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ABSTRACT 

 

ESTIMATION OF WEAR IN DRY FRICTION DAMPERS AND ITS 

EFFECT ON VIBRATION REDUCTION 

 

 

 

Çardak, Aykut 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Ender Ciğeroğlu 

 

 

August 2022, 69 pages 

Although friction is mostly considered an undesirable phenomenon due to its energy 

dissipation characteristic, specially designed dry friction dampers utilize this feature 

to reduce the dynamic response of the system at the resonant frequencies. However, 

fretting wear due to dry friction during the operational life of the structure may 

drastically shift the performance from the initial design point and eventually cause 

drastic failures. Hence, it is important to establish a sophisticated algorithm that 

couples nonlinear dynamic response solver of frictionally constraint problems with 

a fretting wear model. In this thesis, the proposed methodology is utilized to find the 

evolution of dynamic response and surface topography of two widely used case 

studies which are shrouded blade and grounded blade platforms under ongoing 

vibration cycles.  

 

Keywords: Nonlinear Vibration, Harmonic Balance Method, Dry Friction Damping, 

Fretting Wear 
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ÖZ 

 

KURU SÜRTÜNMELİ SÖNÜMLEYİCİLERDEKİ AŞINMANIN 

ÖNGÖRÜLMESİ VE BUNUN TİTREŞİM AZLTIMINA ETKİLERİ 

 

 

 

Çardak, Aykut 

Yüksek Lisans, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu 

 

 

Ağustos 2022, 69 sayfa 

Sürtünme, sistemin enerjisini sönümleme özelliğinden dolayı çoğunlukla 

istenmeyen bir fenomen olarak görülse de, özel olarak tasarlanmış kuru sürtünmeli 

sönümleyiciler, sistemin rezonans frekanslarında dinamik tepkisini azaltmak için bu 

özelliği kullanır. Bununla birlikte, yapının operasyonel ömrü boyunca kuru 

sürtünmeden kaynaklanan titreşimsel aşınması, performansı ilk tasarım noktasından 

büyük ölçüde kaydırabilir ve sonunda ciddi sonuçlara neden olabilir. Bu nedenle, 

kuru sürtünmeli problemlerinin doğrusal olmayan dinamik tepki çözücüsünü bir 

sürtünme aşınma modeliyle birleştiren gelişmiş bir algoritma kurmak önemlidir. Bu 

tezde, tasvir edilen metodoloji kullanılarak, üzerinde sıklıkla çalışılan “shrouded 

blade” ve “grounded blade platform” örnekleri üzerinden, devamlı titreşim döngüsü 

altında, dinamik tepki ve yüzey topografisinin değişimi incelenmiştir.  

 

Anahtar Kelimeler: Doğrusal Olmayan Titreşim, Harmonic Balance Method, Kuru 

Sürtünmeli Sönümleme, Titreşimli Aşınma 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Literature Survey 

In mechanical structures, friction is a commonly occurring phenomenon between 

subcomponents. While these frictional interfaces are undesired most of the time, they 

are included to the system by the designer on purpose in some engineering fields like 

turbomachinery. For instance, in gas turbine engines where beam-like blades are 

exposed to high resonant amplitudes at high speeds, frictional interfaces are 

intentionally included to prevent high cycle fatigue (HCF) failure and eventually 

guarantee operational safety and efficiency. The resonant amplitudes are 

significantly reduced by means of friction which contributes to the overall damping 

performance of the structure. As a result of this, HCF life can be enhanced, and the 

maintenance period can be prolonged safely. However, due to the complex nonlinear 

contact kinematics of the friction phenomenon, building a mathematical model 

becomes difficult. Hence, modeling the nonlinear behavior of such contact 

kinematics has drawn great interest such that several friction models have been 

introduced in the past and summarized by Marques et al. [1]. Among other friction 

models, Coulomb friction model with discretized Jenkins friction elements [2] has 

been widely used in this area. 

From past to present, several design concepts such as blade-to-ground, blade-to-

blade, shroud, and underplatform dampers have been presented by the gas turbine 

manufacturers which contributed to the development of the friction contact models. 

Blade-to-ground dampers are the simplest and greatly studied model to damp the 

blades. For such damper designs, normal load is assumed to be constant while 1D 
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tangential motion experiences stick and slip phenomena [3]–[7]. Despite the 

simplicity, the model is quite adequate to predict the forced response of the system. 

However, for the blade-to-blade, shroud, or underplatform dampers interblade phase 

angle needs to be considered which brings complexity to the analysis. For such 

complex systems, elliptical trajectory is followed by the contact point and thus, more 

sophisticated 2D model was developed [8]–[10]. Although constant normal load 

assumption simplifies the problem, it cannot always represent the real system where 

possible normal motion causes normal load variation which may cause separation 

state along with stick and slip states. Menq et al. [11] first developed variable normal 

load model with 1D linear motion for single harmonic assumption case. This work 

is later extended [12] for 3D contact kinematics with variable normal load. Finding 

the transition angles of stick, slip, and separation states is another important issue 

that is worked to enhance the accuracy and solution time for single harmonic motion 

so that transition angles can be found analytically [13]. 

Although for many nonlinearities and Coulomb friction nonlinearity with single 

harmonic solution case, transition angles can be derived analytically, Alternating 

Frequency Time (AFT) Method [14] has been developed to calculate transition 

angles numerically where it may not be possible to find them numerically. Thus, in 

the literature, vibrational analyses of dry friction dampers are widely coupled with 

AFT method [15]–[19]. Firrone et al. [20] also summarized the different types of 

friction models coupled with AFT method by several case studies. 

As mentioned previously, frictionally constrained structures mostly suffer from high 

cycle failures which may be millions of cycles. More precisely, high frictional loads 

in a cyclic manner promote fretting wear which causes material removal from 

contacting surfaces, and thus, this may alter the dynamic response of the system. In 

order to predict the wear rate, hundreds of formulations have been introduced in the 

literature by utilizing the methods of solid mechanics and/or empirical relations that 

were investigated by Meng et al. [21] and Montgomery et al. [22]. Although no 

agreement has been achieved by the researchers yet, these formulations boil down to 

a couple of models/approaches like Archard’s model [23], wear-energy approach 
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[24]–[26], atomic scale approach [27], and thermodynamics approach [28]. 

Although thermodynamics and atomic scale approaches give more sophisticated 

perspective to the problem, either the modeling complexities like large number of 

unknowns and parameters and yet scarce experimental data make them difficult to 

apply to real engineering problems when compared with the rest. In the literature, 

Archard’s wear model which mainly contains normal load, material hardness, sliding 

distance, and experimental wear constant is mostly used to predict wear volume of 

the contact surface for fretting wear and implemented in the nonlinear dynamics 

problem first by Laxalde et al. [29] and Salles et al. [30]. In recent years, due to some 

drawbacks [24] of Archard’s model and good correlation of the wear-energy 

approach with experimental studies [25], [26], nonlinear dynamics problems are 

coupled with the wear-energy approach [31]–[34] in which dissipated energy over 

the fretting cycle is directly related with the wear volume by an experimentally 

determined coefficient. 

1.2 Objective of the Thesis 

In this thesis, the evolution of contact geometry of dry friction dampers exposed to 

fretting wear and change in the dynamic response of the structure over the ongoing 

wear process is investigated. To achieve this goal, analysis is conducted with 

different algorithms from different perspectives. Moreover, employed methods and 

algorithms are elaborately developed to reduce the computational expense of the 

analysis. Lastly, the built-up mathematical model and fretting wear algorithm are 

verified with numerical case studies.  

1.3 Outline of the Thesis 

In Chapter 2, the equation of motion nonlinear systems and the frequency domain 

solution of the system are discussed. As a frequency domain method, Harmonic 

Balance Method (HBM) is employed to transform a set of nonlinear differential 



 

 

4 

equations into algebraic equations which are then solved by Newton’s method with 

the Arclength continuation method. To decrease the computational effort, 

Receptance Method (RM) formulation is also explained in detail. 

In Chapter 3, two different macroslip contact models which are 1D dry friction 

element with normal load variation and 3D dry friction element are presented. 

Algorithms of these two contact models are deeply discussed with Alternating 

Frequency Time (AFT) method which is utilized to find the Fourier coefficients of 

nonlinear internal forcing throughout the thesis. In addition, three different 

commonly used fretting wear models are covered and compared.  

In Chapter 4, by referencing the methodology provided in previous sections, contact 

and fretting wear models are coupled with each other. Algorithms are built based on 

wear depth and wear cycle perspectives which are discussed in the upcoming 

chapter. 

In Chapter 5, two case studies, shrouded blade and grounded blade platform are 

deeply studied to validate the proposed methods and algorithms. Wear topographies 

and change in dynamic response during the ongoing fretting process are analyzed. 

In Chapter 6, thesis is concluded by the discussion of the findings in this work along 

with recommendations for future studies. 
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CHAPTER 2  

2 DYNAMIC RESPONSE ANALYSIS OF NONLINEAR SYSTEMS 

2.1 Equation of Motion of Nonlinear Systems 

Equation of motion (EOM) of general frictionally constraint vibratory system can be 

expressed in matrix form by neglecting gyroscopic effects as, 

 ,i+ + + =NMx Hx Kx f f  (2.1) 

where x  is the displacement vector, M , H  and K  are the mass, structural damping, 

and stiffness matrices, respectively. Nf  is the nonlinear forcing vector due to friction 

contact and f  is the external excitation forcing vector. i  denotes the unit imaginary 

number. What causes nonlinearity in (2.1) is the nonlinear forcing vector, f  which 

is a function of nonlinear degrees of freedoms (DOFs) of displacement vector, x . 

