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ABSTRACT

In this paper, we investigate tensor based nonintrusive reduced-order models (ROMs) for parametric
cross-diffusion equations. The full-order model (FOM) consists of ordinary differential equations
(ODEs) in matrix or tensor form resulting from finite-difference discretization of the differential
operators by taking the advantage of Kronecker structure. The matrix/tensor differential equations
are integrated in time with the implicit-explicit (IMEX) Euler method. The reduced bases, relying
on a finite sample set of parameter values, are constructed in form of a two-level approach by ap-
plying higher-order singular value decomposition (HOSVD) to the space-time snapshots in tensor
form, which leads to a large amount of computational and memory savings. The nonintrusive re-
duced approximations for an arbitrary parameter value are obtained through tensor product of the
reduced basis by the parameter dependent core tensor that contains the reduced coefficients. The
reduced coefficients for new parameter values are computed using radial basis function (RBF) in-
terpolation. The efficiency of the proposed method is illustrated through numerical experiments for
two-dimensional Schnakenberg and three-dimensional Brusselator cross-diffusion equations. The
spatiotemporal patterns are accurately predicted by the reduced-order models with speed-up factors
of orders two and three over the full-order models.

Keywords Pattern formation, implicit-explicit methods, matrix differential equations, Sylvester equation, reduced
order modelling, tensor algebra

1 Introduction

Reaction-diffusion systems have been largely employed in literature to predict spatiotemporal patterns occurring in
biological sciences, chemistry and physics. The correlation between diffusion and cross-diffusion terms may cause
unstable steady solutions in form of patterns like labyrinths, spots, stripes, etc. These patterns may exhibit dynamical
behavior like oscillation, annihilation, aggregation, segregation, and replication in a long time. The common aspect of
pattern formation is the interplay between diffusion and reaction, known as diffusion-driven or Turing instability. A
generalization of diffusion-driven instability is the cross-diffusion, which is characterized by a gradient in the density
of one species inducing a flux in direction of another species. Reaction-diffusion models which take into account
the effects of self-diffusion as well as cross-diffusion are widely used to describe spatiotemporal dynamics of many
two interacting species [1, 2, 3, 4, 5, 6, 7, 8, 9]. In contrast to the classical reaction-diffusion systems without cross-
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diffusion, it is no longer necessary to enforce that one of the species diffuses much faster than the other for the
occurrence of spatiotemporal patterns [5].

Cross-diffusion systems are coupled systems of semi-linear partial differential equations (PDEs). They have been
discretized in space by various methods like finite differences, finite volumes, and finite elements. In order to resolve
the patterns accurately, very fine meshes in space and time are needed in numerical simulations. The effects of
cross-diffusion on pattern formation in reaction-diffusion systems have been studied theoretically and numerically in
many papers. Numerical simulations require fine spatial grids and long-term integration. Furthermore, multi-query
simulations are required for the prediction of patterns in the parameter space. A Cross-diffusion system involves many
parameters limiting the use of standard vector-based ordinary differential equation (ODE) solvers in time because of
excessive computational costs in two and three-dimensional domains. Under certain assumptions on the domain, one
can take advantage of the Kronecker structure arising in standard space discretizations of the differential operators,
and the resulting system of ODEs can be treated directly in matrix or tensor form [10, 11, 12, 13]. By exploiting the
structure of the diffusion matrix, the matrix/tensor based versions of classical time integrators, such as implicit-explicit
(IMEX) methods [12] allow for much finer problem discretizations. They are based on the explicit factorization of
small matrices, requiring a sequence of small matrix/tensor problems, i.e., Sylvester equations. Exploiting the spectral
structure of these matrices, the computational cost is reduced further. Due to the modest size of these matrices, the
computational cost per iteration can be made lower than that of the corresponding vector approaches, by working
in the reduced spectral space. In this paper, we employ the matrix/tensor oriented strategy in [12] for space-time
discretization of cross-diffusion systems in two and three-dimensional domains.

Simulation of the cross-diffusion systems to predict the spatiotemporal patterns for different parameter combinations
take a long time and are computationally very expensive. Reduced-order model (ROM) methods have been developed
to reduce the dimension of large dynamic systems. The main idea of ROM is to construct basis functions on low-
dimensional reduced space and then project onto a full-order model (FOM) to obtain reduced-order solutions. ROMs
for time-dependent parametrized PDEs have to approximate solutions as a function of time, spatial coordinates, and
a parameter vector, which turns out to be more challenging. Reduced-order modeling techniques are generally im-
plemented in an offline-online paradigm. In the offline stage, a set of reduced basis functions are extracted from the
snapshots, i.e., a collection of high-fidelity solutions, and the reduced basis is computed by combining them. In the
online phase, the FOM is projected onto the reduced space that represents the main dynamics of the FOM, and the
solutions for new parameters are computed in an efficient manner. Based on the offline-online methodology, ROM
methods are classified into two categories: intrusive and nonintrusive ROM methods. The intrusive ROM methods de-
termine the reduced solutions by solving a reduced order model, i.e., a projection of the FOM onto the reduced space.
The proper orthogonal decomposition (POD) with the Galerkin projection [14, 15] is one of the most popular tool
used in intrusive ROM methods. The POD extracts the reduced basis through the singular value decomposition (SVD)
of the snapshot matrix obtained by sampling in parameter space. Then, ROM is constructed by applying Galerkin
projection. To handle this problem, some nonlinearity treatment methods are introduced, such as discrete empirical
interpolation method (DEIM) [16]. Although all ROM methods are accurate to approximate solutions, they depend
on the governing equations and discretized forms of them, that is these methods are intrusive. Another class of ROM
methods is the data-driven or nonintrusive ROM (NIROM) methods which are based only on accessing to snapshots
and do not use governing equations.

Contrary to a large number of papers for reduced-order modeling of patterns in fluid flows, there are few studies
about the prediction of spatiotemporal patterns of reaction-diffusion equations [17, 18]. In this paper, we follow
the NIROM approach in [19, 20, 21] which is based on a two-level POD approach by exploiting the matrix/tensor
based discretization of the cross-diffusion system. In the first level, the reduced basis is computed by applying the
higher-order SVD (HOSVD) [22, 23] to the space-time snapshots related to each parameter value from a sample set
of parameter values, instead of using classical SVD as in [19, 20]. In the second level, the global set of reduced
bases and coefficients of the reduced solutions are computed. The undetermined coefficients in the approximation are
estimated using a nonintrusive approach based on radial basis function (RBF) approximation (in contrast to Galerkin
projection). The reduced solution for a new parameter value is then obtained by interpolating the reduced solutions
with the RBF. Recently, HOSVD is used as intrusive ROM with POD [24] and as space-time nonintrusive ROM
[25]. The matrix based discretization in [12] is exploited in construction of intrusive ROMs [26] with the POD and
DEIM. In [26] this approach is generalized to higher-order tensor differential equations in the framework of POD and
DEIM with Galerkin projection using HOSVD. In this paper, the ROMs are constructed nonintrusively from space-
time full-order solutions in the matrix and tensor forms with the HOSVD. The reduced solutions for new parameter
values are computed by utilizing the radial basis function (RBF) interpolation. The numerical experiments on the
two-dimensional Schnakenberg and three-dimensional Brusselator cross-diffusion equations show that the patterns
are predicted accurately for new parameter values. Using the nonintrusive approach with HOSVD, large amount of
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computer memory and computational time is saved, which is observed in high compression rates and speed-up factors
of reduced-order solutions over the full-order solutions.

