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ABSTRACT 

 

DETECTION AND DESCRIPTION OF TRAFFIC EVENTS USING 

FLOATING CAR AND SOCIAL MEDIA DATA 

 

 

 

Ünsal, Ahmet Dündar 

Doctor of Philosophy, Geodetic and Geographic Information Technologies 

Supervisor: Prof. Dr. Hediye Türdeş-Yaman 

Co-Supervisor: Prof. Dr. Pınar Karagöz 

 

 

September 2022, 150 pages 

 

Detection and verification of traffic events, in traffic management, can be performed 

traditionally using roadside sensor data. More recently wide coverage travel time 

information obtained from floating car data (FCD) is also used, despite its limitations  

to describe the event characteristics and requires verification. Social media, widely 

adopted in our daily lives, hosts a sheer amount of data which can be analyzed to 

identify incidents and events using information retrieval methods. In this study, a 

framework is proposed to detect and describe traffic events in real-time using two 

independent data sources, FCD and Social Media Data (SMD). Traffic event related 

tweets in SMD are classified using a language model which is tailored to handle 

agglutinative nature of Turkish language. Detected traffic event tweets are 

geolocated using a custom named-entity recognition (NER) integrated, knowledge-

based geocoding approach, which achieves a median positional error of 379.2 

meters. In FCD, proposed detection tasks identified non-recurrent congestions 

(NRCs) with their spatiotemporal impact areas. Matching experiments using 

spatiotemporal information showed that 64.1% of traffic event reporting tweets can 

be verified by an NRC, whereas only 33% of the large-scale NRCs are verified by a 

tweet.  
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ÖZ 

 

HAREKETLİ ARAÇ VE SOSYAL MEDYA VERİSİ KULLANARAK 

TRAFİK OLAYLARININ ALGILANMASI 

VE TANIMLANMASI 

 

 

Ünsal, Ahmet Dündar 

Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Prof. Dr. Hediye Tüydeş-Yaman 

Ortak Tez Yöneticisi: Prof. Dr. Pınar Karagöz 

 

 

Eylül 2022, 150 sayfa 

 

Trafik yönetiminde, trafik olaylarının algılanması ve doğrulanması, karayollarına 

yerleştirilen sensör verileri kullanılarak gerçekleştirilmiştir. Daha yeni bir yaklaşım 

olarak, hareketli araç verilerinden (FCD) elde edilen geniş kapsamlı seyahat süresi 

bilgisi de aynı amaçla kullanılır, ancak bu veri de olay niteliklerini tanımlamada 

kısıtlıdır ve doğrulama gerektirir. Günlük hayatımızda yaygın olarak kullanılan 

sosyal medyanın ev sahipliği yaptığı büyük veri, olayların algılanmasında, bilgi 

getirimi yöntemleri kullanılarak analiz edilebilir. Bu çalışmada, iki bağımsız veri 

kaynağı olan FCD ve Sosyal Medya Verileri (SMD) kullanılarak, trafik olaylarını 

gerçek zamanlı olarak algılamak ve tanımlamak için bir çerçeve önerilmiştir. 

SMD'deki trafik olayları, Türkçe'nin sondan eklemeli yapısı dikkate alınarak 

özelleştirilmiş bir dil modeli kullanılarak sınıflandırılır. Algılanan trafik olayı 

tweet'lerinin konumları, özelleştirilmiş bir varlık adı tanıma (NER) sistemine entegre 

çalışan bilgi tabanlı coğrafi kodlama yaklaşımı ile, 379.2 metre medyan hata ile 

belirlenmiştir. FCD üzerinde önerilen yöntemler ile, tekrarlamayan sıkışıklıklar 

(NRC) algılanabilir ve mekan-zamansal etki alanları belirlenebilir Mekan-zamansal 

bilgi eşleştirme yöntemini kullanan eşleştirme deneylerinde, trafik olayı bildiren 
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tweet'lerin %64,1'i bir NRC tarafından doğrulanabilmiştir, diğer taraftan büyük 

ölçekli NRC'lerin ancak %33’ü en az bir tweet ile doğrulanmıştır. 

 

Anahtar Kelimeler: Trafik Olayı Algılanması, Akıllı Ulaşım Sistemleri, Hareketli 

Araç Verisi, Sosyal Medya 
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CHAPTER 1  

1 INTRODUCTION  

As a part of smart city framework, traffic management systems, which aim to provide 

measures for a sustainable and optimal network, require monitoring of the traffic 

flow. A traffic event is defined as a non-recurring incident which can lead to a 

reduction in road capacity or an increase in demand, such as traffic accidents, car 

breakdowns, etc. (Neudorff et al., 2003). Congestion and delays caused by such 

incidents cost commuters time and money, and disrupt the traffic flow, thus 

decreasing overall capacity of an urban road network. Detection and management of 

traffic incidents is an important topic in Intelligent Transportation Systems (ITS). 

Timely detection of a traffic events can help alleviate the burden of the consequent 

congestion on the network. Traffic flow on major highways is commonly monitored 

using sensors that are deployed on roads, such as inductive loops or camera systems, 

which employ computer vision technologies. Due to high deployment and 

maintenance cost of such sensor systems, it is impractical to cover urban traffic 

networks with adequate number of sensors. 

Floating car data (FCD) obtained from Global Positioning System (GPS) equipped 

vehicles emerge as a high coverage and cost-effective data source alternative in 

traffic management applications. Increasing number of GPS equipped vehicles 

enables better monitoring of traffic networks in real-time. Commercial FCD is 

processed outcome of track data of fleet of GPS-equipped vehicles, providing 

average speed (or travel time) data for predefined road segments at given time 

intervals (i.e. 1-min, 5-min, etc.).  Using highly granular road network segments in 

FCD makes them a useful data source for detecting traffic events. However, event 

detection using FCD beg confirmation, similarly to methods using other sensor data 

sources, due to limitations of the data content to describe the events. 
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Social media, which are Internet-based social interaction networks, allow sharing of 

information, experiences, and opinions in various forms. Social media platforms 

have high adaptation rates. 313 million monthly active Twitter users send an average 

of around 500 million tweets a day (Krikorian, 2013; Twitter, 2016). Social media 

hosts a large data including happenings and events, hence social media streams are 

useful resources to detect real-world events. Social media data (SMD) emerge as a 

new information source in smart city applications. The information shared by users 

or human sensors as commonly referred, can complement the data provided by other 

traffic sensors, such as FCD. Thus, SMD along with FCD can be useful data sources 

to detect and confirm traffic events. 

1.1 Research Objectives 

The main objective of this research is to study and present methods which enable 

real-time detection and confirmation of traffic events using FCD and Twitter 

streams.  Detection methods for each data stream are evaluated independently.  

• Traffic event reporting Twitter posts are detected using information retrieval 

techniques accompanied by natural language processing methods. A custom 

traffic event geocoder is evaluated for precise localization of traffic event 

related tweets. 

• Non-recurring congestions, as possible indicators of traffic events, are 

inspected in FCD using statistical and data-driven methods. 

•  A spatiotemporal information matching method is applied to confirm events 

detected using two distinct data sources.  

1.2 Contribution 

The main contribution of this thesis is to present a framework to detect traffic events 

using low-cost and high coverage data sources, social media, and floating car data. 

Novel approaches in the framework can be listed as follows: 
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• Use of morphological analysis to extract subtokens to improve text 

classification and named entity recognition in a highly agglutinative language 

namely Turkish. 

• A traffic event geocoder, which constitutes of a named entity recognition 

model customized for traffic event term detection accompanied with a rule-

based geocoder for precise localization of traffic events in an urban road 

network. 

•  A novel metric for travel speed anomaly detection, which make use of wide 

coverage of an FCD. 

1.3 Thesis Structure 

The work in this study is presented in 6 chapters. Existing research in 1) event 

detection in social media, 2) localization of social media messages, and 3) non-

recurrent congestion detection are presented in Chapter 2.  In Chapter 3, the methods 

to detect traffic event related tweets are investigated. In Chapter 4, a custom traffic 

event geocoder to localize traffic event related tweets is described. In Chapter 5, 

data-driven methods to detect non-recurrent congestion in floating car data (FCD) 

are presented. In Chapter 6, the experiments and results of the proposed methods are 

presented on a case study in Ankara. In Chapter 7, a conclusion of the study with a 

summary of the findings is given. 
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CHAPTER 2  

2 LITERATURE REVIEW 

In this study, a traffic event detection framework is presented which consist of 

modules to detect and localize traffic events in social media data and identify non-

recurrent congestions in floating car data. In this chapter a brief summary of the 

research in the correspoding domains is presented. 

2.1 Traffic Event Detection in Social Media 

On the literature, there are various studies that use social streams for detecting real-

world incidents such as fires (Abel et al., 2012), earthquakes (Sakaki et al., 2010), 

and traffic accidents  (Schulz et al., 2013b). As one of the basic approaches, sudden 

occurrence of terms in a short interval of time, which is described by term 

“burstiness”, was examined to detect events in text streams (Fung et al., 2005).  

Abdelhaq et al. (2013) detected local events by clustering identified bursty words 

per their spatial similarity and time frames. Li et al. (2012a) proposed a segment-

based event detection method based on burstiness and content similarity. Kleinberg 

(2003) modeled streams using an infinite-state automaton to detect bursty sequences. 

Studies employing machine learning methods for text classification were able to 

detect incidents regardless of their scale (Gutierrez et al., 2015; Schulz et al., 2013b). 

