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Abstract. Floating Car Data (FCD) are being increasingly used as an alternative traffic data source due to its lower cost 
and high coverage area. FCD can be obtained by tracking vehicle trajectories individually or by processing multiple tracks 
anonymously to produce average speed information commercially. For commercial FCD, the spatio-temporal distribu-
tion of these vehicles in actual traffic, traffic Penetration Rate (PR) is the most important factor affecting the accuracy of 
speed estimations, despite the high number of registered vehicles feeding to an FCD provider, denoting the market PR. 
This study proposes a method for assessing the traffic PR of commercial FCD by evaluating its speed estimation quality 
compared to Ground Truth (GT) data. GT speed data were employed to generate different levels of traffic PR using Monte 
Carlo (MC) simulations, which resulted in the development of Quality-PR (Q-PR) relations for Mean Absolute Percentage 
Error (MAPE) and Root Mean Square Error (RMSE) as selected Measures of Effectiveness (MoE). Simulation-based FCD 
results at an urban road segment in Ankara (Turkey) showed that a quality of FCD with traffic PR of 15% or more would 
improve significantly. Use of the developed Q-PR relations suggested an approximately 5% traffic PR for the commercial 
FCD speeds at the location. 
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Notations 

Abbreviations:
AAPE – average absolute percentage error;

ASE – absolute speed error;
CI – confidence interval;

FCD – floating car data;
GPS – global positioning system;
GT – ground truth;
ID – identification;

IQR – interquartile range;
LB – lower bound;

LOS – level of service;
MAE – mean absolute error;

MAPE – mean absolute percentage error;
MC – Monte Carlo;

MoE – measures of effectiveness;
MRE – maximum relative error;

NGSIM – next generation simulation program;
NMFD – network macroscopic fundamental diagrams;

OD – origin–destination;
PR – penetration rate;

Q-PR – quality-PR;
RMSE – root mean square error;
RTMS – remote traffic microwave sensor data;
TMC – traffic message channel;

TT – travel time;
UB – upper bound.

Variables:
K – set of MC simulation runs;
k – MC simulation run;

MAPEu – average MAPE between GT and FCD 
speed [%];

MAPEu – MAPE between GT and FCD speed [%];
MAPEu,max – max MAPE between GT and FCD speed [%];
MAPEu,min – min MAPE between GT and FCD speed [%];

,u kMAPEd  – MAPEu in kth MC simulation, k ∈ K for PR d;
,maxuMAPEd  – max MAPEu in K simulations for PR d;

,minuMAPEd  – min MAPEu in K simulations for PR d;

mailto:oruc.altintasi@ikcu.edu.tr
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/transport.2022.17069


162 O. Altintasi et al. A method to estimate traffic penetration rates of commercial floating car data ...

,u LBMAPEd  – LB of MAPEu in K simulations, for PR d;

,u UBMAPEd  – UB of MAPEu in K simulations, for PR d;

uMAPE
d

 – average of MAPEu in K simulations for PR d;
gt – minute-based flow at time t, t ∈ T (GT);
T – analysis time period of the GT data;
t – sampling interval for FCD (1 min);

t
iu  – spot speed of a vehicle i observed in minute 

t, t ∈ T (GT);
tu  – space mean speed at time t, t ∈ T (GT);

t
FCDu  – average speed from FCD at time t, t ∈ T;

,ˆt
FCD ku  – simulated FCD speed from kth MC simula-

tion  at time t, t ∈ T;
du – PR in MC simulation in GT speed data;
d – traffic PR based on GT flow data;

ˆFCDd  – estimated traffic PR [%] for commercial 
FCD;

RMSEu – RMSE between GT and FCD speed [km/h];
RMSEu – average RMSE between GT and FCD speed 

[km/h];
RMSEu,max – max RMSE between GT and FCD speed 

[km/h];
RMSEu,min – min RMSE between GT and FCD speed 

[km/h];

,u kRMSEd  – RMSEu in kth MC simulation, k ∈ K for PR d;

,maxuRMSEd  – max RMSEu in K simulations for PR d;

,minuRMSEd  – min RMSEu in K simulations for PR d;

,u LBRMSEd  – LB of RMSEu in K simulations, for PR d;

,u UBRMSEd  – UB of RMSEu in K simulations, for PR d;

Introduction 

Urban traffic monitoring requires traffic data, which are 
traditionally obtained from various sources, such as loop 
detectors, point sensors and video cameras. Although 
these sources provide highly reliable data in occupancy, 
average speed or flow measurements, their instalment 
and maintenance costs make them more difficult to im-
plement at many locations along urban roads, which is 
even more challenging for local authorities due to budget 
limitations. On the other hand, FCD represent a relatively 
new and cheap traffic data source that provides estimated 
speed (or TT) data for predefined segments based on in-
dividual track data from GPS-equipped vehicles in the 
network. These vehicles can be specifically probed or fleet 
vehicles (e.g., taxis and trucks) tracked mainly for other 
purposes. The location, speed and direction data are sent 
anonymously to a central processing unit and processed 
to determine average speeds. FCD in its raw format has 
detailed vehicle trajectory information allowing one to 
construct time–space diagrams, which can produce very 
detailed information about many different traffic condi-
tions (i.e., location of queue joins or exit, acceleration, de-
celeration, etc.). However, the storage and processing of 
this extensive amount of data is very challenging. To ease 

the use of FCD, spatiotemporal averaging is employed to 
obtain speed for predefined segments of the road network 
as in commercial FCD, provided for many regions and 
countries by private companies, such as INRIX, TomTom, 
HERE and Be-Mobile. The extensive coverage area of 
these data makes them preferable, particularly in develop-
ing countries, where urban regions face exacerbated traffic 
congestion on major arterial roads. 

Many studies have focused on the estimation of traf-
fic speed and state using both FCD with GPS-equipped 
vehicle trajectories and commercial FCD; the results have 
demonstrated acceptable errors in speed and traffic state 
estimation. An increase in the number of GPS-equipped 
vehicles in the future is a promising factor encouraging 
the use of FCD for urban arterial management purposes; 
however, FCD PR is still a crucial issue in the quality of 
traffic parameter estimations, whether defined as reliabil-
ity, accuracy or otherwise. Market PR for FCD is mostly 
stated as a constant rate based on the registered number 
of GPS-tracked vehicles; for example, among the 19+ mln 
registered vehicles in Turkey, approximately 600000 GPS-
equipped vehicles are feeding to FCD, reaching a market 
PR of 3%. However, this figure may be misleading because 
the spatio-temporal distribution of these vehicles on arte-
rial roads over a 24 h period can vary significantly due to 
traffic demand and conditions. Traffic PR d, defined as the 
sampling percentage of GPS-equipped vehicles in traffic 
volumes, has been addressed as a key issue in FCD studies 
with individual probe vehicle data. 

Since commercial FCD utilized both real time and his-
torical data information, its PR has not been studied so 
far, representing a gap in assessing its reliability as a traffic 
data source, which is the main goal of this study. To our 
best knowledge, there is no published research method-
ology that allows one to estimate the PR of commercial 
data independently. This research proposes a novel meth-
odology to estimate the FCD traffic PR at a location based 
on GT traffic data (speeds and flows). GT speed data 
were used to generate randomly simulated FCD speeds 
with different traffic PRs d, using the MC technique. Us-
ing commonly selected quality evaluation parameters of 
MAPE and RMSE, Q-PR relations of FCD were devel-
oped, which were later used to draw insights regarding 
the existing traffic PR of FCD, ˆFCDd  at the study location. 
The method was applied for an urban corridor segment in 
Ankara (Turkey) for which 1 min commercial FCD speeds 
were available, and the analysis was repeated for different 
time periods – am-peak, off-peak and whole-day, which 
also showed the sensitivity of the method to observation 
period and traffic regimes. 

