena of 5.0x10.0 [m] stabilized around 0.20

NAS value using SRLA and 0.11 for RLA. Results of the first experiment with the

same cue radius of 0.7 [m] are given in Experiment 6.1.

In the second experiment, SRLA and RLA are compared at the same cue to total arena

rates with different cues and total arenas. Here the effect of different arena sizes is

used to see the change in performance of SRLA compared to RLA; while keeping

the cue area proportional to the total area. In this experiment; five robots in the arena

of 2.5x5 [m] stabilized around 0.46 NAS value using SRLA and 0.28 for RLA, ten

robots in the arena of 3.54x7.07 [m] stabilized around 0.29 NAS value using SRLA

49

and 0.17 for RLA,twenty robots in the arena of 5.0x10.0 [m] stabilized around 0.20

NAS value using SRLA and 0.11 for RLA. Results of the second experiment with

the same cue to the total area rate of 0.03 [m] are given in Experiment 6.2. To ease

performance comparison, in both experiments, green showed 20 robots, and the 5x10

[m] total area used part is repeated.

In the third and fourth experiments, SRLA and RLA are compared at the same cue

to total arena rates with different cues and total arenas but with larger rates than the

second experiment. Here the effect of the increase in this rate is used to see the change

in performance of SRLA compared to RLA; while keeping the cue area proportional

to the total area for each experiment.

For the third experiment, cue to a total area rate of 0.12 is used. Here, five robots in

the arena of 2.5x5 [m] stabilized around 0.64 NAS value using SRLA and 0.56 for

RLA, ten robots in the arena of 3.54x7.07 [m] stabilized around 0.57 NAS value using

SRLA and 0.45 for RLA,twenty robots in the arena of 5.0x10.0 [m] stabilized around

0.42 NAS value using SRLA and 0.36 for RLA. Results of the third experiment with

the same cue to total area rate of 0.12 [m] are given in Experiment 6.3.

For the fourth experiment, cue to a total area rate of 0.3 is used. Here, five robots in

the arena of 2.5x5 [m] stabilized around 0.67 NAS value using SRLA and 0.64 for

RLA, ten robots in the arena of 3.54x7.07 [m] stabilized around 0.64 NAS value using

SRLA and 0.58 for RLA,twenty robots in the arena of 5.0x10.0 [m] stabilized around

0.54 NAS value using SRLA and 0.50 for RLA. Results of the third experiment with

the same cue to total area rate of 0.3 [m] are given in Experiment 6.4.

50

0 100000 200000 300000 400000 500000

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e
Cue radius: 0.7 [m]

SRLA, Robot: 5, Size: 5000 x 2500 [mm], Cue to Total Area: 0.12

RLA, Robot: 5, Size: 5000x2500 [mm], Cue to Total Area: 0.12

SRLA, Robot:10, Size: 7070x3540 [mm], Cue to Total Area: 0.06

RLA, Robot: 10, Size: 7070x3540 [mm], Cue to Total Area: 0.06

SRLA, Robot: 20, Size: 10000x5000 [mm], Cue to Total Area: 0.03

RLA, Robot: 20, Size: 10000x5000 [mm], Cue to Total Area: 0.03

Figure 6.1: Comparison of RLA and SRLA in same cue radius of 0.7 [m], vary-
ing experiment area sizes. Dashed line shows results from RLA experiments having
5 iterations and single line shows results from SRLA experiments having 5 itera-
tions. Experiment arena sizes for red lines are 2500x5000 [mm], for blue lines are
3540x7070 [mm], for green lines are 5000x10000 [mm].

0 100000 200000 300000 400000 500000

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

(Cue Area)/(Total Area): ~0.03

SRLA, Robot:5, Size: 2500x5000 [mm]

RLA, Robot: 5, Size: 2500x5000 [mm]

SRLA, Robot: 10, Size: 3540x7070 [mm]

RLA, Robot: 10, Size: 3540x7070 [mm]

SRLA, Robot: 20, Size: 10000x5000 [mm]

RLA, Robot: 20, Size: 10000x5000 [mm]

Figure 6.2: Comparison of RLA and SRLA in same cue to total area rate of 0.03,
varying cue radii. Arena sizes changes same as Figure 6.1 together with cue area
radius. For red lines it is 0.35 [m], for blue lines it is 0.50 [m], and for green lines it
is 0.7 [m].