The rest of the paper is organized as follows. In Section 2, we briefly describe the cross-diffusion systems and give the
matrix/tensor based space discretization by finite-differences, with the IMEX Euler time integration. The tensor based
space-time nonintrusive ROM is presented in Section 3. Numerical results illustrating the accuracy and efficiency of
the ROM methodology for the prediction of spatiotemporal patterns are given in Section 4 for two examples of cross-
diffusion systems: two-dimensional Schnakenberg and three-dimensional Brusselator equations. The paper ends with
some conclusions in Section 5.

2 Full order model

In this section, we briefly introduce the cross-diffusion system and describe the matrix/tensor based discretization in
space and time. We use the following notation. Scalars will be denoted as lower-case letters, vectors as bold lower-case
letters, matrices are represented by capital letters or bold capital letters, and order-d tensors (d > 2) as calligraphic
capital letters.

2.1 Cross-diffusion systems

Cross-diffusion systems are characterized by a gradient in the concentration of one species inducing a flux of another
chemical species. In nature, cross-diffusion expresses the population fluxes of one species, preys, due to the presence
of the other species, predators. The two-component cross-diffusion system is given as

ut = du∇2u+ dvu∇2v + f(u, v), (x, t) ∈ Ω× (0, tf ],

vt = dv∇2v + duv∇2u+ g(u, v), (x, t) ∈ Ω× (0, tf ],

∂u

∂n
=
∂v

∂n
= 0, (x, t) ∈ ∂Ω× [0, tf ],

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω,

(1)

where Ω ∈ R2 (Ω ∈ R3) is the spatial domain with the boundary ∂Ω, x = (x, y)T ∈ Ω (x = (x, y, z)T ∈ Ω)
is the spatial point, n is the exterior unit normal vector to the boundary, and [0, tf ] is the time domain for a final
time tf > 0. The non-negative bounded functions u0(x) > 0 and v0(x) > 0 are prescribed as initial conditions.
In the cross-diffusion system (1), the unknown components u(x, t) and v(x, t) represent chemical concentrations or
population densities. The cross-diffusion system (1) is a semi-linear PDE consisting of the linear diffusion parts with
the Laplace operator ∇2 = ∂2/∂x2 + ∂2/∂y2 (∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2), and nonlinear reaction terms
f(u, v) and g(u, v). The self-diffusion coefficients du > 0 and dv > 0 are always positive whereas the cross-diffusion
ones dvu and duv can be either positive or negative. The cross-diffusion coefficient dvu indicates the influence of the
density of v(x, t) to the density of u(x, t) so that u(x, t) is repelled from v(x, t) when dvu > 0, or otherwise u(x, t)
is attracted to v(x, t) when dvu < 0. The other cross-diffusion coefficient duv has the same meaning with the role of
u(x, t) and v(x, t) are switched. In other words, species with positive cross-diffusion move towards the other species
with the lower concentration, while in case of the negative cross-diffusion coefficients the respective species moves
towards the higher concentration regime of the other species.

In the cross-diffusion systems of type (1), there exist a variety of reactions terms f(u, v) and g(u, v) with polynomial
nonlinearities, such as the Schnakenberg model [4, 5], Brusselator model [2, 3, 6], Gray-Scott model [1]. Many cross-
diffusion systems have nonlinear reaction terms in form of the rational functions (see for example [7, 8, 9]). The
reaction terms in the cross-diffusion Schnakenberg model [5] are given by

f(u, v) = γ(α− u+ u2v), g(u, v) = γ(β − u2v)), (2)

where γ is a positive constant describing the relative strength of reaction terms. The reaction terms of the Brusselator
cross-diffusion system [2, 3, 6] have similar form as the one given in (2) of the Schnakenberg model

f(u, v) = −(β + 1)u+ u2v + α, g(u, v) = βu− u2v. (3)

Cross-diffusion systems are also parameter dependent PDEs. In addition to the self-diffusion and cross-diffusion
parameters du, dv, duv, dvu, the nonlinear reaction terms includes parameters such as α, β as given in (2) and (3). In
this paper, we study the parameter dependent reduced-order solutions u(x, t;µ) and v(x, t;µ) of the system (1) in
a parameter space D. In this section, we suppress the parameter dependency of the states u and v to simplify the
notation.
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2.2 Matrix and tensor based discretization

Semi-discretization of the cross-diffusion system (1) in space with finite differences, finite elements, and spectral
methods inside a hypercube in Rd (d = 2, 3) leads to a system of ODEs in the following form

u̇ = duAu+ dvuAv + f(u,v), u(0) = u0,

v̇ = duvAu+ dvAv + g(u,v), v(0) = v0,
(4)

where the entries of the matrix A accounts for the spatial discretization of the diffusion terms including the Laplace
operator ∇2 on a discrete mesh of the domain Ω. The time dependent vectors u(t),v(t) : [0, tf ] → RN are the
semi-discrete approximations of the unknown solutions u(x, t) and v(x, t) of the system (1), and f(u,v), g(u,v) :
RN × RN → RN are the nonlinear vectors corresponding to the nonlinear functions f(u, v) and g(u, v), after spatial
discretization. All the state vectors and nonlinear terms are evaluated componentwise at the spatial grid points. More-
over, the number N denotes the degree of freedom of the discrete spatial grid. When the finite-differences are used for
the space discretization, for instance, we have N = n1n2 (N = n1n2n3), where n1 and n2 (n1, n2 and n3) are the
number of the spatial nodes in x and y-directions (x, y and z-directions), respectively.

Most of the time integrators are developed for solving the semi-discretized ODEs in vector form like (4). For an
accurate simulation of the patterns of cross-diffusion systems (1), fine spatial discretization is required. This limits the
use of standard vector-based ODE solvers in time because of the excessive computational cost and computer memory.
By exploiting the structure of the matrix of Laplace operator after space discretization, the semi-discrete ODE system
(4) can be written as a matrix/tensor differential equation. The space discretization by means of matrix/tensor based
leads to the solution of linear equations with small matrices, which allows to much finer discretization of the problem
and reduces the cost of full-order solutions. In this paper, we apply the matrix/tensor based approach in [12] for the
solution of the linear cross-diffusion systems (1) in two and three space dimensions.

For finite differences methods, for certain finite elements techniques and spectral methods, the Laplace operator ∇2

can be discretized by means of a tensor basis. To do this, let the matrix Tn ∈ Rn×n given by

Tn =
1

h2


−2 2 0
1 −2 1

. . . . . . . . .
1 −2 1

0 2 −2

 ,

denotes the matrix corresponding to the discretization of the Laplace operator by centered finite differences under
homogeneous Neumann boundary condition on a one-dimensional spatial mesh (an interval) Ω = [0, `] ⊂ R consisting
of n grid points including the end points, and with the uniform mesh size h = `/(n − 1). Then, the discretization of
the Laplace operator on a rectangular domain Ω = [0, `x]× [0, `y] ⊂ R2 leads to a matrix A of the form

A = In2
⊗ Tn1

+ Tn2
⊗ In1

∈ RN×N , N = n1n2, (5)

whereas it has the form

A = In3 ⊗ In2 ⊗ Tn1 + In3 ⊗ Tn2 ⊗ In1 + Tn3 ⊗ In2 ⊗ In1 ∈ RN×N×N , N = n1n2n3, (6)

on a rectangular prism Ω = [0, `x] × [0, `y] × [0, `z] ⊂ R3. Here, In1
, In2

and In3
are n1, n2 and n3-dimensional

identity matrices, respectively, and ⊗ denotes the Kronecker product. The numbers n1, n2 and n3 denote the number
of the nodes in x, y and z-directions with the mesh sizes hx = `x/(n1− 1), hy = `y/(n2− 1) and hz = `z/(n3− 1),
respectively. Throughout the paper, we simplify the notation by taking T1 = Tn1

, T2 = Tn2
and T3 = Tn3

together
with I1 = In1

, I2 = In2
and I3 = In3

with the appropriate dimension.