1. Literature review

In the literature, the phrase FCD is used to refer to time-
stamped location and speed data collected from vehicles. 
In their raw format, FCD provide detailed vehicle trajec-
tory information (Type 1). It can be obtained from either 
simulation environment (Type 1a) or real probe vehicles 
flowing on the roads (Type 1b). Thus, it could be possible 
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to construct time–space diagrams that can produce highly 
detailed information about many different traffic condi-
tions (e.g., location of queue joins or exit, acceleration 
and deceleration). However, the storage and processing 
of this extensive amount of data is particularly challeng-
ing. To ease the use of FCD, spatio-temporal averaging 
is employed to obtain speeds for predefined segments of 
the road network as in commercial FCD (Type 2). Due 
to considerable time and effort being saved, commercial 
FCD is quite advantageous for the monitoring and plan-
ning of urban networks. Thus, it is important to review 
the FCD literature for these 2 types of data – Type 1 and 
Type 2 – separately (see Table 1 for literature overview). It 
should be noted that FCD are mostly collected from com-
mercial vehicles (taxis, public transit vehicles, delivery ve-
hicles, etc.). Therefore, there is potential for bias in vehicle 
sampling. Despite this sampling bias, it is widely accepted 
that FCD provide valuable information when sampled ve-
hicles follow the traffic flow and traffic PR is sufficiently 
high. However, not all FCD studies focus on the issue of 
PR, which can affect the reliability of the extracted traffic 
information. Thus, the FCD literature is reviewed from 
this perspective as well.

1.1. Overview of FCD studies

Studies using probe vehicles (Table 1) mostly map vehi-
cle trajectories to the road network to produce estimates 
for traffic state parameters, i.e., TT in researches by Chen, 
Chien (2000), Cetin et al. (2005), Jenelius, Koutsopoulos 
(2015), He et  al. (2019a); speed in researches by Cheu 
et al. (2002), Hong et al. (2007), Klunder et al. (2017), or 
congestion-related attributes such as, location of an inci-
dent in research by Kerner et al. (2005); congestion dura-
tion and location in researches by Kerner et  al. (2005), 
Vandenberghe et al. (2012), and queue length in research 
by Ramezani, Geroliminis (2015). Alternatively, FCD-
based fundamental diagrams are developed at the link or 
network level, referred to as NMFD, recently in researches 
by Sunderrajan et al. (2016); Ambühl, Menendez (2016); 
some of these studies used simulated vehicles in research-
es by Chen, Chien (2000), Cetin et  al. (2005), Jenelius, 
Koutsopoulos (2015). Alternatively, simulated vehicle tra-
jectories were also produced based on real ones using a 
NGSIM as in researches by Ramezani, Geroliminis (2015), 
He et al. (2019b).

Using real taxi fleet trajectory data from Stockholm 
(Sweden) with 1500 taxis, Jenelius, Koutsopoulos (2013) 
examined the reliability of TT estimation in the absence of 
traffic flow data along a 1.4 km urban arterial stretch (with 
26 intersections, 10 of which were signalized). The results 
suggested that TT estimation can be achieved using low 
traffic PR. Using taxi fleet data from Nanjing (China) with 
7700 taxis, Yun, Qin (2019) investigated the TT reliability 
of FCD along a 3.1 km road stretch (between 5 intersec-
tions); the existing traffic PR was found to be adequate 
in terms of 15  min TT reliably. Brockfeld et  al. (2007) 
utilized a taxi-based FCD for a 2 km urban corridor in 
Nuremberg (Germany), showing that FCD had significant 

potential for congestion detection, but short-term speed 
drops were not captured. He et  al. (2019b) focused on 
identifying turn-level intersection congestion along 5 ring  
roads in Beijing (China) (with almost 4000 intersections) 
using GPS-equipped taxi fleet data; the results demon-
strated the substantial potential of the approach. Based 
on speed from taxi fleet data and flow from loop detec-
tors, Beibei et  al. (2016) developed NMFD for a 2 km2  
area in Changsa (China), showing the potential use of 
FCD fusion with another traffic data source. Integration of 
conventional surveys with big data has also paid more at-
tention for travel demand analysis (Cascetta 2009; Grengs 
et al. 2008; Ribeiro et al. 2014; Nigro et al. 2018; Croce 
et al. 2019). Grengs et al. (2008) discussed the advantages 
of FCD for travel demand analysis by comparing conven-
tional travel surveys. Ribeiro et al. (2014) integrated FCD 
with household survey data to establish travel behaviour 
in Porto Alegre (Brazil). It was found that FCD provided 
more reliable and precise data compared to traditional 
surveys. Nigro et al. (2018) stated that OD TTs from FCD 
were found to be more reliable in Roma (Italy) as well. 
Croce et  al. (2019) used taxi fleet data in combination 
with traditional household travel surveys to derive travel 
behaviour in the Province of Calabra (Italy); despite the 
challenges in FCD quality, the method was found to be 
considerably useful for the development of transportation 
system models. 

Based on commercial FCD with 3 min intervals from 
2 selected corridors in Roma (Italy), De Fabritiis et  al. 
(2008) proposed a neural network based model to esti-
mate the average link speeds and to determine the con-
gestion locations. They reported successful speed predic-
tion for 15 and 30 min periods. Houbraken et al. (2018) 
focused on the use of commercial FCD for dynamic traffic 
management for the A27 highway section in Gorinchem 
(Netherlands), and showed success in capturing queue for-
mations and dissipations. Using commercial FCD speed 
data (INRIX company) from Beijing (China) fused with 
RTMS, Zhao et al. (2009) analysed the traffic flow charac-
teristics on ring road expressways to derive a fundamental 
diagram. With similar FCD data in Raleigh, Durham and 
Chapel in North Carolina (US), Chase et al. (2012) fused 
FCD speed with RTMS data to obtain a speed-flow fun-
damental diagram, but due to systematic errors and low 
PRs of commercial FCD, the desired speed-flow relation 
could not be obtained. Altintasi et al. (2017) focused on 
the detection of recurrent congestion or bottleneck loca-
tions and even the length of queues formed before the 
bottlenecks. In follow up studies, Altintasi et al. (2019a, 
2019b) evaluated success of the commercial FCD in:

»» derivation of the traffic fundamental diagram as 
fused with GT speeds;

»» determination of transformation functions relating 
the FCD speeds with the GT ones;

»» estimation of speed and LOS values;
»» dominant traffic states by analysing longer duration 

of FCD achieves;
»» queue formations and dissipations around bottle-

neck locations.
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1.2. PR coverage in FCD studies

Although there are many studies focusing on applica-
tions of FCD, the effects of traffic PR of FCD were not 
addressed in all of them, as shown in Table 1. In some 
of the studies, an overall market PR was calculated from 
the ratio of FCD-probed vehicles to the vehicle park in 
the same region. There is a wide range of reported mar-
ket PR for commercial FCD; 5% in Beijing (China) (He 
et al. 2019a, 2019b), 6…7% in Changsa (China) (Beibei 
et al. 2016) and 2% for Calabra (Italy) (Croce et al. 2019).  