For the solution of (2.1), there are three main approaches used in the literature, 

analytical, time domain, and frequency domain methods. If the steady state response 

of the nonlinear problem is a major concern, frequency domain methods are 

preferred to other methods due to their superior speed.  

For the harmonic excitation forcing, solution can also be expressed with harmonics.  

 
0

,

Nh
im t

m

m

e 

=

= f f  (2.2) 

 
0

,

Nh
im t

m

m

e 

=

= x x  (2.3) 



 

 

6 

where hN  is the number of harmonics included in the solution, mf  and mx  are the 

external forcing and displacement vectors for the 
thm  harmonic in complex form 

respectively. Similarly, nonlinear forcing can also be described with complex valued 

summation formula. 

 
0

.

Nh
im t

m
m

e 

=

= N Nf f  (2.4) 

Inserting (2.2), (2.3) and (2.4) to the (2.1) by differentiating (2.3), following 

nonlinear complex nonlinear algebraic equation can be obtained for each harmonic. 

 ( )( )2
.m m

m
m i− + + =

N
K M H x f f  (2.5) 

2.2 Harmonic Balance Method (HBM) 

Frequency domain methods -such as Harmonic Balance Method (HBM), and 

Describing Function Method (DFM)- become prominent over the computationally 

demanding time domain methods. In HBM, both linear and nonlinear part of the 

problem is expressed with harmonic series and like terms are balanced which results 

in a set of nonlinear algebraic equations. Assuming harmonic response and including 

bias term, solution can be written as a real valued harmonic expression. 

 ( ) ( )( )0

1

sin cos ,

Nh

s cm m
m

m m 
=

= + +x x x x  (2.6) 

 ( ) ( )( )0

1

sin cos ,

Nh

s cm m
m

m m 
=

= + +f f f f  (2.7) 

where t =  for convenience, Nh  is the total harmonics used in the solution,  

subscripts sm
, cm

, 0  are representing the sine and cosine coefficients of the 
thm  

harmonic and bias term respectively. Similarly, nonlinear forcing vector can also be 

expressed with sine and cosine form by Fourier expansion. 
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 ( )0
1

sin( ) cos( ) .
n

s cm m
m

m m 
=

= + +N N N Nf f f f  (2.8) 

Fourier coefficients of (2.8) can be found by Fourier integration as follows, 

 
2

0

1
sin( ) ,

s m
m d


 


= N Nf f  (2.9) 

 
2

0

1
cos( ) ,

c m
m d


 


= N Nf f  (2.10) 

 
2

0 0

1
.

2
d





= N Nf f  (2.11) 

Substituting (2.6), (2.7) and (2.8) into the (2.5) by using Euler’s formula, balancing 

like terms and considering only real valued coefficients, the equation of motion can 

be expressed in matrix form as follows, 

( )

( )

0
2

1
1

2
1

1

2

2

0 0

1 1

1 1

0 0 0

0 0 0

...
0 0 0

0 0 0

.

s

c

s mm

c mm

s s

c c

s sm m

c cm m

m

m

 

 

 

 

   
   − −   
   −
   
   
   
 − −  
   
 −   

   
   
   
   
   

+ − =   
   
   
   
   
   

N

N

N

N

N

K x

K M K x

K K M x

xK M K

xK K M

f f

f f

f f
0

f f

f f

 (2.12) 

where m  is the structural damping coefficient of 
thm  harmonic for proportional 

damping. Structural damping is calculated by multiplication of structural damping 

coefficient and stiffness matrix. However, for real engineering problems, systems 
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have large number of DOFS which results in a large number of unknowns in (2.12). 

To overcome this difficulty, Receptance Method (RM) is employed in this thesis. 

2.3 Receptance Method (RM) 

Receptance method decreases the number of nonlinear algebraic equations if the 

number of nonlinear DOFs is much less than the total number of DOFs. In RM, 

unknowns in the displacement vector are split into its linear and nonlinear DOFs and 

system matrices in (2.5) is reordered accordingly. Complex valued equation of 

motion can be written for 
thm  harmonic as follows, 

 ( )
2 0

.
l lm m

n nmm m

m i
    

 − + + =             N

x f
K M H

fx f
 (2.13) 

where subscript lx  denotes linear DOFs while nx  denotes the nonlinear DOFs. 

Receptance matrix of the linear system for the 
thm  harmonic can be expressed as 

follows, 

 ( )( )
1

2
.m i

−

= − +A K M H  (2.14) 

Multiplying both sides of (2.13) by the inverse of the receptance matrix, the 

following complex nonlinear algebraic equation is obtained.  

 .
l ll ln ll ln lm m m m m m

n nl nn nl nn nmm m m m m m

        
+ − =        

               N

x A A A A f0
0

fx A A A A f
 (2.15) 

Since the nonlinear forces depend on nx , only the second row of (2.15) should be 

solved iteratively. Hence, the nonlinear algebraic equation to be solved is expressed 

as follows, 

 .
l m

n nn nl nnm m m m m
nm

 
 + − =  

  
N

f
x A f A A 0

f
 (2.16) 
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As illustrated in (2.12), complex nonlinear equations in (2.16) should be represented 

in real valued matrix form. Note that, while transforming equations from complex to 

the real form, real and imaginary terms become the coefficients of cosine and sine 

terms, respectively. Assuming harmonic solution by including bias terms as 

discussed in Section 2.2,  

 

( )
( )

( )

( )

( )

0 0

1 10

1 1

0 0

0 0 0

0 1 0 0
, , .

0 0 0

0 0 0

0 0 0

0 1 0 0
.

0 0 0

0 0 0

0.

n n

n ns snn

n nc c
n

n ns m s m

n nc m c m

nl nn

m

m

m



   
   
    
    
    = + +    
    
     
   
   
   

 
 
 
 
 
  

=

1

1

2

2

x f

x fA

x fΘ
r x

Θx f

x f

A A

Θ

Θ

f

 (2.17) 

where 0A  can be calculated by taking 0 =  in (2.14) and 1Θ , 2Θ  and f  denotes 

the following expressions, 

 ( )
( ) ( )

( ) ( )

Re Im

,
Im Re

nn nnm m

nn nnm m

m

 −
 

=  
 
 

1

A A

Θ
A A

 (2.18) 

 ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Re Im Re Im

,
Im Re Im Re

nl nl nn nnm m m m

nl nl nn nnm m m m

m

 − −
 

=  
 
 

2

A A A A

Θ
A A A A

 (2.19) 

 

0 0 1 1 1 1
.l n l n l n l n l ns s c c s s c cm m m m

 =
  

T
T T T T T T T T T T

f f f f f f f f f f f

 (2.20) 
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( ), ,n mr x  is called residual vector that needs to be solved numerically as illustrated 

in 2.4. After solving the nonlinear part of the problem, the linear part of the 
thm  

harmonic can be solved analytically from the first row of (2.15). 

 .
l m

l ln ll lnm m m m m
nm

x
 

 + − =  
  

N

f
A f A A 0

f
 (2.21) 

Let N  is the total number of DOFs, nN  is the total number of nonlinear DOFs, and

1,2, , hm N= . Since only nonlinear DOFs are considered in (2.17), computational 

cost of numerical calculation is reduced from ( )2 1 .hN N+  to ( )2 1 .h nN N+  when 

nN  is considerably less than N . It should also be noted that, for large number of 

,N especially when finite element method is utilized, it would be advantageous to 

get receptance matrix by modal analysis method, rather than inverting of dynamic 

stiffness matrix in (2.14). 

 ( )
( ) ( )

22
1

.
,

1 .

Nm
r r

r r ri m


  =

=
+ −


Tφ φ

A  (2.22) 

where mN  is the number of modes extracted from the model, rφ , r  and r  are the 

mass normalized mode shape, loss factor for proportional damping, and undamped 

natural frequency of the thr  mode. Note that mode shapes are extracted from the 

finite element software program. In this study, ANSYS Workbench is utilized for 

this purpose. 

2.4 Newton’s Method with Arclength Continuation 

To solve the residual vector, ( ), ,n mr x , indicated  in (2.17), employing a numerical 

method is necessary since the nonlinear force vector is a function of the displacement 

vector, nx , which makes the problem difficult to solve analytically.  
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By Taylor Series expansion around nx  and neglecting higher order terms, 

 ( ) ( ) ( ), , , , , , . .n n n n nm m m  + = +r x Δx r x J x Δx  (2.23) 

where, J  is the Jacobian matrix. Taking ( ), ,n n m+ =r x Δx 0  and rewriting (2.23) 

 ( ) ( ), , , , . ,n n nm m + =r x J x Δx 0  (2.24) 

 1
,

k k
n n n

+= −Δx x x  (2.25) 

where subscript k  is the already calculated previous iteration while 1k +  is the new 

potential solution which is calculated iteratively until reaching the predetermined 

threshold error value. When (2.25) plugged into (2.24), single iteration of Newton’s 

Method can be written as follows, 

 ( ) ( )
1

1 , , . , , .k k k k

n n n n
m m 

−
+ = −x x J x r x  (2.26) 

Jacobian matrix J  can be calculated by forward difference formula as follows, 

 ( )
( ) ( ). , , , ,

, , ,

k k
j jn nk

n
j

h e m m
m

h

 


+ −
=

r x r x
J x  (2.27) 

where, je  is the unit vector in the thj  direction and jh  is a scaled step size used to 

avoid subtractive cancelation. 