51

0 100000 200000 300000 400000 500000

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

(Cue Area)/(Total Area): ~0.12

SRLA, Robot: 5, Size: 2500x5000 [mm]

RLA, Robot:5, Size: 2500x5000 [mm]

SRLA, Robot: 10, Size: 3540x7070[mm]

RLA, Robot: 10, Size: 3540x7070 [mm]

SRLA, Robot: 20, Size: 5000x10000[mm]

RLA, Robot: 20, Size: 5000x10000 [mm]

Figure 6.3: Comparison of RLA and SRLA in same cue to total area rate of 0.12,
varying cue radii. Arena sizes changes same as Figure 6.1 together with cue area
radius. For red lines it is 0.69 [m], for blue lines it is 0.98[m], and for green lines it is
1.38 [m].

0 100000 200000 300000 400000 500000

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

(Cue Area)/(Total Area): ~0.3

SRLA, Robot: 5, Size: 2500x5000 [mm]

RLA, Robot: 5, Size: 2500x5000 [mm]

SRLA, Robot: 10, Size: 3540x7070 [mm]

RLA, Robot: 10, Size: 3540x7070 [mm]

SRLA, Robot: 20, Size: 5000x10000 [mm]

RLA, Robot: 20, Size: 5000x10000[mm]

Figure 6.4: Comparison of RLA and SRLA in same cue to total area rate of 0.3,
varying cue radii. Arena sizes changes same as Figure 6.1 together with cue area
radius. For red lines it is 1.09 [m], for blue lines it is 1.55 [m], and for green lines it
is 2.19 [m].

52

6.2 Real Robot Results

To understand if Kobot-T accomplishes each algorithm, kinematic simulator experi-

ments with the same settings as real robot experiments are run.

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

Real Robot Experiments

SRLA, Mean: 0.73512

RLA, Mean: 0.72151

BEECLUST, Mean: 0.42288

200010000 3000 4000 5000

Figure 6.5: Comparison of RLA, SRLA and BEECLUST in real robot experiment.
1.4x2.8[m] arena with the cue radius of 0.3 [m] is used. Each algorithm used for
three iterations. 1st and 3rd quartiles from the data gathered from three iterations are
shown as faded areas and 2nd on (mean) is shown as center line. Red line is the result
from RLA algorithm. Green line is the result from SRLA algorithm. Blue line is the
result from BEECLUST algorithm.

In Figure 6.6 BEECLUST, SRLA and RLA results are compared. These values are

from the kinematic simulator. Here the same cue to total arena size with real exper-

iment area and same cue radius is used; that is 1.4x2.8 [m] total area with 0.3 [m]

cue radius. In this experiment; four robots in the arena stabilized around 0.71 NAS

value using SRLA, 0.68 for RLA, and 0.23 for BEECLUST. The same declaration of

stabilization method is used for kinematic simulator experiments in this experiment

as well.

In Figure 6.5, BEECLUST, SRLA and RLA results are compared. These values are

from real robot experiments. Here 1.4x2.8 [m] total area size with 0.3 [m] cue radius

is used as experiment arena. In this experiment; four robots in the arena stabilized

around 0.74 NAS value using SRLA, 0.72 for RLA, and 0.42 for BEECLUST.

53

0 100000 200000 300000 400000 500000

Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e
Cue radius: 0.3 [m], (Cue Area)/(Total Area): ~0.07

SRLA, Robot: 4, Size: 1400x2800 [mm]

RLA, Robot:4, Size: 1400x2800 [mm]

BEECLUST, Robot: 4, Size: 1400x2800 [mm]

Figure 6.6: Comparison of RLA, SRLA and BEECLUST in kinematic simulator.
Same sizes are used. Each algorithm tested used for five iterations. 1st and 3rd
quartiles from the data gathered from three iterations are shown as faded areas and
2nd on (mean) is shown as center line. Red continuous line is the result from SRLA
algorithm. Red dashed line is the result from RLA algorithm. Blue line is the result
from BEECLUST algorithm.

6.3 Discussion

SRLA is advantageous in low-density environments similar to RLA. Between RLA

and SRLA, as the cue size and cue-to-total area rate decrease, the distinction between

RLA and SRLA gets clear. As the possibility of robot-to-robot encounters decreases,

even in the same robot density; SRLA shows better performance.