De Fabritiis et al. (2008) stated a particularly low market 
PR of 1.7% for commercial FCD in Italy, but Houbraken 
et al. (2018) claimed a market PR of 6…8% for Amsterdam 
(Netherlands). Many studies examined the effect of traffic 
PR on TT. Chen, Chien (2000) suggested a minimum of 
sampling rates for congested conditions and uncongested 
conditions, separately. Jenelius, Koutsopoulos (2015) fur-
ther investigated the probe vehicle data sampling either 
by time or space for TT estimation and proposed a sam-
pling procedure for different conditions. He et al. (2019a, 
2019b) indicated that a 4% traffic PR with 20 sec sam-

Table 1. Overview of probe vehicle based (Type 1) and commercial (Type 2) FCD studies

Study
FCD coverage MoE

used for PR comments MoE comments
Type 1a: studies using simulated FCD

Chen, Chien (2000) TT 6…12.5% traffic PR needed MRE 5% MRE
Cetin et al. (2005) TT – – –
Jenelius, Koutsopoulos (2015) TT – – –
He et al. (2019a, 2019b)1 TT <10% traffic PR in NGSIM1 data MAPE 4% traffic PR produced 

MAPE as 6.1…12.9%
Cheu et al. (2002) speed minimum 6% traffic PR needed MAE 5 km/h of MAE for 15% 

traffic PR
Hong et al. (2007) speed minimum 2% traffic PR needed RMSE significant decrease after 

20% traffic PR
Klunder et al. (2017) speed minimum 10% traffic PR needed AAPE 10% traffic PR produced 

5.6% AAPE
Kerner et al. (2005) congestion 1.5…2.0% traffic PR needed for 

incident location detection
– –

Vandenberghe et al. (2012) congestion traffic PR needed: highway (1% –10 
sec), urban (10% – 1 sec)

– –

Ramezani, Geroliminis (2015)1 queue length <10% traffic PR in NGSIM data; 20% 
traffic PR needed

MAE queue length error  
of 2…4 veh

Sunderrajan et al. (2016) NMFD minimum 5% traffic PR needed – –
Ambühl, Menendez (2016) NMFD minimum 3% traffic PR needed – –

Type 1b: studies using real FCD with vehicle trajectory data
Jenelius, Koutsopoulos (2013)* TT – – –
Yun, Qin (2019)* TT minimum 10% traffic PR MAPE 10…14% MAPE
Brockfeld et al. (2007)* congestion – – –
He et al. (2019a, 2019b)* congestion market PR in Beijing (China) (5%) – –
Beibei et al. (2016)* NMFD market PR in Changsa (China) 

(6…7%)
RMSE flow error of 38.22 veh

Grengs et al. (2008) OD matrix – – –
Ribeiro et al. (2014) OD matrix – – –
Nigro et al. (2018) OD matrix market PR in Roma (Italy) (2.5%) – –
Croce et al. (2019) * OD matrix market PR in Calabra (Italy) (2%) – –

Type 2: studies using commercial FCD
De Fabritiis et al. (2008) speed market PR in Italy (1.7%) and higher 

in Rome (2.4%)
MAPE, 
RMSE

RMSE of 7…9 km/h, 
MAPE of 2…8%

Altintasi et al. (2019a, 2019b) speed, congestion market PR in Turkey (3%) – –
Houbraken et al. (2018) congestion 6…8% market PR in the Netherlands – –
Zhao et al. (2009) NMFD – – –
Chase et al. (2012) NMFD – – –

Notes: “–” stands for “not addressed”; 1 – using NGSIM; * – FCD is based on taxi fleet data.
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pling frequency was necessary for TT estimation. Yun, 
Qin (2019) reported that 10% traffic PR was required for 
reliable TT estimation. For the speed prediction studies, 
Cheu et  al. (2002) performed simulation-based analysis 
under various traffic volumes, suggesting at least 6% traffic 
PR; however, a significant improvement in the accuracy of 
speed estimation was observed for a PR of 15%. Klunder 
et al. (2017) showed that for 1% PR, there were high lev-
els of error, whereas 10% PR generated acceptable results. 
Hong et  al. (2007) proposed a minimum 2% traffic PR 
for speed estimation. For congestion applications, Kerner 
et al. (2005) investigated the minimum traffic PR required, 
which suggested 1.5% PR for detection of an incident lo-
cation with a 65% probability; on the other hand, Vanden-
berghe et al. (2012) proposed at least 1% PR (with a 10 sec 
sampling interval). Brockfeld et al. (2007) emphasized an 
insufficient PR of the study region without discussing the 
existing traffic PR. For queue length estimation near sig-
nalized intersections from probe vehicle data, Ramezani, 
Geroliminis (2015) proposed a model with varying PR 
and a sampling frequency in an NGSIM environment: a 
PR of 20% (with 40 sec sampling frequency) produced a 
MAE of 4 vehicles, which was reduced to 2 vehicles with 
50% PR. 

To derive NMFD, Sunderrajan et  al. (2016) created 
various scenarios with different PRs for a simulated high-
way corridor; a minimum PR of 5% was estimated for 
NMFD derivation. Ambühl, Menendez (2016) proposed 
a data fusion algorithm using FCD and loop detector data 
for deriving the NMFD for the city of Zurich, concluding 
that a minimum PR of 3% was required for FCD. Beibei 
et al. (2016) also utilized real loop detector data and taxi 
probe vehicle data to build an NMFD, in which hetero-
geneous traffic PR of taxis was observed between 6…7%. 

1.3. MoE in FCD studies 

When quantifying the success of FCD, some studies used 
MoE determined by comparing FCD-based estimated val-
ues with GT values. The different MoE used by FCD stud-
ies in Table 1 included: 

»» MRE (Chen, Chien 2000); 
»» MAPE (De Fabritiis et  al. 2008; He et  al. 2019a, 

2019b; Yun, Qin 2019); 
»» RMSE (De Fabritiis et al. 2008; Beibei et al. 2016); 
»» MAE (Cheu et  al. 2002; Ramezani, Geroliminis 

2015); 
»» AAPE (Klunder et al. 2017). 
For the use of FCD TT in the development of NMFD 

for a region in Changsa (China), despite the overall taxi 
penetration in the study region being monitored for eve-
ry sampling interval, only RMSE in estimated flow val-
ues was measured as an indicator of FCD quality (Beibei 
et al. 2016). Similarly, while monitoring the traffic PR of 
taxi numbers along 4 consecutive urban road segments, 
the quality of average TT estimation was measured as 
10…14% (Yun, Qin 2019). In the case of FCD quality in 
speed estimation in Rome (Italy), an RMSE of 7…9 km/h 

was reported, for which a MAPE range of 2…8% was ob-
served for a market PR of 2.4% (De Fabritiis et al. 2008). 
Note – despite the existence of a broader literature on the 
quality of FCD-based estimations, studies that report/dis-
cuss FCD PR only are included in Table 1 for the focus of 
PR discussion.

While evaluating the quality of FCD in traffic pa-
rameter estimations based as a function of PR of FCD in 
simulated environments, for a 5% MRE level, 6% traffic 
PR was required for uncongested regimes, whereas 12.5% 
PR was necessary for congested cases (for volume/capacity 
rates of 0.82) (Chen, Chien 2000). Another TT estima-
tion quality evaluation showed a minimum of 4% traffic 
PR resulted for an MAPE of 6.1…12.9% (He et al. 2019a, 
2019b). In speed estimations, 15% traffic PR generated 5 
km/h MAE (Cheu et al. 2002), whereas an AAPE of 5.6% 
was reported for 10% traffic PR (Klunder et al. 2017). For 
NMFD derivation, Beibei et al. (2016) found an RMSE of 
38.22 veh as a reliability indicator for 6…7% market PR in 
Changsa (China). In the estimation of queue lengths with 
FCD, 2…4 veh were reported as the MAE as an accuracy 
indicator (Ramezani, Geroliminis 2015).

