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ABSTRACT In recent years, cyber threats and malicious software attacks have been escalated on
various platforms. Therefore, it has become essential to develop automated machine learning methods for
defending against malware. In the present study, we propose stacked bidirectional long short-term memory
(Stacked BiLSTM) and generative pre-trained transformer based (GPT-2) deep learning language models
for detecting malicious code. We developed language models using assembly instructions extracted from
.text sections of malicious and benign Portable Executable (PE) files. We treated each instruction as a
sentence and each .text section as a document. We also labeled each sentence and document as benign or
malicious, according to the file source. We created three datasets from those sentences and documents. The
first dataset, composed of documents, was fed into a Document Level Analysis Model (DLAM) based on
Stacked BiLSTM. The second dataset, composed of sentences, was used in Sentence Level Analysis Models
(SLAMs) based on Stacked BiLSTM and DistilBERT, GPT-2 Domain Specific Language Model (GPT2-
DSLM), and GPT-2 General Language Model (GPT2-GLM). Lastly, we merged all assembly instructions
without labels for creating the third dataset; then we fed a custom pre-trained model with it. We then
compared malware detection performances. The results showed that the pre-trained model improved the
GPT2-DSLM and GPT2-GLM detection performance. The experiments showed that the DLAM, the SLAM
based on DistilBERT, the GPT2-DSLM, and the GPT2-GLM achieved 98.3%, 70.4%, 86.0%, and 76.2%
F1 scores, respectively.

INDEX TERMS Malware Detection, Static Analysis, Stacked BiLSTM, GPT-2

I. INTRODUCTION

The fast development of Information and Communication
Technologies (ICT) has significantly influenced the variety
of malicious content, besides the complexity of mitigation
methods that aim to detect and prevent malicious code from
functioning. Malicious codes also gained the ability to spread
rapidly in computer networks due to enhanced connectivity
of end-user computers and servers, cloud systems, smart-
phones, and IoT devices. The exponential growth in malware
content also leads to substantial economic loss. According to
the Deep Instinct reports, in 2020, the variety of malware in-
creased by more than three times, and ransomware increased
by more than four times compared to 2019 [1].

Malware code pieces usually aim to violate a system’s
or device’s security policies by executing themselves on the
system. Attackers may exploit vulnerabilities in computer

systems to steal sensitive information, spy on the infected
system, or take over the system’s control. Despite the general
conceptualization of malware as malicious "files", malicious
code pieces are usually embedded in a file as a part of
it rather than representing the whole file. In other words,
malware code pieces are typically "wrapped into" executable
files [2] as payloads. From a system-level perspective, ma-
licious lines of a software code are basic units that run
a series of instructions at the machine level. Accordingly,
malware refers to the commands that run instructions for
malicious purposes. These instructions may perform system
calls for input-output functions and a set of functions that
operate computer memory and file systems. Before reaching
the end-user system, detecting these malicious instructions
may provide a solution to prevent infection. Therefore, the
foremost challenge in malware detection is to identify lines
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of a software code in a file so that the suspected file, which
includes the malware, has malicious functionality.

Malware detection methods rely on signature databases,
including malicious instruction patterns in today’s practice.
The signature databases are used for matching against a
signature generated from a newly encountered executable.
Nevertheless, more efficient mitigation methods are needed
due to the fast expansion of malicious software on the Inter-
net and their self-modifying abilities, as in polymorphic and
metamorphic malware. Recently, the detection of malicious
lines of code has been critical for the development of efficient
malicious detection. A significant challenge is that the source
codes for executable files are not usually accessible in com-
piled form. Therefore, the assembly instructions are the best
candidate to unveil malicious functionality in a suspected
file. In the present study, we focus on modeling assembly
instructions by deep learning techniques.

Researchers and practitioners have proposed various tech-
niques that may be classified into three major groups to ad-
dress such threats: static, dynamic, and hybrid analysis tech-
niques [3]. Dynamic analysis executes the file for malware
detection, while static analysis detects malware by scanning
the entire file without running the executable. Static analysis
has certain drawbacks against dynamic analysis [4] in resist-
ing malicious deformation techniques such as obfuscation
and dynamic code loading. On the other hand, it consumes
fewer resources, identifies malware efficiently, and mitigates
it before reaching end-users or servers. Moreover, static
analysis is scalable and usable when facing batch unknown
malware detection and may traverse all possible execution
paths of the executable file. For instance, the previous work
[4] shows that the dynamic analysis may achieve high accu-
racy rates in malware detection through assembly language
modeling. Nevertheless, it suffers from the runtime overhead
of dynamic data collection, e.g., run trace collection, which
makes the dynamic approach hard to use in practice.

In the present study, we aim to exploit various advan-
tages of static analysis, such as low runtime overhead to
achieve high accuracy rates closer to the dynamic analysis
approach by combining static analysis with advanced neural
network modeling. In particular, we propose malware de-
tection approaches using natural language processing (NLP)
techniques with DL algorithms. The proposed algorithms,
namely the bidirectional long short-term memory (BiLSTM)
model and the generative pre-trained transformer 2 (GPT-
2) detect malicious code pieces by examining assembly in-
structions obtained from static analysis results of Portable
Executable (PE) files. Our BiLSTM model processes a se-
quence of input elements across time to learn and analyze
the patterns. In contrast, the transformers-based GPT-2 model
enables modeling long dependencies between input sequence
elements with parallel sequence processing, in which sequen-
tial data constituents can connect with others simultaneously.
We use the perspective of NLP modeling by DL to extract
similar characteristics, i.e., syntactic and semantic character-
istics of assembly instructions. Our models were designed to

effectively learn and extract the features and characteristics
of assembly language and classify the polarity of files.

The article is organized as follows. First, we present a
review of the studies about malware detection. Next, we de-
scribe the approach of the present study, datasets, parameters,
and the proposed models (viz. BiLSTM and GPT-2). Then,
we report the results and compare the models. Finally, we
discuss the results and present the limitations of the study.

II. RELATED WORK
The classification algorithms usually require two main steps,
feature-related and classification-related—the former con-
sists of feature extraction, selection, and reduction processes.
In contrast, the latter encloses deciding the best algorithm
to classify or detect the family of executables [5]. As an
example, in [6], Merabet et al. compare the steps required
for machine learning-based malware detection, including
feature extraction, selection, and reduction. First, by ap-
plying different feature extraction techniques, they observe
the effects of signatures, dll functions, binary string, and
portable executable (PE) headers. Then they evaluate specific
techniques, such as Principal Component Analysis (PCA)
and Random Forest, and numerous classification algorithms,
such as Support Vector Machine (SVM), Random Forest, and
Artificial Neural Network, for comparative analysis.

Feature selection methods depend on a researcher’s ap-
proach to the problem. For example, Bilar [7] stated that
the difference between malware files and benign files was
statistically significant in opcode frequency distributions.
Moreover, they used rare opcodes as a predictor for malware
detection. Santos et al. [8] studied the incidence of opcode
sequences. They investigated the relationships among the
opcodes and used statistical information to detect variants
of known malware families. More recently, the method in [9]
was based on analyzing the frequency of opcode sequences
to create a semi-supervised machine learning classifier using
a set of labeled and unlabeled data to detect novel malware. A
major issue with the proposed models was that they used the
opcode sequences of a fixed length, 1 and 2, for each malware
and some of its variants. Therefore, those models based on
opcode frequency do not adapt to changes in data, thus being
not scalable to detecting polymorphic, metamorphic, and
novel malware codes. In another study [10], Anderson et al.
used an extensive dataset containing nine hundred thousand
malicious files. They divided the dataset into the training set,
validation set, and testing set, each including three thousand
malicious files (viz. the EMBER dataset). They used a cross-
platform library LIEF (Library to Instrument Executable
Formats)1 to parse malicious and benign executables and to
extract features. The features consisted of eight groups of
information. Five were the output of LIEF, such as general
file information, header information, section information,
imported and exported functions in json format. The other
features obtained from the raw file were byte histogram, byte-

1https://lief.quarkslab.com (retrieved on February 17, 2021)

2 VOLUME 4, 2016

https://lief.quarkslab.com


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179384, IEEE Access

Author et al.: Static Malware Detection Using Stacked BiLSTM and GPT-2

entropy histogram, and string information. They employed
LightGBM (Light Gradient Boosting Machine )2 on the fea-
tures, achieving 98.2% detection accuracy. A major challenge
was the processing requirement for feature extraction to make
the data suitable for the model, as well as the training of the
model. The hardware consisted of two TitanX model GPUs
to deploy the LIGHTTGBM model, requiring 250 hours for
ten epochs.