Twitter stream was used for detecting incidents, which concern transportation (Chen 

et al., 2014; D’Andrea et al., 2015; Gutierrez et al., 2015; Schulz et al., 2015). Chen 

et al. (2014) developed a unified framework based on hinge loss Markov random 

fields to combine the models proposed for language ambiguity and location 

uncertainty in tweets. Kurkcu et al. (2015) developed a framework to provide a travel 
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time data collection method as incidents occur. Jalaparthi and Kumar (2016) 

presented a real-time monitoring system for detection of traffic events from Twitter 

stream Nguyen et al. (2016) employed Conditional Random Fields (CRF) to analyze 

social media for traffic incident detection. Deep learning methods including deep 

belief network, convolutional neural network and recurrent neural network are used 

to detect traffic incidents using microblog posts from Twitter or Weibo (Chen et al., 

2019; Dabiri and Heaslip, 2019; Zhang et al., 2018). 

Studies for event detection in text streams are rare for Turkish language. Can et al. 

(2010) presented methodology to perform topic detection and tracking in Turkish 

language. Erdogan et al. (2017) analyzed tweets in Turkish language in order to 

monitor events. Methods including named entity recognition, multinomial naive 

Bayes and stochastic gradient descent are used to detect events. Ertugrul et al. (2017) 

used word embeddings to detect events in social media posts in Turkish. Genc and 

Yilmaz (2019).employed graph embeddings to extract key information from Turkish 

social media texts to detect events. 

 

2.2 Localizating Traffic Events 

Extracting locations from social media data has been an attractive research problem. 

With its large and publicly available content, Twitter has become a useful resource 

for studies concerning spatial aspects of events and incidents. Geolocation of tweets 

has been studied in various domains, including disaster monitoring, traffic 

management, health monitoring and marketing (Ozdikis et al., 2017).  

Location information is commonly extracted using three fields of tweets: 1) a geo-

tag field, is the geographical coordinates of the post location of a tweet, set 

optionally; 2) location field is an optional text field set by users manually; 3) text 

content of a tweet. Due to scarcity of geotagged tweets, geo-tag field is not directly 

used to localize events, rather used as an input for constructing models to locate 
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tweets without geo-tags (Kinsella et al., 2011; Paraskevopoulos and Palpanas, 2015; 

Paule et al., 2019) or as a ground-truth for verification (Priedhorsky et al., 2014; 

Schulz et al., 2013a). Location field is an attribute of a user profile, thus could be 

used to describe where a user resides. However, most of the users do not provide a 

valid or a specific location name, hence it is not commonly used considered as a 

useful resource for location extraction (Davis et al., 2011). Some studies utilized 

location field as a complementary reference along with other fields (Li et al., 2012b; 

Sakaki et al., 2012). 

Location extraction research can be classified into three groups by their localization 

focus: 1) user location, the place of residence of the user 2) event location, where the 

mentioned event or incident took place. User location is used in numerous 

applications, such as disease monitoring, marketing, recommendation systems 

(Ozdikis et al., 2017; Zheng et al., 2018). Given the scarcity of reliable location 

information in the tweet meta-data, message content of a tweet is used as a reference 

for locating users. Language models based on toponyms or terms implicitly refer to 

a geographic location, also referred as location indicative words, have been proposed 

to estimate user locations (Cheng et al., 2010; Han et al., 2014; Roller et al., 2012; 

Zheng et al., 2018). Some studies presented models to utilize multiple sources of 

location data for localization (Laylavi et al., 2016; Ozdikis et al., 2016; Schulz et al., 

2013a). Social relationships in Twitter are also employed to detect or enrich locations 

(Bakerman et al., 2019; Li et al., 2012c; Rodrigues et al., 2016). Granularity of user 

localization varied among the studies from city level (Cheng et al., 2010; Davis et 

al., 2011; Han et al., 2014; Li et al., 2012c; Mahmud et al., 2014; Rodrigues et al., 

2016) to fine-grained coordinates. (Ryoo and Moon, 2014) 

Localization of events, such as traffic accidents, natural disasters, fires, through 

social media has been studied extensively. Geo-tag and location fields are used to 

determine location for large scale events (Earle et al., 2011; Sakaki et al., 2010). 

However, location elements in tweet meta-data are not adequate for localizing small 

scale events or individual tweets, due to scarcity and reliability problems. Geotagged 

tweets, however, are used to associate location indicative words with geographic 
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references, such as administrative boundaries, uniform or adaptive grid cells, which 

enabled localizing of non-geotagged tweets (Kinsella et al., 2011; Paraskevopoulos 

and Palpanas, 2015; Paule et al., 2019). Fine grained localization of tweet content 

based on such data-driven models using geotagged tweets were presented in 

numerous studies (Flatow et al., 2015; Paraskevopoulos and Palpanas, 2015; Paule 

et al., 2019). Various other studies involve temporal dimension in their methods for 

fine-grained localization of tweets (Chong and Lim, 2017; Li and Sun, 2017).  

Another approach to localize tweets is to employ explicit location references in tweet 

content. Twitter users tend to provide a geographic reference to the events they report 

(Longueville et al., 2009). The most common approach taken to localize location 

references in the tweet content consist of the phases: 1) extraction of location terms 

in text content, 2) mapping detected terms onto geographic locations, commonly 

using a knowledgebase. There are basically two main approaches in the literature for 

extracting locations from text content: natural language processing (NLP) based 

methods and term search against gazetteer databases (Karagoz et al., 2016). Named 

entity recognition (NER), which is an NLP method, is commonly employed to detect 

location references in tweets (Gelernter and Balaji, 2013; Gelernter and Mushegian, 

2011; Nguyen et al., 2016; Schulz et al., 2013b; Zhang and Gelernter, 2014). 

Location references are also identified by matching content with place names listed 

in a dictionary or a gazetteer (Gu et al., 2016; Middleton et al., 2014; Ribeiro et al., 

2012). Detected location terms are localized using off-the-self geocoders such as 

Google Map Geocoding API, ArcGIS Geocoder, Yahoo’s PlaceFinder API, 

Nominatim or custom geocoders. 

Geocoders are commonly used in traffic event detection studies to localize traffic 

events on road networks. Sakaki et al. (2012) extracted location terms from traffic 

information tweets by building a web-based location name dictionary which is 

complemented also with a name entity recognition approach. Detected location terms 

are geocoded using Google Map Geocoding API. Schulz et al. (2013) used Standford 

NER to extract location terms in detected traffic events and used Nominatim to 

geocode the location terms. Gutierrez et al. (2015) evaluated various NER engines 
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to extract locations from classified traffic events, and used Google Map Geocoding 

API, Nominatim and Geonames to geocode the events. Gu et al (2016), used regular 

expressions and a fuzzy language matching algorithm given in Gelernter and Balaji 

(2013) to geo-parse traffic incident tweets detected from Twitter. They use ArcGIS 

geocoder and a custom highway geocoder to locate the geo-parsed incidents. Khan 

et al. (2020) used NYC Geoclient and Geopy packages for geocoding locations from 

tweets parsed by NER of NLTK module. Vallejos et al. (2021) proposed a NER 

based on regular expressions and approximate string matching to address informal 

writing in tweets. Detected terms are geocoded using Google Geocoding API. Luan 

et al. (2021) used part of speech filtering based on a list of point of interest (POI) and 

street names to detect location terms in traffic events and geocoded the events using 

Amap geocoding engine. Suat-Rojas et al. (2022), used CRF, BiLSTM and Spacy 

methods to identify named entities. Extracted named entities are geocoded using 

Batch Geocode package, which combines the results from Google Maps, 

OpenStreetMap and GeoNames. Some studies proposed custom geocoding methods 

which employ place names in traffic event tweets, such as street names, landmarks, 

street crossings (Ribeiro et al., 2012; Wang et al., 2015).  

Although precise localization is critical for most traffic management applications, 

spatial errors from localization based on named entity recognition accompanied by 

geocoders are rarely reported. Khan et al. (2020) reported that NYC Geoclient and 

Geopy packages were able to assign locations to NER detected location terms 

within an average of 7.3 miles of the geo-tagged location. Suat-Rojas et al. (2022) 

reported more than 1 km between the actual and estimated coordinates due to 

insufficient data in Google Maps and OpenStreetMap for cities outside the United 

States. They called for further analysis of estimation errors and city specific 

geocoder as a future study. 

 



 

 

10 

2.3 Non-recurrent Congestion Detection 

Initial works on incident detection focus on incidents taking place in freeways. Early 

studies leveraged data acquired from roadside sensor stations, such as inductive loop 

detectors. California algorithm, which is based on a decision tree with states is 

among the most notable early methods to detect traffic incidents on freeways (Payne 

and Tignor, 1978). Algorithm developed further and variations are used as a baseline 

to other automatic incident detection (AID) algorithms (Masters et al., 1991). Dudek 

et al. (1974) presented an AID method using the standard normal deviate (SND) of 

energy or lane occupancy. Method was evaluated on an urban freeway with double-

loop sensors. Ishak and Al-Deek (1999) applied two types of artificial neural 

networks to detect incidents on a freeway corridor using loop detector data. Karim 

and Adeli (2002) presented a wavelet analysis-based algorithm to separate patterns 

produced by incidents from those of recurrent congestions and compression waves. 

Yuan and Cheu (2003) used Support Vector Machines to classify incident and 

incident-free stretches using data collected from loop detectors on a freeway. With 

the advance of mobile technologies, position data collected from probe vehicles 

emerged as an alternative data source for incident detection studies. Balke et al. 