In order to obtain Frequency Response Function (FRF) in which frequency response 

is sought in a specific frequency interval, (2.26) needs to be swept in the desired 

frequency range. This sweeping procedure is called as path following method. Two 

of the widely used path following methods are Homotopy continuation and 

Arclength continuation methods. 

In Homotopy continuation, the previous solution is taken as an initial guess, and 

Newton’s method which is formulated in (2.26) is utilized to find a new solution at 

the corresponding frequency value,  , that is changed incrementally. If the response 



 

 

12 

sharply changes with changing  , Newton’s method may not be able to converge to 

the new solution from the previous solution information. In this case, step size of the 

frequency sweep is needed to be decreased. The downside of Homotopy continuation 

stands out when the nonlinearity becomes dominant and FRF makes returns between 

some frequency intervals which causes multiple solutions at these regions.  

 

Figure 2.1 FRF for the System with Cubic Stiffness 

Figure 2.1 is a simple illustration of nonlinear behavior where steeper turning occurs 

as the nonlinearity increases. As a result, the Jacobian matrix converges to zero 

which causes the inverse of the Jacobian matrix singular in (2.26).  

Thus, Arclength continuation method [35] is developed to follow the path even if it 

reverses the direction. Hence, as a continuation parameter, frequency becomes 

another unknown besides nx  and unknown vector, q  can be constructed as follows,  

 .
n



 
=  
 

x
q  (2.28) 

The newly added parameter brings an additional equation that comes from a 

hypothetical sphere with a radius of s  and centered at the previous solution point. 
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 ( ) ( )
2 2

1 1 2 ,j j j j

n n
s − −− + − = x x  (2.29) 

where j  denotes the index of the solution point. 

Equation of hypothetical sphere can alternatively be written in the following way, 

 ( ) 2, . 0,j j j j

n
h s


= −  =x Δq Δq  (2.30) 

where,  

 

1

1
.

j j
n nj

j j 

−

−

 −
=  

−  

x x
Δq  (2.31) 

Finally, Newton’s formulation expressed in (2.26) can be expanded by considering 

additional unknown and equation, 

 

( ) ( )

( ) ( )

( )

( )

1

1

, , , ,

, ,
,

, , , , , ,

j j
n n

jj
nnj j

j j j
n n n

j
n

m m

m

h m h m h m

 



  



−

+

  
 

    = −  
       

  

r x r x

r xx
q q

x x x

x

 (2.32) 

where, 

 
( ) ( ), , , ,

2 .

j j
n n j

j
n

h m h m 




  
   =

  
 

x x
Δq

x
 (2.33) 

(2.32) is repeated for a single solution point till the error drops below an error 

criterion and this procedure is followed for each solution point. Although, 

convergence and resolution of the solution highly depend on arclength step size 

value, s , small step size brings computational cost to the solver. Thus, s  

parameter should be updated after each solution point. This method is called as an 

adaptive step size algorithm. 
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1 3

1 . ,

iter

e

j j opt

it r
j

s s




+
 
  = 
 
 

 (2.34) 

where, iter
j  is the total number of iterations reached at the current solution point, j  

and iter
opt  is the optimum iteration number that can be tuned accordingly. 



 

 

15 

CHAPTER 3  

3 MATHEMATICAL MODELLING OF CONTACT AND FRETTING WEAR 

3.1 Contact Modelling 

When two bodies are in contact with each other, they induce friction force to each 

other in opposing directions. There are basically two force components which are 

tangential and normal. Predicting the contact kinematics and establishing 

sophisticated models to find force components have become a key issue in the past. 

Due to the mathematical simplicity, node to node macroslip friction models are 

widely used where gross slip is assumed at the contact interface. Hence, in this 

section two widely used macroslip contact models which are 1D dry friction element 

with normal load variation and 2D dry friction element with normal load variation 

are discussed and formulated. Both models are derived from the Coulomb friction 

model by adding extra DOFs and stiffness elements which are detailed in the 

oncoming subsections. 

3.1.1 Alternating Frequency Time (AFT) Method 

As discussed in Section 2.2, nonlinear internal forces need to be expressed with 

harmonic representation in the frequency domain which is formulated from (2.8) to 

(2.11). However, it may not be possible to handle Fourier integrations neatly when 

transition angles between states cannot be determined exactly like multi-harmonic 

solution of the dry friction element with normal load variation. Even if it’s possible 

to calculate the transition angles analytically in some cases, formulation and 

programming are quite complicated. Thanks to its simplicity and ease of use, the 

Alternating Frequency Time (AFT) Method is utilized by many researchers. 

However, it should be noted that AFT brings huge computational cost, inaccuracy, 
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and even sometimes causes convergence problems to the solver. Hence, these 

drawbacks should be kept in mind while using AFT. 

In the AFT method, displacements are converted from the frequency domain to the 

time domain by discretization, and nonlinear forces are evaluated in the time domain 

by obeying Coulomb’s friction law. This phase is also called as a time-marching 

prediction-correction algorithm. After determining the nonlinear forces at each 

discretized time, Fast Fourier Transform (FFT) is utilized to convert nonlinear forces 

back to the frequency domain again. The methodology of AFT is illustrated in Figure 

3.1. 

 

Figure 3.1 Methodology of AFT Algorithm 

Thus, this method enables to combine upsides of both frequency and time domain 

approaches. In this section, the AFT method is utilized in the formulation of both 

contact models. 
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3.1.2 1D Dry Friction Element with Normal Load Variation 

1D dry friction element with normal load variation induced by normal motion is 

simple but well enough to model the contacts that occur at shroud-wise interfaces. 

As shown in Figure 3.2, the relative motion of two contacting bodies is represented 

with Body 1 while Body 2 is grounded for the sake of simplification. uk , vk ,  , 

( )u  , ( )v  , ( )w  , 0n  are the tangential contact stiffness, normal contact stiffness, 

coefficient of friction, tangential relative motion, normal relative motion, slip 

motion, and preload, respectively. 1D dry friction element with normal load variation 

can experience stick, slip, and separation conditions.  

 

Figure 3.2 1D Dry Friction Model with Normal Load Variation Induced by Normal 

Motion 

To illustrate the pseudo-algorithm of the AFT method used in this contact model, 

consider instant i  where i it = . First, check whether there exists separation or 

not. If the following condition is satisfied, the contact point is at the separation state. 

 ( )0 0,v in k v +    (3.1) 

In this case, the nonlinear contact forces are zero, and slip motion is equal to the 

relative displacement. 
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 ( ) 0,in  =  (3.2) 

 ( ) 0,t if  =  (3.3) 

 ( ) ( ),i iw u =  (3.4) 

where, ( )in   and ( )t if   are the normal force, tangential friction force in the time 

domain at the instant of i , respectively. Next, if the condition in (3.1) is not 

satisfied, i.e. there exists contact between the two bodies, there are two possibilities 

are remaining: stick or slip. The normal load acting on the contact point can be 

obtained as follows, 

 ( ) ( )0 .i v in n k v = +  (3.5) 

Regardless of the actual state, always assume stick state at first and check whether 

this assumption is correct or not using the following relation, 

 ( ) ( ) ( )1 .u i i ik u w n   −−   (3.6) 

If the condition in (3.6) is satisfied, contact status is in stick state; hence, slip motion 

is the same as the slip motion at the previous step and the nonlinear tangential friction 

force can be calculated as follows, 

 ( ) ( )1 ,i iw w  −=  (3.7) 

 ( ) ( ) ( ) .t i u i if k u w   = −   (3.8) 

If (3.6) is not satisfied, contact status at the instant i  should be slip. Then, slip 

motion can be updated as follows, 

 ( ) ( )
( )

.
i

i i
u

n
w u

k

 
 = −  (3.9) 

During the slip state, tangential friction force equals to the normal load. 
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 ( ) ( ) ( )0 .t i i v if n n k v     = = +   (3.10) 

This procedure is repeated till steady state is reached. To the author’s knowledge, 

the algorithm of 1D dry friction element with normal load variation converges in two 

cycles if there is no separation. Note that, if condition in (3.1) is satisfied and it’s 

known that Body 1 experiences separation, repeating the time-marching procedure 

over one cycle is enough. The reason for this, the calculation of normal force ( )n   

doesn’t depend on the prediction-correction algorithm but can be calculated exactly. 

Hence, the first instant that separation occurs should be the starting instant of single 

a cycle sweep. As one may guess, the accuracy and convergence of the AFT 

algorithm highly depend on the step size used during the time-marching procedure. 

3.1.2.1 Analytical Jacobian for 1D Dry Friction Element with Normal Load 

Variation 

As indicated in (2.27), Newton’s method includes Jacobian matrix for every iterative 

solution which makes it computationally most expensive function in the solver. 