2.3 Full discretization on two-dimensional domains

We consider a discrete mesh on a rectangular domain Ω = [0, `x]× [0, `y] ⊂ R2 with the mesh sizes hx = `x/(n1−1)
and hy = `y/(n2−1), and with the grid nodes xij = (xi, yj), where xi = (i−1)hx and yj = (j−1)hy , i = 1, . . . , n1,
j = 1, . . . , n2. In order to represent the time dependent semi-discrete matrix solutions at the grid nodes, we introduce
the matrix functions U(t), V (t) : [0, tf ] 7→ Rn1×n2 , which contain the same components of the solution vectors u(t)
and v(t) in the form Uij(t) = u(xij , t) and Vij(t) = v(xij , t), respectively. The rows and columns of U and V reflect
the space discretization of the given problem in x and y-directions, respectively.

On the other hand, the solution vectors u(t) and v(t) in the ODE system (4) can be related to the vectorization of
the solution matrices U(t) and V (t) by the vec(·) operator defined by u(t) = vec(U(t)) and v(t) = vec(V (t)),
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respectively. With this operation, for instance, each column of the matrix U(t) is stuck one after the other in order to
obtain the vector vec(U(t)). This implementation satisfies a lexicographic order of the nodes in the rectangular grid
for a finite difference discretization. With this notation and using the properties of the Kronecker product together
with the identity (5), we have that Au = vec(T1U + UTT2 ) and Av = vec(T1V + V TT2 ). Then, the vectorial ODE
system (4) can be equivalently written as the following matrix differential equation [12]

U̇ = du(T1U + UTT2 ) + dvu(T1V + V TT2 ) + F (U, V ),

V̇ = duv(T1U + UTT2 ) + dv(T1V + V TT2 ) +G(U, V ),
(7)

where the nonlinear matrix functions F,G : Rn1×n2 × Rn1×n2 7→ Rn1×n2 are given by Fij(U, V ) = f(Uij , Vij)
and Gij(U, V ) = g(Uij , Vij), i = 1, . . . , n1, j = 1, . . . , n2, with the property that f(u,v) = vec(F (U, V )) and
g(u,v) = vec(G(U, V )).

Semi-discrete diffusion problems like (4) are stiff problems, which makes explicit methods inappropriate. In the
presence of nonlinear reaction terms, fully implicit schemes require a nonlinear solver, e.g., Newton, at each time step.
IMEX schemes are splitting methods for ODE systems, where the stiff linear diffusion part is integrated implicitly,
while the nonlinear reaction part is integrated explicitly, as a consequence, only one linear system must be solved
at each time step. We consider the discrete times tk = k∆t, k = 0, . . . , nt, with the time step ∆t = tf/nt. The
semi-discrete matrix differential equation (7) is solved with IMEX Euler method [12], which leads to the following
full discrete system

Uk+1 − Uk

∆t
= du(T1U

k+1 + Uk+1TT2 ) + dvu(T1V
k+1 + V k+1TT2 ) + F (Uk, V k),

V k+1 − V k

∆t
= duv(T1U

k+1 + Uk+1TT2 ) + dv(T1V
k+1 + V k+1TT2 ) +G(Uk, V k),

(8)

where the full discrete solution matrices are given as Uk = U(tk) ∈ Rn1×n2 and V k = V (tk) ∈ Rn1×n2 , k =
0, . . . , nt, with the given initial solution matricesU0 and V 0 satisfyingU0

ij = u0(xij) and V 0
ij = v0(xij), respectively.

The matrix/tensor formulation (7) has the same convergence and stability properties of the underlying time discretiza-
tion methods for the classical vector differential equation (4) [12]. Exploiting the structure of the Laplace operator
in the linear part and using finer grids, highly accurate full-order solutions are obtained and the computational cost
is much reduced. After collecting the alike terms in the full discrete system (8), we obtain a system of linear matrix
equation in the form of the Sylvester equation

(I1 − du∆tT1)Uk+1 − du∆tUk+1TT2 − dvu∆tT1V
k+1 − dvu∆tV k+1TT2 = Uk + ∆tF (Uk, V k),

(I1 − dv∆tT1)V k+1 − dv∆tV k+1TT2 − duv∆tT1U
k+1 − duv∆tUk+1TT2 = V k + ∆tG(Uk, V k),

(9)

which is solved for the solution matrices Uk+1 and V k+1.

The matrix/tensor methods can be made more efficient by computing a-priori spectral decomposition of the coef-
ficient matrices/tensors of not too large sizes [12]. Assuming that the matrices T1 and TT2 are diagonalizable, the
solution of the Sylvester equation (9) is accelerated by the use of the eigenvalue decomposition of the matrices T1

and TT2 . Let the eigenvalue decompositions T1 = XΛ(x)X−1 and TT2 = Y Λ(y)Y −1 are given, with the matrices
X ∈ Rn1×n1 and Y ∈ Rn2×n2 of nonsingular vectors, and the diagonal matrices Λ(1) = diag(λ

(1)
1 , . . . , λ

(1)
n1 ) and

Λ(2) = diag(λ
(2)
1 , . . . , λ

(2)
n2 ) of the eigenvalues λ(1)

i and λ(2)
j , i = 1, . . . , n1, j = 1, . . . , n2. Multiplying both equa-

tions in (9) from left by X−1 and from right by Y , substituting eigenvalue decompositions T1 = XΛ(1)X−1 and
TT2 = Y Λ(2)Y −1, and setting Ûk = X−1UkY and V̂ k = X−1V kY , we reach the system of matrix equations

(I1 − du∆tΛ(1))Ûk+1 − du∆tÛk+1Λ(2) − dvu∆tΛ(1)V̂ k+1 − dvu∆tV̂ k+1Λ(2) = Qk1 ,

(I1 − dv∆tΛ(1))V̂ k+1 − dv∆tV̂ k+1Λ(2) − duv∆tΛ(1)Ûk+1 − duv∆tÛk+1Λ(2) = Qk2 ,
(10)

where
Qk1 = X−1(Uk + ∆tF (Uk, V k))Y,

Qk2 = X−1(V k + ∆tG(Uk, V k))Y.
(11)

The matrix equation (10) in which all the coefficient matrices on the left hand sides are diagonal matrices, can be
easily solved componentwise. Therewith, the entries of the solution matrices Uk+1, V k+1 ∈ Rn1×n2 are given as the
following 2× 2 linear system of equations(

S11
ij S12

ij

S21
ij S22

ij

)(
Ûk+1
ij

V̂ k+1
ij

)
=

(
(Qk1)ij
(Qk2)ij

)
, i = 1, . . . n1, j = 1, . . . n2, (12)

5
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where for p, q = 1, 2, the entries of the matrices Spq ∈ Rn1×n2 are given by

S11
ij = 1− du∆t(λ

(1)
i + λ

(2)
j ), S12

ij = −dvu∆t(λ
(1)
i + λ

(2)
j ),

S22
ij = 1− dv∆t(λ(1)

i + λ
(2)
j ), S21

ij = −duv∆t(λ(1)
i + λ

(2)
j ).