(1996) used probe vehicle data to detect incidents by applying standard normal 

deviate (SND) to travel times. Petty et al. (1997) presented probe-vehicle data-based 

incident detection algorithm, proposing probe-vehicle data as a viable data source 

for incident detection, addressing difficulties with loop detector-based systems, such 

as cost of expansion, and sparse coverage. Cheu (2002) detected incidents by 

comparing average section travel times from probe vehicle data before and during 

an incident. Li and McDonald (2005)  used bivariate analysis model using the 

average travel times and the travel time differences between adjacent time intervals 

to detect incident in probe vehicle data in a motorway. Asakura et al. (2015) 

investigated the traffic flow dynamics during incidents and proposed incident 

detection methods using probe vehicle-data in an urban freeway. 
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Incident detection in urban arterials has its own challenges due to interrupted traffic 

flow, traffic controls and complexity of network (Zhang and Taylor, 2006). Hoose 

et al. (1992) proposed an image analysis algorithm to detect incident on congestions 

using video images from urban streets. Sethi et al.  (1995) developed and evaluated 

incident detection algorithms using data collected from fixed detectors and probe 

vehicles in urban arterial streets. Ivan et al. (1995) detected incidents on arterial street 

network using data from: fixed detectors and probe vehicles using neural network-

based approaches. Sermons and Koppelman (1996)  investigated  incident and non-

incident traffic patterns using discriminant classification models on 1-second vehicle 

positioning data collected in urban arterial road segments. Thomas (1998), and 

Zhang and Taylor (2006) solved arterial incident detection problem with Bayesian 

based decision making approaches.  

In traffic studies, congestions are commonly classified into recurrent and non-

recurrent congestions. Recurrent congestions (RC) take place mostly in urban road 

due to daily demand patterns. Non-recurrent congestions (NRC) occur due to 

incidents, such as traffic accidents, car breakdowns, special events or weather 

conditions  (Neudorff et al., 2003).   

NRC can occur frequently whereas RC does not always repeat with the daily demand 

pattern, so identifying recurrent congestion by their frequency of recurrence is not 

possible (Dowling et al., 2004). Common inference indicates that non-recurrent 

congestions constitute more than half of the congestion delays (Hall, 1993). Recent 

studies on detection of incidents or events causing delays on urban arterial networks 

focus on identification of non-recurrent congestions. Anbaroglu et al. (2014) 

presented a clustering-based approach to identify NRCs on a large urban road 

network using journey times calculated using data from automatic number plate 

recognition cameras. Chen et al. (2016) proposed data-driven methods to determine 

spatiotemporal extents of NRCs. Luan et al. (2021) detected non-recurrent 

congestions using statistical methods on traffic speed data. 
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Although probe vehicle data and floating car data (FCD) are used interchangeably, 

FCD commonly describes a dataset which is collected from various mobile 

applications, such as probe vehicle fleets or mobile phones, with a broader 

spatiotemporal coverage due to large number of trajectories processed (Fabritiis et 

al., 2008; Zhao et al., 2010; Zhu et al., 2009). FCD can provide real-time travel speed 

data for road segments for even 1-min intervals (Altintasi et al., 2017). FCD is used 

as a data source in some relevant incident detection studies. Zhu et al. (2009) detected 

incidents in urban arterials as outliers in spatial and temporal features extracted from 

FCD collected from 13,000 taxies. Chakraborty (2019) used spatiotemporally 

denoised thresholds to detect incidents using traffic speed data sampled in 0.5 miles 

long road segments and 1-minute interval. Luan et al. (2021) used a high resolution, 

broad coverage, near real-time travel-speed dataset to detect NRCs in an urban road 

network. 

Multiple data sources and data fusion methods are used to improve incident detection 

performance. Ivan (1997) used neural network-based approaches to detect incidents 

in urban arterials using data from two different sources: loop inductive detectors and 

probe vehicles. Thomas (1998) combined data from detector stations and probe 

vehicles in their decision making-based incident detection method. Social media data 

has been emerging as an alternative data source to detect traffic incidents. Zhang and 

He (2016) fused the data collected from loop detectors and Twitter to detect traffic 

accidents in real-time. Wang et al. (2017) analyzed congestions employing probe 

vehicle data, social media data and other supplementary information such as social 

events, road features, point of interests, and weather. Luan et al. (2021) used traffic 

speed data along with social media data from Weibo to detect NRCs. 
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CHAPTER 3  

3 TRAFFIC EVENT DETECTION IN SOCIAL MEDIA 

In this chapter the method for traffic event detection in social media is presented. In 

Section 3.1, an introduction of Twitter platform and a description of data structure 

of tweets are given. In Section 3.2, background on natural language processing 

(NLP) methods commonly used for information retrieval from text content of social 

media is given. In Section 3.3,supervised learning methods commonly used for 

information retrieval from text content is given. Proposed method to detect traffic 

events in social media is presented in Section 3.4 

3.1 Twitter Stream 

Twitter is a social media service, where users post up to 280-character long 

messages, called tweets. Twitter has around 429 million users sending more than 450 

million tweets a day (Twitter - Statistics & Facts, 2022; Twitter Usage Statistics, 

2022) sharing personal experiences, news, and happenings, including traffic events 

(Figure 3.1).  

Twitter provides two ways to access its public data. Twitter Search API serves data 

through keyword-based search queries against the recent stream. Whereas Twitter 

Steaming API provides access to live streaming public Twitter data. 

Twitter Search API is a representational state transfer (REST) based service, which 

provides methods to query the recent or popular tweets. Query operators allow search 

of terms and Twitter features, such as hashtags and mentions. Some additional 

parameters are provided to filter results by meta fields of tweets, such as geolocation, 

and language. Geolocation filter consist of latitude, longitude and radius parameters. 

A rate limit is applied per-user basis on search queries using Twitter Search API. 

Data structure of a tweet returned by Twitter Search API is given in Appendix A. 
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Twitter Steaming API provides access to live streaming Twitter data through a 

persistent Hypertext Transfer Protocol (HTTP) connection with a low latency. 

Twitter serves its public data through Streaming API in three access levels. Spritzer, 

which is the only freely accessible level, serves roughly 1% of all public tweets, 

while gardenhose level serves roughly 10% of all publicly available tweets. Firehose 

level serves almost all publicly available Twitter data (Boyd and Crawford, 2012). 

Streaming API can be queried with additional parameters to filter language, users, 

terms, locations and etc. Unlike the location filter used in Search API, the location 

query is run only against the tweets with a geotag.  

 

 
 

Figure 3.1 An incident reporting tweet as it appears on Twitter 

 

3.2 Natural Language Processing Methods Used for Information Retrieval 

3.2.1  Tokenization 

Tokenization is the process of segmenting texts into its meaningful semantics units, 

such as words, numbers, punctuation, and other elements. It is a prerequisite step for 

the methods involved in fields such as natural language processing and information 



 

 

15 

retrieval. Most simple approach is the white space tokenization method, which splits 

the words by its white spaces. However, whitespaces are not used as token 

boundaries in some languages such as Chinese and Japanese, in which tokenization 

is an ambiguous process which require utilization of machine learning methods. 

Exceptions also exist in the languages where white spaces can be used as token 

boundaries. Figure 3.2 presents a sentence in English and its tokens which are 

generated by Stanford NLP library. In this example, "Don't" is tokenized as "do" and 

"not", which would be kept together with a simple white space tokenizer or would 

be tokenized as "don" and "t", if punctuation is regarded as token boundaries. In 

Turkish, tokenization is commonly performed using white spaces and punctuations. 

Turkish language has a complex morphology. Depending on the problem, 

morphological features of the words might be treated as individual tokens. In this 

study proposed methodology includes a morphological analysis task, which is used 

to extract stem and morphological features of words to treat them as individual 

tokens. 

 
 

Figure 3.2 A sentence in English, tokenized by Stanford NLP library 

 

3.2.2  Stemming/Lemmatization 

In documents, words are used in various forms to express grammatical features. In 

English "drink", "drank", "drunk" represent infinitive, past simple and past participle 

forms of the same verb "drink". In Turkish, “git”, “gidiyorum”, “gittim” are 

imperative, present continuous and simple past forms of the verb “gitmek”, 

respectively.  The task of stemming and lemmatization are used to reduce the 

Sentence 

“You won't have a car crash if you don't get into a car.” 

Tokens 

You  wo  n't  have  a  car  crash  if  you  do  n't  get  into  a  car  . 
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inflected forms into stems or lemmas. While definition of stem might differ among 

different languages, by its most simple definition, it is the unchanged part among all 

forms of a word. Lemma is the dictionary form of words. A table comparing reduced 

forms of words to stems and lemmas can be seen in Table 3.1. 

 

Table 3.1 Examples for stems and lemmas in English and in Turkish 

 

Word Stem Lemma 

English 

is  is be 

ran ran run 

situation situat situation 

analyzing analyz analyze 

Turkish 

yönünde 

(in the direction) 

yön 

(direction) 

yön 

(direction) 

hızlıydı 

(it was fast) 

hız 

(speed) 

hızlı 

(fast) 

kitapçıdan 

(from bookstore) 

kitap 

(book) 

kitapçı 

(bookstore) 

 

Stemming and lemmatization, can increase the performance of classification in 

precision and computation time by reducing the words into their stems or lemmas. 