To understand better, box plots of previously given experimental results for different

cues and cue-to-total area size rates are given. These box plots only include raw

data results after observing stabilization in previous plots. Since previous plots only

included moving averaged data, and even if plots are stabilized in these; raw data

comparison can give a reliable comparison. Thus after reaching stabilization and

waiting sufficiently enough, raw data is taken from previously used line plots and

box plots are created from them. The last 50000 seconds from 500000 seconds of

experiments are taken for this action. In these plots, the orange line shows stabilized

median NAS data. Boxes show upper and lower quartiles of the data gathered and

lines show minimum and maximum whiskers.

54

In Figures 6.7 and 6.8 one can observe that after stabilizing interquartile ranges of

SRLA always remain superior than RLA values.

However, as cue-to-total-area rate increases and the possibility of robot-to-robot en-

counters increases; these ranges start to converge into similar values. This is clearly

observed in Figures 6.9 and 6.10. There are several possible reasons for this to occur.

First, since the cue size increases more action vectors end up inside the cue arena;

resulting in the privilege gained from communication fading. However, this only ex-

plains the result of cue size change. Second, considering the total area size decreases

with the same cue-to-total-area but waiting time over the cue arena does not change,

the number of robots that can encounter while one is waiting inside the cue arena

decreases, since the speed of robots also does not change in this setup.

Real robot experiments show better results for the same experiment specifications.

Several reasons for this can be given. Robots’ physical and dynamic models are not

covered fully in the kinematic experiments. For example, while escaping the cue

area after waiting time, robots can see each other and end "cue escape movement";

resulting in the robot sleeping again. Also "cue escape movement" checks nearby

obstacles within a certain radius and then starts the movement. The line of sight on

the front side of the robot is programmed to be more sensitive and detects robots from

further distances. However, sides are less sensitive thus controlled areas for obstacles

are fewer. If there is an obstacle outside of the controlled circle; and the robot starts

moving as if there is nothing in that area, sleeping is initiated again after encountering

a robot further from the controlled side area. Another example of this divergence is

that filtering of RnB sensors sometimes is not enough to filter somehow amplified

signal data from the environment or multiple robots; thus, generates noise data as

obstacle data and sees robots or obstacles earlier than it should. It is also possible that

signals that Vicon uses to interfere with the RnB sensor.

55

SRLA, Robot: 5 RLA, Robot: 5 SRLA, Robot:10 RLA, Robot: 10 SRLA, Robot: 20 RLA, Robot: 20

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

Cue radius: 0.7 [m]

Figure 6.7: Comparison of RLA and SRLA in same cue radius of 0.7 [m], varying
experiment area sizes. From left to right results from experiment arena sizes for
2500x5000 [mm], 3540x7070 [mm], and 5000x10000 [mm] can be seen with pairs.
As the number of robot and arena size increases, stabilized NAS value decreases.

SRLA, Robot:5 RLA, Robot: 5 SRLA, Robot: 10 RLA, Robot: 10 SRLA, Robot: 20 RLA, Robot: 20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

(Cue Area)/(Total Area): ~0.03

Figure 6.8: Comparison of RLA and SRLA in same cue-to-total-area rate of 0.03,
varying cue radii. From left to right results from experiment arena sizes are the same
as 6.7. As the number of robot and arena size increases, stabilized NAS value de-
creases.

56

SRLA, Robot: 5 RLA, Robot:5 SRLA, Robot: 10 RLA, Robot: 10 SRLA, Robot: 20 RLA, Robot: 20

0.2

0.4

0.6

0.8

1.0
N

o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e
(Cue Area)/(Total Area): ~0.12

Figure 6.9: Comparison of RLA and SRLA in same cue-to-total-area rate of 0.12,
varying cue radii. From left to right results from experiment arena sizes are the same
as 6.7.

SRLA, Robot: 5 RLA, Robot: 5 SRLA, Robot: 10 RLA, Robot: 10 SRLA, Robot: 20 RLA, Robot: 20

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
li

ze
d

 A
g

g
re

g
a
ti

o
n

 S
iz

e

(Cue Area)/(Total Area): ~0.3

Figure 6.10: Comparison of RLA and SRLA in same cue-to-total-area rate of 0.3,
varying cue radii. From left to right results from experiment arena sizes are the same
as 6.7.

57

58

CHAPTER 7

CONCLUSION

In this thesis, development of social reinforcement learning-based aggregation method

is covered together with the production of Kobot-T, a tracked robot to be used in

swarm experiments. Kobot-T consists of several onboard systems. Kobot-T uses

parts of Kobot CoRe architecture. To this architecture, Kobot-T introduces commu-

nication and in Kobot-T several subsystems are simplified by the designed board.