The solution of the 2× 2 linear system (12) for fixed i and j can be written as(
Ûkij
V̂ nij

)
=

(
S11
ij S12

ij

S21
ij S22

ij

)−1(
(Qk1)ij
(Qk2)ij

)
,

where for the determinant | Sij |= S11
ij S

22
ij − S12

ij S
21
ij , the 2× 2 inverse matrix can be easily calculated as(

S11
ij S12

ij

S21
ij S22

ij

)−1

=
1

| Sij |

(
S22
ij −S12

ij

−S21
ij S11

ij

)
,

Finally, by introducing the matrices Lpq ∈ Rn1×n2 , p, q = 1, 2, with the entries

L11
ij =

S22
ij

| Sij |
, L12

ij =
−S12

ij

| Sij |
, L21

ij =
−S21

ij

| Sij |
, L22

ij =
S11
ij

| Sij |
, (13)

the solution of the 2× 2 linear system (12) are given by

Ûkij = L11
ij (Qk1)ij + L12

ij (Qk2)ij , V̂ kij = L21
ij (Qk1)ij + L22

ij (Qk2)ij .

The unknown solution matrices Uk+1 and V k+1 can then be recovered by projecting back as Uk+1 = XÛkY −1 and
V k+1 = XV̂ kY −1, which can be written in terms of the matrices Lpq , Qk1 and Qk2 as

Uk+1 = X(L11 �Qk1 + L12 �Qk2)Y −1,

V k+1 = X(L21 �Qk1 + L22 �Qk2)Y −1,

where � denotes the Hadamard (element by element) product. The solution process to compute the full discrete
solution matrices Uk+1 and V k+1 by using IMEX Euler method applied to the semi-discrete linear matrix differential
equation (7), and by utilizing the eigenvalue decompositions T1 = XΛ(1)X−1 and TT2 = Y Λ(2)Y −1 is given in
Algorithm 1.

Algorithm 1 Solution process on a single time step

1: Input: Known solution matrices Uk and V k, eigenvectors X and Y , eigenvalues Λ(1) and Λ(2)

2: Output: Unknown solution matrices Uk+1 and V k+1

3: Compute the matrices Qk1 and Qk2 from (11)
4: Compute the matrices L11, L12, L21 and L22 from (13)
5: Compute the solution matrices Uk+1 and V k+1 as

Uk+1 = X(L11 �Qk1 + L12 �Qk2)Y −1

V k+1 = X(L21 �Qk1 + L22 �Qk2)Y −1

The overall computational cost of solving two and three dimensional cross-diffusion systems is drastically reduced
using the matrix/tensor formulation with the explicit-implicit time integration and using spectral decomposition. The
computation of the spectral decomposition of the matrices T1 and T2 are performed once at the beginning of the
integration.

2.4 Full discretization on three-dimensional domains

We consider a discrete mesh on a rectangular prism Ω = [0, `x] × [0, `y] × [0, `z] ⊂ R3 with the mesh sizes hx =
`x/(n1−1), hy = `y/(n2−1) and hz = `z/(n3−1), and with the grid nodes xijl = (xi, yj , zl), where xi = (i−1)hx,
yj = (j − 1)hy and zl = (l − 1)hz , i = 1, . . . , n1, j = 1, . . . , n2, l = 1, . . . , n3.

The matrix oriented approach in [12] can be extended to the cross-diffusion systems (1) for the three-dimensional case
following [10]. At each time step t ∈ [0, tf ], let U li,j(t) = u(xijl, t) and V li,j(t) = v(xijl, t) denote the approximate

6
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semi-discrete solutions at the grid nodes xijl. Then, we introduce tall matrix functions U(t),V (t) : [0, tf ] 7→
R(n1n3)×n2 defined as

U(t) =


U1(t)
U2(t)

...
Un3(t)

 , V (t) =


V 1(t)
V 2(t)

...
V n3(t)

 .
With this notation and an appropriate ordering of the nodes by the vec(·) operation introduced before, the terms in the
system (4) including the matrix A ∈ R(n1n2n3)×(n1n2n3) and the solution vectors u,v : [0, tf ] 7→ R(n1n2n3) can be
written as

Au = vec
(
(I3 ⊗ T1)U +UTT2 + (T3 ⊗ I1)U

)
Av = vec

(
(I3 ⊗ T1)V + V TT2 + (T3 ⊗ I1)V

) (14)

At the discrete times tk = k∆t, k = 0, . . . , nt, let Uk = U(tk) ∈ R(n1n3)×n2 and V k = V (tk) ∈ R(n1n3)×n2

denote the full discrete solution matrices at the time tk. Then, using the identity (14), application of the IMEX Euler
method, similar to the two-dimensional case, yields the following Sylvester equation as a matrix differential equation

(I13 − du∆tT̂ )Uk+1 − du∆tUk+1TT2 − dvu∆tT̂V k+1 − dvu∆tV k+1TT2 = Uk + ∆tF (Uk,V k),

(I13 − dv∆tT̂ )V k+1 − dv∆tV k+1TT2 − duv∆tT̂Uk+1 − duv∆tUk+1TT2 = V k + ∆tG(Uk,V k),
(15)

where T̂ := T1⊕T3 = (I3⊗T1+T3⊗I1) ∈ R(n1n3)×(n1n3) with⊕ denoting the Kronecker sum, and I13 is the identity
matrix of size (n1n3). The above Sylvester equation can be solved similar to the two-dimensional case. Here, it needs
only the use of the eigenvalue decomposition of the matrix T̂ = X̂Λ̂X̂−1 in place of the eigenvalue decomposition
of the matrix T1. However, the square matrix T̂ is of dimension (n1n3) which makes inefficient the computation of
the eigenvalue decomposition of T̂ . Instead, we use the eigenvalue decomposition of the matrices T1, TT2 and T3

of smaller size, and we use the properties of Kronecker sum. Let the eigenvalue decompositions T1 = XΛ(1)X−1,
TT2 = Y Λ(2)Y −1 and T3 = ZΛ(3)Z−1 are given, with the matrices X ∈ Rn1×n1 , Y ∈ Rn2×n2 and Z ∈ Rn3×n3 of
nonsingular vectors and the diagonal matrices Λ(1) = diag(λ

(1)
1 , . . . , λ

(1)
n1 ), Λ(2) = diag(λ

(2)
1 , . . . , λ

(2)
n2 ) and Λ(3) =

diag(λ
(3)
1 , . . . , λ

(3)
n3 ) of the eigenvalues λ(1)

i , λ(2)
j and λ(3)

l , i = 1, . . . , n1, j = 1, . . . , n2, l = 1, . . . , n3. Then, by the
use of the properties of the Kronecker sum, the eigenvalue decomposition of the matrix T̂ with the nonsingular vector
X̂ and the diagonal matrix of the eigenvalues Λ̂ = diag(λ̂1, , . . . , λ̂n1n3

) are given by

X̂ = (Z ⊗ I1)(I3 ⊗X), Λ̂ = (Λ(3) ⊗ I1) + (I3 ⊗ Λ(1)).

Similar to the two-dimensional case, the Sylvester equation (15) can be efficiently solved through multiplying both
the equations in (15) from left by X̂−1 and from right by Y , substituting T̂ = X̂Λ̂X̂−1 and TT2 = Y Λ(2)Y −1, and
setting Ûk = X̂−1UkY and V̂ k = X̂−1V kY , yielding the system

(I13 − du∆tΛ̂)Ûk+1 − du∆tÛk+1Λ(2) − dvu∆tΛ̂V̂ k+1 − dvu∆tV̂ k+1Λ(2) = Qk
1 ,

(I13 − dv∆tΛ̂)V̂ k+1 − dv∆tV̂ k+1Λ(2) − duv∆tΛ̂Ûk+1 − duv∆tÛk+1Λ(2) = Qk
2 ,

(16)

where all the coefficient matrices on the left hand sides are again diagonal matrices, and the right hand side matrices
are given by

Qk
1 = X̂−1(Uk + ∆tF (Uk,V k))Y,

Qk
2 = X̂−1(V k + ∆tG(Uk,V k))Y.