Byte n-gram is another technique commonly used in mal-
ware classifiers, motivated by its requirement for minimal
or no domain knowledge. For instance, [11] utilized n-gram
of the opcodes as a feature vector for classification. They
detect unknown malware based on text categorization. Their
methodology was more successful than byte sequence n-
gram representation, and their results indicated 99.0% accu-
racy when trained by a set with lower than 15% malicious file
content. Besides the n-gram techniques, other studies, such as
[12] applied TF and TF-IDF representations for each opcode
n-grams, achieving 95.6% accuracy. Other studies, such as
[13] extracted the features from n-gram opcode sequences.
They employed five different machine learning classification
algorithms to detect and classify ransomware families. Their
approach achieved 91.43% accuracy when used with datasets
consisting of actual ransomware data. Although modeling
by byte n-gram techniques revealed high accuracy values,
they have the drawback of over-fitting and overestimating the
accuracy in the malware detection domain, as also stated in
[14].

A known issue in the use of the traditional malware
detection methods is that they require human control over
feature extraction and feature engineering, resulting in time-
consuming processes in the workflow and disrupting the
automated detection process [15]. Recently, deep learning
techniques have become widely applied in malware analysis
due to their advantage in learning from data without requiring
intense human intervention. Deep learning techniques for
malware detection include various approaches. A prominent
one is the variations over the recurrent neural networks
(RNN) and convolutional neural networks (CNN). Another
is the attention-mechanism approaches, such as transformers.
Their effectiveness depends on the input features extracted
from the dataset. CNN is a method that computes the dis-
tances in the input sequences when they are mapped to
output sequences. It employs feature extraction by converting
malware into images similar to the use of CNNs in recog-
nition. For instance, Krcal et al. [16] treated twenty million
unpacked half megabyte Portable Executables (PEs) as a
sequence of bytes and applied CNN for malware detection.
The network had four convolutional layers and four fully
connected layers. Instead of a global max-pooling layer, they
used a global mean pooling layer after the convolutional
layers. Moreover, their best effort was 97.1% accuracy. In

2https://github.com/microsoft/LightGBM (retrieved on February 17,
2021)

[17], Khan et al. investigated GoogleNet, and they assembled
five different ResNet models from opcodes of binary files
using images. Histogram standardization enlargement and
disintegration techniques were used to upgrade images to
distinguish between malicious and benign opcode images.
The accuracy rate of GoogleNet was 74.5%, and the best
accuracy rate among ResNet models was 88.36%. In another
study [18], the authors employed CNN to classify malware
opcode images. The accuracy rate of correctly classified
binary files was 98%. Although they achieve high accuracy
rates, a major problem of the CNN-based malware detection
models is that they do not perform well in case of elaborating
the data with specific methods, such as obfuscation [19] and
[20]. Given that obfuscation is widely used in malware codes
in the wild, CNN-based methods would find limited use in
practice.

An alternative is RNN, which overcomes the limitations
of CNN modeling. In an RNN model, the data collected
from malware are put into a sequential format, as in text
classification tasks in NLP (Natural Language Processing),
to achieve high performance as in CNN. For instance, in
[21], an RNN model with Word2Vec feature vector achieved
the highest area under the curve AUC value of 0.92 and a
good variance among several feature vectors. Although the
standard RNN architecture achieved high accuracy rates in
a variety of domains, including malware detection, certain
problems, such as exploding and vanishing gradients, make
it ineffectual in terms of robustness. Similarly, [22] used
opcodes and operands as features, mapping with different
word embedding techniques to word vectors. They used word
embedding results to feed into models for malware detection.
They employed Long Short-Term Memory (LSTM), a com-
plex gated RNN architecture with a long-term dependency
of features. The model reached an average AUC of 0.99 for
classification. Their approach is partially similar to one of
the models developed in the present study in terms of the
basic neural network architecture. Nevertheless, a significant
drawback was the unbalanced dataset, which included 969
malware and 123 benign files.

In another study [23], Instruction2Vec was used with both
opcode and operand information. A nine-dimensional feature
vector was used to resemble registers and addresses. As-
sembly instructions were split, and each token was encoded
as unique index numbers. An opcode took one token in
the setup, and a memory operand took up to four tokens,
including base register, index register, scale, and displace-
ment. The tests with Instruction2Vec datasets reached 91.1%
accuracy. In another study [24], the researchers proposed a
malware classification method employing the fastText-based
Bi-LSTM algorithm. They disassembled malicious files and
obtained the list of opcodes and API function names to train
the model. Their 2-layer BiLSTM model achieved 96.76%
accuracy. A similar study [25] utilized static analysis to
disassemble malware and obtain the assembly codes. To
reduce junk codes that belonged to one of the anti-static
analysis techniques, they used the attention mechanism.
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Their CBOW model was based on LSTM to classify malware
files and used a vector dimension of 100 with a window size
of 10. The model accuracy was 94.25%. Compared to the
proposed models in [23]–[25], we improve the accuracy rate
further, to 98.3% with our DLAM model, as presented in the
next section.

Recently, transformer-based models, defined with atten-
tion mechanism, are frequently used for malware detection
since the data collected from malware are processed in par-
allel rather than in a sequential format. For instance, [26]
used benign and malicious assembly codes obtained from the
static content of an executable. Their model, Interpretable
MAlware Detector (I-MAD) based on transformers, com-
bined a network component called the Galaxy Transformer
network that understood assembly code at the basic block (a
sequence of assembly instructions), assembly function (a set
of basic blocks), and executable levels (a sequence of bytes).
Its feed-forward neural networks provided interpretations
for its detection results by quantifying the impact of each
feature for the prediction. As a result, they achieved 97.7%
accuracy with the assembly functions. A drawback of the
study was that their transformer topology was trained with
very long sequences, whereas transformers-based successful
applications, such as GPT-2, are mainly on short text, i.e.,
sentence-level tasks or short-document texts. Therefore, long
sentences may pose a significant challenge for the transform-
ers’ time and space complexity.

In another work [27], researchers classified various mal-
ware categories with the static analysis level on the source
code of Android applications. They used a transformers-
based BERT model for classification, the fine-tuned it with
BERT’s custom pre-trained model. They obtained 97.6%
accuracy with BERT and 94.1% accuracy with LSTM. The
main difference between the Bidirectional Masked Language
Model BERT and our approach is that the former randomly
masks certain elements of the input. Its objective predicts
the original vocabulary identifier of the masked word based
solely on its context. On the other hand, our transformer-
based models have unidirectional architectures that predict
the next word given the previous words in the input sen-
tence. The following section presents the methodology of the
present study.

III. METHODOLOGY
In this section, we describe the proposed methodology for
malware detection. We explain how we established the
datasets. Then, we introduce the architectures of the models
for the analyses.

A. APPROACH
Model building for malware detection usually begins with
feature extraction, as specified by either static or dynamic
analyses, and sometimes hybrid analysis. The dynamic anal-
ysis examines the behavior of PE (Portable Executable) files
upon execution, whereas the static analysis processes the

content of the PE files without execution. The static approach
usually provides a large set of data such as PE sections,
imports, symbols, and compiler strings. In traditional model-
ing, the models are built for extracting signatures from those
information sources, occasionally via human intervention.
Malware mitigation is based on comparing those signatures
with the signature of an executable file of newly encountered
files for malicious vs. benign detection. The signature-based
malware detection is straightforward and fast, yet it may be
ineffective against sophisticated malware or overlook rela-
tions. Another drawback of such detection methods is that
the signatures database grows too quickly to keep up with
the growth rate of new malware.

The Machine Learning (ML) algorithms, in particular
Deep Learning (DL) algorithms, have been deployed to
eliminate the drawbacks of traditional, signature-based mal-
ware detection. The DL is the end-to-end learning approach,
which refers to training a possibly complex learning system
represented by a single model, a Deep Neural Network
(DNN). The network represents the complete target system,
automating feature extraction nearly without preprocessing.
In our study, we extract assembly codes using an open-
source disassembler objdump. This tool creates sequences as
documents or sentences. Those data are then used for model
development, given that the assembly code provides accurate
information for obtaining critical coding patterns. For this,
we employ the disassembler output as input data to build a
language model assisted with word embedding in a similar
way to processing natural language. Then, by utilizing this
language model, we aim to identify whether an executable
file is malicious or benign. Primarily, we undertake polarity
detection on executable files of assembly instructions. Below,
we introduce the datasets used for developing the models.