We developed Kobot-T to be used in foraging and aggregation experiments with sim-

ple subsystem addition and subtraction. Interfaces for these subsystems are developed

and some of them, such as the RnB subsystem, are tested in cue-based aggregation

experiments. Results gathered from cue-based aggregation experiments show that the

interface of RnB works well.

We tested different aggregation methods, and the communication capability added

to Kobot-CoRe together with novel social reinforcement learning-based aggregation

method. To understand its effects, at first, previously used kinematic simulation in

[44] was used. Here, important aspects and powerful sides of this method from the

previously developed non-communicating version of this method, RLA, were deter-

mined. Then, robotic applications of all of the methods are done. Robotic application

of SRLA could not show SRLA and RLA distinction well enough. Simulation re-

sults having a larger total area of 2.8x3.5 [m] with the same cue and robot parameters

shows more distinct results. It is possible to repeat real robot experiments with larger

experiment areas to show the importance of SRLA in real robots as well.

The need for prior knowledge about the experiment arena, that is previously needed

for RLA method, still exists in the proposed method. However, the communication

59

among robots is currently made through Wi-Fi connections. Thus Its possible that

this thesis might develop in four directions. First, local communication can be added

to terminate Wi-Fi-based local communication. Second, different communication

strategies for changing cue areas can be adapted. Third, the developed gripper inter-

face can be used in foraging swarm applications. Fourth, with different search and

mapping algorithms, dependence on prior knowledge in the experiment arena can be

avoided.

60

REFERENCES

[1] C. Bilaloğlu, “Development of an extensible heterogeneous swarm robot plat-

form,” Master’s thesis, Middle East Technical University, 2022.

[2] I. d. C. Guimaraes, M. C. Pereira, N. R. Batista, C. A. P. Rodrigues, and W. F.

Antonialli, “The complex nest architecture of the ponerinae ant odontomachus

chelifer,” PLoS One, vol. 13, no. 1, p. e0189896, 2018.

[3] R. M. Adams, U. G. Mueller, T. R. Schultz, and B. Norden, “Agro-

predation: usurpation of attine fungus gardens by megalomyrmex ants,” Natur-

wissenschaften, vol. 87, no. 12, pp. 549–554, 2000.

[4] C. Wen, J. Chen, W.-Q. Qin, X. Chen, J.-C. Cai, J.-B. Wen, X.-J. Wen, and

C. Wang, “Red imported fire ants (hymenoptera: Formicidae) cover inaccessi-

ble surfaces with particles to facilitate food search and transportation,” Insect

Science, vol. 28, no. 6, pp. 1816–1828, 2021.

[5] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula, and

E. Bonabeau, “Self-organization in biological systems,” in Self-Organization

in Biological Systems, Princeton university press, May 2020.

[6] H. Haken, “Self-organization,” Scholarpedia, vol. 3, no. 8, p. 1401, 2008. revi-

sion #139276.

[7] A. Gupta, Y. Das, and B. Rao, “Anatomy of the cockroach,” Cockroaches as

Models for Neurobiology: Applications in Biomedical Research, vol. 1, pp. 33–

39, 1990.

[8] R. E. Snodgrass, Anatomy of the honey bee. Cornell University Press, 1956.

[9] M. Dorigo and M. Birattari, “Swarm intelligence,” Scholarpedia, vol. 2, no. 9,

p. 1462, 2007. revision #138640.

[10] G. Beni, “From swarm intelligence to swarm robotics,” in International Work-

shop on Swarm Robotics, pp. 1–9, Springer, 2004.

61

[11] T. Schmickl and H. Hamann, “Beeclust: A swarm algorithm derived from hon-

eybees,” Bio-inspired computing and communication networks, pp. 95–137,

2011.

[12] M. Dorigo, M. Birattari, and M. Brambilla, “Swarm robotics,” Scholarpedia,

vol. 9, no. 1, p. 1463, 2014. revision #138643.

[13] J. R. Riley, U. Greggers, A. D. Smith, D. R. Reynolds, and R. Menzel, “The

flight paths of honeybees recruited by the waggle dance,” Nature, vol. 435,

no. 7039, pp. 205–207, 2005.

[14] F. C. Dyer and J. L. Could, “Honey bee navigation: The honey bee’s ability to

find its way depends on a hierarchy of sophisticated orientation mechanisms,”

American Scientist, vol. 71, no. 6, pp. 587–597, 1983.

[15] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano, J.-L.

Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo, “Swarm-bot: A new

distributed robotic concept,” Autonomous robots, vol. 17, no. 2, pp. 193–221,

2004.