Relevance of grammatical expressions, which are reduced by these processes, should 

be evaluated according to the characteristics of the problem. 

3.2.3  Morphological Analysis 

Morphological analysis (MA) is one of the core sub-tasks of natural language 

processing. Analysis extracts the morphological features and their boundaries from 

a word. It is important for morphologically complex languages where one word can 
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contain multiple linguistic information which would be represented with several 

words in other languages (Coltekin, 2010). Morphological analysis can be employed 

in several natural language processing tasks, such as stemming, part-of-speech 

tagging, etc.  

Methods used for morphological analysis depend on the characteristics of the 

language. Rule based methods, such as finite state transducers (Coltekin, 2010) and 

supervised learning methods, such as Hidden Markov Models (Takeuchi and Yuji, 

1995)  are employed in the task.  

Turkish is an agglutinative language with a complex morphology. Available research 

on Turkish language uses rule-based methods to perform morphological analysis. 

Oflazer (1990) implemented a two-level morphological description on the PC-

KIMMO environment. Another rule-based approach has been implemented using 

finite state transducers, which is available as an open-source toolset called TRMorph 

(Coltekin, 2014). 

3.2.4  Stop Word Filtering 

Stop words are described as the words which have little or no value in common 

natural language processing tasks. Selection of stop words depends on the language 

and the design of a task. Stop word filtering can significantly reduce the 

dimensionality of the features, improve the performance of tasks, such as text 

classification.  

3.3  Supervised Learning Methods used for Information Retrieval 

3.3.1 Named Entity Recognition 

Named entity recognition (NER) is the task of detecting word or phrases which 

identify an entity, such as people, locations, companies, on a text. It is a commonly 
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used sub-task in Information Retrieval (IR) and Natural Language Processing (NLP) 

applications, to retrieve entities from natural language documents. Examples of 

named entities identifying a company name and locations in a news headline are 

underlined below. 

 

Google on Wednesday inaugurated a free city-wide Wi-Fi system 

in its home town of Mountain View, California 

 

Rau (1991) presented one of the first works in the field, which proposed heuristic 

and rule-based methods to extract company names from text. The concept of named 

entity is first defined for the Sixth Message Understanding Conference (MUC-6), as 

the recognition of information units describing people, organization names, location 

names and numerical expressions. Task was identified as an essential part in 

Information Extraction (Nadeau, 2007). Initial rule-based systems are followed by 

supervised learning-based methods (Nadeau, 2007). Hidden Markov models  (Bikel 

et al., 1997; Zhou and Su, 2002), Maximum Entropy Models (Borthwick, 1999; 

Chieu and Ng, 2002), Support Vector Machines (Isozaki and Kazawa, 2002), and 

Conditional Random Fields (CRF) (McCallum and Li, 2003) are applied to the 

problem. 

There have been several studies proposing methods for NER tasks in Turkish texts. 

Cucerzan and Yarowsky (1997) proposed a language-independent bootstrapping 

algorithm for NER tasks, method was tested in several languages including Turkish. 

Tür et al. (2003) used HMM on n-gram language models for named entity extraction 

in Turkish texts. Bayraktar and Temizel (2008) used local grammar-based approach 

to extract person names from Turkish financial news texts. Küçük and Yazıcı (2009) 

presented a rule-based system for NER on Turkish news texts, using lexical 

resources which include a dictionary of person names in Turkish, well-known 

political people, locations, and organizations in Turkey and in the world. Supervised 
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learning methods are used in named entity recognition in Turkish texts. Özkaya and 

Diri (2011) used CRF to extract person, location, and organization names in Turkish 

informal texts, such as emails. Some research focused on involving morphological 

features of Turkish language on NER tasks. Tatar and Cicekli (2011), proposed an 

automatic learning method to identify named entities in Turkish texts, and improved 

NER performance by using morphological features. Yeniterzi (2011), analyzed the 

effect of morphology for NER in Turkish, by involving morphological features as 

separate tokens. Şeker and Eryiğit (2012) included morphological features of 

Turkish words in CRF model, to detect person, location and organization entities in 

news texts, using basic and generative gazetteers. Küçük et al. (2014) performed 

comparative NER experiences with an adapted rule-based NER on Turkish corpora, 

including tweet corpora. 

Entity recognition has been used to detect events in Twitter stream. Nguyen used 

CRF to identify traffic entities in Twitter text. A special tag set, which describe 

relevant features of a traffic incident used to annotate the learning data (Nguyen et 

al., 2016).  

Conditional Random Fields, introduced as a sequence modeling framework, perform 

better than HMM and Maximum entropy Markov models (MEMM) for common 

cases in practice (Lafferty et al., 2001). It is commonly used for labeling purposes 

on sequential data, such as biological sequences, text documents and images. It is 

used in common natural language processing sub-tasks such as part-of-speech 

tagging, named entity recognition (McCallum and Li, 2003). CRF are used in named 

entity recognition in twitter text (Nguyen et al., 2016; Ritter et al., 2011).  

3.3.2 Classification 

Classification is a statistical method used to identify the classes in which an 

observation belongs. It is used in various applications, such as remote sensing, 

medical imaging, speech recognition, sentiment analysis and text classification. 
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Machine learning (ML) methods are frequently employed in classification (Yang, 

1999). Choice of ML method depends on the characteristics of the classification 

problem. 

ML methods differ in the way they address problems. The way they learn depends 

on the characteristics of the available data. ML methods which are based on 

supervised learning require a labelled input data set, commonly defined as "training 

data" (Mitchell, 1997). Supervised learning methods train and optimize their model 

with the training data in order to achieve the desired level of accuracy. Unsupervised 

learning methods are applied when there is no labelled dataset available. These 

methods involve algorithms to derive rules to organize data. Semi-supervised 

learning employs a set of labelled data along with the unlabeled samples with some 

features of supervised and unsupervised learning.  

ML methods can also be grouped into different categories in terms of their function 

(Jiang et al., 2013). Generative methods try to learn the model which forms the data 

using assumptions, such as distribution functions. Bayesian algorithms are 

generative methods which apply Bayes theorem for classification problems. 

Discriminative methods try to create a model based on the observation data. Linear 

classifiers, decision tree algorithms are examples for discriminative methods. 

Instance based algorithms do not maintain explicit classes, creates hypotheses as it 

compares new instances with the ones seen in training. There are numerous types of 

ML algorithms to address various types of problems, which are not covered here. 

3.3.3 Text Classification 

Text classification is the task of assigning texts to categories or classes. Spam 

filtering, document organization, sentiment analysis, language identification, genre 

classification, news filtering etc. are some applications performed using text 

classification. Commonly used methods for text classification are Decision Trees, 

SVM, Neural Network Classifiers, Bayesian Classifiers (Aggarwal and Zhai, 2012). 
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3.3.4 Decision Trees 

A decision tree is a graph to model possible outcomes of each decision as a 

hierarchical tree structure. In machine learning, decision trees are used to classify 

data (Quinlan, 1986). 

A decision tree splits data items into sub-nodes according to a splitting condition 

determined for each node. Splitting condition is set to attain a level of purity on each 

split, which is defined by a metric called impurity. Splitting is performed recursively 

until a determined stop condition is reach for each node, thus all data is partitioned 

into a set of hierarchical nodes which represent data space in corresponding splits. 

Each node is labelled with majority class label. A sample is assigned to the most 

likely partition for the purposes of classification (Aggarwal and Zhai, 2012). 

In text data classification, splitting conditions for the nodes are typically determined 

by regarding the terms in a document. A splitting condition on a node can be set 

depending on the existence of a term in the document (Aggarwal and Zhai, 2012).  

Construction of a decision tree from observations, which is called a decision tree 

learning, performed using various algorithms. ID3 (Quinlan, 1986) and C4.5 

(Quinlan, 2014) are among the most well-known decision tree learning algorithms 

(Li and Jain, 1998).  

3.3.5 Support Vector Machines 

Support vector machine (SVM) is a supervised algorithm for pattern classification 

(Vapnik, 1999). SVM classifiers use the decision boundaries on a hyperplane to 

identify the class of an input vector. Decision boundary is constructed based on 

statistical learning theory using structural risk minimization principle. SVM has been 

proposed as an effective method in text classification, albeit with an increased 

training cost compared to other commonly used classification methods, such as 

decision trees or naïve bayes-based classifiers (Colas and Brazdil, 2006; Liu et al., 
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2010). SVM has been used in various event detection studies on Twitter (D’Andrea 

et al., 2015; Sakaki et al., 2012; Schulz, Ristoski, et al., 2013). 

3.3.6 Naïve Bayes Classifier 

A Naïve Bayes classifier is a probabilistic supervised learning model for 

classification which is based on the Bayes theorem. Model assumes that the 

probability of each feature belonging to a class is independent of the others.  Naïve 

Bayes classifiers are effective in text classification (Lewis, 1998; Manning, 2008; 

McCallum and Nigam, 1998; Zhang and Li, 2008). Multinomal model, based on 

integer word counts, and Bernoulli model, consisting of binary word features, are 

commonly employed in text classification tasks (McCallum and Nigam, 1998). 

Naïve Bayes classifiers are also used in event detection in social media (Agarwal et 

al., 2012; Becker and Gravano, 2011; Schulz et al., 2015). 