3 Nonintrusive reduced-order model

In this section, we consider the following parametrized form of the vectorial cross diffusion system (4)

u̇θ = duAu
θ + dvuAv

θ + f(uθ,vθ; θ), uθ(0) = uθ0,

v̇θ = duvAu
θ + dvAv

θ + g(uθ,vθ; θ), vθ(0) = vθ0 ,
(17)

where the superscript θ ∈ P indicates the parameter dependency of the solutions, and P is a set of admissible values of
the parameter θ which may stand for either parameter in the system. In most cases, the system (17) needs to be solved
several times by the value of parameter θ differs. In this paper, by using a finite training set PT = {θ1, . . . , θnp} ⊂ P,

7
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we aim to construct a nonintrusive ROM to the system (17) in order to cheaply obtain approximate solutions for a
given parameter value θ ∈ P not necessarily from the training set PT , i.e., θ /∈ PT .

Reduced-order modelling methodology commonly relies on a data obtained from either an experiment or solutions of
a discrete system like (17), which is named as snapshot data. In our case, solving the parametrized cross diffusion
system (17) through either the matrix system (9) for a two-dimensional domain (d = 2) or the matrix system (15) for a
three-dimensional domain (d = 3), and with a suitable arrangement of the dimensions, we can obtain a set of snapshots
{Uθ(tk)}ntk=1 and {Vθ(tk)}ntk=1 in the form of an order-d tensor (multidimensional array) with Uθ(tk) ∈ Rn1×···×nd

and Vθ(tk) ∈ Rn1×···×nd . Here, each dimension of the tensors Uθ(tk) and Vθ(tk) corresponds to one of the respective
spatial directions, for instance, with d = 3, Uθi1i2i3(tk) = uθ(xi1i2i3 , tk), is = 1, . . . , ns, s = 1, 2, 3. Then, we form
the following order-(d+ 1) tensors of snapshot data related to a given parameter θ

X θ,u ∈ Rn1×···×nd×nd+1 , X θ,ui1···idid+1
= Uθi1···id(tid+1

),

X θ,v ∈ Rn1×···×nd×nd+1 , X θ,vi1···idid+1
= Vθi1···id(tid+1

),
(18)

where for easy notation we set the size of the final dimension related to the time as nd+1 := nt.

The standard POD approach to construct the reduced basis solutions for many training parameter values is costly. The
two-level POD, known also as nested POD, is often used in ROM applications for parametrized PDEs to reduce the
computational cost of constructing the spatial and temporal basis functions [19, 20]. Usually, a snapshot data which is
in the form of columns consisting of the solutions in vector form, is used in this ROM methodology. In the first level,
a set of POD basis are computed for the snapshot data related to each parameter θi ∈ PT . Then, in the second level, a
global POD basis is constructed by applying SVD to the set of POD basis computed in the first level [19, 20]. Finally,
the space-time coefficients are determined using RBF in a nonintrusive way without resorting to Galerkin projection.

For the snapshot data in the form of an order-2 tensor, i.e., a matrix, the POD basis in the first level are computed by
applying SVD or eigenvalue decomposition to the snapshot matrix. However, in our case, each snapshot data given
in (18) is an order-(d + 1) tensor with d = 2, 3. Here, in the first level of nested POD, we compute the POD modes
using HOSVD of the snapshot tensors X θ,u and X θ,v . The HOSVD is a favorite algorithm for computing low-rank
approximation of the Tucker decomposition of a tensor [27]. In the following, we will describe HOSVD to compute
the POD modes of the snapshot tensor X θ,u, the POD modes of the snapshot tensor X θ,v can be computed similarly.
Like any multidimensional array, the order-(d + 1) snapshot tensor X θ,u ∈ Rn1×···×nd×nd+1 admits the following
Tucker decomposition [23, 27, 28]

X θ,ui1···idid+1
=

n1∑
j1=1

· · ·
nd∑
jd=1

nd+1∑
jd+1=1

Sθ,uj1···jdjd+1
Φ

(1),θ,u
i1j1

· · ·Φ(d),θ,u
idjd

Φ
(d+1),θ,u
id+1jd+1

,

or in a suitable compact form

X θ,u =
(

Φ(1),θ,u, . . . ,Φ(d),θ,u,Φ(d+1),θ,u
)
· Sθ,u, (19)

where the order-(d + 1) tensor Sθ,u ∈ Rn1×···×nd×nd+1 is called the core tensor, and each orthonormal matrix
Φ(j),θ,u ∈ Rnj×nj , j = 1, . . . , (d + 1), is called a factor matrix. In other words, a tensor can be decomposed into a
core tensor that is multiplied by a matrix along each mode, which are orthonormal and can be viewed as the principal
components of each modes. The HOSVD aims firstly to compute the factor matrices Φ(j),θ,u, j = 1, . . . , (d+1). This
process is done by applying SVD to the mode-j unfolding (matricization) X θ,u(j) of the tensor X θ,u, where a mode-j

unfolding X θ,u(j) is a matrix of size nj ×
∏
i 6=j ni, and its columns are mode-j fibers of the tensor X θ,u [23, 27, 28].

Then, the jth factor matrix is given by the left singular vectors of the mode-j unfolding of the tensor X θ,u

X θ,u(j) = Φ(j),θ,uΣ(j),θ,u
(
ψ(j),θ,u

)T
, j = 1, . . . , (d+ 1),

where the diagonal matrix Σ(j),θ,u ∈ Rnj×nj includes on its diagonal elements the singular values σi
(
X θ,u(j)

)
≥ 0 of

the mode-j unfolding X θ,u(j) , i = 1, . . . , nj . After computation of the factor matrices, the core tensor can be calculated
as

Sθ,u =

((
Φ(1),θ,u

)T
, . . . ,

(
Φ(d),θ,u

)T
,
(

Φ(d+1),θ,u
)T)

· X θ,u.

By the use of HOSVD, the factor matrices take place of the POD modes required in the first level of the nested POD,
each of which corresponds to one of the either space direction or temporal dimension. In addition, the space-time

8
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coefficients are contained in the core tensor Sθ,u, therefore there is no need to determine them through the solution of
a separate system as in [19, 20].

On the other hand, the decomposition (19) does not provide a low-rank approximation yet, it requires
∏d+1
i=1 ni +∑d+1

i=1 n
2
i numbers to be stored. The HOSVD can be employed to construct a low multilinear rank approximation to

a tensor, where it provides a compressed representation in the Tucker decomposition. One approach is the truncated
HOSVD (T-HOSVD) which was first introduced in [22]. The T-HOSVD algorithm aims to compute each factor
matrix separately, and it relies on truncating each mode-j unfolding X θ,u(j) of the snapshot tensor X θ,u according to
a given truncation criteria or an a priori given target ranks for each dimension j. Let for some target rank rθ,u =

(rθ,u1 , . . . , rθ,ud+1) with rθ,uj < nj for each j = 1, . . . , (d + 1), the truncated SVD of the mode-j unfolding X θ,u(j) is
given by

X θ,u(j) = Φ(j),θ,uΣ(j),θ,u
(
ψ(j),θ,u

)T
=
[
Φ̄(j),θ,u Φ̃(j),θ,u

] [Σ̄(j),θ,u

Σ̃(j),θ,u

](ψ̄(j),θ,u
)T(

ψ̃(j),θ,u
)T
 , (20)

where Φ̄(j),θ,u ∈ Rnj×r
θ,u
j contains the first rθ,uj left singular vectors from Φ(j),θ,u, retained singular values are

contained in Σ̄(j),θ,u ∈ Rr
θ,u
j ×r

θ,u
j , and Σ̃(j),θ,u contains the truncated singular values. Using the truncated factor

matrices Φ̄(j),θ,u, we can calculate the truncated (reduced) core tensor S̄θ,u ∈ Rr
θ,u
1 ×···×rθ,ud ×r

θ,u
d+1 using the formula

S̄θ,u =

((
Φ̄(1),θ,u

)T
, . . . ,

(
Φ̄(d),θ,u

)T
,
(

Φ̄(d+1),θ,u
)T)

· X θ,u.