There are basically two ways of calculating Jacobian, numerically or analytically. 

Due to the high computational expense of numerical calculation for especially large 

number of nonlinear DOFs, analytical Jacobian needs to be implemented to 

overcome this problem.  

As explained in 2.2, solution can be represented with the real valued harmonic 

solution as expressed in (2.6). Similarly, tangential and normal relative motion can 

be written as follows, 

 ( ) ( ) ( )( )0

1

sin cos ,

Nh

i s cm m
m

u u u m u m  
=

= + +  (3.11) 

 ( ) ( ) ( )( )0

1

sin cos .

Nh

i s cm m
m

v v v m v m  
=

= + +  (3.12) 
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In this part, formulation is shown for bias term and 
thm  harmonic. According to the 

harmonic index, formulations can be further extended to each harmonic respectively. 

For stick state, tangential force in the dry friction element at the instant i  can be 

written as an alternative form of (3.8) as follows, 

 ( ) ( ) ( ) ( )1 1 .t i u i i t if k u u f   − − = − +   (3.13) 

Derivation with respect to 0u , 0v , s m
u , cm

u , s m
v  and cm

v  for the 
thm  harmonic, 

 
( ) ( )1

0 0

,
t i t if f

u u

  − 
=

 
 (3.14) 

 
( ) ( )1

0 0

,
t i t if f

v v

  − 
=

 
 (3.15) 

 
( )

( ) ( )( )
( )1

1sin sin ,
t i t i

u i i
s sm m

f f
k m m

u u

 
  −

−

 
= − +

 
 (3.16) 

 
( ) ( )1

,
t i t i

s sm m

f f

v v

  − 
=

 
 (3.17) 

 
( )

( ) ( )( )
( )1

1cos cos ,
t i t i

u i i
c cm m

f f
k m m

u u

 
  −

−

 
= − +

 
 (3.18) 

 
( ) ( )1

.
t i t i

c cm m

f f

v v

  − 
=

 
 (3.19) 

For slip state, tangential force at i  can be expressed as (3.10) and partial derivation 

of (3.10) with respect to 0v , s m
v  and cm

v  reveal the following result, 

 
( )

0

,
t i

v

f
k

v





=


 (3.20) 
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( )

( )sin ,
t i

v i
s m

f
k m

v


 


=


 (3.21) 

 
( )

( )cos .
t i

v i
cm

f
k m

v


 


=


 (3.22) 

Since (3.10) doesn’t include 0u , s m
u  and cm

u , partial derivation with respect to 

these constants are all zero. 

 
( ) ( ) ( )

0

0.
t i t i t i

s cm m

f f f

u u u

    
= = =

  
 (3.23) 

As emphasized in the previous part, tangential and normal forces during separation 

are zero which makes the derivatives of both force components with respect to all 

coefficients zero for the separation case. 

 
( ) ( ) ( ) ( ) ( ) ( )

0 0

0,
t i t i t i t i t i t i

s s c cm m m m

f f f f f f

u v u v u v

          
= = = = = =

     
 (3.24) 

 
( ) ( ) ( ) ( ) ( )

0

0
i i i i i

s s c cm m m m

n n n n n

v u v u v

        
= = = = =

    
 (3.25) 

Lastly, partial derivatives of normal force during the stick and slip states need to be 

analyzed. For both, stick and slip states, normal force is represented with (3.5). 

Partial derivation with respect to 0v , s m
v  and cm

v  are result in following 

expressions, 

 
( )

0

,
i

v

n
k

v


=


 (3.26) 

 
( )

( )sin ,
i

v i
s m

n
k m

v





=


 (3.27) 

. 
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( )

( )cos .
i

v i
c m

n
k m

v





=


 (3.28) 

Since there is no 0u , s m
u  and cm

u  term included in (3.5), partial derivation with 

respect to these terms are zero. 

 
( ) ( ) ( )

0

0
i i i

s cm m

n n n

u u u

    
= = =

  
 (3.29) 

Equations from (3.14) to (3.29) are partial derivations of force components with 

respect to each Fourier coefficients that corresponds to contact indices in the time 

domain. However, HBM is a frequency domain method, and partial derivatives of 

Fourier constants of nonlinear force components  with respect to displacement vector 

should be found. Consider the EOM in (2.17) obtained by RM and use this notation 

for frequency domain nonlinear force Fourier coefficients. Additionally, superscripts 

t  and n  is added outside of the parenthesis to denote the force components which 

are tangential and normal directions respectively. To prove the formulation without 

complicating it, only the bias term of nonlinear force in the tangential direction and 

sine term of nonlinear force in the normal direction is derivated with respect to 0v  

and s m
u  respectively. 

 
( ) 2

0

0 0 0

1
,

2

t

n
d

v v






  
=  

    
 t

f
f  (3.30) 

 
( )

( )
2

0

1
sin .

n

n s m

s sm m

d
u u



 


  
=  

    


f
n  (3.31) 

Note that tf  and n  are the tangential and normal time domain force arrays. Applying 

Leibniz’s rule, partial derivatives can be expressed in alternative form as, 



 

 

23 

 
( ) 2

0

0 00

1
,

2

t

n
d

v v






  
=  

   


t
f f

 (3.32) 

 
( )

( )
2

0

1
sin .

n

n s m

s sm m

d
u u



 


  
=  

   


f n
 (3.33) 

If hN  harmonics are included to the solution, considering force and displacement 

terms in tangential and normal directions, there exist ( )2 2 1hN +  variables for a 

single dry friction element. Thus, to build the Jacobian matrix due to the nonlinear 

force, ( )
2

2 2 1hN  +   integral calculations are needed as two of them are 

exemplified in (3.32) and (3.33). 

Thus, this method enables to obtain Jacobian which is formulated in (2.27) an 

alternative way and when the RM is used, it can be written as follows, 

 ( ) ( )

( )

( )

0
0 0 0

0 1 0 0
, , . , ,

0 0 0

0 0 0

nn

k k
n nw m m

m

 
 
 = +
 
 
  

1
n

1

A

Θ
J x I J x

Θ

 (3.34) 

where, nJ  and I  are the Jacobian of the nonlinear force vector and identity matrix, 

respectively. As one may easily deduce that (2.27) has a residual vector, ( ), , ,n mr x  

in the formulation which is called as many as the square of the number of nonlinear 

DOFs while (3.34) calls the residual vector only once during the calculation of 

( ),k
n mnJ x . That’s the reason why analytical Jacobian is computationally 

advantageous over numerical calculation. 



 

 

24 

3.1.3 3D Dry Friction Element 

In some engineering problems like dynamic characteristics of a wedge damper, the 

contact plane makes 2D motion and the previous contact model becomes insufficient. 

To better understand and model the contact kinematics, 3D dry friction is introduced 

in this chapter. Similar to the previous 1D model, Body 1 represents the relative 

motion between connected nonlinear DOFs at the contact plane whilst Body 2 is 

grounded. As shown in Figure 3.3, contact parameters tK , vk , ( )u  , ( )v  , ( )w  , 

  and 0n  are denoted for 2 2  tangential contact stiffness matrix, normal contact 

stiffness, tangential relative motion, normal relative motion, slip motion, coefficient 

of friction, and preload, respectively. Note that directions of u  and w  are arbitrarily 

drawn, thus both have components in x  and y directions which are local coordinates 

describing tangential contact plane.  

 

Figure 3.3 3D Dry Friction Model 

Due to the manufacturing deficiencies and different surface finishes between contact 

interfaces, tangential contact stiffness matrix should be considered anisotropic. For 

the case where 0xy yxk k= = , tangential contact would be isotropic, and this model 

would be equivalent to two 1D dry friction elements connected in both x  and y 

directions separately. 
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 ,
xx xy

yx yy

k k

k k

 
=  
  

tK  (3.35) 

The working algorithm of this dry friction model is similar to the previous one with 

slight formulation differences. Whether separation exists over a single vibration 

cycle or not is checked at first by (3.1). If this condition is satisfied, normal contact 

force is zero as indicated in (3.2). Besides this, tangential contact forces are zero, and 

slip motions are equal to relative displacements in both directions at the instant i  

as shown below. 

 ( ) ( ) 0,t i t ix y
f f = =  (3.36) 

 ( ) ( ),x i x iw u =  (3.37) 

 ( ) ( ).y i y iw u =  (3.38) 

where subscripts x  and y  are representing the components of the previously declared 

variables. If the condition in (3.1) is not satisfied, it can be concluded that two bodies 

are in contact and normal force can be found as indicated in (3.5).  

As mentioned before, the algorithm works with the initial stick assumption by 

marching tangential relative motion to the next time step while keeping slip motion 

at the previous step. By defining the displacement vector Δ  and resultant tension 

force in the tangential direction P , the following expressions can be obtained. 

 
( ) ( )
( ) ( )

1

1

,
x i x i

y i y i

u w

u w

 

 

−

−

 −
=  

−  
Δ  (3.39) 

 
T T. . . .P = t tΔ K K Δ  (3.40) 

If the following relational operation is satisfied, the stick state is assured. 

 ( ).iP n   (3.41) 
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For the stick state, slip motion at i  is the same with the slip motion at the previous 

step, and tangential friction force can be found by the following expression. 