3.3.7 Validation of Supervised Learning Methods 

Evaluation of the performance of a supervised model is a crucial part of the modeling 

process. In a binary classification model, there are two possible outcomes: positive 

or negative. In a model, which classifies tweets according to whether they report a 

traffic accident or not, there are two classes. Positive class consists of the tweets 

reporting a traffic incident, while negative class consists of the tweets which does 

not report a traffic accident. To predict if a tweet reports a traffic accident, a model 

is trained using sample data and performance of the model is evaluated. The positive 

samples which are predicted correctly by the model are called true positives (TP) 

while the correctly predicted negative samples are called true negatives (TN). The 

negative samples which are predicted incorrectly as positive are called false positives 

(FP) and positive samples which are predicted incorrectly as negative are called false 

negatives (FN). These core metrics of binary classification performance are 

presented in a table called confusion matrix (Table 3.2a). The evaluation metrics 
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commonly used for binary classification are accuracy, precision, recall and F1 Score 

(Table 3.2b). 

 

Table 3.2 Metrics used in classification performance evaluation a) Confusion matrix b) Performance 

evaluation metrics 

 

a) Predicted 

Positive Negative 

Actual Positive True Positive 

(TP) 

False Negative 

(FN) 

Negative False Positive 

(FP) 

True Negative 

(TN) 

b) 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Precision 𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 

Recall 𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

 

3.3.7.1 Cross Validation 

In machine learning, prediction models learn the parameters from a dataset, which is 

commonly referred as a "training dataset". Testing the performance of a prediction 

model using the training dataset would fail to assess the performance of the 

prediction model. Repeating the samples used in learning stage in performance tests 

would result in high scores, a phenomenon called overfitting. To avoid overfitting, 

separate datasets are used to train and test the prediction model.  
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3.3.7.2 k-fold Cross Validation 

In k-fold cross validation, all the samples are divided into k equal sized groups, 

which is referred as folds. The prediction model is learned using k-1 folds, while the 

sample in the remaining fold is reserved as test-dataset (Figure 3.3). The training and 

testing process is repeated k times until all k folds are used as test-datasets. The 

results from tests are summed up to get overall performance results. 

 
 

Figure 3.3 Segmentation of data set in k-fold cross validation tests 

 

3.4 The Method 

In this section, the proposed method for detecting posts related with traffic incidents 

and conditions from Twitter stream is presented. As given in Figure 3.4, the method 

consists of five main steps:  

1. Collection of tweets using predetermined keywords 

2. Preprocessing of text content to extract tokens  

3. Morphological analysis of tokens 

Test Dataset 

Training 

Dataset 
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4. Recognition of traffic related named entities, a customized set of named 

entities that are commonly used in traffic related incident or condition 

descriptions 

5. Classification of tweets to identify tweets which report an incident or 

condition which affect traffic flow. 

 

 
 

Figure 3.4 Basic Steps and the Flow of the Proposed Method 

 

3.4.1 Data Collection 

The proposed method aims to retrieve information from short social media texts. 

Short message services, such as Twitter, provides necessary API's1 to access their 

publicly available data. During the manual scan of tweets, a set of search terms are 

determined which are directly related to traffic flow or to incidents that might have 

an impact on traffic flow. Twitter Search API performs simple term search, ignoring 

morphological features of the terms. Due to agglutinative structure of Turkish 

language, inflection forms of the terms are also included in search query strings. 

 

 

1 https://developer.twitter.com 
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Additionally, due to informal nature of tweets, Turkish specific letters are frequently 

replaced by their corresponding Latin versions. Alternative replacements for such 

letters, which are not handled by API, are also included in search terms. Search is 

performed using “OR” query strings to cover all possible related posts. Therefore, 

collected data consist of all the posts that include any of the keywords provided, 

hence it is not guaranteed that they are all traffic flow related posts.  

3.4.2 Preprocessing 

Preprocessing step includes the cleaning-up, tokenization and segmentation tasks, 

which are required before NER and classification steps. This step starts with filtering 

re-tweets, which are reposts of original tweets with the same content. Tweet texts 

contain Twitter-specific features, such as mentions, hashtags, “retweet” tags and 

links. Due to specific formatting of these features, a customized tokenizer is used for 

determining Twitter-specific features and tokenization. Preprocessing step is 

completed with stop-word filtering. Stop words are mostly conjunctions, 

prepositions or postpositions, which act to connect or support sentences or other 

words rather than having a word-sense of its own. A limited set of Turkish stop-

words including "ve" (and), "için" (for), "ile" (with), "gibi" (as, like) is used. 

3.4.3 Morphological Analysis 

Agglutinative structure and complex morphology of Turkish imposes a high rate of 

inflection per word, resulting with high dimensionality in vector space of terms. 

Redundant dimensions can be reduced through stemming. However, stemming in 

Turkish words is a process including high ambiguity, requiring morphological 

analysis of the tokens. Therefore, within our method, each token is analyzed 

morphologically in order to extract roots and a set of inflection groups using the 

morphological analysis tool TRMorph (Coltekin, 2014). Since tweets are short texts 

and they provide a limited context information for morphological disambiguation, 
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morphological analysis of tokens often results in ambiguous results. This Ambiguity 

is resolved using the zero-context disambiguation tool provided within TRMorph. 

After disambiguation, segmentation is performed over token according to the 

generated stems and inflection groups. Each segment, which is referred to as a 

subtoken in this study, consists of a surface and the morphological tags assigned by 

the analyzer. Morphological tags are part of speech tags for stems and inflection tags 

for inflection groups. 

3.4.4 Traffic Event Related Entity Recognition 

Terms that are used for describing an event or a condition related to traffic network 

may also be used for indicating other meanings in entirely different contexts. For 

instance, the Turkish word "kaza" means "accident", which is relevant in traffic 

context, and also "town". Furthermore, the same term can be used to indicate any 

type of accident taking place in different contexts, such as a "kitchen accident". 

Ambiguity of senses and contexts of these terms might affect the performance of 

classification tasks. 

This study aims to focus on tweets that report traffic related incidents or conditions 

on road networks. Due to characteristics of such incidents, locations are reported 

with respect to the street on which the event took place. Unlike official address 

definitions, which include either house number or distance reference to define a 

reference location on a street, tweet reports commonly use landmarks, directions, or 

conjunction points to denote a location on a street. These cause another potential 

ambiguity among the location references considering their functions in the address 

definition. For example, a district name in an address definition can indicate the 

location of an event, alternatively it can be used for defining a particular direction of 

a street or a conjunction point on a street, on which the incident took place. Consider 

the following two tweets including the location reference Eskişehir Yolu (Eskişehir 

Road) with two different referencing functions: 
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Eskişehir yolu describing the district where event took place: 

Eskişehir yolu tarım bakanlığından mesa kavşağına kadar yoğun akıcı 

Eng: Heavy but stable flow on Eskişehir Road from ministry of agriculture 

to mesa intersection) 

 

Eskişehir yolu describing the direction of a street on which event took place: 

#YolDurumu Anadolu Bulvarı- Marşandiz sonrası Eskişehir yolu yönünde 

araç arızası! 

Eng: #RoadCondition Vehicle break-down after Marşandiz on Anadolu 

Boulevard, in the direction of Eskişehir Road 

In order to address the problem of referencing ambiguity, a traffic event related entity 

recognition model based on Conditional Random Fields (CRF) is developed. To this 

aim, a customized set of traffic related named entities are defined. These named 

entities correspond to common definitions used for reporting traffic related incidents 

or conditions. In Table 3.3, these named entities are grouped under the titles of 

traffic, incidents, incident attributes, and location tags. A web-based annotation tool 

has been developed for annotating subtokens with part of speech or morphological 

tags (Table 3.4) and the traffic related entities to create the training data set to be 

used for constructing the CRF-based model. 

As an example, consider the following tweet that reports an accident: 

Keçiören Fatih köprüsü Keçiören yönünde 3 aracın karıştığı zincirleme kaza 

var. Köprü tıkalı. 

Eng: A three-vehicle pile-up accident in Keçiören direction on Fatih overpass 

at Keçiören. 
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Table 3.3 Traffic event related named entities 

 

Named Entity  Explanation 

Traffic  

Flow  Flow Condition 

Direction  Terms describing a flow direction on a street 

DirectionIndicator  Morphemes, words or phrases indicating directionality 

Connection  Terms describing connections on s street 

ConnectionIndicator  Morphemes, words or phrases indicating directionality 

Incidents  

Accident  Traffic accidents are tagged separately from other incident types 

Maintenance  A road maintenance work 

ExternalEvent  Non-traffic related events, such as concerts, sport events 

RoadCondition  Conditions effecting the traffic flow, including weather 

conditions 

Misc  Other incidents affecting traffic flow 

Incidents Attributes  

Damage  Terms describing the damage of an incident 

Lane  Lanes which are affected by reported incidents or conditions 

Time  Time of incidents or conditions 

Vehicle  Vehicles involved in incidents 

People  People involved in incidents 

RoadFeatures  Road features involved in incidents or conditions 

Location Tags  

Street  Street names 

Region  Toponyms describing a region or administrative unit   

Landmark  Location references describing a landmark or a well-known 

location 

LocationIndicator  Morphemes assisting a toponym 
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Table 3.4 Part of speech and morphological tags used in TEER model 

 
Tag Type Definition 

abl Morpheme Ablative case (“-den” suffix) 

Adj POS Adjective  

Adv POS Adverb 

Cnj POS Conjunction 

dat Morpheme Locative case (“-e” suffix) 

Det POS Determiner 

Exist POS “var” (exists) or “yok” (not exists) 

loc Morpheme Locative case (“-de” suffix) 

N POS Noun 

Not POS “değil” (not) 

Num POS Number 

Postp POS Postposition 

Prn POS Pronoun 

Q POS Question Particle 

V POS Verb 

 

The traffic event related named entities recognized by the model in this tweet are as 

follows: 

• Location: Keçiören (a district) 

• Location: Fatih köprüsü (Fatih bridge) 

• Direction: Keçiören  

• DirectionIndicator: yönünde (in the direction of) 

• Damage: zincirleme (pile-up) 

• Incident: kaza (accident) 

 

Recognized entities by the model are used as features in classification step in order 

to improve the accuracy performance. Entities retrieved using the developed model 

can also be employed in geolocation tasks. 
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3.4.5 Traffic Event Related Post Classification 

Keyword based search by using traffic related keywords is not an accurate method 

to determine traffic event related tweets. Search API retrieves postings including any 

of the search keywords, and hence the result set may contain irrelevant tweets with 

unrelated contexts. Therefore, a classification model, using a manually annotated set 

of tweets as the training data set, is constructed. Each tweet is represented a feature 

vector such that each feature is either a stemmed word from the tweet content, or a 

traffic event related named entity extracted from the tweet.  