Then, a rank-(rθ,u1 , . . . , rθ,ud , rθ,ud+1) approximation X̄ θ,u ∈ Rn1×···×nd×nd+1 to the snapshot tensor X θ,u ∈
Rn1×···×nd×nd+1 can be obtained as

X θ,u ≈ X̄ θ,u =
(

Φ̄(1),θ,u, . . . , Φ̄(d),θ,u, Φ̄(d+1),θ,u
)
· S̄θ,u, (21)

where it stores only
∏d+1
i=1 r

θ,u
i +

∑d+1
i=1 nir

θ,u
i numbers. The quantity that to what extend the memory saving is

obtained, can be visualized by the following compression factor [29]

CF =

∏d+1
i=1 ni +

∑d+1
i=1 n

2
i∏d+1

i=1 r
θ,u
i +

∑d+1
i=1 nir

θ,u
i

, (22)

which gives the saved memory in percentage by the formula 100(1 − 1/CF ). The larger the compression factor CF
the much more the memory is saved.

Although, T-HOSVD provides a low multilinear rank approximation, the SVD computations of the unfoldings may
be expensive, since the same full rank tensor is used to obtain each unfolding. Another approach to construct a low
multilinear rank approximation is the sequentially truncated HOSVD (ST-HOSVD) [23, 28], which is a variation of
the usual T-HOSVD. In the ST-HOSVD, instead of throwing away most of the work performed by each SVD, SVD is
performed sequentially on a reduced tensor along all dimensions. Starting from the initial core tensor S̄θ,u,(0) := X θ,u,
ST-HOSVD computes a sequence of core tensors S̄θ,u,(j) to reach the reduced core tensor S̄θ,u = S̄θ,u,(d+1) following
an ordering p = (p1, . . . , pd+1) which is a permutation of the index set (1, 2, . . . , d+1). In the jth stage, the truncated
factor matrix Φ̄(pj),θ,u of the mode-pj unfolding of the core tensor S̄θ,u,(j−1) is computed, and the new core tensor
S̄θ,u,(j) is calculated by projecting the previous one onto the subspace spanned by the columns of the computed factor
matrix Φ̄(pj),θ,u. The ST-HOSVD algorithm is given in Algorithm 2 [28].

Unlike T-HOSVD, the process in the ST-HOSVD is sequential, therefore the order in which the modes are processed
affects the accuracy of the approximation and the speed of the process. In [23], a heuristic is proposed that attempts to
minimize the number of operations required to compute the dominant subspace. Processing first the dimension with
the lowest size may even reduce the rank of the remaining terms, i.e., np1 ≤ np2 ≤ · · · ≤ npd+1

. In this way, more
energy is forced into fewer modes. Computing the T-HOSVD can be more expensive than the ST-HOSVD, while the
ST-HOSVD requires fewer floating point operations to compute the approximation. Although, T-HOSVD and ST-
HOSVD approximations may differ in accuracy for an ordering p 6= (1, . . . , d+ 1), both T-HOSVD and ST-HOSVD
approximations satisfy the same error bounds [23]

min
1≤j≤d+1

‖Σ̃(j),θ,u‖2F ≤ ‖X θ,u − X̄ θ,u‖2F ≤
d+1∑
j=1

‖Σ̃(j),θ,u‖2F , (23)

9
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Algorithm 2 ST-HOSVD for tensor data of u component

1: Input: Snapshot tensor X θ,u, processing order p = (p1, . . . , pd+1), target ranks rθ,u = (rθ,u1 , . . . , rθ,ud+1)

2: Output: Truncated factor matrices {Φ̄(1),θ,u, . . . , Φ̄(d+1),θ,u}
3: Set S̄θ,u,(0) = X θ,u
4: for j = 1 to d+ 1 do
5: Obtain mode-pj unfolding S̄θ,u,(j−1)

(pj)

6: Apply truncated SVD to the unfolding S̄θ,u,(j−1)
(pj)

for target rank rθ,upj
7: Get the factor matrix Φ̄(pj),θ,u

8: Update the unfolding S̄θ,u,(j−1)
(pj)

← Σ̄(pj),θ,u
(
ψ̄(pj),θ,u

)T
9: Obtain updated core tensor S̄θ,u,(j) ← S̄θ,u,(j−1)

(pj)
in tensor form

10: end for

where ‖ · ‖F is the Frobenius norm, and Σ̃(j),θ,u contains the truncated singular values given in (20).

In order to construct the nonintrusive ROM through the nested POD, we first form the set of snapshot tensors
{X θi,u}npi=1 and {X θi,v}npi=1 from the solutions of the parametrized cross diffusion system related to each sample
parameter θi ∈ PT . Then, in the first level of the nested POD, we apply ST-HOSVD to the snapshot tensors X θi,u
and X θi,v , and we collect related to each sample parameter θi ∈ PT , the truncated factor matrices {Φ̄(j),θi,u}npi=1

and {Φ̄(j),θi,v}npi=1 with the target ranks rθi,u = (rθi,u1 , . . . , rθi,ud+1) and rθi,v = (rθi,v1 , . . . , rθi,vd+1), respectively,
j = 1, . . . , (d + 1). Then, in the second level of the nested POD, we compute the truncated global factor matri-
ces Φ̂(j),u ∈ Rnj×r̂

u
j and Φ̂(j),v ∈ Rnj×r̂

v
j , j = 1, . . . , (d + 1), as the truncated left singular vectors obtained by the

application of the truncated SVD to the collections Φ̄(j),u and Φ̄(j),v of the factor matrices defined by

Φ̄(j),u = [Φ̄(j),θ1,u Φ̄(j),θ2,u · · · Φ̄(j),θnp ,u] ∈ Rnj×r̄
u
j ,

Φ̄(j),v = [Φ̄(j),θ1,v Φ̄(j),θ2,v · · · Φ̄(j),θnp ,v] ∈ Rnj×r̄
v
j ,

where the numbers r̄uj := rθ1,uj + · · ·+ r
θnp ,u

j and r̄vj := rθ1,vj + · · ·+ r
θnp ,v

j denote the column size of the collection
of the factor matrices, which are the sum of the target ranks rθi,uj and rθi,vj of each unfolding X θi,u(j) and X θi,v(j) ,
respectively, i = 1, . . . , np, j = 1, . . . , (d + 1). In addition, the numbers r̂uj < r̄uj and r̂vj < r̄vj are the target ranks
of the collections Φ̄(j),u and Φ̄(j),v of the factor matrices, respectively. Note that the truncated global factor matrices
Φ̂(j),u and Φ̂(j),v are independent of the parameter θ, they rely on the sample parameter set PT . Once the truncated
global factor matrices Φ̂(j),u and Φ̂(j),v are obtained, we compute for each sample parameter θi ∈ PT , the core tensors
Ŝθi,u ∈ Rr̂

u
1×···×r̂

u
d×r̂

u
d+1 and Ŝθi,v ∈ Rr̂

v
1×···×r̂

v
d×r̂

v
d+1 as

Ŝθi,u =

((
Φ̂(1),u

)T
, . . . ,

(
Φ̂(d),u

)T
,
(

Φ̂(d+1),u
)T)

· X θi,u,

Ŝθi,v =

((
Φ̂(1),v

)T
, . . . ,

(
Φ̂(d),v

)T
,
(

Φ̂(d+1),v
)T)

· X θi,v, i = 1, . . . , np.