 ( ) ( )1 ,x i x iw w  −=  (3.42) 

 ( ) ( )1 ,y i y iw w  −=  (3.43) 

 
( )

( )
.

t ix

t iy

f

f





 
  =
  

tK Δ  (3.44) 

In the opposite case of (3.41), slip state occurs. Tangential friction forces and slip 

motions in both directions can be expressed as follows, 

 
( )

( )
( )

.
,

.

t ix

i
t iy

f
n

f


 



 
  =
  

t

t

K Δ

K Δ
 (3.45) 

 
( )
( )

( )
( )

( )

( )
1. .

t ixx i x i

y i y i t iy

fw u

w u f

 

  
−

    
 = −   
         

tK  (3.46) 

This algorithm also needs to be repeated until convergence is reached. However, 

since the convergence which is checked by the relative error on the tangential force 

highly depends on the threshold value, the threshold error of 
810−  may cause 

hundreds of AFT cycles which increases computational time drastically. Thus, the 

threshold value should be tuned to comprisable values like 
310−  by considering the 

solution accuracy.



 

 

27 

 

3.1.3.1 Analytical Jacobian for 2D Dry Friction Element with Normal Load 

Variation 

Due to the increased number of DOFs and convergence problems that occurred in 

the 2D dry friction element with normal load variation, implementing analytical 

Jacobian formulation becomes a must. The solution needs to be expressed in normal 

direction as indicated in (3.12), and tangential directions as shown below, 

 ( ) ( ) ( )( )0
1

sin cos ,

Nh

x i x x xs cm m
m

u u u m u m  
=

= + +  (3.47) 

 ( ) ( ) ( )( )0
1

sin cos .

Nh

y i y y ys cm m
m

u u u m u m  
=

= + +  (3.48) 

For stick state, (3.44) needs to be changed slightly so that the slip motion term is 

removed from the equation. 

 ( )
( ) ( )
( ) ( )

( )1
1

1

,
x i x i

t i xx xy t ix x
y i y i

u u
f k k f

u u

 
 

 

−
−

−

 −
 = +   −  

 (3.49) 

 ( )
( ) ( )
( ) ( )

( )1
1

1

.
x i x i

t i yx yy t iy y
y i y i

u u
f k k f

u u

 
 

 

−
−

−

 −
 = +   −  

 (3.50) 

From now on, derivation of only ( )t ix
f   and ( )in   will be handled with respect to 

the Fourier coefficients of xu  and v . The reason of omitting y  direction is not to 

make formulation crowded. Formulation with respect to y  direction can be deduced 

from the following equations by changing the corresponding subindexes from x  to 

y . 

Derivation of (3.49) with respect to the Fourier coefficients of tangential and normal 

relative motions, 
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( ) ( )1

0 0

,
t i t ix x

x x

f f

u u

  − 
=

 
 (3.51) 

 
( ) ( )1

0 0

,
t i t ix x

f f

v v

  − 
=

 
 (3.52) 
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f f
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 (3.53) 

 
( ) ( )1
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s sm m

f f

v v
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=

 
 (3.54) 
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f f
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 (3.55) 

 
( ) ( )1

.
t i t ix x

c cm m

f f

v v

  − 
=

 
 (3.56) 

For slip state, (3.45) should be written by separating the force components before 

derivation. 

 ( ) ( )
2 2

. ,x
t i ix

x y

e
f n

e e
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+
 (3.57) 

 ( ) ( )
2 2

. ,
y

t i iy

x y

e
f n

e e
  =

+
 (3.58) 

where, 
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 (3.59) 
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 (3.60) 
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By using the chain rule, partial derivatives of t x
f  can be computed. 
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 (3.62) 
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 (3.66) 

For the separation case, since tangential and normal forces are both zero, all partial 

derivatives of these force components are zero. 
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 (3.68) 

Up to now in this part, partial derivatives of the tangential friction force are 

formulated for slip and stick states. For both states, the normal force can be 

calculated as (3.10). Partial derivation of (3.10) with respect to  0v , s m
v  and cm

v  

yields the same expressions as (3.26) to (3.28). Similarly, derivations with respect to 

0u , x s m
u  and x c m

u  are zero as in 1D case which can be seen from (3.29) because 

normal forcing doesn’t include these Fourier coefficients related with tangential 

motion. 
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After calculating partial derivation of each force component with respect to all 

Fourier coefficients corresponding to the nonlinear DOFs in the displacement vector 

in the time domain, these derivations should be transformed to the frequency domain 

as indicated in (3.30) to (3.33).  

3.2 Fretting Wear Modelling 

3.2.1 Archard’s Model 

Archard’s model is one of the earliest approach used in the literature. According to 

the model, wear occurs during the fracture of asperities formed between contacting 

surfaces. 

 . ,RQ k A=  (3.69) 

where Q  is the wear rate, RA is the contact area which is defined as 0
R

N
A

H
= . 

Physically 0N

H
 term represents the real contact area for fully plastic asperities 

according to Tabor’s definition of hardness. It should be kept in mind that the above 

formulation can be applied to both Archard’s adhesive model and Rabinowicz's 

abrasive model. 

 0 ,
NV

k
s H
=  (3.70) 

where k  is the dimensionless wear coefficient, 0N  is the normal force, H  is the 

hardness of the material, s  is the sliding distance, and V  is the volume of the wear 

particles. Note that the wear coefficient is determined experimentally. Local wear 

depth can also be found from the following formula, 

 ( ) ( ) ( ), , . , ,
k

dh x t p x t ds x t
H

=  (3.71) 
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where p  is the contact pressure, ds  is the slip increment, and dh  is the local wear 

depth.  

In the original Archard model flow pressure term is used instead of the hardness 

term. However, by the work of Kassman et al. [36], the Archard model is modified 

such that the pressure term is replaced by the hardness term. 

It is important to note that the wear coefficient and the friction coefficient are 

strongly dependent on displacement amplitude, contact force, and wear mode which 

results in different Archard’s wear coefficients for each experiment conducted. Also, 

various studies have shown that the wear coefficient increases when the elastic 

shakedown boundary is crossed, and the coefficient of friction should be integrated 

for the alternating sliding distance problems. However, Archard’s formulation 

doesn’t include the coefficient of friction which is the deficiency of the model. 

3.2.2 Wear-Energy Approach 

Studies by Fouvry et al. [24]–[26] demonstrated that there is a linear relationship 

between material removal and the dissipated friction energy. Note that this model is 

analogous to Theodor Reye’s model which is one of the first wear models that 

considers wear from the energy standpoint. It is known that the area inside the 

hysteresis loop corresponds to the energy dissipation per cycle and total energy 

dissipation is the sum of energy dissipation of each cycle. The advantage of the wear-

energy approach over Archard’s model is that change in the coefficient of friction is 

also included to the model indirectly since energy dissipation is directly calculated 

from the measured area inside the hysteresis loop which can be seen from the dashed 

area below. 
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Figure 3.4 Typical Hysteresis Loop 

Let the orange dashed area in Figure 3.4 be nE  which is the fretting energy dissipated 

over one cycle. Then, wear depth can be calculated as follows, 

 
1

,

Nc

n

n

V E
=

=   (3.72) 

where   is the wear coefficient, cN  is the number of friction cycles, and V  is the 

wear volume. Careful investigation will reveal that during the gross slip regime, 

Archard and energy-wear coefficients are the same, i.e. k
H



=  . However, 

during the partial slip where friction force is smaller than the limiting value ( n ), 

the two approaches are not the same unless k
H

 is modified. 

3.2.3 Atomic Scale Approach 

In recent years atomic scale approaches are also used instead of macro-scale classical 

approaches. The wear coefficient k  is a function of the scaling of the model. Bassani 

et al. [27] worked on adhesive contact condition in atomic scale model where 

dragging of atoms are assumed to be the reason for wear. 

 
/

.
,

.

t at

R n s

V
k

A V


=  (3.73) 
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where, t  is the transition rate found by Arrhenius law, atV  is the atomic debris 

volume, /R nA  is the specific area per contact atom, and sV  is the scanning speed of 

the asperity. By combining (3.73) with (3.69), the wear rate Q  can be expressed in 

atomic scale form as, 

 
/

. .
.

.

t at R

R n s

V A
Q

A V


=  (3.74) 

However, all these constants need experiments and specialized models which are 

still scarce and difficult to apply to a real engineering problem.
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CHAPTER 4  

4 ALGORITHM FOR FRETTING WEAR CALCULATION COUPLED WITH 

FRICTION CONTACT MODEL 

In this chapter, 1D dry friction element with normal load variation induced by normal 

motion and wear-energy approach which are discussed in the previous section are 

coupled to analyze the effect of fretting wear on the wear estimation at the contact 

surface and dynamic response of the system. The methodology is discussed from two 

perspectives based on a multiscale approach. 

4.1 Algorithm Based on Wear Depth 

In the wear-energy approach, wear volume for one friction cycle can be calculated 

by the multiplication of the energy dissipated by the friction contact in a single cycle 

and a wear coefficient which is determined experimentally. Since fretting wear 

models discussed in the previous sections are defined as microscale phenomena, 

energy should be calculated by integrating the multiplication of shear and velocity 

distribution over the contact surface. By this way, wear is calculated on the 

distributed surface. However, in the macroslip friction models which are discussed 

in the 3.1 and used in this thesis work, energy is calculated at each contact node 

respectively, and consequently, wear depth at each node is obtained individually. 