B. DATASETS

Our datasets consist of benign and malicious executables
in Portable Executable (PE) format obtained from external
sources. The PE is a complicated structure, based on COFF
(Common Object File Format)3 specification, with its stan-
dard headers, optional headers, sections of various types,
resources, and relocation tables. Typical COFF sections en-
compass code or data that linkers and Microsoft Win32
loaders do not need information about the area contents. The
contents apply entirely to the software linked or executed.
However, certain COFF sections have special meanings when
found in executable files. Due to the special flags set in the
section header, these sections are efficiently recognized by
tools and loaders.

In the present study, we use the .text section contents
of executables found in our collection (henceforth, the code
section). Our collection contains Win32 PE files from Win-

3https://docs.microsoft.com/en-us/windows/win32/debug/pe-format (re-
trieved on December 5, 2021)
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dows operating systems4, and Commando VM v-2.05, and
malicious x86 executables from the sorel-20m [28] database
and VirusShare website database6. The sorel-20m database
includes the following malware families: Adware, Flooder,
Installer, Ransomware, Dropper, Spyware,Packed, Worm,
Crypto-miner, File-infector, Downloader. The authors used
semantic attribute tagging [29] for the sorel-20m dataset to
create multi-class labeling, (e.g., the malware with sha256
value of 000008c...a9b8227 has the tags 8, 2, 10, 10 for
spyware, packed, file_infector and worm respectively). We
selected 822 malware samples from sorel20m dataset which
has the distribution of behavioral tags as given in Table 1.
The VirusShare dataset includes the following malware fam-

TABLE 1: Distribution of behavioral tags of selected mal-
ware from sorel-20m

Malware Family Behavioral Tags Total Count

spyware 1689
file_infector 1434

worm 1098
adware 1044

downloader 911
packed 834

ransomware 661
dropper 569
installer 367

crypto_miner 97
flooder 61

ilies: Adware, Agent, Backdoor, Downloader, Ransomware,
Riskware, Trojan, Virus, Worms. Additionally, for the pur-
pose of the present study, we did not include packed pro-
grams since the databases that we took our samples already
had unpacked versions of packed executables; therefore, we
did not perform additional operation on portable executa-
bles. We chose Commando VM over the other versions
of Windows OS, because it contains executables compiled
using various compilers, such as Cygwin8 and MinGW9. The
number of the samples is presented in Table 2.

TABLE 2: The number of malicious and benign files in the
datasets.

Dataset
Name Benign Samples Malware Samples

Sorel-20m 672 822
VirusShare - 273
Windows OS &
Commando VM (v-2.0) 314 -

4Microsoft Windows 8.1 Pro (OS Build 9600), Microsoft Windows 10 Pro
19.09 (OS Build 18363.418)

5https://github.com/fireeye/commando-vm (retrieved on December 5,
2021)

6https://virusshare.com/ (retrieved on March 19, 2019)
7sha256: 000008cf1b5ecbed74f31b45e96e0fb6566b6af75a5cd87335aaa91

c20a9b822
8https://www.cygwin.com (retrieved on December 5, 2021)
9http://mingw-w64.org (retrieved on December 5, 2021)

After obtaining the assembly instructions in the code sec-
tion of the collected executables, we saved the outputs as
plain text files. Moreover, we treated opcodes and operands
as words, instructions as sentences, and the complete assem-
bly instructions in the code section as a document. We also la-
beled sentences and documents according to their origin, i.e.
malicious or benign files. We fed the Document Level Analy-
sis Model (DLAM) with this initial dataset, which constituted
the documents. Then, we obtained another dataset from sen-
tences labeled benign/malicious. These samples were used
in building the Sentence Level Analysis Model (SLAM),
the GPT-2 Domain Specific Language Model (GPT2-DSLM)
and GPT-2 General Language Model (GPT2-GLM). Lastly,
we gathered each malicious and benign assembly instruction
without labeling to process in our custom pre-trained model,
namely the third dataset.

Finally, DLAM was based on the stacked bi-directional
LSTM architecture. We created two different architectures
for SLAM, which were based on the stacked bi-directional
LSTM and DistilBERT. On the other hand, the GPT2-DSLM,
the GPT2-GLM, and our custom pre-trained models were
derived from the GPT-2 transformer-based model.10

The overall processing pipeline is presented in Figure 1.

FIGURE 1: Language modeling processing pipeline

We trained and tested the DLAM and the SLAM models on
a machine with a 6-Core Intel Core i9 processor with 2.9 GHz
speed and 32 GB memory. In addition, we trained and tested
our custom pre-trained model and the Binary Classification
models on Colaboratory by Google, a Jupyter notebook-
based runtime environment, to run code entirely on the cloud.
There were one GPU(s) available. We used the GPU: Tesla
V100-SXM2-16 GB and 32 GB memory, and the training
time was limited to 24 hours.

C. MODELS
This section presents the models developed for the purpose
of the present study, namely the Stacked Bidirectional Long

10The code for models are available at MetuMalwareGroup Repository,
https://github.com/MetuMalwareGroup/static-analysis
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Short-Term Memory Model (Stacked BiLSTM) and two
Generative Pre-trained Transformer 2 (GPT-2) models.

1) Stacked Bidirectional Long Short-Term Memory Model
(Stacked BiLSTM)

We built an initial classifier by stacking the layers sequen-
tially as follows. The embedding layer is the first layer,
which takes the integer-encoded opcode sequences and looks
up an embedding vector for each word index. To create
these vectors from the labeled dataset, first we employed a
custom standardization method in the preprocessing phase
with padding to maximum number of tokens.11

These vectors add a dimension to the output array, and
during the training, the model learns the features represented
by the vectors. The resulting dimensions of the first layer are
batch, sequence, and embedding. Since we wanted our model
to learn features related to malicious and benign executables
in the sequential form, we used BiLSTM as the next layer.
After the BiLSTM layer, we added a Dropout Layer with a
dropout rate for starting point 0.1. Next, we added a Glob-
alAveragePooling layer to return a fixed-length output vector
for each example by averaging the sequence dimension. Then
we deployed a fully connected (Dense) layer with 128 hidden
units, with this fixed-length output vector.

The last layer is a densely connected layer with a single
output node. A deep learning model needs a loss function
and an optimizer to calculate the weights during the training.
As we focus on classifying samples in two categories and
the output of our model is a probability (a single-unit layer
with a sigmoid activation), we used the BinaryCrossentropy
loss function. Lastly, we configured the model to use an op-
timizer. We preferred Adaptive Moment Estimation (Adam)
[30] optimizer. The resulting model was our initial Stacked
BiLSTM based model. We further improved the model by
hyperparameter tuning. We developed two models, namely
the Document Level Analysis Model (DLAM) and Sentence
Level Analysis Model (SLAM) by using this methodology,
as presented below.

a: The Document Level Analysis Model (DLAM)

We added one-layer BiLSTM at a time and observed the
performance of the model until it reached the optimum point.
Other than the BiLSTM layer depth, there were other hyper-
parameters such as batch size, number of epochs, filter size,
optimization algorithm, dropout rate etc. To decide the values
for those parameters, we experimented with several different
values (Table 3). We employed EarlyStopping12 from Keras
with a patience value 3 to fine-tune those hyperparameters in
the language modeling task.13

11The code for standardization is available at https://github.com/
MetuMalwareGroup/static-analysis/blob/main/custom_standardization.py

12https://keras.io/api/callbacks/early_stopping/ (retrieved on December 5,
2021)

13https://github.com/keras-team/keras/blob/master/keras/callbacks.py#
L1713 (retrieved on December 5, 2021)

TABLE 3: Parameters for the DLAM

Parameter Val1 Val2 Val3 Val4

Embedding Dimensions 64 128 256 1024
Max Sentence Length 50K 100K 150K 200K
Sequence Length 256 512 1024 -
Dropout Rate 0.01 0.1 0.2 0.5
Optimizer Adam RMSprop Adagrad SGD
LSTM Hidden Cells No. 64 128 256 512
BiLSTM Layers No. 1 2 3 -
Max Features 1000 - - -

To analyze the effect of the number of stacked BiLSTM
Layers, we first fixed the hidden layer cells to 64 and the
maximum sentence length to 100K, using 4-grams. We in-
creased the number of BiLSTM layers starting with a single
layer. We observed that the prediction loss decreased when
the number of LSTM layers was increased. Table 4 shows the
evaluation loss values and the total parameters of the DLAM.
Increasing the number of stacked BiLSTM layers makes
the DLAM deeper; hence the model learns more features
from the dataset, thus starts to decrease loss but the training
time increases. Also, a high number of BiLSTM layers may
increase the likelihood of overfitting. Therefore, we used two
stacked BiLSTM layers with the parameter values shown in
Table 4.