Finally, the parameter dependent nonintrusive ROM solution tensors X̂ u(θ), X̂ v(θ) ∈ Rn1×···×nd×nd+1 for an arbi-
trary parameter θ ∈ P can be efficiently obtained by the formulas

X θ,u ≈ X̂ u(θ) =
(

Φ̂(1),u, . . . , Φ̂(d),u, Φ̂(d+1),u
)
· Ŝu(θ),

X θ,v ≈ X̂ v(θ) =
(

Φ̂(1),v, . . . , Φ̂(d),v, Φ̂(d+1),v
)
· Ŝv(θ),

(24)

where the parameter dependent global core tensors Ŝu(θ) : P 7→ Rr̂
u
1×···×r̂

u
d×r̂

u
d+1 and Ŝv(θ) : P 7→ Rr̂

v
1×···×r̂

v
d×r̂

v
d+1

stands for the data of undetermined coefficients, which can be easily determined by a variety of methods. Here, each

10



Nonintrusive model order reduction for cross-diffusion systems A PREPRINT

entry of the global core tensors are expanded using RBFs as follows

Ŝuj1···jdjd+1
(θ) =

np∑
j=1

γu,jj1···jdjd+1
Ψ(ωj(θ)),

Ŝvj1···jdjd+1
(θ) =

np∑
j=1

γv,jj1···jdjd+1
Ψ(ωj(θ)),

(25)

where Ψ(ω) denote the radial basis kernel function with ωj(θ) =| θ − θj |, and the scalars γu,jj1···jdjd+1
and γv,jj1···jdjd+1

are the coefficients to be determined. RBF is a real-valued function whose value depends on the distance from center
point so that Ψ(ω) = Ψ(‖ω‖) is a radial function. There exist well-known RBFs. Here, Gaussian RBF Ψ(ω) =

e(−ω2/2ρ) is used, where the parameter ρ, in our case, is given by ρ = (maxi θi −mini θi)/np.

In order to compute the undetermined coefficients γu,jj1···jdjd+1
and γv,jj1···jdjd+1

, we use the core tensors Ŝθi,u and Ŝθi,v .

Setting θ = θi in (25) with the properties that Ŝu(θi) = Ŝθi,u and Ŝv(θi) = Ŝθi,v , we obtain that

Ŝuj1···jdjd+1
(θi) = Ŝθi,uj1···jdjd+1

=

np∑
j=1

γu,jj1···jdjd+1
Ψ(ωj(θi)),

Ŝvj1···jdjd+1
(θi) = Ŝθi,vj1···jdjd+1

=

np∑
j=1

γv,jj1···jdjd+1
Ψ(ωj(θi)), i = 1, ..., np,

which leads to the following linear systems of equations
np∑
j=1

Bijγ
u,j
j1···jdjd+1

= Ŝθi,uj1···jdjd+1
,

np∑
j=1

Bijγ
v,j
j1···jdjd+1

= Ŝθi,vj1···jdjd+1
, i = 1, ..., np,

where the entries of the symmetric interpolation matrix B ∈ Rnp×np is given by Bij = Ψ(ωj(θi)). In short, for a
given new parameter value θ ∈ P, once the undetermined coefficients γu,jj1···jdjd+1

and γv,jj1···jdjd+1
in (25) are computed

by the RBF interpolation, the nonintrusive ROM solution tensors X̂ u(θ) and X̂ v(θ) in (24) are calculated, by which
the nonintrusive ROM approximations û(x, t; θ) ≈ u(x, t; θ) and v̂(x, t; θ) ≈ v(x, t; θ) can be cheaply obtained as

û(xi1···id , tk; θ) = X̂ ui1···idk(θ), v̂(xi1···id , tk; θ) = X̂ vi1···idk(θ).

4 Numerical results

In this section we report about the numerical tests for the two-dimensional Schnakenberg (2) and three-dimensional
Brusselator (3) cross-diffusion systems. All the simulations are performed on a machine with Intel CoreTM i7 2.5
GHz 64 bit CPU, 8 GB RAM, Windows 10, using 64 bit MatLab R2014. For both problems, the initial conditions are
taken as random periodic perturbation around the equilibrium solutions ue and ve

• Schnakenberg [5]:
u0(x) = ue + rand(x)/100, v0(x) = ve + rand(x)/100,

with (ue, ve) = (0.55, 0.9917),
• Brusselator [6]:

u0(x) = ue + rand(x)/3, v0(x) = ve + rand(x)/10,

with (ue, ve) = (6, 0.1667),

where rand(x) is the MatLab’s random function producing a multi-dimensional array of the same dimension as x,
with the entries are uniformly distributed random numbers between 0 and 1.

For a given parameter value θ ∈ P, the accuracy of the corresponding reduced approximations are measured using the
time averaged relative errors

‖u− û‖rel =
1

nt

nt∑
k=1

‖Uθ(tk)− Ûθ(tk)‖F
‖Uθ(tk)‖F

,

‖v − v̂‖rel =
1

nt

nt∑
k=1

‖Vθ(tk)− V̂θ(tk)‖F
‖Vθ(tk)‖F

,

(26)
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where Uθ(t),Vθ(t) : [0, tf ] 7→ Rn1×···×nd are the discrete FOM solutions while Ûθ(t), V̂θ(t) : [0, tf ] 7→ Rn1×···×nd

are the discrete ROM approximations in the form of order-d tensor (d = 2, 3).

In both examples, in order to obtain the truncated factor matrices in the first level of nested POD, say Φ̄(j),θ,u, the
target rank rθ,uj for each unfolding X θ,u(j) , j = 1, . . . , (d + 1), is determined compatibly with the error bound (23) in
Frobenius norm, so that the following criteria is satisfied for a user given tolerance τ1 > 0√∑nj

i=rθ,uj +1
σi

(
X θ,u(j)

)
√∑nj

i=1 σi

(
X θ,u(j)

) < τ1. (27)

On the other hand, in the second level of nested POD, in order obtain the truncated global factor matrices, say Φ̂(j),u,
we apply the truncated SVD to the collection Φ̄(j),u = [Φ̄(j),θ1,u Φ̄(j),θ2,u · · · Φ̄(j),θnp ,u] ∈ Rnj×r̄

u
j (r̄uj = rθ1,uj +

· · ·+ r
θnp ,u

j ) of the truncated factor matrices with the target rank r̂uj < r̄uj which is determined so that the following
energy criteria is satisfied for a user given tolerance τ2 > 0∑r̂uj

i=1 σi
(
Φ̄(j),u

)∑r̄uj
i=1 σi

(
Φ̄(j),u

) ≥ 1− τ2, (28)

where σi
(
Φ̄(j),u

)
≥ 0 are the singular values of the collection Φ̄(j),u of the truncated factor matrices computed in the

first level. In our simulations, we choose the user given tolerances scaling as τ1 ∼ 10−2 and τ2 ∼ 10−8.