A representation model is proposed in order to classify tweets by relevancy using 

machine learning methods. Stems retrieved in morphological analysis are used to 

represent tweets in a bag-of-words model. Terms are weighted with their TF-IDF 

scores in the model. The entities detected in Traffic Event Related Entity 

Recognition step are also included in feature representation to improve classification 

performance.  

Support Vector Machines (SVM), Naïve Bayes (NB) and Decision Trees based 

classifiers, which are commonly applied in incident detection problems, are used to 

classify relevant tweets. SVM and Decision Trees are discriminative classifiers while 

Naive Bayes classifier is based on a generative mode (Boser et al., 1992; Quinlan, 

1986). A linear SVM model is trained using Sequential Minimal Optimization 

algorithm. For the Naïve Bayes-based classifier, a univariate discrete distribution is 

used. Minimum allowed probability in the frequency tables is set as 1e-10. No 

regularization is used. Decision Tree model is modeled by using C4.5 algorithm  

(Quinlan, 2014).
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CHAPTER 4  

4 TRAFFIC EVENT GEOCODER 

In this chapter, a geocoding method which is customized to localize traffic event 

tweets is presented. Given tweets that report traffic-related incidents or conditions 

which occurred on a road network, in this work, a method is proposed to generate 

coordinates of the events or conditions mentioned in tweets. The proposed geocoding 

method consists of two steps. The first one includes a customized named entity 

recognition model called Traffic Event-related Entity Recognizer (TEER). The 

second step includes a rule-based road geocoder, which makes use of the customized 

named entities detected by the TEER module. The overall architecture of the 

proposed solution is given in Figure 4.1. 

 

 

 

Figure 4.1 Traffic Event Geocoder 
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In the rest of this chapter, the steps of the solution given as modules in Figure 4.1 is 

described. 

4.1 TEER Module 

TEER is a Conditional Random Fields (CRF) based custom named entity recognition 

module, which is developed to recognize a custom set of traffic event-related named 

entity tags (Section 3.4.4). Traffic event-related tags include terms that describe the 

attributes of an event, including its location. Unlike formal address definitions, which 

include either house number or distance reference to define a location on a street, 

event tweets commonly use landmarks, directions, or conjunction points to define 

locations on roads. This might arise ambiguity among the location terms regarding 

their function in the location definition, such as a district name in an address 

definition can define the location of an event or can indicate a particular flow 

direction of a street on which the event took place. TEER also aims to resolve 

location terms into their granular functions in the location definition. The set of 

traffic event related named entity types recognized by TEER are as follows: The set 

of traffic event related named entity types recognized by TEER are as follows:  

• Road Term: Road names, such as Eskişehir Yolu (eng. Eskişehir Road, a 

street). 

• Location Term: Location references describing a landmark, district, point of 

interest or a well-known location, such as Armada (a mall), Ümitköy Köprüsü 

(eng. Ümitköy overpass), Bağlıca (a district). 

• Direction Term: Terms describing a flow direction on a street, such as merkez 

(eng. inbound), Kızılay yönü (eng. Kızılay direction). 

• Connection Term: Terms describing connections on a street. 

• Indicators: Auxiliary terms or suffixes assisting the aforementioned tags, 

which are annotated separately.  



 

 

35 

4.2 Geocoder Database 

Geocoding step involves methods to locate detected location entities in TEER step 

on the road network. The proposed geocoding method includes a knowledgebase in 

order to perform geocoding tasks. To this aim, OpenStreetMap (OSM)2 data is 

employed. OSM data is organized as elements and their tags. For instance, stretches 

of roads are stored in way elements. The name, class, and speed information of the 

streets are stored as the tags of way elements.  

Geocoder extracts and converts OSM elements into its internal data object types, 

landmarks, roads, network topology, and regions, which are described as follows: 

• Landmark object defines a coordinate that represents a point of interest, such 

as amenities, public buildings, schools, or other named geographic entities. 

It is used for geolocating toponyms defining a particular location on a road 

network. 

• Road object defines all stretches that belong to a distinct road in a network. 

Geocoder geocodes locations on the road objects.  

• Network topology is a model representing road network as a graph structure 

of nodes and links to perform analysis based on the connectivity of streets' 

stretches. 

• Region objects define an area that can represent a neighborhood, district, or 

any other administrative area. Since many of the event tweets refer to a 

district name as a destination describing a flow direction, they are frequently 

detected as a Direction Term and employed to determine the flow direction 

of a street on which an incident took place. They are also used to assist street 

or landmark matching when detected as a Location Term. 

 

 

 

2 https://www.openstreetmap.org 
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Landmark objects are retrieved from OSM node and way elements with tags amenity, 

shop, office, public_transport, station, highway, and building. Way elements are 

represented by their centroids. 

OSM data include administrative boundaries in hierarchical levels. Levels start from 

province boundaries and reaches down until local neighborhood-level administrative 

boundaries. However, official administrative boundaries fall short in defining the 

exact regions for place names which are used in informal location descriptions. OSM 

is a rich dataset including landmarks and points of interest, which could be expanded 

to extract further levels of information. A region detection method is proposed, 

which determines the border of region objects through the geometric distribution of 

the elements that include the region name in the name of the element. For instance, 

Sincan Kapalı Spor Salonu (eng. Sincan Indoor Sports Hall), Opet Sincan (a gas 

station in Sincan), etc., represent Sincan region. Similarly, Ümitköy İtfaiyesi (eng. 

Ümitköy Fire Station), Pet Hospital Ümitköy (a veterinary hospital in Ümitköy) and 

other elements having Ümitköy in their names represent Ümitköy region. Detected 

region names are further checked against a list of reference regions, populated using 

elements such as administrative units and public transport station names, to filter out 

false detections.  

Road and network topology objects are extracted from OSM way elements with 

highway tag. In this study, only major roads and arterials are used for geocoding the 

events. Values for highway tag that are used for retrieving the roads are “motorway”, 

“trunk”, “primary” and “secondary”. Definitions in addr:street tag of nearby 

landmarks are used to extract informal names for the roads. A network topology 

object consists of unidirectional polyline links that are extracted from way elements 

through their nodes shared by other elements. Roads objects are identified using 

search based on topological connectivity and name matching. A fuzzy name 

matching is used for handling the name variations of the same road. 
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4.2.1 Use of the search index 

The names of the extracted landmarks, streets, and regions are indexed using Apache 

Lucene3, a software library that provide indexing and search features, as well as 

spellchecking and tokenization capabilities. Location expressions in tweets are 

informal, often represented in the shortest possible form. Typographical errors such 

as misspellings, transpositions, omissions, splitting errors, concatenation errors, 

wrong key errors are also common. The n-gram analyzer of Apache Lucene is 

customized to fix such errors.  

Results solely ranked by text similarity score do not provide the best candidates for 

location term searches. To address this, in landmark queries, existence of spatial 

clustering of search results is checked using Nearest Neighbor Analysis and scores 

of matches in clusters are boosted to favor over the matches scattered spatially. Text-

similarity scores accompanied by a spatial clustering index based on nearest 

neighbor distances improved the search results. 

4.3 Geocoding 

In this work, a rule-based geocoder is proposed to generate the coordinates for 

location terms detected by TEER on a road network. Input for the geocoder are traffic 

event-related entities, Location Term, Road Term, Connection Term and Direction 

Term. All possible mappings of Locations Terms and Connection Terms on the road 

network are generated. These mappings are further refined by the topological 

resolver, and they are finally geocoded into a location. The flowchart of the rule-

based geocoder is presented in Figure 4.2. 

 

 

3 https://lucene.apache.org 
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Figure 4.2 Geocoding Flow 

 

4.3.1 Road Network Mapping 

In road network mapping step, set of rules given in Figure 4.2 are used to map the 

location entities into candidate objects on the network. The process starts with a 

refinement of location entities using data extracted from OSM. Due to limitations of 

TEER model in distinguishing whether a place name is for a landmark, 

neighborhood, or a district, all such terms are tagged as Location Terms. Location 
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Terms are refined using a dictionary-based approach. Location Terms defining a 

region is identified by matching against the Region Objects in the geocoder database. 