1.4. Aspects affecting FCD quality

Whether referred to as quality (Cetin et al. 2005; De Fab-
ritiis et al. 2008; Vandenberghe et al. 2012; Ambühl, Me-
nendez 2016; Klunder et al. 2017; Houbraken et al. 2018; 
Yun, Qin 2019), accuracy (Ramezani, Geroliminis 2015) 
or reliability (Sunderrajan et al. 2016; Beibei et al. 2016), 
the success of FCD used in estimating traffic state is an 
important issue for the future of FCD as a traffic data 
source. For probe vehicle trajectory-based FCD, the cru-
cial point is the representativeness of the probe vehicles in 
the traffic. GPS trajectories from vehicle fleets (taxis, bus, 
commercial ones, etc.) may show characteristics different 
than the average traffic conditions in terms of speeding, 
dwelling, etc., as well as route choices. This biasedness 
may be reduced when a mixed set of vehicles are used as 
probes, such as trajectory data fed into commercial FCD 
providers. However, there is still the issue of the spatio-
temporal distribution rate of these probe vehicles, traf-
fic PR of FCD, affecting the quality of commercial FCD 
parameters (speed or TT). If all the vehicles were moni-
tored, as in simulated full autonomous/connected vehicle 
systems (100% market and traffic PRs), such commercial 
FCD would be simply the GT data, itself. However, a study 
on the required traffic PR for connected vehicles showed 
that 15% PR is adequate for estimating space mean speed, 
which is used in macroscopic traffic flow models (Taleb-
pour, Mahmassani 2016). Even so, there is always the is-
sue of time aggregation (also termed sampling interval) 
that leads to an averaging of speed (or TT); if FCD values 
were obtained for 5 min periods, it would convey less re-
alistic values than shorter time aggregations (i.e., 1 min, 
30 sec or even 0.1 sec in studies using NGSIM data); this 
aspect was discussed in the simulation-based FCD studies 
of (Ramezani, Geroliminis 2015; He et al. 2019a, 2019b). 
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Similarly, aggregation over space, which raises the 
issue of segmentation in FCD (Jenelius, Koutsopoulos 
2015), is another aspect that has to be considered in the 
evaluation of FCD parameters to represent real traffic con-
ditions. Commercial FCD speeds are mostly provided for 
segments following the TMC, varying from 500 to 1600 
m. Additionally, improved FCD segments with shorter 
lengths (up to 220 m) providing more consistency with 
the road network topology were introduced by INRIX 
(2018). Even a finer segmentation with lengths of up to 
100 m for approaches at signalized urban arterials was cre-
ated by the TomTom company for urban roads in Munich 
(Germany) (Kessler et al. 2018). 

The current market PR of FCD, however, is far from 
the ideal full market PR levels; thus, the quality of FCD 
parameters is affected by all of the aforementioned aspects 
to a significant degree, in addition to the issue of use of ar-
chival data or short-term history, which is employed when 
sparse probe vehicle conditions are observed. In studies 
using real vehicle trajectory FCD data, the FCD sparsity 
was addressed by developing a historical TT database 
(Jenelius, Koutsopoulos 2013) or aggregation of FCD over 
15 min (Yun, Qin 2019). Zhang et al. (2015) proposed a 
model to estimate the FCD traffic PR of a single road seg-
ment in Beijing ring roads, based on which a statement of 
need for higher PR values over longer segments was made, 
but, without any numerical support. 

The review of the FCD literature from the perspective 
of PR has shown that there was a wide range of estima-
tions for the sufficient PR for a selected FCD application 
success (estimation of speed, TT, queue length, NMFD, 
etc.). This rate may change between road types (highway 
versus urban) as well as congestion levels. Furthermore, 
it may be different for various sampling intervals and 
segment length. Although some simulation studies have 
provided MoE as a function of PR, the majority of them 
failed to associate FCD traffic PR to quality (Q-PR), due 
to its complex nature in space and time and its correlation 
between the estimated parameters. It is even more chal-
lenging in the case of commercial FCD and its reliability 
in urban traffic management and planning, which has a 
much lower market PR than the desired minimum levels, 
currently. As a result, none of aforementioned studies fo-
cused on the estimation of traffic PR of commercial FCD, 
it was not evaluated so far, which is a gap in literature and 
the main motivation of this research. 

2. Methodology

2.1. Commercial FCD at the study location

Commercial FCD used in this study included average 
speed published at 1 min time intervals dynamically. The 
invariant portion of the data including segment ID, length, 
posted speed limit, etc., was shared in a static table, in 
which segment ID was used as the parameter connecting 
the static and dynamic parts. The corridor Dumlupınar 
Boulevard (from Hacettepe University interchange to Bil-

kent University entrance) in Ankara (Turkey) (Figures 1a, 
1b), was selected as a major arterial in the form of a mul-
tilane urban highway corridor, with three lanes in each di-
rection. The study corridor consists of 82 FCD segments, 
which have a fine segmentation with a maximum length 
of 50 m and 1 min time intervals (Figure 1c), and GT was 
available clearly for Segment 57 (Figure 1d). The speed 
limit of the corridor is 82 km/h for passenger cars and 
70 km/h for commercial vehicles. Note: a preview of FCD 
speed values for the corridor showed suggested a trunca-
tion at the “posted speed limit”, a common practice in the 
commercially available FCD to avoid any use of “volun-
tarily shared GPS track data of probe vehicles” in speed 
enforcement, which had previously occurred and received 
a negative reaction from vehicle owners (Waterfield 2011). 
Despite higher values than may be observed in real life, a 
commercial FCD provider published a 70 km/ht

FCDu ≤  
in the study corridor.

2.2. GT data collection

To collect GT data, a video camera was installed at a high-
rise building along the FCD study corridor for one day 
(25 (Tuesday) October 2016), as shown in Figure 1d. The 
video camera view provided clear visibility of the study 
segment of (length  = 49.15 m) for all three lanes. The 
analysis time period T, was 07:30 to 16:00 and included 
the am-peak and noon off-peak hours. Using a MATLAB 
(https://www.mathworks.com) code, the video camera was 
processed manually to obtain values of (1) 1 min traffic 
flow gt and (2) average speed tu . The flow was determined 
by counting vehicles crossing a virtual line at Location 1 
in Figure 1d. 

For speed detection, a sampling approach was em-
ployed to calculate average speeds for every sampling in-
terval t, as follows. For every sampled vehicle i entry and 
exit times were recorded at Locations 1 and 2, respectively. 
Individual spot speed of the vehicles t

iu  were averaged to 
obtain GT speeds tu (Figure 2). The overall GT speed pro-
file of the study segment is illustrated in Figure 1e. Notes: 
vehicles on each lane were sampled separately, but joined 
together for the average speed estimations for the segment. 
Because detecting a sampled vehicle required tracking of 
the vehicle i between the two observation points, the next 
vehicle for speed data, vehicle i + 1, was selected as the 
first vehicle observed at Location 1, after vehicle i passed at 
Location 2. This approach caused lower sampling rates for 
speed (labelled as “observed speed volume” in Figure 3),  
which also had different sampling rates under varying 
traffic conditions (this issue will be discussed in the PR 
estimation sections below). Because t

FCDu  were provided 
at 1 min time intervals, flow and average speed from GT 
data were compiled for every 1 min period as well. Fur-
ther, because the traffic data were collected only for a short 
segment length, no surpassing manoeuvres between lanes 
were detected during the data collection period. Thus, it 
was not considered for this study.

https://www.mathworks.com
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2.3. Data pre-processing

The extreme values in FCD speed can significantly affect 
the traffic PR of commercial FCD. To minimize the impact 
of FCD speed-related problems in the quality evaluation, 
extreme values in FCD were filtered, and a cleaned-up data 
set was created (Figure 2). To identify the extreme values, 
several methods are proposed such as IQR score, z-score, 
box plots, clustering techniques, visualization tools etc. In 
this study, upper and lower limits for the FCD speed fil-
ter were determined by analysing the distribution of the 
ASE  – t t t

FCDASE u u= −  defined for each time t ∈ T.  
A tolerance upper limit was chosen by simply assuming 
two folds of the IQR for the ASE to create an upper limit 
for tolerance in the errors as:

( )3toleranceASE Q c IQR= + ⋅ ,  (1)

where: c is a constant value (1.5…2.0, depending on the 

quality of the analysis); 3 1IQR Q Q= − , in this equation 
Q3 and Q1 represent the 75- and 25-percentile values, re-
spectively. FCD speeds with ASE larger than the tolerance 
were filtered out. 