4.1 Schnakenberg equation

We consider the two-dimensional Schnakenberg model [5] in the square domain Ω = [0, 0.5]2 ⊂ R2. We solve
the problem through the matrix equation (10) with the mesh sizes hx = hy = 0.005 for the number of grid points
n1 = n2 = 101. The final time is taken as tf = 5 with the time step size ∆t = 0.001, leading to the third
dimension n3 = 5001 of the snapshot tensors related to the time. For this problem, we fix the system parameters
du = dv = dvu = 1, γ = 200, α = 0.25, β = 0.3, and vary the cross-diffusion parameter θ := duv in the set of
admissible values P = [0.4, 0.8]. As the finite training set of parameter θ, we take the values (including the boundary
values) uniformly distributed on P with the increment 0.1, i.e., PT = {0.4, 0.5, 0.6, 0.7, 0.8} with the number of
sample parameter values np = 5.
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Figure 1: Schnakenberg model: Level I singular values of unfoldings X θ,u(j) (top) and X θ,v(j) (bottom)
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In Figure 1, we give the decay of the singular values σi
(
X θ,u(j)

)
and σi

(
X θ,v(j)

)
of the unfoldings X θ,u(j) and X θ,v(j) of

the order-3 snapshot tensors X θ,u and X θ,v , respectively, j = 1, 2, 3, related to each sample parameter value θ ∈ PT .
According to the criteria (27), the computed target ranks rθ,uj and rθ,vj required by the HOSVD in the first level of
nested POD are presented in Figure 2, which shows in accordance with the singular values in Figure 1 that enough
energetic part of the unfoldings are recovered.
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Figure 2: Schnakenberg model: Sample parameter values vs target ranks for unfoldings X θ,u(j) (left) and X θ,v(j) (right) at
Level I

The FOM solutions u(x, t; θ) and v(x, t; θ) together with the nonintrusive ROM approximations û(x, t; θ) and
v̂(x, t; θ) at the final time tf = 5 for the parameter value θ = 0.65 /∈ PT are given in Figure 3. We see from
the figures that the same patterns are caught.

Figure 3: Schnakenberg model: FOM and ROM patterns at the final time for θ = 0.65

In case of computational efficiency, the ROM approximations are obtained by a speed-up factor 20 over the FOM,
Table 1. According to the energy criteria (28), it requires global factor matrices of column size (number of modes)
only 8 − 11. The computed time averaged relative errors defined in (26) scales with 10−2. Detailed results for the
number of modes and errors are presented in Table 2.
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4.2 Brusselator equation

We consider the three-dimensional Brusselator model [6] in the cubic domain Ω = [0, 20]3 ⊂ R3. We solve the
problem through the matrix equation (16) with the mesh sizes hx = hy = hz = 0.667 for the number of grid points
n1 = n2 = n3 = 31. The final time is taken as tf = 10 with the time step size ∆t = 0.01, leading to the fourth
dimension n4 = 1001 of the snapshot tensors related to the time. For this problem, we fix the system parameters
du = 0.4, dv = 2, duv = 0.02, α = 6, β = 1, and vary now the parameter θ := dvu in the set of admissible values
P = [19, 23]. As the finite training set of parameter θ, we take the values (including the boundary values) uniformly
distributed on P with the increment 1, i.e., PT = {19, 20, 21, 22, 23} with the number of sample parameter values
np = 5.

In Figure 4, we give the decay of the singular values σi
(
X θ,u(j)

)
and σi

(
X θ,v(j)

)
of the unfoldings X θ,u(j) and X θ,v(j) of the

order-4 snapshot tensors X θ,u and X θ,v , respectively, j = 1, 2, 3, 4, related to each sample parameter value θ ∈ PT .
According to the criteria (27), the computed target ranks rθ,uj and rθ,vj required by the HOSVD in the first level of
nested POD are presented in Figure 5. Similar to the previous example, it again shows that enough energetic part of
the unfoldings are recovered.
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Figure 4: Brusselator model: Level I singular values of unfoldings X θ,u(j) (top) and X θ,v(j) (bottom)
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Figure 5: Brusselator model: Sample parameter values vs target ranks for unfoldings X θ,u(j) (left) and X θ,v(j) (right) at
Level I
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The FOM solutions u(x, t; θ) and v(x, t; θ) together with the nonintrusive ROM approximations û(x, t; θ) and
v̂(x, t; θ) at the final time tf = 10 for the parameter value θ = 21.5 /∈ PT are given in Figure 6, where it can be
seen that enough similar patterns are obtained.

Figure 6: Brusselator model: FOM and ROM profiles at the final time for θ = 21.5

In case of computational efficiency, Table 1 shows that the ROM approximations are obtained by a much greater speed-
up factor, 130, over the FOM compared with the speed-up factor obtained for the two-dimensional Schnakenberg
model. According to the energy criteria (28), it requires global factor matrices of column size only 6 − 14. The
computed time averaged relative errors defined in (26) scales with 10−3. The detailed results for the Brusselator
model can also be found in Table 2.

Table 1: Wall clock time (in seconds) and speed-up factors
Wall Clock Time Speed-up

Schnakenberg
Offline

FOMs 53.70
Level I HOSVD Modes 223.29
Level II POD Modes 0.03
RBF Coefficients 0.93

Online (θ = 0.65) FOM 13.85
ROM 0.70 19.7

Brusselator
Offline

FOMs 586.77
Level I HOSVD Modes 74.70
Level II POD Modes 0.01
RBF Coefficients 0.93

Online (θ = 21.5)
FOM 123.30
ROM 0.95 129.8

Table 2: Time averaged relative errors and memory savings of compression
#Modes (u, v) ‖u− û‖rel ‖v − v̂‖rel Saved Memory in %

Schnakenberg (θ = 0.65)
x-direction (r̂·1) 11, 10

9.54e-02 8.19e-02 %99y-direction (r̂·2) 10, 9
t-direction (r̂·3) 9, 8

Brusselator (θ = 21.5)

x-direction (r̂·1) 14, 7

7.07e-03 6.63e-03 %99y-direction (r̂·2) 7, 7
z-direction (r̂·3) 7, 7
t-direction (r̂·4) 6, 6
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We finally report the computational efficiency of the ST-HOSVD over T-HOSVD. To do this, we consider the order-3
and order-4 snapshot tensors X θ1,u related to the component u of both the two-dimensional Schnakenberg and three-
dimensional Brusselator models with the same problem data considered above. We apply T-HOSVD and ST-HOSVD
to the snapshot tensors X θ1,u with different values of target ranks r := rθ1,u1 = · · · = rθ1,ud+1 , and with the processing
order p = [1, . . . , d + 1] for the ST-HOSVD. In Figure 7, we give the wall-clock times elapsed to make the SVD
computations for each unfolding X θ1,u(j) of the order-(d + 1) snapshot tensors X θ1,u, d = 2, 3. It is clear that ST-
HOSVD provides, in total, better computational efficiency compared to the T-HOSVD. Moreover, as the algorithm
progresses, the time needed for the SVD computation decreases in ST-HOSVD, while it remains almost the same in
the case of T-HOSVD. This is because in the ST-HOSVD the dimension reduction is done sequentially, where the
unfoldings are always obtained from the same full-rank snapshot tensor in T-HOSVD.
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Figure 7: Wall-clock times of SVD computations elapsed for each unfolding X θ1,u(j) of the snapshot tensor X θ1,u of
Schnakenberg model (left) and Brusselator model (right), inside T-HOSVD and ST-HOSVD with different target rank
r

5 Conclusions

In this paper, we have developed nonintrusive ROMs exploiting the matrix/tensor based discretization of cross-
diffusion systems in form of semilinear PDEs. The two-level approach for the construction of reduced bases through
tensor decompositions with HOSVD instead of the classical SVD yields the reduced modes and reduced coefficients
directly without necessitating further computation in the case of the vector based discretization. Numerical experi-
ments with two-dimensional and three-dimensional cross-diffusion systems demonstrate the computational efficiency
of the ROMs and the accuracy of the spatiotemporal patterns for new parameter values.
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