TABLE 4: BiLSTM layers validation loss values

BiLSTM Layers Loss Trainable Parameters

1 0.04 437249
2 0.03 536065
3 0.02 634881

By conducting further experiments, we finally employed
two stacked BiLSTM layers, with 64 hidden cells both,
and we decreased the number of epochs to seven for each
parameter. To observe the impact of the maximum sentence
length, we trained DLAM with the sentence lengths 10K,
25K, 50K, and 100K, again keeping the other parameters
constant. With 10K, 25K, and 50K, we present the validation
losses in Table 5.

TABLE 5: The effects of sentence length on validation loss

Sentence Length Loss Accuracy

10K 0.05 0.97
25K 0.04 0.98
50K 0.03 0.98

100K 0.02 0.99

We found that the sentences with a length of 100K was
enough to represent the full document. A longer sequence
length means a longer training time and a higher likelihood of
overfitting. Therefore, we did not test sentence lengths higher
than 100K, and fixed this value to 100K in the DLAM.

We tested the impact of regularization and normalization;
we trained the model with dropout rates 0.01, 0.1, 0.2, and
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0.5 to make our training noisy. We obtained the optimum
dropout rate for our data by keeping other parameters fixed.
Since Keras supports Variational RNNs, we used 0.5 for
recurrent_dropout parameter for each BiLSTM layers
with a dropout rate of 0.2. After we added a dropout rate of
0.2 together with Variational RNN technique in the BiLSTM
layers, we removed the initially added dropout layers follow-
ing each BiLSTM layer.

We also obtained training losses higher than the validation
losses. Although we expected otherwise, according to the
Keras documentation14, it may be observed with the usage
of Regularization Mechanisms, such as Dropout and L1/L2
weight regularization, since those mechanisms are turned
off during testing period. We checked our initial loss before
applying regularization methods as suggested in [31]. Since
our training and validation sets are divided as 80:20, for
binary classification problem we expect the value as the result
of the calculation below.

−0.2ln(0.5)− 0.8ln(0.5) ≈ 0.7

The initial loss of the DLAM model outputs was 0.65,
being very close to the values at hand. This implies that the
DLAM started the learning process randomly, as expected.

We have tested the optimizers to observe their impact on
performance. In particular, we tested five commonly used
optimizers, namely SGD, SGD with momentum, RMSProp,
Adagrad, and Adam. SGD is an optimizer that allows updat-
ing gradient with a small batch consisting of one sample in-
stead of the typical gradient descent using the whole dataset.
It selects one sample randomly from a shuffled set. SGD
with momentum improves the stochastic gradient descent
by reducing the oscillations with the help of momentum,
which allows performing larger updates through the desired
direction. RMSProp is an adaptive optimizer that uses the
magnitude of recent gradients to normalize the gradients
and updates the learning rates adaptively. Adagrad manages
multiple learning rates for different parameters and updates
the learning rates according to the frequency of parameter
updates. It performs smaller updates for the parameters fre-
quently occurring while performing larger updates for the
infrequent parameters. Adam is a commonly used optimizer
that utilizes the adaptive learning rates for each parameter
as RMSProp. In addition, Adam has a mechanism similar
to momentum, which decays past gradients exponentially.
As a result of our experiments with optimizers, we found
that Adam and RMSProp achieve a similar result with our
models. We preferred to use Adam since it showed slightly
better performance than RMSprop.

We observed the increase in n-grams affects in a positive
way, such that the loss decreases and accuracy increases as
shown in Table 6. For the pooling layer, the two alternatives
were the Global Average Pooling strategy and the Global
Max Pooling strategy. We observed that the Global Max
Pooling outperformed the Global Average Pooling, therefore

14https://cutt.ly/hYlrHG1 (retrieved on February 19, 2022)

we chose the latter. Moreover, we decided the number of
output nodes at the LSTM layer by testing the model with
different numbers of nodes and comparing the loss and
accuracy rates of their results. The model loss was higher and
the convergence was early in terms of epoch numbers with
256 output nodes. Since it did not result in a significant loss
compared to 128 nodes, we chose 128 as the output nodes of
the DLAM layer for faster training.

TABLE 6: The effects of n-grams on validation loss

n-grams Loss Accuracy

2 0.18 0.97
3 0.12 0.98
4 0.03 0.99

We also used different output modes provided by TextVec-
torization in Keras, such as TF-IDF. However, with the num-
ber of 1000 maximum features, TF-IDF performed poorly,
and we increased the maximum features up to 10K. In-
creasing the maximum features significantly increased the
training time and trainable parameters close to 16M. Since
4-grams are more effective in training time, we preferred n-
grams. Finally, we used the change of losses as a sign for
the parameters to be the most suitable for the DLAM and
prepared it accordingly. The summary of the proposed model
parameters are shown in Table 7.

TABLE 7: Model summary for the proposed DLAM.

Layer (type) Output Shape Params

Embedding (None, None, 256) 256256
Bidirectional (None, None, 256) 394240
Bidirectional (None, None, 256) 394240
Global Max Pooling (None, 256) 0
Dropout (None, 256) 0
Dense (None, 128) 32896
Dropout (None, 128) 0
Dense (None, 1) 129

Total params : 1,077,761
Trainable params : 1,077,761

Non-trainable params : 0

b: The Sentence Level Analysis Model (SLAM)
This section presents the experiments conducted for the Sen-
tence Level Analysis Model (SLAM) with the same dataset
used in the DLAM. Since we treat each assembly instruction
as a sentence, it is necessary to calculate the sentence length
distribution in the dataset. Using sentence length distribution
as in Figure 2, we selected the group that represented 94% of
the dataset by excluding the samples that have a percentage
below 1%. By manual observation, we decided to use 9, 16,
and 25 for the length of the maximum sentence.

We experimented with the values shown in Table 8, and
the maximum feature count of 1122 (unique word count). We
started with two BiLSTM layers.

Table 9 shows a summary of SLAM created by Keras with
a total of 834,177 trainable parameters.
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FIGURE 2: Sentence length distribution for the SLAM

TABLE 8: Parameters for the SLAM

Parameter Val1 Val2 Val3 Val4

Embedding Dimensions 128 256 - -
Max Sequence Length 8 16 32 -
Sequence Length 16 - - -
Dropout Rate 0.01 0.1 0.2 0.5
Optimizer Adam RMSprop Adagrad SGD
LSTM Output Node No. 128 256 512 1024
BiLSTM Layers No. 1 2 3 -
Max Features 1122 - - -

The losses are shown in Table 10 obtained after training
the SLAM with the sentence lengths of 9, 16 and 25.

We trained the model on several known optimizers with
their default configurations, such as Adam, RMSProp, Ada-
grad, Stochastic Gradient Descent (SGD), and SGD with
momentum, keeping the other parameters constant. We found

TABLE 9: Model summary for the initial SLAM

Layer (type) Output Shape Param

Embedding (None, None, 128) 143744
Bidirectional (None, None, 256) 263168
Bidirectional (None, None, 256) 394240
Global Average Pooling (None, 256) 0
Dropout (None, 256) 0
Dense (None, 128) 32896
Dense (None, 1) 129

Total params : 834,177
Trainable params : 834,177
Non-trainable params : 0

TABLE 10: The effects of maximum sentence lengths on
validation loss

Sentence Lengths Losses

9 0.67
16 0.66
25 0.65

that Adam and RMSprop achieved similar results.
As for the impact of the Embedding Dimension Length,

the SLAM did not exhibit a significant improvement in terms
of loss, with the values 128 and 256, as shown in Table 11.

TABLE 11: The effects of embedding dimensions on valida-
tion loss

Embedding Dimensions Losses

128 0.65
256 0.66

The validation losses regarding the n-gram values for 2, 3,
and 4 are shown in Table 12.

TABLE 12: The best results for TextVectorization parameters
on the SLAM

n-grams Loss Accuracy %

2 0.65 56.1
3 0.67 54.1
4 0.69 53.7

A major finding indicated by the outputs above is that
the model’s hyperparameters do not significantly affect the
validation loss, indicating that the sentence-level represen-
tation of assembly instructions with the TextVectorization
class may not be sufficient for this task. Therefore, we
employed different methods for the vectorization layer. We
examined the effectiveness of methods in Word2Vec and
DistilBERT considering the assembly lengths. We employed
CBOW and Skip-Gram implementations with experiments
related to Word2Vec, to create the vector representations
of assembly instructions. We fixed the value for min_count
parameter as ten to ignore the assembly instructions that do
not occur more than ten times. We used different parameters
for windows (looking back and forward for the number of
window size words) and size. Using the values in Table 13,
we trained Word2Vec for eight times for 5 epochs. We fed
the embedding layer in the SLAM with the resulting vectors.
Since Word2Vec creates and trains the word vectors, we set
the trainable parameter of the embedding layer to false.