To determine the appropriate constant value, speed 
profiles of the commercial FCD and GT data at the study 
segment was drawn (Figure 1e) and outliers were identi-
fied based on the different constant c values of 1.5, 1.7 
and 2.0. It was concluded that no significant changes were 
observed with the varying constant value. In addition to 
the detected outliers for c = 2.0, only two additional outli-
ers were detected for the off-peak and am-peak, separately 
while selecting the value c = 1.7. When c = 1.5, additional 
one outlier was detected at am-peak hour, only (Figure 1e).  
Thus, any value between 1.5…2.0 can be selectable and it 
was taken as 2.0 in this study. FCD speeds with ASE larger 
than the tolerance were filtered out.

Figure 1. The border of the Ankara city and location of the Dumlupınar Boulevard (a, b); FCD segmentations and study segment  
on Dumlupınar Boulevard in Ankara (Turkey) (c, d); speed profiles of the commercial FCD and GT data at the study segment  

as well as the outliers in commercial FCD (e)
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2.4. Traffic PR estimation approach  
for commercial FCD 

This study proposed a novel methodology to indirectly esti-
mate the traffic PR of commercial FCD using GT data from 
a fixed location. The model can be applicable whenever the 
GT and commercial FCD speed data are available for the 
road segment located in urban arterial, freeways, highways, 
etc., to estimate traffic PR at a selected location. The frame-
work of the proposed methodology is given in Figure 2. 

As a traffic parameter, commercial FCD provide av-
erage speed t

FCDu  for each time (sampling) interval (see 
Notations). The proposed methodology for the evaluation 
of traffic PR has three main stages (Figure 2): (1) GT data 
collection; (2) generation of simulated FCD with varying 
traffic PR levels via a MC simulation approach to obtain 
a Q-PR relation for simulated FCD and (3) estimation of 
traffic PR of commercial FCD at the road segment. MoE 
for Q-PR were selected as MAPE and RMSE. The quality 
of FCD under varying PRs was evaluated by creating vari-
ous FCD subsets from GT speed dataset t

iu  using MC sim-
ulations (Figure 2). In this approach; for each selected PR 
d in every simulation MC scenario k; a randomly selected 
speed subset was created t

iu  for each sampling interval t 
and the average of the selected speeds was used to obtain 
“simulated FCD speed” ,ˆt

FCD ku  for every min t. Simulated 
FCD speeds ,ˆt

FCD ku  were compared with tu  values to cal-
culate MoEs, ,u kMAPEd  and ,u kRMSEd . 

Generation of simulated FCD speeds and Q-PR  
relations under varying PRs
In this study, 6 different PRs were selected as { }5%,10%,15%, 25%, 35%, 50%ud =

 { }5%,10%,15%, 25%, 35%, 50%ud =  based on sampled speed data. Ran-
domly generated MC simulations (k  = 20) were created 

for each PR du in speed observations. To provide an idea 
regarding the size of the dataset in the simulated FCD sce-
narios, a 1 min based number of vehicles with speed data 
for { }5%,15%, 35%ud =  were plotted in addition to all of 
the speed dataset (du = 100%) in Figure 3. Note: MC sce-
narios were created based on the observed speed dataset; 
the corresponding traffic PR d for an MC scenario, was 
determined as a function of du as shown in Table 2. For 
example, for the whole-day analysis, for du = 5% PR MC 
scenario, the total number of vehicles with speed data was 
3.49% (d) of the total traffic flow for the whole-day analy-
sis period. However, traffic PRs during the peak-hour and 
off-peak periods were d = 2.21% and d = 3.77%, respec-
tively, for the same du. 

At the end of the K simulations, statistics of MoEs 
were derived to obtain values of (1) average ( uMAPE

d
, 

uRMSE
d

 ); (2) minimum ( ,minuMAPEd , ,minuRMSEd ) and (3) 
maximum ( ,maxuMAPEd , ,maxuRMSEd ). Furthermore, LB  
( ,u LBMAPEd , ,u LBRMSEd ) and UB ( ,u UBMAPEd , ,u UBRMSEd ) 
of the MoEs were determined for 95% CI. The same pro-
cess was repeated for each selected d. Plotting calculated 
MoEs versus traffic PR rates (d) in the simulated scenarios, 
a set of Q-PR functions were derived. In the third stage of 
the proposed methodology, MAPEu and RMSEu of com-
mercial FCD were calculated by comparing tu  and t

FCDu , 
which were later used to estimate traffic PR of commercial 
FCD, ˆFCDd , at the study location from developed Q-PR 
functions. 

2.5. MoE for quality evaluation 

Based on the MoEs commonly used in the FCD literature, 
the following ones were selected:

»» MAPE as proposed in researches by Wang et  al. 
(2014), Hu et al. (2016) and determined as: 

 1

1 100
T t t

FCD
u t

t

u u
MAPE

T u=

−
= ⋅ ⋅∑ ;  (2)

»» RMSE proposed in research by Wang et al. (2014) 
and calculated as: 

( )2

1

1 T
t t

u FCD
i

RMSE u u
T =

= ⋅ −∑ ,  (3)

      where: T shows the analysis period in terms of [min]. 

2.6. Limitations of the study

Despite its capability to draw insights about traffic PR at 
a given location, the proposed approach has the following 
shortcomings: Because there is no published information 
regarding how the archival data are used in commercial 
FCD, which is a common practice for road segments or 
time periods with missing or limited number of obser-
vations, no archival data were assumed in the simulated 
FCD speeds. Thus, the use of the developed Q-PR rela-
tions, which included only PR-based errors, may produce 
different PR rates, if commercial FCD have a strong ar-

Figure 2. Methodology framework for estimation of traffic 
PR for commercial FCD-based on Q-PR relations from MC 

simulations
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chival data usage. As an alternative, Q-PR relations can 
be obtained for simulated FCD scenarios with assumed 
archival data usage with known principles. Secondly, the 
GT data were not collected at multiple locations and/or for 
different FCD segment lengths, which is necessary to gen-
eralize the use of derived Q-PR relations. Segmentation of 
the road network is also critical to discuss the length of 
validity of the results: in intercity roads, traffic conditions 
and PR values could be estimated for longer stretches, as 
there are few entry/exit points. But, in urban road net-
works, due to existence of many crossing roads and vary-
ing traffic conditions (i.e., traffic signals, stops, etc.), much 
shorter analysis distances must be taken for FCD genera-
tion (i.e., INRIX company provided 220 m length road 
segments for uninterrupted arterials while 100 m length 
for signalized ones). Thus, this requires more locations to 
be monitored to have a more network based traffic PR 
estimations. 