Thus, energy dissipation, shear stress, and wear depth are assumed to be constant in 

a small square area which is determined by the edge length of the element used in 

the FEM. Denoting this square area as pA  and rewriting (3.72) to find the wear depth 

at the contact node region, the following equation can be obtained. 

 
1

.

Nc

n
p n

E
A




=

=   (4.1) 
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nE  should be obtained from the input displacement and the resulting tangential 

friction force. For single harmonic motion, displacement and the tangential friction 

force can be written by the reference of (3.11) as follows, 

 ( ) ( )0 sin cos ,s cu u u t u t = + +  (4.2) 

 ( ) ( )
0

sin cos ,n n n ns c
f f f t f t = + +  (4.3) 

By omitting bias term which has no effect on the dissipated energy, (4.2) and (4.3)

can be written alternatively as follows, 

 ( ) ( )sin sin ,u Y Y t  = = −  (4.4) 

 ( ) ( )* *sin cos ,n n ns c
f f f = +  (4.5) 

where, Y  is the amplitude and   is the initial phase angle for sinusoidal motion.  

 
2 2 ,s cY u u= +  (4.6) 

 ,c

s

u
atan2

u


 
= −  

 
 (4.7) 

 ( ) ( )* cos sin ,n n ns s c
f f f = −  (4.8) 

 ( ) ( )* sin cos .n n nc s c
f f f = +  (4.9) 

While the sine term of the forcing ( )*
n s

f  behaves like an elastic spring for the stick 

status of the interface, the cosine term of the forcing ( )*
n c

f  adds additional damping 

to the system during the slip state of the interface. Obviously, the separation state 

bypasses both stiffening and damping effects by zeroing force term. Thus, instead of 

the sine term of the forcing which has a restoring force, the cosine term of the forcing 

should be considered for the evaluation of the energy dissipation due to friction 
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damping. Dissipated energy can be calculated with the integral of the power which 

is force times velocity over one cycle. 

 ( )cos ,u Y =  (4.10) 

 ( )
2

* *

0

1
cos .n n nc c

E f u d Y f



  


= =  (4.11) 

Since wear is assumed to be a slow-scale phenomenon compared to the dynamic 

characteristics and dimensions of the system, nonlinear forced response analysis 

must be conducted only after a certain amount of wear accumulation is obtained. To 

determine the number of wear cycles ( )cN  before recalculating the dynamic 

response analysis, a permissible wear depth, ( )u  which is the update rate of the 

analysis for single wear iteration, needs to be defined. The number of wear cycles is 

defined as follows, 

 
( )

,
max

u
cN


=

δ
 (4.12) 

where δ  is the nodal wear depth vector for the corresponding wear iteration that 

includes the nodal wear depth of all the contact points. After finding the number of 

wear cycles ( )cN , the wear depth for each node can be calculated by the 

multiplication of the wear cycle and the determined nodal wear depth as, 

 ,cN= +tot totδ δ δ  (4.13) 

where totδ  represents the cumulative wear depth vector for all contact points. 

Another important input parameter for wear analysis is the maximum total nodal 

wear depth ( )all . It’s a limiting parameter to stop the whole analysis until the 

allowable wear depth is reached at any of the contact nodes. 
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Three main assumptions are done in the wear algorithm: 

• The equation of motion (2.1) of the system does not change with the wear 

occurrence at the contact interface, since the worn volume is very small 

compared to the total dimensions of the model. 

• Energy dissipation due to friction in one cycle, which can be calculated 

from the area inside the hysteresis loop, is assumed to be constant during a 

wear iteration, and wear accumulated proportionally. 

• System runs at a specific operating frequency which is mostly the resonant 

frequency where the energy dissipation is the highest. 

At this point, how the worn profile is fed back to the nonlinear equation of motion 

which represents the dynamics of the system should be discussed. Problems with dry 

friction nonlinearity, mostly friction dampers, are solved by preliminary static 

analysis to find the normal load distribution along the contact surface. This force 

field is the input for the Coulomb friction element as a static preload. This uncoupled 

approach decreases the number of unknowns to be solved in the nonlinear solver. 

However, there is another method which is called as coupled approach. Here, the 

static term is also added to the displacement vector so that preliminary static analysis 

is not needed anymore. Moreover, due to the initial preload/gap term used in the 

friction model, the built-up gap due to wear modifies normal force through this term 

and behaves like a negative preload such that the dynamic response is updated after 

each wear iteration. As discussed before, static term is used in this study and coupled 

approach is utilized. Inserting the accumulated nodal wear depth ( )totδ  to the (3.5), 

normal force for the reanalysis of the nonlinear system can be updated in the AFT 

algorithm as follows, 

 ( ) ( )( )0 .v totn n k v  = + −  (4.14) 

Figure 4.1 gives good summarization of the flowchart of the algorithm. As seen, the 

number of wear cycles is indirectly calculated from the update rate input which is 

why this approach is called as wear depth perspective. This algorithm is introduced 
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to give an idea about how the presumed wear depth value changes the dynamic 

response of the system. 

 

Figure 4.1 Flowchart of the Dynamic Response Analysis Coupled with Fretting 

Wear from the Wear Depth Perspective 

4.2 Algorithm Based on Wear Cycle 

Most of the time, the main reason for investigating fretting wear and its effect on the 

dynamic response of the overall system is to foresee the maintenance intervals of the 

working components. By this way, good insight can be achieved about the lifetime 

and maintenance period prediction so that design parameters like material and 

dimensions of the structure might be tuned accordingly which is mostly the real 

engineering standpoint. Hence, the previous algorithm is slightly changed by 

omitting (4.12) just after the calculation of wear depth at each node (δ ) since wear 

cycle ( cN ) is an input parameter for wear iteration. By this way, accumulated nodal 

wear depth ( )totδ  can be calculated by the input wear cycle parameter in (4.13). 

As the flowchart is schematically illustrated in Figure 4.2, the limiting parameter to 

terminate the algorithm is denoted with call
N . If the parameter wi  is denoted to count 
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the number of wear iterations, the last forced response analysis before terminating 

the algorithm would occur when 
call

w
c

N
i

N
= . It is also worth mentioning the 

correlation between the operation time with call
N  in cycles and op  in rad s . 

 
3600.

c all
h

op

N
t


=  (4.15) 

where ht  is the operation time in hours. 

 

Figure 4.2 Flowchart of the Dynamic Response Analysis Coupled with Fretting 

Wear from the Wear Cycle Perspective 
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CHAPTER 5  

5 NUMERICAL CASE STUDIES 

5.1 Shrouded Blade 

The Computer-Aided Drawing (CAD) model of the shrouded blade case study is 

shown in Figure 5.1. Points A, B, and C represent the preload force node, excitation 

node, and contact nodes respectively. The surface denoted with D represents the 

fixed support of the structure. Note that, response is the average of all contact nodes 

at the contact interface. 

 

Figure 5.1 CAD Model of the Shrouded Blade 
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Table 5.1 Parameters of the Shrouded Blade Model 

Material Steel 

Elastic Modulus 200 𝐺𝑃𝑎  

Density 7.85 × 10−6  𝑘𝑔 𝑚𝑚3⁄  

Excitation Force Amplitude 1 𝑁 in -y direction 

Preload Force To be determined 

Structural Damping 0.01 

Contact Surface Dimensions 5 × 21 𝑚𝑚  

Number of Contact Nodes 121 

Tangential Contact Stiffness [
100 25
25 100

] 𝑁 𝑚⁄  

Normal Contact Stiffness 100 𝑁 𝑚⁄  

Coefficient of Friction 0.5 

Wear-Energy Coefficient 2 × 103  𝜇𝑚3 𝐽⁄  

 

In Table 5.1, input analysis parameters are shown. As seen from the table, the normal 

force is left to be decided after preliminary nonlinear forced response analysis. This 

parameter should be chosen in such a way that, while response at the damped natural 

frequency is kept at relatively low levels, the damped natural frequency shifting 

characteristic during the wear process that decreases the normal load distribution 

over the contact surface should be taken into account. 

To determine the proper normal load value, dynamic responses for various excitation 

over normal force is analyzed and plotted in Figure 5.2. As seen from the figure, the 

damped response abruptly increases for the cases above 1
10

 and 1
15

. Thus, after 

a visual inspection, preload value can be chosen as 20N , since while the damped 

response is relatively at low amplitudes, the effect of leftward damped frequency 

shifting due to negative preload is designed not to affect the damping performance 

of the damper drastically. 
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Figure 5.2 Frequency Response for Various Excitation over Preload Values 

The operating frequency of the damper can be similarly chosen from Figure 5.2. To 

speed up and see the effect of wear, the frequency value of 560 rad s  which 

corresponds to the approximately maximum amplitude can be chosen.  