[16] G. Caprari and R. Siegwart, “Mobile micro-robots ready to use: Alice,” in 2005

IEEE/RSJ international conference on intelligent robots and systems, pp. 3295–

3300, IEEE, 2005.

[17] R. B. Rusu, R. Robotin, G. Lazea, and C. Marcu, “Towards open architectures

for mobile robots: Zeero,” in 2006 IEEE International Conference on Automa-

tion, Quality and Testing, Robotics, vol. 2, pp. 260–265, IEEE, 2006.

[18] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Mag-

nenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-puck, a robot de-

signed for education in engineering,” in Proceedings of the 9th conference on

autonomous robot systems and competitions, pp. 59–65, IPCB: Instituto Politéc-

nico de Castelo Branco, 2009.

[19] C. M. Cianci, X. Raemy, J. Pugh, and A. Martinoli, “Communication in a swarm

of miniature robots: The e-puck as an educational tool for swarm robotics,” in

International Workshop on Swarm Robotics, pp. 103–115, Springer, 2006.

62

[20] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost scalable robot

system for collective behaviors,” in 2012 IEEE international conference on

robotics and automation, pp. 3293–3298, IEEE, 2012.

[21] M. S. Talamali, T. Bose, M. Haire, X. Xu, J. A. Marshall, and A. Reina, “So-

phisticated collective foraging with minimalist agents: a swarm robotics test,”

Swarm Intelligence, vol. 14, no. 1, pp. 25–56, 2020.

[22] C. Dimidov, G. Oriolo, and V. Trianni, “Random walks in swarm robotics: an

experiment with kilobots,” in International conference on swarm intelligence,

pp. 185–196, Springer, 2016.

[23] G. Valentini, E. Ferrante, H. Hamann, and M. Dorigo, “Collective decision with

100 kilobots: Speed versus accuracy in binary discrimination problems,” Au-

tonomous agents and multi-agent systems, vol. 30, no. 3, pp. 553–580, 2016.

[24] M. Agrawal and S. C. Glotzer, “Scale-free, programmable design of morphable

chain loops of kilobots and colloidal motors,” Proceedings of the National

Academy of Sciences, vol. 117, no. 16, pp. 8700–8710, 2020.

[25] C. Skjetne, P. C. Haddow, A. Rye, H. Schei, and J.-M. Montanier, “The chirp

robot: A versatile swarm robot platform,” in Robot Intelligence Technology and

Applications 2, pp. 71–82, Springer, 2014.

[26] L. Paull, J. Tani, H. Ahn, J. Alonso-Mora, L. Carlone, M. Cap, Y. F. Chen,

C. Choi, J. Dusek, Y. Fang, et al., “Duckietown: an open, inexpensive and flexi-

ble platform for autonomy education and research,” in 2017 IEEE International

Conference on Robotics and Automation (ICRA), pp. 1497–1504, IEEE, 2017.

[27] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm: A large

nano-quadcopter swarm,” in 2017 IEEE International Conference on Robotics

and Automation (ICRA), pp. 3299–3304, IEEE, 2017.

[28] F. Arvin, J. Espinosa, B. Bird, A. West, S. Watson, and B. Lennox, “Mona:

an affordable open-source mobile robot for education and research,” Journal of

Intelligent & Robotic Systems, vol. 94, no. 3, pp. 761–775, 2019.

[29] A. West, F. Arvin, H. Martin, S. Watson, and B. Lennox, “Ros integration for

miniature mobile robots,” 07 2018.

63

[30] Z. Liu, C. West, B. Lennox, and F. Arvin, “Local bearing estimation for a swarm

of low-cost miniature robots,” Sensors, vol. 20, no. 11, p. 3308, 2020.

[31] F. Arvin, A. E. Turgut, T. Krajník, and S. Yue, “Investigation of cue-based aggre-

gation in static and dynamic environments with a mobile robot swarm,” Adaptive

Behavior, vol. 24, no. 2, pp. 102–118, 2016.

[32] A. S. Amjadi, M. Raoufi, A. E. Turgut, G. Broughton, T. Krajník, and F. Arvin,

“Cooperative pollution source exploration and cleanup with a bio-inspired

swarm robot aggregation,” in International Conference on Collaborative Com-

puting: Networking, Applications and Worksharing, pp. 469–481, Springer,

2020.

[33] A. Vardy, “Aggregation in robot swarms using odometry,” Artificial Life and

Robotics, vol. 21, no. 4, pp. 443–450, 2016.