TABLE 13: Word2Vec parameters for the SLAM

Parameters Value 1 Value 2

Algorithm CBOW Skip Gram
Window Size 10 25
Size 100 300

After we fed the embedding layer of the SLAM with
Word2Vec weights, we obtained the deep neural network
model summarized in Table 14 by using the values in the first
column of Table 13.

Table 14 indicates that the network has more than 1M
(million) parameters, although 866K parameters are train-
able. That is due to the lack of training in the embedding
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TABLE 14: Model summary for the initial SLAM with
Word2Vec.

Layer (type) Output Shape Params

Embedding (None, 10, 300) 144900
Bidirectional (None, 10, 256) 439296
Bidirectional (None, 256) 394240
Dropout (None, 256) 0
Dense (None, 128) 32896
Dropout (None, 128) 0
Dense (None, 2) 258

Total params : 1,011,590
Trainable params : 866,690

Non-trainable params : 144,900

layer. We observed that with the CBOW implementation of
Word2Vec and a window size of 25, the loss decreased to the
lowest value and the accuracy increased to the highest. On the
other hand, the training time doubled. We presented Table
15 below, which shows the effectiveness of the algorithms
regarding validation losses and validation accuracy values.

TABLE 15: Effects of Word2Vec parameters on the SLAM

Algorithm Window Size size Loss Accuracy (%)

Cbow 25 300 0.54 63.7
Skipgram 10 300 0.55 61.8

As the third vectorization method, we employed trans-
formers, using DistilBERT on the same dataset. We used a
pre-trained base model, distilbert-base-uncased,
to create the embeddings for the SLAM. Since Dis-
tilBERT outputs a tuple15, where the first element is the
last_hidden_state of the model’s last layer, we first
fed the BiLSTM layer using the hidden state from outputs.
The model with DistilBERT embeddings is shown in Table
16.

We used 5,000 for the batch size value and 25 for the
maximum length. It took about six hours to train for one
epoch with two stacked BiLSTM layers on Google Collab
Pro. With DistilBERT, the total number of parameters is
67,708,673. Since we did not train the DistilBERT layers for
the first experiment, the total number of trainable parameters
is 1,345,793, as shown in Table 17. After six epochs, the
model achieved 70.4% accuracy.

After developing the DistilBERT model, which achieved
70.4% accuracy with short text as a sentence, we conducted
further experiments on different models to enhance accuracy
with short text. For this, we constructed a custom pre-trained
model and two binary classification models based on GPT-2,
as presented in the following section.

2) Generative Pre-trained Transformer 2 (GPT-2) Models
, we built custom pre-trained model based on GPT-2 ar-
chitecture. Then, we improved the GPT-2 Domain Spe-

15https://github.com/huggingface/transformers/blob/master/src/
transformers/modeling_outputs.py#L24 (retrieved on December 6, 2021)

TABLE 16: Model summary for the SLAM with BERT.

Layer (type) Output Shape Params

input_ids(InputLayer) [(None, 25)] 0
input_attention(InputLayer) [(None, 25)] 0
TFDistilBERT ((None, 25, 768) 66362880
Bidirectional (None, 25, 256) 918528
Bidirectional (None, 25, 256) 394240
Dropout (None, 25, 256) 0
Global Max Pooling (None, 256) 0
Dropout (None, 256) 0
Dense (None, 128) 32896
Dropout (None, 128) 0
Dense (None, 1) 129

Total params : 67,708,673
Trainable params : 1,345,793

Non-trainable params : 66,362,880

TABLE 17: Effects of DistilBERT parameters on the SLAM

Trainable Parameters learning rate Loss Accuracy %

1,345,793 5e-5 0.49 68.4
67,708,673 2e-5 0.43 70.4

cific Language Model (GPT2-DSLM) using our custom pre-
trained model’s outputs. We later developed GPT-2 General
Language Model (GPT2-GLM) with GPT-2’s pre-trained
model’s outputs.

a: The Pre-trained Model

We used run_language_modeling.py16 to create a
custom pre-trained model. Firstly, we needed to define
a merging rule of language (merges.txt) and a lan-
guage dictionary (vocab.json), both obtained from as-
sembly instructions. For creating those files, we used
ByteLevelBPETokenizer17 which is a byte-level encoding to-
kenizer. We customized the parameters for ByteLevelBPETo-
kenizer, using vocabulary size (dictionary size) as 50257 ,
minimum frequency of the tokens as 2, sentences (assembly
instructions) and special tokens18. Since models learn infor-
mation about short text via special tokens, we used end-of-
sentence (<eos>) to make the model stop generating more
words. After feeding with unlabeled assembly instructions
corpora to the ByteLevelBPETokenizer, the tokenizer builds
the vocab.json file that consists of all symbols obtained
from the set of unique words, and the merges.txt file
that consists of a list of the most frequent tokens ranked by
frequency. Thus, we defined a tokenizer of our custom pre-
trained model with vocab.json and merges.txt.

For the tokenizer of the pre-trained model, we used

16https://github.com/huggingface/transformers (retrieved on June 25,
2021)

17https://huggingface.co/transformers/tokenizer_summary.html (retrieved
on June 25, 2021)

18https://huggingface.co/transformers/main_classes/tokenizer.html
(retrieved on June 25, 2021)
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FIGURE 3: Pre-trained model based on GPT-2 architecture

GPT2TokenizerFast19 class of the HuggingFace’s Transform-
ers module due to its performance advantage. Those tokeniz-
ers are also used for determining maximum sequence lengths.
We calculated the maximum sequence length of assembly
instructions as 45 tokens using GPT2TokenizerFast. Next,
we defined a configuration file with default values following
[32] and [33]. Those values are 50257 for vocabulary size
(suggested by [32]), 12 for number of hidden layers and
number of attention heads for each attention layer, 768 for
dimensionality of the embeddings and hidden states, gelu
instead of relu for the activation function. The dropout
probability for all fully connected layers, the dropout ratio for
the embeddings, and the dropout ratio for the attention were
set to 0.1 following the common practice reported by [33]).
In the normalization layers, the epsilon was set to 1e-05. The
total number of hyperparameters becomes 117 million with
these default values of GPT-2. While we fine-tuned the binary
classification model, we also used same configuration file of
our custom pre-trained model.

After defining the configuration file with the default con-
figuration of GPT-2 using GPT2Config class of the Hug-
gingFace’s Transformers module, we initialized the model
with GPT2LMHeadModel model found in HuggingFace’s
Transformers module. Finally, as shown in Figure 3, we
obtained an auto-regressive model based on a left-to-right
language model for the trainer. In addition, we set the
mask language model (mlm) as false (unmasked model)
to preserve the relation between the following and pre-
ceding words of each word in the input sentence. Hence,
the pytorch_model.bin file, which includes model’s
weights, and the config.json file, which includes con-
figuration hyperparameters created to fine-tune the binary
classification model, presented below.

GPT-2 Domain Specific Language Model (GPT2-DSLM)
We constructed GPT-2 based model for the classifica-

tion of benign and malicious assembly instructions, using
HuggingFace’s Transformers module, namely GPT-2 Do-
main Specific Language Model (GPT2-DSLM). To improve
the classification phase, we used our custom pre-trained
model’s knowledge, which was specified by the Pre-trained
Model’s outputs, in other words pytorch_model.bin
and config.json. We present the processing pipeline
below.

19https://huggingface.co/transformers/model_doc/gpt2.html (retrieved on
June 25, 2021)

Firstly, we divided our dataset as training, validation, and
testing sets by a ratio of 60:20:20, for the binary classification
problem. Next, we set the label number field as 2 for classify-
ing the files as benign or malicious. Our custom pre-trained
model’s config.json file was defined as the configuration
file of the GPT2-DSLM. We also defined vocab.json and
merges.txt files as the GPT2-DSLM’s tokenizer. After
creating the tokenizer, we introduced the special tokens of
GPT-2 to the tokenizer. Since the last token of the input
sequence contained all the information required in the pre-
diction in GPT-2, we set the tokenizer to pad the left side
of sentences, and its pad token was |<endoftext>|. Hence, we
used that information for the classification task. Then, in the
tokenizer step, we first tokenized each sentence of the benign
and malicious and added |<endoftext>| since training times
depended on the length of sentences. While the length of the
sentences was shorter than the maximum sequence length of
45, the tokenizer padded sequences with |<endoftext>| and
encoded them. The processing then took shorter since the
model did not have to truncate the encoded sequence during
training.