When the dimensions of the contact patch are considered, the permissible wear depth 

for each wear iteration ( )u  is decided to be 0.002 mm . On the other side, the 

maximum allowable total nodal wear depth ( )all  which is the breaking condition 

for the whole wear analysis is chosen to be 0.1mm , 0.2 mm  and 0.3 mm  to compare 

the change in the nonlinear dynamic response for different all  values and plotted in 

Figure 5.3. The operation time and wear iterations corresponding to different all  

values are also tabulated in Table 5.2. 
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Figure 5.3 Frequency Response of the Worn Profile for Different all  Values 

Table 5.2 Wear Analysis Results 

all  Total Wear Iterations Total Number of Cycles Operation hours 

0.1 𝑚𝑚 50  103.7 10  
41.8 10  

0.2 𝑚𝑚 100  108.4 10  
44.2 10  

0.3 𝑚𝑚 161 111.7 10  
48.4 10  

 

Further, the similarity between Figure 5.2 and Figure 5.3 draws attention. As 

explained earlier, shifting to the left due to the gap at the worn-out profile (i.e., 

negative preload) brings softening effect to the system and shifts the nonlinear forced 

response to the left. In other words, wearing behaves like decreasing the normal force 

component as the time progressed. Hence, the designer should consider the 

progressive wear on the dynamic response of the system. Here, choosing normal 

preload value as 20N  instead of 10N  is a more foresightful choice from the 

engineering perspective although damper performance for 10N  preload is higher 

for unworn structure. 
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Contact status of the interface is an important monitoring tool to have insight about 

the response of the system before and after the wear process. Figure 5.4 shows the 

contact status evolution at the interface for 0.2all mm = , before and after the 

wearing process. As seen from the figure, the leftmost part of the interface turns into 

a fully stuck state and the energy dissipation feature is lost at these points. On the 

other side, stick/slip status is maintained as it’s moved towards the right. 

 

Figure 5.4 Unworn Contact Status and Worn Contact Status for 0.2all mm =  

Although it cannot be monitored in Figure 5.4, it can be deduced that the stick state 

over one period increases from right to left and this will create a wear pattern. 

Thereby, it’s also beneficial to see the interpolated wear depth over the contact 

surface by a contour plot, in Figure 5.5. Note that in order to obtain a smooth surface, 

wear depts obtained are interpolated by the “griddata” function of MATLAB. Wear 

map shows that the leftmost part of the contact surface is less worn, and the wear 

depth is increased towards the right. The difference between most and least depth 

corresponds to the 0.14 mm . What can be deduced from this result is that for the 

leftmost points, stick regime dominates over one period when compared with the 

rightmost regions. As a consequence of a less slip regime, the leftmost region has 

less energy dissipation and less wear depth. 
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Figure 5.5 2D Wear Map in ( )mm  for 0.2all mm =   

 

Figure 5.6 Total Dissipated Energy for 0.2all mm =  

Additionally, Figure 5.6 shows expected decrease in total energy dissipation over the 

operation hours. The graph shows a remarkable decrease of 40 percent less dissipated 

energy at the operation frequency. 
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Similarly, Figure 5.7 illustrates the wear process at which all  reaches to 0.3 𝑚𝑚 

wear depth. Besides the stick/slip and fully stuck statuses, stick/slip/separation is also 

observed at the rightmost section of the contact interface. Additionally, the number 

of contact elements that experience the fully stuck state is increased with increasing 

operation time. 

 

Figure 5.7 Worn Contact Status for 0.3all mm =  

Up to now, how the design region of the damper is disturbed over the time is 

observed. However, from an academic perspective, running the wear algorithm to 

the excessive wear depths which is far beyond the sensible levels arouses curiosity. 

As explained in Figure 4.1, one of the conditions for terminating the algorithm is that 

all the contact nodes experience separation status. Hence, when the algorithm is run 

till this condition occurs, it’s observed that ( )max δ  reaches the value of 0.45 mm  

and frequency response at the corresponding wear depth gets closer to the free state 

response of the structure as shown in Figure 5.8. 
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Figure 5.8 Frequency Response for ( )max 0.45 mm=δ  

 

Figure 5.9 Worn Contact Status for ( )max 0.45 mm=δ  
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As seen in Figure 5.9, contact status for ( )max 0.45 mm=δ  is consistent with the 

previously shown contact status results at the intermediate phases. The contact 

interface is evolved to a nonfunctional condition since all nodes experiences either 

fully stuck or fully separation state. As explained earlier, slipping is the only energy 

dissipation mechanism in the system. However, the worn structure only behaves like 

an additional spring due to the fully stuck nodes which shift the linear response to 

the right. The reason for such worn status map is that the rightmost section of the 

interface is stiffer when compared with the left side, as a result of which the leftmost 

section ends up with a fully stuck state while the rightmost section fully separates at 

the operation frequency. Further, these interpretations are verified by the Figure 5.10 

which shows the dissipated energy over the years. After 53.5 10 40hours years   

of operation, the performance of the damper drops more than 99 percent although 

that many years of operation without maintenance is not feasible. 

 

Figure 5.10 Total Dissipated Energy for ( )max 0.45 mm=δ  

It is also worth mentioning that, as discussed earlier, the accelerated friction cycle 

( )cN  directly depends on permissible wear depth ( )u . On the other side, wear 

iteration is the variable that is counted after each update of the dynamic response 
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(displacement vector) of the contact nodes. The relationship between these two 

parameters is plotted in Figure 5.11. Expectedly, the friction cycle to reach 

permissible wear depth for each iteration increasingly grows with respect to wear 

iteration. Again, this result verifies that less wear occurs for a single friction cycle as 

a consequence of less energy dissipation due to dominating sticking and separation 

regime over slip regime. 

 

Figure 5.11 Friction Cycles vs. Wear Iteration 

Although u  is decided to be 0.002 mm  for this analysis, the effect of coarse and 

fine values of u  should also be discussed. To analyze this effect, the maximum 

allowable total nodal wear depth all  of 0.3 mm  is approached with different values 

of permissible wear depths ( )u  as summarized in Table 5.3. If  u all = , the 

analysis stops after a single wear iteration which is the coarsest possible choice. 

While u  is getting smaller, accuracy and solution time increases. 

Table 5.3 Input Wear Depth Parameters 

( )all mm  0.3 

( )u mm  0.3 0.05 0.01 0.005 0.0005 0.0001 
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Figure 5.12 Frequency Response for Different u  Values 

Table 5.4 Results of the Analysis for Different u  Values 

( )all mm  0.3 

( )u mm  0.3 0.05 0.01 0.005 0.0005 0.0001 

Number of 

 Wear Iterations  
1 7 33 65 643 3215 

Solution Time 

(𝑠𝑒𝑐) 
23.22 26.66 38.04 45.20 99.26 404.92 

 

Figure 5.12 shows the nonlinear forced response for different values of permissible 

wear depth ( )u . After 0.01u mm  , frequency response lines almost overlap with 

each other. 

Outputs of Table 5.3 is presented in Table 5.4. While the third row represents the 

number of wear iterations for each permissible wear depth choice, the fourth row 

shows the corresponding solution time. Note that, besides the wear loop, solution 

time also includes the nonlinear forced response analysis just after the wear iteration. 

In other words, individual wear analysis time for each analysis would be lower than 

these values. 
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Figure 5.13 is another useful plot to understand the nature of the problem. In the 

figure, each successive marker corresponds to the relative difference between the 

summation of the maximum response of each node at the operation frequency. The 

error tends to decrease as the u  getting finer and eventually, it’s expected to be zero 

while u  goes to zero. 

 

Figure 5.13 Relative Errors for Successive u  Values 

Thanks to the proposed wear algorithm, acceptable level of solution time and the 

relatively low successive error between different values of u  enables user to choose 

the optimized u  manually and efficiently. Thus, for this case study, 0.002u mm =  

was a safe side choice throughout the analysis. 

5.2 Grounded Blade Platform 

In this case study, the effect of the number of macroslip friction elements on the 

dynamic characteristic and wear pattern of the frictionally damped blade platform is 

analyzed. The analysis is conducted from two perspectives that are described in 
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Chapter 4. 1D dry friction element with normal load variation is used to model the 

contact interface. 

The finite element model of the blade platform connected to the ground is given in 

Figure 5.14 which is a simplified model of a blade with an underplatform damper. 

Points A, B, C, and D represent the response node, excitation force node, preload 

nodes, and the contact nodes, respectively. The surface denoted with E shows the 

area where all DOFs are fixed. Input parameters for the case study are given in Table 

5.5. 

 

Figure 5.14 CAD Model of the Grounded Blade Platform 



 

 

54 

Table 5.5 Parameters of the Grounded Blade Platform 

Material Steel 

Elastic Modulus 200 𝐺𝑃𝑎  

Density 7.85 × 10−6  𝑘𝑔 𝑚𝑚3⁄  

Excitation Force Amplitude 500 𝑁 in y direction 

Preload Force 
1000 𝑁 for each node in -𝑧 direction 

(Equally Spaced 30 Nodes) 

Structural Damping 0.01 

Contact Surface Dimensions 100 × 67.5 𝑚𝑚  

Tangential Contact Stiffness 

(for 20 Friction Elements) 
1.25 × 106  𝑁 𝑚⁄  

Normal Contact Stiffness 

(for 20 Friction Elements) 
1.25 × 106  𝑁 𝑚⁄  

Coefficient of Friction 0.5 

Wear-Energy Coefficient 2 × 103  𝜇𝑚3 𝐽⁄  

Distribution of the contact elements on the contact interface is shown in Figure 5.15 

for the cases with minimum and maximum number of friction elements. To 

understand the nature of the problem and choose an operation frequency for the wear 

analysis, the nonlinear response of the blade tip at Point A, which is defined as a 

response node, for different preload values is given in Figure 5.16. Note that, no 

difference is observed between the nonlinear responses of the unworn structure for 

20 and 266 friction elements which is the reason why Figure 5.16 is plotted for 20 

friction elements.  
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Figure 5.15 Distribution of Friction Elements on the Contact Patch 

As seen from the green line in Figure 5.16, 1000 N  in -𝑧 can be chosen as an 

optimum value for the preload to use in the case studies. Moreover, the operation 

frequency of 1115 rad s  is the most critical point for this case corresponding to the 

maximum amplitude. 