Thirdly, using 1 min FCD speeds, which are commer-
cially available surely brings some limitations in estima-
tion of certain traffic conditions (detection of congestion 
formation, etc.), but, its effect on estimation on traffic PR 
values is not expected to be that strong for the follow-
ing reasons. Vehicle-based traffic events (slowing downs, 
speeding up, traffic signal phases, etc.) can be observed in 
shorter time intervals (i.e., in 15 or 30 sec data aggrega-
tions) and finer FCD time aggregations can be crucial to 

capture them as in studies with NGSIM and real vehicle 
trajectory data. It is crucial and necessary for individual 
vehicle level decision making such as autonomous and 
connected vehicles operations. Such data encompasses 
very detailed information providing space-time position 
of the vehicles for every second; thus, location of queue 
joins or exit, acceleration, deceleration, information can 
be derived. However, the storage and processing of this 
extensive amount of data is very challenging. That is why 
spatiotemporal averaging is employed to obtain average 
speed for predefined segments of the road network like 
in commercial FCD. Even though the individual vehicle 
information is lost, such data is useful for overall network 
traffic management and analysis such as ID of the recur-
rent congestion locations, queue formations and dissipa-
tions, incident/bottleneck locations and traffic state esti-
mations. Therefore, for the overall urban traffic monitor-
ing 1 min average speed data can be more cost effective 
due to aforementioned reasons. Thus, we could not evalu-
ate the limitation that the commercial FCD speed with 
1 min time intervals imposed.

The use of commercial FCD speed with 1  min time 
intervals is a more aggregate analysis compared to use of 
FCD from NGSIM or real vehicle trajectory data obtained 
from taxi fleets. While it is possible to get more detailed 
traffic and PR data with the latter, the large-scale of it is 
very difficult due to data storage problems for large net-
works. Thus, commercial FCD speeds are produced in 
longer time intervals; in an attempt to estimate to traf-
fic PR for commercial FCD, this study did not focus on 
developing Q-PR relations for shorter time aggregations 
(i.e., 15, 30 sec, etc.), as they would be consistent with the 
available commercial FCD. 

3. Case study results 

3.1. GT and FCD speed overview

For the study segment, the profile of the GT speeds 
showed that sudden reductions were observed after 07:30 
until 09:00, indicating the severe congestion that marked 

Figure 3. GT speed and flow observation data with average number of speed samplings  
for 1 min simulated FCD via MC simulations
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Table 2. du and corresponding d values for different  
analysis periods

du [%]
d [%]

whole-day am-peak off-peak
5 3.49 2.21 3.77

10 6.38 4.06 6.88
15 9.27 5.93 10.00
25 15.10 9.59 16.30
35 20.91 13.27 22.57
50 29.59 18.73 31.96
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the am-peak (Figure 1e). No other congestion was detect-
ed until the end of the study period because the evening 
peak was not observed due to early sunsets in October in 
Ankara. Outliers in FCD speeds, based on Equation (1), 
were detected mostly in the uncongested regime, indicat-
ing either poor quality of FCD or errors in FCD broad-
casting temporarily. To improve the analysis, sources of 
errors in the commercial FCD other than PR-based ones 
were eliminated as much as possible, as follows: a filtered 
FCD speed dataset was created by removing these out-
liers. Plotting FCD speed profile t

FCDu  against the GT-
based one showed that FCD speeds mostly followed the 
GT values; however, it underestimated during the off-peak 
periods and overestimated during the peak period. During 
the traffic state change from uncongested to congested re-
gime or vice versa, t

FCDu  did not respond immediately to 
the sudden decrease/increase in speed, showing a time lag 
of approximately 4 min. A second round of data process-
ing was performed to eliminate this time-lagging in the 
commercial FCD by shifting the latter during the am-peak 
only (Figure 1e).

To evaluate the speed estimation quality of the com-
mercial FCD at the study location, MAPEu and RMSEu 
values were calculated for different analysis periods sepa-
rately (Table 3). In the whole-day evaluation, MAPEu and 
RMSEu were calculated as 17.22% and 11.67 km/h, respec-
tively. Elimination of the outliers in FCD speeds produced 
the filtered FCD dataset with reduced MAPEu and RMSEu 
of 13.65% and 8.73 km/h, respectively. Similarly, a RMSE 
of 9.6 km/h was reported for an urban corridor by Kim, 
Coifman (2014). For the am-peak, MAPEu was higher 
(47.52%), which is most likely due to a lagged response: 
substantially larger MAPE values for speed (80…209%) 
were reported for an urban corridor in Hu et al. (2016). 
RMSEu on the other hand, was calculated as 13.87 km/h. 
Filtered FCD further reduced RMSEu and RMSEu to 
36.94% and 11.72 km/h, respectively. Additionally, the 
elimination of time-lagging in commercial FCD resulted 
in significant decreases in MAPEu values from 47.52% to 
32.32% during the am-peak for raw FCD (Table 3). The 
effect of time-lagging on MAPEu was also observable con-
sidering the entire analysis period, for which an almost 
2% decrease in MAPEu was detected. The performance 
measure values remained constant for the off-peak times 
because the time lag correction was only implemented for 
the am-peak. Furthermore, filtered FCD with lag correc-
tion produced lower MAPEu  and RMSEu  as 12.76% and 
8.30 km/h, respectively for the whole-day period. Slightly 

decrease in MAPEu and RMSEu  was also observable in 
am-peak and off-peak period as tabulated in Table 3.

Despite a stronger relationship during the am-peak 
(R2 = 0.76), the rather low value of R2 for the entire analy-
sis was due to small oscillations around the free flow values 
during the long off-peak periods, which also dominated 
the whole-day period. Filtering extreme values produced 
an improved R2 value of 0.82 for the am-peak, whereas 
lag correction itself showed an improved value of 0.79 for 
raw FCD (Table 3); however, a high correlation between 
the GT and FCD speeds was observed when a filtered and 
lag-corrected FCD dataset was used (R2 = 0.86). 

3.2. Quality of simulated FCD speed

Evaluating the results of 20 MC simulations (randomly 
created using the GT speed data described in Section 2.4) 
for each selected du, first, the change of speed R2 was mon-
itored as shown in Figure 4. As expected, when du was 
increased, speed R2 was increased significantly. However, 
for very low values of du  = 5% (which corresponded to 
d = 3.49% for the entire study period from Table 2), speed 
R2 values reduced significantly to 0.70…0.80. At a 15% 
PR, these values reached up to the 0.90 level, suggesting a 
strong estimation power of simulated FCD speeds.

The variations of ,u kMAPEd  and ,u kRMSEd  by PRs in 
MC scenarios were depicted for the entire analysis period 
as well as the am-peak separately, as shown in Figure 5. 
For the entire analysis period (Figures 5a, 5c), with a very 
low PR of du = 5%, ,u kMAPEd  was 9…11% and ,u kRMSEd  
changed to 9…11 km/h. When du was increased to 15%, 
both error measures decreased significantly. The availabil-
ity of much higher FCD PRs brought the error measures 

,u kMAPEd  and ,u kRMSEd  down (as low as 2% and 2 km/h in 
du = 50%). During the am-peak, for low PRs (du < 15%),  
higher fluctuations were observed in ,u kMAPEd  and 

Table 3. Commercial FCD speed performance based on MAPEu, RMSEu and R2 on the study day 

Time  
period

Raw  
FCD 

Filtered  
FCD 

Raw FCD  
with lag correction 

Filtered FCD 
with lag correction

MAPEu RMSEu R2 MAPEu RMSEu R2 MAPEu RMSEu R2 MAPEu RMSEu R2

whole-day 17.22 11.67 0.45 13.65 8.73 0.68 14.66 11.01 0.47 12.76 8.30 0.71
am-peak 47.52 13.87 0.76 36.94 11.72 0.82 32.32 10.15 0.79 31.29 9.60 0.86
off-peak 11.07 11.17 – 9.03 8.01 – 11.07 11.17 – 9.03 8.01 –

Figure 4. Variation of R2 performance of MC simulation  
by PR for speed
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,u kRMSEd  values as shown in Figures 5b and 5d, respec-
tively. This may be due to the fact that there were limited 
numbers of observations during the am-peak (Figure 3) in 
these penetration cases, which may lead to higher variabil-
ity; thus, higher errors. ,u kMAPEd  values were slightly high-
er (9…18%) compared to whole-analysis results; however, 
even with du = 15% penetration, they were reduced to 8% 
rapidly, in addition to a much desired , 5 km/hu kRMSEd <  
level. 