FIGURE 4: GPT2-DSLM and GPT2-GLM based on GPT-2
architecture

We further developed the constructed GPT2-DSLM, which
was shown in Figure 4, by adding a classification layer to
the GPT2Model, known as GPT2ForSequenceClassification
model from HuggingFace’s Transformers module. The new
model is shown in Figure 5. The model was initialized
with the pytorch_model.bin, which loads the weights
associated with our custom pre-trained model. Next, we
trained the model with word embedding and positional em-
bedding information obtained from the tokenizer. The classi-
fication layer was a densely connected layer with a single
output node. To calculate the weights during training, a
deep learning model needs a loss function and an optimizer.
GPT2ForSequenceClassification aims at classifying samples
into two categories, and the model’s output is probabilistic
(a single-unit layer with a sigmoid activation). Therefore,
GPT2ForSequenceClassification uses the Binary Cross En-
tropy loss function. Lastly, we configured the model to use an
optimizer with Adamw implementing Adam [30] algorithm
with weight decay [34] fix in Pytorch. The weight decay
prevents overfitting, which keeps the weights as small as
possible, also preventing the weights from growing out of
control. Thus, the network avoids exploding gradients.

10 VOLUME 4, 2016

 https://huggingface.co/transformers/model_doc/gpt2.html


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179384, IEEE Access

Author et al.: Static Malware Detection Using Stacked BiLSTM and GPT-2

FIGURE 5: Two layers of GPT2ForSequenceClassification

In order to find the best values for the parameters’ learning
rate for Adamw and epoch in the language model task, we
tested several different values. So, we trained 2, 3, and 4
epochs. With 3 epochs, the model found better accuracy and
lower loss value compared to 2 epochs. Also, accuracy and
loss results were almost the same for three and four epochs
using learning rate value 2e-5, as shown in Table 18.

TABLE 18: The effects of epochs on validation losses

Epochs Loss Values Accuracy (%)

1. 0.40 0.84
2. 0.39 0.85
3. 0.38 0.85
4. 0.37 0.85

We selected the number of epochs as 3 due to it’s shorter
training time. We also set the learning rate to 2e-5, since a
lower learning rate value, such as 3e-5 or 5e-5 led to a lower
network accuracy and higher loss. as shown in Table 19.

TABLE 19: The effects of learning rate on validation loss

Learning Rate Loss Values Accuracy (%)

5e-5 0.42 0.80
3e-5 0.40 0.83
2e-5 0.37 0.85

After the experiments, the GPT2-DSLM achieved 85.4%
accuracy. In addition, we also constructed another GPT-2
based model for the classification of benign and malicious
assembly instructions, using HuggingFace’s Transformers

module, namely GPT-2 General Language Model (GPT2-
GLM). The GPT2-DSLM has the same architecture as the
GPT2-GLM. However, to improve the classification phase in
the GPT2-GLM model, we used GPT-2’s architecture custom
pre-trained model, namely "gpt-2". After the experiments, the
GPT2-GLM achieved 78.3% accuracy.

IV. COMPARISON OF THE MODELS
The precision, recall and F1 values obtained by our models
are shown in Table 20. Overall, the findings show that the

TABLE 20: Model performance indicators

Model Precision Recall F1 TPR/FPR/FNR
(%) (%) (%)

GPT2-GLM 82.7 70.8 76.2 0.71 / 0.01 / 0.29
GPT2-DSLM 82.6 89.7 86.0 0.90 / 0.19 / 0.10
DLAM 97.8 98.9 98.3 0.99 / 0.02 / 0.01

document level analysis model outperforms the sentence
level analysis models. A likely reason of the difference in
the performance may be due to the shorter text form (at
most nine assembly instructions) in the GPT2-DSLM, which
may have led to misrepresentation of the necessary features.
Since we labeled each assembly instruction as malicious or
benign depending on the source, we also labeled the shared
instructions between the classes, which in turn may have
resulted in models’ lower performance. When the F1 score
is considered, we may infer that it includes meaningful infor-
mation and patterns to achieve a 86.0% F1 score. On the other
hand, the documents of assembly instructions which consist
of more instructions, are contextually related. In addition to
the relation of words in an assembly instruction, there are also
relations among the instructions documents-wise. Thus, the
documents with longer and more complex structures include
more meaningful information and more relations than shorter
instructions, resulting in the DLAM achieving a 98.3% F1
score. In summary, the results of the final experiments on
the two models suggest that the Document Level Assem-
bly Analysis Model (DLAM) exhibits a better structure for
Stacked BiLSTM based deep learning language modeling
compared to other models.

The most crucial factor that led to the differences between
the two proposed models in the sentence level analysis is
the pre-trained models. Compared to the GPT2-GLM, the
GPT2-DSLM achieves an 86.0% F1 score. Nevertheless, the
first architecture also achieves a 76.2% F1 score. The per-
formance difference between the two architectures is likely
to be the underlying language models. On first architecture
the language model is based on Web Text [32], on the other
hand our model is based on assembly instructions. Since we
created domain specific language model with GPT-2, one
may propose that this approach seems more efficient than
GPT-2’s general model on detecting malware.
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V. THE EVALUATION OF RESULTS
Malware detection studies began with the signature extrac-
tion methods applied to executables. Nevertheless, the sig-
nature databases, distributed over the internet to the end-
users online or offline, grew in time. Moreover, malware de-
velopers used innovative approaches to bypass anti-malware
applications. Recently, machine learning (ML) models have
become prevalent due to their capacity for adaptability, such
as recognizing polymorphic malware. Early AI-based meth-
ods employed machine learning (ML) algorithms to identify
malicious and benign malware and classify malware families.
A set of classical classification algorithms, such as Random
Forest (RF), Support Vector Machine (SVM), and Decision
Tree (DT), have been employed in previous studies. They
were applied to the data obtained from malicious or benign
files. However, those algorithms had limitations, such as the
requirements of high processing power, domain knowledge,
and specific feature extraction methods in deployment. Deep
learning (DL) solutions have addressed some of those prob-
lems. Therefore, the focus of malware detection solutions
shifted from classical ML to DL. Recently, deep neural
network architectures have been widely explored to identify
malicious and benign software.

Deep learning is not a homogeneous approach, and the
number of architectures and topologies is wide and var-
ied. Therefore, researchers have proposed various architec-
tures and methods such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and attention
mechanisms. Numerous studies focus on assembly code
and detect malicious code pieces by employing deep learn-
ing techniques. They mainly use RNN, LSTM, CNN, or
transformers-based models for binary classification and op-
code, operand sequence as binary forms or word forms. For
instance, [22] employed the LSTM network to distinguish
executables between malicious or benign with opcode se-
quences as words. Another example is [35], which used
opcode and byte-code sequences with LSTM based neural
networks to detect malware in IoT systems. On the other
hand, [18] and [17] used binary form of the executables to
create the image representations and applied CNN-based ar-
chitectures to their dataset. Another study is [26], which used
benign and malicious assembly code obtained from static
contents of executables. Their model, Interpretable MAlware
Detector (I-MAD), combined a network component called
the Galaxy Transformer network that understood assembly
code at the basic block (a sequence of assembly instructions),
assembly function (a set of basic blocks), and executable
levels (a sequence of bytes). In another work [27] employed a
transformer-based model "Bidirectional Encoder Representa-
tions from Transformers (BERT)" for malware detection. The
work focused on the static analysis level on the source code
of benign and malicious applications on Android to detect
different categories of malware.

In the present study, we aimed to conduct malware de-
tection by classifying sentence-level and document-level as-
sembly sentences as benign and malicious. Accordingly, the

accuracy rates of our proposed methods in the SLAM address
the presence or absence of assembly instruction sequences
rather than a binary classification of a file or a classifica-
tion of byte-code sequences. Bearing in mind that a proper
comparison of the accuracy values with the previous work is
challenging, below we discuss the findings in the literature
in comparison to the findings obtained in the present study.
Given that BERT has been commonly used in the literature,
we also created a binary classification model based on BERT,
BERT General Language Model (BERT-GLM). We fine-
tuned it with the pre-trained model bert-base-uncase
to improve the evaluation of the present study in comparison
with the previous work on malware detection. Table 21
presents the architectures used in the previous studies and the
accuracy values achieved by them. Since the common metric
that judges the performance of all studies models is accuracy,
we included the accuracy rate of those models in the table.