One common informal use in location definitions is to name intersections by the 

name of the district they connect, rather than its official name, such as Hacettepe 

Kavşağı (eng. Hacettepe Intersection) connecting Eskisehir Road to Hacettepe 

University. Such informal names are mostly missing in OSM. To alleviate this 

problem, intersection names are identified by matching Location Terms against a 

dictionary of intersection terms such as kavşağı (eng. intersection), üst geçidi (eng. 

overpass). Detected intersection terms are treated as Connection Terms for a correct 

localization. 

Geocoder maps each Location Term on the road network using Landmark and Road 

Objects. A Location Term will be mapped to the detected road, otherwise, they are 

mapped onto the closest road on the network. Similarly, Connection Terms are also 

mapped to the roads by the proposed geocoder. Unlike Location Term, Connection 

Term can indicate a road, a landmark, or a region, therefore they are matched on all 

the corresponding object types. Mapping is performed by employing an A* path-

finding algorithm from the matched Road Objects to the matching connection objects 

in the geocoder database, on the network topology. Connections are mapped on the 

exit links of the matching streets. 

Mapping task may produce multiple candidates for matching landmarks, roads, and 

links on the roads, including stretches of opposite flow directions. Candidate 

mappings are resolved by Topological Resolver into a single geocoding result. 

4.3.2 Topological Resolver 

Topology resolver is the last step of geocoding process, which resolves, and maps 

candidate road mappings found for location entities on the road network. Topological 

resolver finds the shortest path among the mappings of the location entities. It solves 

a traveling salesman problem among location entities mapped on a road, involving 
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all possible mappings. If there is only one location entity mapped on a road, the 

mapping with the closest link distance is accepted as the geocoding result, without 

further analyzing the connecting paths. An example is given in Figure 4.3. In this 

figure, due to the existence of Direction Term, the flow is marked on the map starting 

from the closest mapping for the Location Term. If there exists more than one 

location term mapped on roads, the path connecting the location entities is selected 

as the location of the event. If a Direction Term is also detected by TEER, it is 

appended at the end of points to determine the direction of the flow. An example 

case is given in Figure 4.4. 
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a) Mappings generated 

 

 
b) Geocoded location 

 

Figure 4.3 Mappings and geocoded location for location entity Sınav Koleji (eng. Sınav High 

School) on street Sabancı Bulvarı (eng. Sabancı Boulevard) 
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a) Mappings generated 

 

 

b) Geocoded location 

 

Figure 4.4 Mappings and geocoded location for location entities Gordion Köprüsü (eng. Gordion 

Overpass) and Ümitköy Köprüsü (eng. Ümitköy Overpass) on road Eskişehir Yolu (eng. Eskişehir 

Road) 
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CHAPTER 5  

5 NON-RECURRENT CONGESTION DETECTION IN FCD 

In this study traffic incidents are detected using two independent data streams, social 

media data (SMD) and floating car data (FCD). In previous chapters, methods to 

detect and geolocate traffic events detected in Twitter are presented. In this section, 

proposed methods to detect non-recurrent congestions (NRC) from Floating Car 

Data (FCD) is presented. Method to detect NRCs consist of two phases: 1) anomaly 

detection and 2) spatiotemporal congestion identification. In anomaly detection step, 

traffic flow speeds observed on links are compared with the historical data using 

statistical methods to detect anomalous travel speeds. In spatiotemporal congestion 

identification step, links with anomalous travel speeds are merged into 

spatiotemporally continuous clusters, which will define the spatial and temporal 

extend of an NRC.  

5.1 Anomaly Detection 

First phase of the proposed NRC detection method aims to detect anomalous drops 

in flow speeds in FCD, which are assumed to be a sign of a non-recurrent congestion. 

In this study, FCD frame denotes to a spatiotemporal data analysis window 

consisting of a link description representing the road stretch and a time-window on 

which FCD records are sampled to.  In this phase an anomaly factor (𝐴𝐹) is 

calculated for each FCD frame, which will quantify the anomalous speed observed 

in a segment during an epoch, by comparing observed flow speed with respect to the 

estimated flow speed. Also, a threshold AF (𝑇𝐴𝐹) which separate normal and 

anomalous frames will be calculated. 

Flow speed data has multiple seasonality patterns in daily, weekly, and annual 

cycles, demand is also affected from national days, religious holidays, and frequent 
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changes in the road network. New roads opening to service will take off same 

demand from other roads. All these factors in a dynamically changing road network 

makes traffic flow speed estimation, thus anomaly detection a challenge. Several 

statistics, such as standard normal deviate (SND), median absolute deviate (MAD) 

or inter-quartile deviate (IQD), have been used to recognize unexpected changes in 

traffic flow data to detect incidents or congestions (Balke et al., 1996; Chakraborty 

et al., 2019; Dudek et al., 1974; Li et al., 2013; Luan et al., 2021). Statistics are 

applied on time-series data collected from a detector or a probe vehicle. Time series 

data can be a sequence of a data collected from a sensor, or a series of data organized 

in time-of-day day-of-week (TOD-DOW) slots to handle weekly traffic flow 

patterns. 

In this study commonly used methods for anomaly detection on time-series data are 

evaluated along with a proposed spatiotemporal anomaly detection approach, Road 

Network-based Estimator (RNE), which estimates current flow speed on a segment 

combining both segment’s historic data and speeds observed in the whole road 

network.  

5.1.1 Statistical Methods 

Standard Normal Deviate, Mean Absolute Deviation and Generalized Extreme 

Studentized Deviate, which are used in anomaly detection methods in traffic 

networks data, are evaluated as baseline statistical methods. In these evaluations, 

FCD data is sampled in 5-minute intervals and weekly seasonality is removed by 

dividing data set into weekly time windows. A sliding analysis-window is used to 

define the date range of historic data to be used in the analysis. For instance, to 

analyze a segment in a 6-week analysis-window, a dataset consisting of traffic speeds 

observed in the segment during a weekly time-window (same time-of-day and day-

of-week) over the last 6-weeks is used.  
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5.1.1.1 Standard Normal Deviate 

Standard Normal Deviate (SND) is the difference of a random variate with respect 

to a normal distribution. SND is a metric used to check whether a value is 

significantly different from what is expected under normal distribution. SND has 

been used to detect traffics incidents in several studies (Dudek et al., 1974; Luan et 

al., 2021). Formula of SND is given in Equation 5.1. 

𝑆𝑁𝐷 =  
𝑥 − 𝜇 

𝜎
 

where; 𝑥 = given value, μ = mean of data set, σ = standard 

deviation of data set. 

( 5.1 ) 
 

5.1.1.2 Median Absolute Deviate 

Median Absolute Deviate (MAD) is the distance of a value and the median of the 

univariate dataset. MAD has been a choice of metric due its insensitivity to outliers 

and robustness in anomaly detection studies (Hochenbaum et al., 2017; Luan et al., 

2021). Formula of MAD is given in Equation 5.2.: 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑋̃|) 

 

( 5.2 ) 

where 𝑋1,𝑋2, … 𝑋𝑛 is the data set, and 𝑋̃ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋).  

 

5.1.1.3 Generalized Extreme Studentized Deviate 

Generalized Extreme Studentized Deviate (GESD) is a statistical test used to detect 

outliers in a univariate data set which has an approximately normal distribution 

(Rosner, 1983). GESD is able to detect up to a given number (𝑟) of outliers in a data 

set. GESD performs 𝑟 separate tests, resulting in 𝑟 test statistic result (𝑅𝑖), shown in 

Equation 5.3: 
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𝑅𝑖 =  
𝑚𝑎𝑥𝑖|𝑥𝑖 − 𝑥̅|

𝜎
 ( 5.3 ) 

 

 

where; 𝑥1, 𝑥2, … , 𝑥𝑛 is a univariate data set, 𝑥̅ is the mean and 𝜎 is the standard 

deviation of the data set. In each test the data point maximizing |𝑥𝑖 − 𝑥̅| is removed 

from the data set and next test is run with the remaining data points. For each test a 

critical value (𝜆𝑖) is calculated, as shown in Equation 5.4:  

 

𝜆𝑖 =
(𝑛 − 𝑖)𝑡𝑝𝑖,𝑛−𝑖−1

√(𝑛 − 𝑖 − 1 + 𝑡𝑝𝑖,𝑛−1−1
2 )(𝑛 − 𝑖 + 1)

   𝑖 = 1,2, … , 𝑟 
( 5.4 ) 

 

 

𝑝 = 1 −
𝛼

2(𝑛 − 𝑖 + 1)
 ( 5.5 ) 

 

 

where; 𝑟 is the number of outliers to be tested and 𝑡𝑝,𝑣 is percentage point from t-

distribution,  𝑣 is degrees of freedom and 𝛼 is the significance level. Outliers are 

determined by data points satisfying  𝑅𝑖>𝜆𝑖. 

5.1.2 Long Short-term Memory Model  

A recurrent neural network (RNN) is a type of artificial neural network, where nodes 

are connected in a way to feed a layer with the output of the previous process along 

a sequence. RNN’s are widely used for applications such as language modelling, 

machine translation, speech recognition and time series prediction. 