At the end of the 20 simulation runs, Kolmogorov–
Smirnov test revealed that the distribution of the MoEs 
for each du was normally distributed with a significance 

value greater than 0.05. LB and UB of MoEs for 95% CI 
were depicted for each du showing a linear relation as 
shown in Figure 6. For the whole-analysis period with 
low du, ,u LBMAPEd  and ,u UBMAPEd  were around 10% 
(Figure 6a) while they were slightly higher for the am-
peak as 12% and 14%, respectively (Figure 6b). When 
du = 15%, ,u LBMAPEd  and ,u UBMAPEd  decreased to 6.5% 
and 6.7% for the whole-analysis and 9.3% to 10.2% for 
the am-peak, respectively. The variation of the ,u LBRMSEd  
and ,u UBRMSEd  with respect to du were also depicted in 
Figure 6c and Figure 6d, for the whole-analysis and am-
peak period, separately. 
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Figure 5. Variation of MAPEu and RMSEu performance for MC simulations during whole-analysis period (a, c),  
am-peak period (b, d)

Figure 6. UB and LB of MAPEu and RMSEu performance for MC simulations with 95% CI during whole-analysis period (a, c),  
am-peak period (b, d) 
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Among 20 MC runs for each scenario, average, maxi-
mum and minimum values of MAPEu and RMSEu were 
plotted against the flow-based simulated FCD PRs d to ob-
tain Q-PR relationships, as shown in Figure 7a. The same 
procedure was repeated to obtain Q-PR relations for the 
am-peak and off-peak values (Figures 7b, Figure 7c), as 
well. The results indicated a strong logarithmic decay be-
tween FCD PRs and error measures, for which the analyti-
cal relations are provided in Table 4. For the sake of visu-
alization, the Q-PR relations were extrapolated beyond the 
simulated scenario values in both lower and upper ends. 

3.3. Estimating traffic PR in a commercial FCD

Logarithmic Q-PR functions in Table 4 were used to esti-
mate the Q-PR relations at the study location. For example, 
working with the Q-PR relations for the entire study pe-
riod (Equations (UW1a), (UW1b) and (UW1c)), putting 
the observed error values in the left-hand side (Table 3)  
suggested the following estimated existing PRs for the 
commercial FCD in the study corridor:

,max17.22% uMAPE= =

( )3.944 ln 16.128− ⋅ d +  → 0.76d = ;
17.22% uMAPE ==

( )3.678 ln 14.991− ⋅ d +  → 0.54d = ;
,min17.22% uMAPE= =

( )3.376 ln 13.710− ⋅ d +  → 0.35d = ,
as reported in Table 5. Alternatively, using Q-PR from 
RMSEu, estimated traffic PR of:

,max11.67 km/h uRMSE ==
( )3.769 ln 14.843− ⋅ d +  → 2.32d = ; 

11.67 km/h uRMSE= =
( )3.421 ln 13.514− ⋅ d +  → 1.71d = ;

,min11.67 km/h uRMSE ==
( )3.179 ln 12.532− ⋅ d +  → 1.31d = ,

were much higher. Since certain data problems were al-
ready detected in the evaluation of the FCD compared to 
GT, the ˆFCDd  estimations are repeated using both filtered 
and lag-corrected FCD (with parenthesis), as shown in 
Table 5. ˆFCDd  was estimated as 2.35% and 5.67% in the 

Figure 7. MAPEu and RMSEu values from the simulated FCD and commercial FCD sets versus PR for:  
a – whole-analysis period; b – am-peak period; c – off-peak period
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most favourable cases based on MAPE and RMSE rela-
tions, respectively. 

As discussed above, traffic flow conditions can change 
significantly between the am-peak period and off-peak 
period, for which ˆFCDd  estimation was repeated. Us-
ing the relations in Equations (UP1a) and (UP2a), traffic 
PR for the commercial FCD ˆFCDd  was estimated to be 
as low as 0.2 % based on the MAPE relation. It should 
be noted here that there was higher variability in the 
MC scenarios during the am-peak under very low PRs. 

Thus, the estimated ˆFCDd  values lower than 2.21%, may 
not be particularly reliable because they were beyond the 
Q-PR regression data range. In the most favourable con-
ditions %ˆ 2.12FCDd =  was estimated based on the Q-PR 
function of ,maxuRMSE  using lag-corrected filtered FCD.  
During the off-peak period, the commercial FCD traffic 
PR ˆFCDd  was estimated to be somewhere between 1.62% 
(from ,minuMAPE ) and 5.63% (from ,maxuMAPE ), with an 
average of 4.49%. Q-PR relations for RMSEu proposed a 
slightly higher traffic PR of { }1.72%, 7.34%ˆFCDd = . 

Table 4. Simulation-based on Q-PR relations

Q-PR equations based on MAPEu R2 Q-PR equations based on RMSEu R2

From whole-day speed data (UW)

( ),max 3.944 ln 16.128uMAPE d += − ⋅  (UW1a) 0.995 ( ),max 3.769 ln 14.843uRMSE d += − ⋅  (UW2a) 0.996

( )3.678 ln 14.991uMAPE d= − ⋅ +  (UW1b) 0.997 ( )3.421 ln 13.514uRMSE d= − ⋅ +  (UW2b) 0.993

( ),min 3.376 ln 13.710uMAPE = − ⋅ d +  (UW1c) 0.997 ( ),min 3.179 ln 12.532uRMSE d += − ⋅  (UW2c) 0.997

From off-peak speed data (UO)

( ),max 3.921 ln 15.808uMAPE = − ⋅ d +  (UO1a) 0.996 ( ),max 3.958 ln 15.887uRMSE d += − ⋅  (UO2a) 0.994

( )3.528 ln 14.329uMAPE d += − ⋅  (UO1b) 0.989 ( )3.550 ln 14.334uRMSE d= − ⋅ +  (UO2b) 0.993

( ),min 3.019 12.518uMA lnPE = − ⋅ d +  (UO1c) 0.994 ( ),min 3.163 ln 12.885uRMSE = − ⋅ d +  (UO2c) 0.991

From am-peak speed data (UP)

( ),max 5.611 ln 22.163uMAPE d += − ⋅  (UP1a) 0.989 ( ),max 3.768 ln 12.428uRMSE = − ⋅ d +  (UP2a) 0.966

( )4.133 ln 16.753uMAPE d += − ⋅  (UP1b) 0.994 ( )1.932 ln 7.1872uRMSE d += − ⋅  (UP2b) 0.995

( ),min 3.580 ln 13.875uMAPE d += − ⋅  (UP1c) 0.966 ( ),min 1.410 ln 5.3434uRMSE = − ⋅ d +  (UP2c) 0.990