 

Figure 5.16 Frequency Response for Different Preload Values 

At this point, inevitable usage of analytical Jacobian which is introduced in Section 

3.1.2.1 needs to be discussed. Although implementing numerical Jacobian to the 

solver extremely simplifies the formulation, it causes drastic increase in solution time 

especially when the number of contact elements is high. Hence, frequency response 
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analysis is conducted (i.e. without wear analysis) for the model with 20 friction 

elements with both numerical and analytical Jacobian calculation. Solution times for 

a standard laptop are compared in Table 5.6. It’s demonstrated that analytical 

Jacobian requires 35 times less solution time when compared with the numerical one. 

This result shows that wear analysis with hundreds of friction elements might not 

even be possible if the Jacobian is calculated numerically. 

Table 5.6 Solution Time Comparison of Jacobian Calculation 

Jacobian Calculation Solution Time (sec) 

Analytical  33.8  

Numerical 1163.1 

 

After wear analysis, for the two extreme cases, i.e. with 20 and 266 friction elements, 

contact status at the interface, which gives information about the dynamic behavior 

of the contact points, is shown in Figure 5.17. It can be seen that friction elements 

that lie away from the root of the blade deform more due to decreased stiffness of 

the geometry; hence, they are in fully stuck state. 

 

Figure 5.17 Contact Statuses for Unworn Structure 
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As explained before, the wear depth based algorithm requires u  for updating the 

nonlinear forced response analysis periodically and all  for finalizing the analysis. 

These parameters are taken as 1u m = , 60all m =  in this case study. 

After the wear analysis, contact statuses of unworn structures have the same contact 

status at the same contact points which are given in Figure 5.18. Since nodes closer 

to the blade possess more slip behavior, the contact points at the lower part in Figure 

5.18 experience separation in addition to stick and slip. This result becomes more 

meaningful when the wear map in Figure 5.19 is studied. It can be concluded from 

these results that contact status and wear depth at the local regions cannot be captured 

accurately if 20 friction elements are used compared to one with 266 friction 

elements. 

 

Figure 5.18 Contact Statuses for Worn Structure 
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Figure 5.19 2D Wear Map ( )m  

In Figure 5.20 and Figure 5.21 wear maps and difference in nodal wear depth are 

given in order to quantize and observe the effect of the number of contact nodes on 

the prediction of wear topography. It can be seen that more than 5 m  of difference 

occurs in the common contact elements. Moreover, interpolated 3D wear maps are 

significantly different at certain local parts of the contact interface. 

 

Figure 5.20 3D Wear Map Comparison ( )m  
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Figure 5.21 Difference in Nodal Wear Depth ( )m  

However, on the other side, nonlinear responses of the blade at point A given in 

Figure 5.22 show similar behavior for the case with 20 and 266 friction elements. 

Thus, from the perspective of nonlinear forced response, both models give similar 

results due to the same allowable nodal wear depth inputs ( )all  and relatively 

similar wear topographies. 

 

Figure 5.22 Frequency Response After Wear Analysis 
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From the predictive maintanance perspective, total working period of the friction 

damper can also be calculated. While 187.0 hours are required for the contact 

interface with 20 friction elements to reach the corresponding all , the model with 

266 friction elements results in 177.0 hours. 

Although, this result clarifies that two extreme conditions, 266 and 20 friction 

elements, converge almost same frequency responses in a similar operation period, 

the trend while increasing number of friction elements used at the contact interface 

should be shought. For this purpose, contact elements are evenly distrubuted over 

the equally meshed contact interface with different numbered of friction elements as 

shown in Figure 5.23. 

 

Figure 5.23 Distribution of Friction Elements on the Contact Patch 
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To verify the algorithm presented in Section 4.2, analysis is conducted with wear 

cycle based approach by taking 65 10cN =   and 910c all
N = . 

Note that operation time in hours ( )ht  can also be calculated from (4.15). For the 

operation frequency of 1115op rad s =  and total operation cycles of 910c all
N = , 

ht  can be calculated as 249.1hours . Hence, following findings are the results of 

249.1hours  of operation time. 

After wear analysis, frequency responses are plotted in Figure 5.24. Although, 

responses give quite close results, the absolute errors need to be analyzed to 

investigate the trend while increasing number of friction elements used in the model.  

 

Figure 5.24 Frequency Response After Wear Analysis 

Figure 5.25 shows the relative error in resonance amplitude and frequency as a 

function of number of friction elements used with respect to the case with 300 
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elements. As the number of contact points decreases, shift in resonance frequency 

and the corresponding resonance amplitude increase. 

 

Figure 5.25 Absolute Error of Damped Resonant Amplitude and Frequency vs. 

Number of Friction Elements 

In order to find a compromising contact element number for the analysis, percent 

errors shown in Figure 5.25 are compared with the solution time required. While the 

left y-axis of Figure 5.26 shows the percent error of the resonant amplitude, the right 

y-axis represents the normalized solution time. Computational time is normalized 

with respect to the results of the case with 20 friction elements. Note that the solution 

time required for the model with 20 friction elements is 13.1s on a standard laptop 

computer. It can be concluded that model with 204 elements can be a compromised 

model since the total solution time is about 2.5 times lower than the model with 300 

friction elements as the percent amplitude error is at relatively low levels. 
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Figure 5.26 Absolute Percent Error of Damped Resonant Amplitude and 

Normalized Solution Time vs. Number of Friction Elements 

In this case study, the effect of the number of friction elements on fretting wear 

estimation and its effect on the nonlinear dynamic response is studied on a blade 

model with a platform damper with 20 and 266 contact points. Although the 

nonlinear forced responses show similar behavior for both cases, wear map has a 

notable difference at certain local areas where the model with less friction elements 

cannot capture the wear phenomenon accurately. Moreover, wear analysis is 

conducted with wear cycle based algorithm with various number of friction elements. 

It is observed that errors of resonant amplitude and resonant frequency has a 

decreasing trend while number of friction element used in the model increases.
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CHAPTER 6  

6 CONCLUSION 

Dynamics of frictionally constraint structures have been deeply studied for over fifty 

years by scientists and engineers. One of the main examples of such structures is gas 

turbine engines in which friction is intentionally introduced which makes the 

problem highly nonlinear and unpredictable unless a sophisticated model is 

established. Hence, various friction models and solution methods are presented in 

the literature. To ensure the long-term performance of the design, fretting wear also 

needs to be included to the model so that catastrophic failures are avoided. However, 

fretting wear is either underestimated or studied superficially by not considering its 

complex nature.  

In this thesis, during the ongoing friction cycles, the effect of fretting wear on the 

dynamic response, surface topology and deviation from the desired design region is 

studied by reducing solution time.  

Before going deep into the fretting wear analysis, various contact models and fretting 

wear models are discussed.  Along with 1D dry friction element with normal load 

variation and 3D dry friction element, analytical Jacobian formulations of these two 

contact models are presented which opens the way of faster computation. 

As a next step, contact and fretting wear models are coupled. By this way, fretting 

wear is calculated at each contact node to feed its input to the contact model and find 

the frequency response of the worn profile at the intermediate steps during fretting 

cycles. Algorithms are established on two perspectives which are wear depth and 

wear cycle perspectives. While the wear depth perspective ends the algorithm when 

the maximum allowable wear depth is reached, the algorithm with wear cycle based 

perspective is run till the input total wear cycle (i.e. operation time).  
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To validate the proposed methodology, two numerical case studies are investigated. 

As a first case study, the shrouded blade is grounded. 3D dry friction element is used 

as a contact model. Wear depth based algorithm is employed to analyze the dynamic 

response at different wear depth values. Contact statuses at each intermediate wear 

depth values are also shown to understand how fretting wear causes shroud to be 

nonfunctional in a long run. Further, the effect of permissible wear depth which 

determines the update rate of wear calculation is also plotted and tabulated with 

respect to solution time. As a second case study, grounded blade platform is used to 

simplify the underplatform damper. In this study, 1D dry friction element is used and 

excitation force is exerted unidirectional. Different from the first case study, wear 

cycle based algorithm is also implemented to problem along with the wear depth 

based algorithm. By using these two fretting wear calculation perspectives, effect of 

wear on the dynamic response and contact topography transformation over ongoing 

friction cycle is discussed for various number of friction elements. It’s shown that as 

number of friction element used in the model is increased, micro-level effects of 

wear become apparent and deficiency of macro-slip friction model is discovered. 

As future work, proposed theoretical models, fretting wear analysis algorithms and 

numerical outputs of the case studies can be verified by a specially designed test rig 

and the results can be compared. Further, the microslip friction element can be 

employed as a contact model rather than the macroslip friction element which 

enables to capture the microslip effects of wear. 
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