TABLE 21: Comparison of malware detection models

Study Architecture Accuracy (%)

[18] CNN20 98.0
[17] ResNet20 88.4
[17] GoogleNet20 74.5
[22] LSTM21 97.3
[35] LSTM22 99.1

The SLAM BiLSTM21 70.4
The DLAM BiLSTM21 98.3

The BERT-GLM BERT21 77.6
The GPT2-GLM GPT-221 78.3

The GPT2-DSLM GPT-221 85.4

The findings obtained in the present study show that the
DLAM BiLSTM model has consistent performance with the
state-of-the-art static malware detection models. A further
evaluation of the models reveals the following findings.
Kumar et al. [18] aims to detect novel types of malware
using CNN’s Image Similarity technique. The model was
trained by the Vision Research Lab dataset, which contains
9458 gray-scale images of malware samples that come from
25 different malware families. The second dataset contained
3000 benign software of various types. Those datasets are
converted into binary code and then converted into image
files. The model achieved 98.0% accuracy. Another study,
conducted by Khan et al. [17] aimed to identify unknown
or novel malware. They utilized two CNN models, namely
ResNet from Microsoft In. and GoogleNet from Google Inc.
The datasets were obtained from various sources. Specif-
ically, the malware dataset was obtained from Microsoft
Inc., and 3000 benign files were obtained from open source
websites. After binary unpacking the executable files, the
researchers converter them into opcodes with PEID and then
to images. They obtained a testing accuracy of 74.5% on

20Binary to Image
21Sequential ASM
22Sequential ASM, Syscall
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GoogleNet and 88.36% precision on ResNet with images.
Another study, which reported performance results of static
malware analysis [22] proposed a model learning the opcode
sequence patterns from malware, thus modeling malware as
language. They used word embedding techniques cbow and
skip-gram, proposing a two-stage LSTM model for malware
detection. They performed experiments on the dataset pro-
vided by Microsoft Inc., MalwareDB, and Virusshare that
included 969 malware and 123 benign files. Their binary
classification model achieved 97.87% accuracy with cbow
and its window size 10. Finally, [35] proposed a methodology
that can be applied in real-time malware threat detection
using a deep recurrent neural network solution as a stacked
long short-term memory (LSTM) with a pre-training as a
regularization method. They also evaluated the effectiveness
of their proposed method on Windows, Ransomware, Internet
of Things (IoT), and Android malware datasets. For the IoT
malware detection with static analysis on opcode sequences.
The proposed method achieved 99.1% accuracy. Those stud-
ies, presented in Table 21 show the best results obtained
by recently available models, designed and implemented
in different ways that select and extract features, and em-
ployed various machine learning models on various datasets.
Therefore, the confound variables may differ, depending on
model characteristics. In the present study, we proposed mod-
els that accomplish promising results with low processing
requirements, even without extracting system calls in data
preprocessing.

VI. OPEN PROBLEMS
This section presents certain aspects of our study, which
may be considered open problems in the malware detection
domain. First, neural network architectures allow researchers
to create mainly black-box models due to the virtually in-
comprehensible internal logic of the hidden layers. So, as in
the other studies that employ deep neural networks, being a
black box at the model level is a limitation of the present
study. Although searching for better hyperparameters is pos-
sible, there is no principal method to accomplish the optimal
set. Therefore, future research should focus on explainable
models (viz. XAI) and novel methods of reaching optimal
hyperparameters. Another limitation is the variance in the
datasets. As in many other previous works, our dataset con-
sisted of a few hundred malware and benign files. Future
research should consider using extensive malware databases.
Recently, malware detection studies do not have common
benchmark datasets. The researchers establish datasets for
the purpose of the study, as done in the present study, also
in the others, e.g., [10], [28]. The lack of common datasets
limits the generalizability of the findings in detection perfor-
mance. Consequently, specific problems, such as collecting
and making them accessible through public datasets, have to
be resolved [36].

Our experiments aimed to ensure that our models produce
reliable and comparable results by checking the division
of the data into training, test, and validation sets (without

data leakage among them) and using the data sets obtained
from different sources. Specifically, the common practice is
to use random splitting by publicly available libraries such
as scikit-learn and the Keras. In the DLAM model of the
present study, we used the method provided by the Keras
library (tf.keras.preprocessing.text_dataset_from_directory)
that employs the method np.random.RandomState(seed). It
is important to use the same seed value when separating
the dataset into training, test, and validation sets since the
generated random value23 has to be the same all the time,
according to the numpy documentation.24 Otherwise, updat-
ing the random number in each run would influence model
consistency. Running the model with different seed values
allows processing different samples in the dataset as training
and validation sets. In the present study, we experimented
with five different seed values (24, 49, 63, 75, 82) and
inspected its effect on the accuracy of the DLAM (Table 22).
The results reveal the seed value as a factor that influences
model performance, among other model parameters. Accord-
ingly, the method of dividing the dataset into training, test,
and validation may have an impact on model performance.
Therefore, researchers should not only focus on the best
performance obtained from a model but also on the parame-
ters that contextualize the model performance. Table 22 also
presents alternative methods for calculating the performance
of the DLAM, such as the mean accuracy values. A mean
accuracy value can be calculated by summing up the accuracy
values and dividing them by the number of runs. Another
method of evaluating model performance is to calculate False
Positive Rates in different runs (FPR = FP/FP+TN, where FP
is the number of false positives and TN is the number of true
negatives). The FPR shows the probability of a false alarm,
i.e., a benign file detected as malware. In summary, an open
problem in model performance evaluation is the abundance
of dependent variables that indicate model performance,25

resulting in divergent performance reports in the literature.
Although we reported F1 scores in the present study, the
choice of performance evaluation parameters, such as AUC
[35], F1 scores [37], or accuracy rates [18], [22] may depend
on the choice of the researchers. A consistent presentation of
performance evaluation is needed for efficient, comparative
analysis of model findings in the literature.

VII. CONCLUSION
In the present study, we proposed generative approaches to
classify malicious and benign software. We focused on as-
sembly language since the assembly code provides accurate
information about critical coding patterns. We implemented
our strategy on static analysis of the data. We focused on

23https://github.com/tensorflow/tensorflow/blob/master/tensorflow/
python/keras/preprocessing/dataset_utils.py#L123 (retrieved on September
5, 2021)

24https://numpy.org/doc/stable/reference/random/bit_generators/pcg64.
html (retrieved on September 5, 2021)

25Binary Classification Metrics: https://neptune.ai/blog/
evaluation-metrics-binary-classification (retrieved on September 5,
2021)
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TABLE 22: The effects of the seed value on performance in
four runs

Seed Val. Acc. FP/FN/TP/TN F1 Score(%) FPR
(%) (%)

24 98.3 3 / 0 / 87 / 92 98.3 0,03
49 99.4 0 / 1 / 89 / 92 99.5 0
63 99.4 1 / 0 / 90 / 91 99.5 0,01
75 98.9 0 / 2 / 88 / 92 98.9 0
82 98.9 0 / 2 / 88 / 92 98.9 0

opcodes and operands, instead of opcodes only, to develop
stacked bidirectional long short-term memory (BiLSTM)
models and the decoder-based transformers generative pre-
trained transformers 2 (GPT-2) models. Overall, our mod-
els revealed efficient solutions that address a set of chal-
lenges, such as processing and memory requirements of the
deep learning models that process long-term dependencies.
The first architecture is based on the stacked (BiLSTM)
model with a specific cell structure for solving memory
size and time challenges. We found that incorporating tech-
niques from natural language processing (NLP), specifically
document-level analysis with word embedding and bidirec-
tional LSTMs (BiLSTM), significantly improves model per-
formance. We also found that we could obtain even better
performance by including a Variational RNN technique in
our model. The DLAM model detected files with an average
accuracy of over 98%, showing that the context obtained
from assembly instructions in DLAM is the key to achieving
good performance.

The Binary Classification Model, the GPT2-DSLM, based
on decoder-based transformers GPT-2, mainly processes
short text on multiple head architectures, each with a single
self-attention mechanism. The multi-head attentions provide
global dependencies between inputs and outputs. First, we
built the model to grab the full semantics behind the assembly
code with a pre-trained GPT-2 model. We then modeled
the GPT2-DSLM with the transformers-based model GPT-
2. Furthermore, we fine-tuned the GPT2-DSLM model with
the pre-trained model to improve the detection performance.
Finally, we selected optimum parameter values based on
the experimental results. The resulting accuracy rate 85.4%
shows that it is possible to classify malicious and benign
assembly codes by GPT-2 with a custom pre-trained model.
The future research should address improvements in the
data processing pipeline, developing an API service for ex-
tracting assembly instructions to collect them automatically
for a given PE file to reduce human intervention, and in
the coverage of program files, including packed programs,
besides the limitations reported in the previous section, as
open problems.