Table 5. Estimated traffic PR of commercial FCD-based on Q-PR relations

MAPEu RMSEu

Observed [%] Q-PR 
relation

Estimated FCD  
ˆFCDd  [%] Observed [km/h]

Q-PR relation
Estimated FCD  

ˆFCDd  [%]

raw filtered raw filtered raw filtered raw filtered
whole-day (UW)

17.22
(14.66)

13.65
(12.76)

UW1a 0.76 
(1.45)

1.87 
(2.35)

11.67 
(11.01)

8.73 
(8.30)

UW2a 2.32 
(2.76)

5.06 
(5.67)

UW1b 0.54 
(1.09)

1.44 
(1.83) UW2b 1.71 

(2.08)
4.05 

(4.59)

UW1c 0.35 
(0.75)

1.02 
(1.32) UW2c 1.31 

(1.61)
3.31 

(3.79)
am-peak (UP)

47.52
(32.32)

36.94
(31.29)

UP1a 0.01
(0.16) 0.07 (0.20)

13.87 
(10.15)

11.72 
(9.60)

UP2a 0.68
(1.83)

1.21
(2.12)

UP1b –
(0.02) 0.01 (0.03) UP2b 0.36

(0.63)
0.51

(0.69)

UP1c –
(–)

–
(0.01) UP2c –

(0.03)
0.02

(0.05)
off-peak (UO)

11.07 9.03
UO1a 3.35 5.63

11.17 8.01
UO2a 3.29 7.34

UO1b 2.52 4.49 UO2b 2.44 5.94
UO1c 1.62 3.17 UO2c 1.72 4.67

Note: “–” represents estimated FCD PR values less than 0.005%.
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Among the set of estimated traffic PR values for the 
commercial FCD at the study location, it is important to 
select the most reliable one(s) based on not only the de-
rived Q-PR relations but also the real conditions in the 
traffic as follows: 

»» there was no evidence/reason for a vehicle type bias 
in the commercial FCD data among different time 
periods (i.e., restriction of any vehicle during peak 
hours, etc.); thus, this is not expected to be a signifi-
cant factor changing the PR during the peak versus 
off-peak hours; 

»» the number of observed vehicles during both off-
peak and am-peak periods were almost the same (1 
min flows in Figure 3) despite a significant differ-
ence in the speed levels; thus, probabilistically, there 
should be a similar number of vehicles equipped 
with GPS feeding into the commercial FCD process. 
However, since the traffic speeds were low, the num-
ber of speed observations during the am-peak was 
smaller (as it took longer to track a vehicle for speed 
measurements in the video camera-based approach). 
Consequently, the number of speed observations 
for the am-scenarios in the MC simulations was 
low, creating particularly large error levels as well as 
larger differences between maximum and minimum 
Q-PR relations. Thus, the reliability of Q-PR rela-
tions for the am-peak period may be lower than the 
reliability of those for the off-peak period; 

»» since there were more observations during the off-
peak hours, the whole-day results are dominated by 
the off-peak characteristics. Thus, it is recommended 
to work with off-peak relations instead of whole-day 
ones. During the off-peak period, high levels of traf-
fic PRs were estimated in the range of 3.17…5.63% 
(by MAPE) and 4.67…7.34% (by RMSE). 

Consequently, using the estimated traffic PR from the 
off-peak period Q-PR relations, we can conclude that the 
current traffic PR of FCD is 3…7% at the study location. 
This result is higher than the reported market FCD PR of 
3% by vehicle registration numbers, which may be reason-
able, as latter may be lower due to consideration of total 
number of registered vehicles in Turkey, which may not be 
always traveling on the urban roads. However, it should 
be noted that (1) the proposed Q-PR relations show the 
change of error levels in MAPE or RMSE due to only PR 
difference, as they are created in simulated environment 
with no other contributing error sources (such as time-
lagging, missing data for certain time periods in case of 
congestion or very low volumes, etc.); (2) even though 
commercial FCD values were improved by eliminating the 
outliers and observed 4 min lag roughly, there may still 
be other sources of errors in the commercial FCD data 
(such as the use of historical values in combination with 
real-time data), which may increase the observed errors; 
in return, resulting in lower ˆFCDd estimations. Thus, in the 
estimation of the traffic PR of FCD using derived Q-PR 
relations based on a GT data set, it is recommended to 
use the average off-peak estimations { }4.49 5.94ˆFCD = …d  
(approximately 5% traffic PR) for the study location.

Conclusions

The increasing availability of GPS-equipped vehicles in 
traffic will ensure that FCD remains a promising traffic 
data source, particularly for urban arterial management 
due to its low cost and high coverage capability. Although 
individual tracking data from GPS-equipped vehicles con-
vey highly detailed and reliable information on traffic state 
(e.g., space–time diagram and queue entrance–exit loca-
tions), it is not feasible for local authorities to collect and 
process such detailed big data; thus, they seek commercial 
FCD, which are processed regionally and published con-
tinuously (even at 1  min time intervals for segments as 
short as 50 m in length). However, this commercial pro-
cessing also brings concerns regarding the size of sampling 
for each data interval, the PR, as well as the randomness of 
the sampling, which requires quality evaluation.

The proposed methodology included, first, monitoring 
of the MoEs (MAPE and RMSE) for varying PRs simu-
lated from a GT speed dataset, creating a set of Q-PR re-
lations. The same GT dataset was, then, used to evaluate 
the same measures for the commercial FCD speeds at the 
same location. Comparisons of the MoEs and Q-PR re-
lations finally led to estimation of the traffic PR for the 
commercial FCD, which was the main objective of this 
study. The results showed that there was a logarithmic de-
crease in the MAPE and RMSE values as the PR in the 
FCD increased, as expected. The derived Q-PR relations 
had very high R2 values, even for lower PRs and congested 
conditions. FCD PRs of 15%, produced very reliable FCD 
speed values, which was also suggested as a critical level 
in traffic flow estimation for connected vehicle technology 
(Talebpour, Mahmassani 2016). Estimated traffic PRs for 
the study location was found around 5%. This seems to 
be a promising capacity for FCD to be used as an urban 
traffic data source for a developing country.

It is necessary to evaluate the quality and the actual PR 
at selected locations (on major corridors, etc.) and time 
intervals (annually or so) using a GT data source, even 
sampled. It should be noted that the model performance 
for estimating the PR of the commercial FCD should 
be tested for multiple locations, different FCD segment 
lengths and different road types (such as signalized ar-
terials), which will be the focus of further studies. Thus, 
before providing a conclusion about the traffic PR of a 
commercial FCD in an urban region, possible GT data 
collection locations must be selected based on a pre-as-
sessment of traffic volumes and conditions on urban ar-
terials. Increase in the FCD PR in the future will surely 
increase the reliability, especially if it includes more GPS 
data collected from vehicles of individual users (private 
cars, taxis) as opposed to slow fleets (bus, trucks, etc.) and 
smaller sampling intervals (i.e., 30 sec). If vehicles tracked 
by the commercial FCD companies used the network ran-
domly, ˆFCDd  during peak hours would not differ much 
from the off-peak values, but, observation of these vehicles 
at every min would be more challenging, thus create larger 
errors in the commercial FCD during congested flow re-
gimes. This may be the reason behind the very low ˆFCDd  
in the am-peaks in this study. 
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The higher the market PR in a region, the more likely 
it is to have a higher traffic PR, which can also be esti-
mated with high reliability. However, the latter is subject 
to have spatio-temporal variations by nature in very short-
terms; but, considering the repeating nature of commuting 
travel demand and even slower rate of change in vehicle 
ownerships in urban regions, traffic PR estimated for a 
location is expected to be representative for longer terms 
(1…2 years). 
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