[34] J. Reinhard, M. V. Srinivasan, D. Guez, and S. W. Zhang, “Floral scents induce

recall of navigational and visual memories in honeybees,” Journal of Experi-

mental Biology, vol. 207, no. 25, pp. 4371–4381, 2004.

[35] J. Reinhard, M. V. Srinivasan, and S. Zhang, “Scent-triggered navigation in hon-

eybees,” Nature, vol. 427, no. 6973, pp. 411–411, 2004.

[36] M. V. Srinivasan, “Honey bees as a model for vision, perception, and cognition,”

Annual Review of Entomology, vol. 55, pp. 267–284, 2010.

[37] T. Collett, “Insect navigation en route to the goal: multiple strategies for the use

of landmarks,” The Journal of Experimental Biology, vol. 199, no. 1, pp. 227–

235, 1996.

[38] S. A. Kumar, B. Sharma, J. Vanualailai, and A. Prasad, “Stable switched con-

trollers for a swarm of ugvs for hierarchal landmark navigation,” Swarm and

Evolutionary Computation, vol. 65, p. 100926, 2021.

[39] T. Krajník, J. Faigl, V. Vonásek, K. Košnar, M. Kulich, and L. Přeučil, “Simple

yet stable bearing-only navigation,” Journal of Field Robotics, vol. 27, no. 5,

pp. 511–533, 2010.

64

[40] M. S. Teymouri, Landmark-based Distributed Topological Mapping and Nav-

igation in GPS-denied Urban Environments Using Teams of Low-cost Robots.

PhD thesis, Lehigh University, 2021.

[41] L. Halodová, E. Dvořráková, F. Majer, T. Vintr, O. M. Mozos, F. Dayoub, and

T. Krajník, “Predictive and adaptive maps for long-term visual navigation in

changing environments,” in 2019 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pp. 7033–7039, IEEE, 2019.

[42] N. Lemmens and K. Tuyls, “Stigmergic landmark foraging,” in Proceedings

of The 8th International Conference on Autonomous Agents and Multiagent

Systems-Volume 1, pp. 497–504, 2009.

[43] A. S. Amjadi, M. Raoufi, and A. E. Turgut, “A self-adaptive landmark-based ag-

gregation method for robot swarms,” Adaptive Behavior, vol. 30, no. 3, pp. 223–

236, 2022.

[44] A. S. Amjadi, “Landmark-based aggregation method for robot swarms,” Mas-

ter’s thesis, Middle East Technical University, 2021.

[45] “Ros official website.” https://www.ros.org/.

[46] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous

mobile robots. MIT press, 2011.

[47] J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers,”

Journal of Dynamic Systems, Measurement, and Control, vol. 115, pp. 220–222,

jun 1993.

[48] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard, Prin-

ciples of robot motion: theory, algorithms, and implementations. MIT press,

2005.

[49] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.

[50] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

65

https://www.ros.org/

[51] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-

Jiménez, “Automatic generation and detection of highly reliable fiducial mark-

ers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.

[52] “Vicon brochure.” https://www.vicon.com/cms/wp-content/

uploads/2019/05/Vantage_brochure.pdf.

66

https://www.vicon.com/cms/wp-content/uploads/2019/05/Vantage_brochure.pdf
https://www.vicon.com/cms/wp-content/uploads/2019/05/Vantage_brochure.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF ABBREVIATIONS
	introduction
	Literature Survey
	Literature Survey of Swarm Applicable Robots
	Cue-based Aggregation Algorithms Covered by Previous Swarm Robots
	Contributions of thesis

	Development of Kobot-T Robot
	Architecture
	Hardware Architecture
	High-Level Control Layer
	Sensing Layer
	Locomotion and Power Layer

	ROS architecture of Kobot-T
	Extensions

	Details of Kobot-T Hardware
	Off-the-shelf Systems
	Low-level Control Board
	Tracked Locomotion
	Mechanical Design

	Software Details of Kobot-T
	Communication Interfaces of Kobot-T
	Controller Parameters

	Methodology
	Avoidance Mechanism
	Robot-to-robot Encounter Mechanism
	Random action vector selection and reward table calculation
	Reward table share and comparison
	BEECLUST
	RLA
	SRLA

	Experimental Analysis
	Metric
	Simulation Platform
	Experimental Setup

	Results and Discussion
	Kinematic Simulator Results
	Real Robot Results
	Discussion

	Conclusion
	REFERENCES