REFERENCES
[1] O. Shimon, “Cyber threat report on 2020 shows

increases across all malware types,” Deep Instinct, 2021.
[Online]. Available: https://www.deepinstinct.com/2021/02/11/
cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types/

[2] K. Scarfone and M. Souppaya, “Guide to malware incident prevention and
handling for desktops and laptops,” vol. 7, no. 4, p. 1. [Online]. Available:
http://dx.doi.org/10.6028/NIST.SP.800-83r1

[3] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and
S. Venkatraman, “Robust intelligent malware detection using deep
learning,” IEEE Access, vol. 7, p. 46717–46738, 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8681127

[4] C. Acarturk, M. Sirlanci, P. G. Balikcioglu, D. Demirci, N. Sahin, and
O. A. Kucuk, “Malicious code detection: Run trace output analysis by
lstm,” IEEE Access, vol. 9, pp. 9625–9635, 2021.

[5] U. Pehlivan, N. Baltaci, C. Acartürk, and N. Baykal, “The analysis of
feature selection methods and classification algorithms in permission
based android malware detection,” p. 1–8, 12 2014. [Online]. Available:
https://ieeexplore.ieee.org/document/7013371

[6] H. El Merabet and A. Hajraoui, “A survey of malware detection techniques
based on machine learning,” International Journal of Advanced Computer
Science and Applications, vol. 10, 01 2019.

[7] D. Bilar, “Opcodes as predictor for malware,” Int. J. Electron. Secur. Digit.
Forensics, vol. 1, pp. 156–168, 2007.

[8] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in En-
gineering Secure Software and Systems, F. Massacci, D. Wallach, and
N. Zannone, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 35–43.

[9] I. Santos, B. Sanz, C. Laorden, F. Brezo, and P. G. Bringas, “Opcode-
sequence-based semi-supervised unknown malware detection,” pp. 50–57,
2011.

[10] H. Anderson and P. Roth, “Ember: An open dataset for training static pe
malware machine learning models,” 04 2018.

[11] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S. Dolev,
and Y. Elovici, “Unknown malcode detection using opcode representa-
tion,” pp. 204–215, 2008.

[12] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici, “Detecting
unknown malicious code by applying classification techniques on opcode
patterns,” Security Informatics, vol. 1, no. 1, p. 1, Feb 2012. [Online].
Available: https://doi.org/10.1186/2190-8532-1-1

[13] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K. Sangaiah,
“Classification of ransomware families with machine learning based on
n-gram of opcodes,” Future Generation Computer Systems, vol. 90,
pp. 211–221, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X18307325

[14] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. Mclean, and C. Nicholas, “An investigation of byte n-gram features
for malware classification,” Journal of Computer Virology and Hacking
Techniques, vol. 14, 02 2018.

[15] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for
detection and classification of malware: Research developments, trends
and challenges,” Journal of Network and Computer Applications, vol.
153, p. 102526, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1084804519303868

[16] M. Krcál, O. Švec, M. Bálek, and O. Jasek, “Deep convolutional malware
classifiers can learn from raw executables and labels only,” in ICLR, 2018.

[17] R. U. Khan, X. Zhang, and R. Kumar, “Analysis of resnet and googlenet
models for malware detection,” Journal of Computer Virology and
Hacking Techniques, vol. 15, no. 1, pp. 29–37, Mar 2019. [Online].
Available: https://doi.org/10.1007/s11416-018-0324-z

[18] R. Kumar, Z. Xiaosong, R. U. Khan, I. Ahad, and J. Kumar, “Malicious
code detection based on image processing using deep learning,” p. 81–85,
2018. [Online]. Available: https://doi.org/10.1145/3194452.3194459

[19] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are eas-
ily fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 427–436.

[20] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia conference on computer and
communications security, 2017, pp. 506–519.

[21] S. Jha, D. Prashar, H. V. Long, and D. Taniar, “Recurrent neural network
for detecting malware,” Computers & Security, p. 102037, 09 2020.

14 VOLUME 4, 2016

https://www.deepinstinct.com/2021/02/11/cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types/
https://www.deepinstinct.com/2021/02/11/cyber-threat-report-on-2020-shows-triple-digit-increases-across-all-malware-types/
http://dx.doi.org/10.6028/NIST.SP.800-83r1
https://ieeexplore.ieee.org/document/8681127
https://ieeexplore.ieee.org/document/7013371
https://doi.org/10.1186/2190-8532-1-1
https://www.sciencedirect.com/science/article/pii/S0167739X18307325
https://www.sciencedirect.com/science/article/pii/S0167739X18307325
https://www.sciencedirect.com/science/article/pii/S1084804519303868
https://www.sciencedirect.com/science/article/pii/S1084804519303868
https://doi.org/10.1007/s11416-018-0324-z
https://doi.org/10.1145/3194452.3194459


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3179384, IEEE Access

Author et al.: Static Malware Detection Using Stacked BiLSTM and GPT-2

[22] R. Lu, “Malware detection with LSTM using opcode language,” CoRR,
vol. abs/1906.04593, 2019. [Online]. Available: http://arxiv.org/abs/1906.
04593

[23] Y. Lee, H. Kwon, S.-H. Choi, S.-H. Lim, S. H. Baek, and K.-W.
Park, “Instruction2vec: Efficient preprocessor of assembly code to detect
software weakness with cnn,” Applied Sciences, vol. 9, no. 19, 2019.
[Online]. Available: https://www.mdpi.com/2076-3417/9/19/4086

[24] Y. Sung, S. Jang, Y.-S. Jeong, and J. H. J. J. Park, “Malware classification
algorithm using advanced word2vec-based bi-lstm for ground control
stations,” Computer Communications, vol. 153, p. 342–348, Mar 2020.

[25] Q. Xie, Y. Wang, and Z. Qin, “Malware family classification using lstm
with attention,” pp. 966–970, 2020.

[26] M. Q. Li, B. C. Fung, P. Charland, and S. H. Ding, “I-mad:
Interpretable malware detector using galaxy transformer,” Computers
& Security, vol. 108, p. 102371, 09 2021. [Online]. Available:
https://arxiv.org/pdf/1909.06865.pdf

[27] A. Rahali and M. Akhloufi, “Malbert: Using transformers for cybersecurity
and malicious software detection a preprint,” 2021. [Online]. Available:
https://arxiv.org/pdf/2103.03806.pdf

[28] R. Harang and E. M. Rudd, “Sorel-20m: A large scale benchmark dataset
for malicious pe detection,” 2020.

[29] F. Ducau, E. Rudd, T. Heppner, A. Long, and K. Berlin, “Automatic
malware description via attribute tagging and similarity embedding,” 01
2020. [Online]. Available: https://arxiv.org/pdf/1905.06262.pdf

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[31] A. Karpathy. (2019) A recipe for training neural networks. [Online].
Available: http://karpathy.github.io/2019/04/25/recipe/

[32] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[33] A. Radford and K. Narasimhan, “Improving language understanding by
generative pre-training,” 2018.

[34] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arxiv.org, vol. 3, Jan 2019. [Online]. Available: https://arxiv.org/abs/1711.
05101

[35] A. N. Jahromi, S. Hashemi, A. Dehghantanha, R. M. Parizi, and K.-K. R.
Choo, “An enhanced stacked lstm method with no random initialization
for malware threat hunting in safety and time-critical systems,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 4,
no. 5, p. 630–640, Oct 2020.

[36] M. A. Lones, “How to avoid machine learning pitfalls: a guide for
academic researchers,” CoRR, vol. abs/2108.02497, 2021. [Online].
Available: https://arxiv.org/abs/2108.02497

[37] D. Vasan, M. Alazab, S. Wassan, B. Safaei, and Q. Zheng, “Image-
based malware classification using ensemble of cnn architectures (imcec),”
Computers & Security, vol. 92, p. 101748, 05 2020.

DENIZ DEMIRCI received the B.S. degree in
system engineering from the Turkish Military
Academy, Ankara, Turkey, as lieutenant, in 2007
and M.Sc. degree in Cyber Security from the
Informatics Institute, Middle East Technical Uni-
versity (METU), Turkey, in 2021. He worked as
a Platoon Leader and a Team Commander, from
2007 to 2011. From 2011 to 2016, he worked as
a Software Developer. Since 2016, he has been
responsible for performing and managing penetra-

tion tests, malware analysis, security incident detection and response as a
Technical Lead with the Cyber Security Center of Turkish, Gendarmerie
General Command. His research interests include software security, image
processing, natural language processing, malware analysis, reverse engineer-
ing, and machine learning.
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