Long short-term memory (LSTM) is a recurrent neural network designed to LSTMs 

were developed to alleviate the vanishing gradient problem which might arise when 

training particularly long sequences. LSTM is commonly used for applications 

including road traffic flow prediction and congestion detection, web traffic anomaly 

detection and intrusion detection. 
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5.1.3 Road Network-based Estimator 

Methods used in anomaly detection studies are mostly based on univariate time-

series datasets operating solely on time dimension. FCD is a spatiotemporal data, 

which provide insight on the road network state along time and over space. In order 

to utilize network state knowledge in space, a link traffic speed estimator Road 

Network-based Estimator (RNE) is proposed based on both links historic data and 

link speeds observed over the road network. As in other models, daily and weekly 

seasonality is removed from FCD data by dividing data set into weekly time 

windows. A sliding analysis-window is used to define the date range of historic data 

to be used in the estimation. Since the inbound and outbound links produce different 

daily patterns, links are annotated with inbound or outbound according to their flow 

direction with respect to the central business district (Kızılay) of Ankara. Links 

which are not generating flow towards or from Kızılay assigned a none flow 

direction. A network state ratio 𝑟𝑑,τ is calculated for flow direction 𝑑, and time-

window τ, comparing corresponding n-week historic speed averages observed in 

links with the speeds observed on the same sat of links, as shown in Equation 5.6: 

 

𝑟𝑑,𝜏 =  
𝑥̅𝑑,𝜏

1
𝑤

∑ 𝑥̅𝑑,𝜏𝑖

𝑤
𝑖=0

 ( 5.6 ) 
 

 

where; 𝑟𝑑,τ is the network state ratio for flow direction 𝑑 at time-window τ, 𝑥̅𝑑,τ is 

the average speed observation of links with flow direction 𝑑 at time-window τ,  𝑤 is 

analysis window size in weeks and τ𝑖 denotes to corresponding time-window τ  in 

week – 𝑖. Flow speed of a link 𝑙 with a flow direction of 𝑑 at time-window τ is 

estimated by multiplying corresponding n-week historic observations in 𝑙 with  𝑟𝑑,τ. 

(Equation 5.7) 

𝑠𝑙, 𝜏 = 𝑟𝑑,𝜏 (
1

𝑤
∑ 𝑥𝑙,𝜏𝑖

𝑤

𝑖=0

)   ( 5.7 ) 
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where 𝑥𝑙,τ𝑖
 denotes to speed observation of link 𝑙 at the time-window τ  in week – 𝑖. 

 

5.2 Spatiotemporal Congestion Identification 

In anomaly detection phase, methods to quantify the unexpectedly low travel speeds 

over FCD frames are presented and an anomaly threshold is determined using a 

manually annotated dataset of concurrent and non-recurrent congestions. Detection 

of anomalous speed drops in FCD frames are not adequate for incident detection in 

an urban network due to several reasons. Non-recurrent congestions may occur due 

to external reasons impacting the wider network, such as inclement weather affecting 

the capacity (Chin et al., 2002) or events such as school terms and national days 

which breaks the general weekly flow patterns. In order to identify local incidents in 

non-recurrently congested links, a congestion front detection method based on 

supervised learning is presented. Proposed classifier detects local incident related 

congestion fronts in each epoch, and their upstream using a graph search. Total 

spatiotemporal impact area of an incident related NRC is determined by merging of 

the related congestion fronts and their upstreams. Method is presented in three 

phases: 

• Detection of congestion fronts 

• Detection of upstreams of detected congestion fronts in each epoch. 

Spatiotemporal extend of congestion in each epoch is denoted as a 

Congestion Stretch 

• A rule-based merging of Congestion Stretches to detect a local 

incident related NRC and its impact area  
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5.2.1 Data Preparation 

A road (𝑅𝑖) is represented as a tuple of (name, segments), where name denotes the 

name of the road, segments represent all road stretches constituting the road. A road 

segment (𝑆𝐽) represents a stretch of a road, boundaries of which is determined by 

intersections in the topology or by data sampling limits. A road segment is 

represented as a tuple of (id, direction, roadclass, start, end, from, to), where id is a 

unique identifier of the segment, direction is the flow direction of the segment, such 

as “inbound”. Roadclass is the enumeration of functional road class based on the 

capacity of the road. Start and end denote the geographic coordinates of start and 

end node of the segment, respecting the flow direction, in WGS84 coordinate system. 

From and to refers to adjacent segments which are connecting in or out of the 

corresponding segment. Segments in a section of road network is given in Figure 

5.1a. The road network is modelled as a directed graph of 𝐺 = (𝑉, 𝐸), where vertices 

(𝑉) represent segments and edges (𝐸) represent connecting nodes between the 

segments. Nodes are constructed using start and end coordinates of segments, while 

adjacency relationship is retrieved using connectivity attributes of from and to. 

5.2.2 Congestion Front Detection 

Comparative methods using measurements along a road are commonly employed in 

incident detection studies. California algorithm compares occupancy data obtained 

from adjacent loop detectors along with downstream occupancy data to detect 

incidents (Payne and Tignor, 1978). Rapid declines in speed measurements along a 

road is commonly observed as an indicator of an incident (Li and McDonald, 2005; 

Sun et al., 2010; Zhao et al., 2010) 

In this study, a supervised-learning based method is proposed to detect congestion 

fronts based on the traffic flow speed changes observed during an incident over 

adjacent segments. Differences between upstream and downstream traffic flow 

speeds has been used to detect incidents. Incident related congestion front detection 
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is carried out on the links, that are classified as non-recurrently congested in anomaly 

detection phase (Section 5.1). Incident related congestion fronts are classified using 

a supervised learning-based methods. A binary classification method is developed 

using following classes: 

• Incident related congestion fronts (ICF) 

• Non-incident related congestion fronts and congestion upstream for 

all NRCs (Other) 

Observed travel speeds and calculated anomaly factors (Section 5.1) in upstream and 

downstream of segment is used as input for binary classification. Input vector 

consists of: 

• Speed Difference: Nominal difference between average speeds observed on 

adjacent upstream and downstream segments of a segment. 

∆𝑉𝑠,𝑡
𝑢,𝑑

 
=  

1

𝑛(Up𝑠,𝑢)
∑ 𝑉𝑖,𝑡

𝑖∈Up𝑠,𝑢

−   
1

𝑛(Down𝑠,𝑢)
∑ 𝑉𝑖,𝑡

𝑖∈Down𝑠,𝑑

 ( 5.8 ) 
 

where Up𝑠,𝑢 is the set of upstream segments of segment 𝑠 

with a subgraph depth of 𝑢. 

Down𝑠,𝑑 is the set of downstream segments of segment 𝑠. 𝑑 

denotes number of downstream segments. 

𝑉𝑠,𝑡 is the travel speed observed on segment 𝑠 on epoch 𝑡 

 

 

• Speed Difference Deviate: Standard deviate of the current Speed Difference 

on a time-series consisting of historic data of the corresponding upstream 

and downstream segments. 

𝑆𝑁𝐷𝑠,𝑡
𝑢,𝑑,ℎ =    

∆𝑉𝑠,𝑡
𝑢,𝑑 −  

1
𝑛

∑ ∆𝑉𝑠,𝑡−ℎ
𝑢,𝑑ℎ

𝑛=0  

𝑆
 ( 5.9 ) 
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𝐴𝐹𝑠,𝑡
𝑑  = 

1

𝑛(Down𝑠,𝑢)
∑ 𝐴𝐹𝑖,𝑡𝑖∈Down𝑠,𝑑

 ( 5.10 ) 
 

where Down𝑠,𝑑 is the set of downstream segments of 

segment 𝑠. 𝑑 denotes number of downstream segments. 

𝐴𝐹𝑠,𝑡 is the anomaly factor calculated for segment 𝑠 on epoch 

𝑡 (See Section 5.1). 

 

 

In analysis, set of upstream segments consist of all adjacent upstream segments and 

the link itself, whereas set of downstream segments of segment includes only the 

links which are on the same flow direction of the same road (Figure 5.1b). 

Classification model is using decision tree and support vector machine-based 

supervised learning models using annotations of ICF and Other segments (Figure 

5.1c). For each epoch, all congested segments are classified as an incident related 

congestion front or not.  

Congestion front identification phase is followed by congestion stretch 

identification, in which upstream boundaries of detected congestion fronts are 

determined. 

 

where ∆𝑉𝑠,𝑡
𝑢,𝑑

 is the average travel speed difference 

between upstream and downstream segments segment 𝑠 

on epoch 𝑡 (See Equation 5.8). 

𝑢 is the subgraph depth of upstream segments. 

𝑑 is the number of downstream segments. 

ℎ is the length of historic datapoints on time-series. 

Datapoints correspond to the same time-of-day. 

𝑆 is the standard deviation of the datapoints. 

 

• Downstream Anomaly Factor: Anomaly factors calculated for 

the adjacent downstream segments of a segment. 

 



 

 

52 

a) 

 
b) 

 
c) 

 
 

Figure 5.1 a) Segments b) Upstream and downstream segments of Segment A c) An incident related 

congestion front annotated on Segment A  

 



 

 

53 

5.2.3 Congestion Spillback Identification  

A congestion spillback denotes the set of links affected by an NRC in epoch t (Figure 

5.2). Upstream links of a congestion front is scanned, and congested links are 

determined by a threshold-based qualification. To perform necessary topological 

search along the segments, a network topology graph is built using FCD segment 

features and created links are annotated with the length, road name and flow direction 

of the corresponding segment (Section 5.2.1). In search for congestion downstream 

dissolution, the anomaly factor threshold determined in Section 5.1 is used. All 

adjacent upstream segments are traversed and included in the spillback until the links 

with below threshold AF (𝐴𝐹 < 𝑇𝐴𝐹) are reached. Due to temporal changes in AF 

along the downstream links, a search tolerance span is implemented to avoid under-

detection of congested links due to links with under threshold AF values. 

5.2.4 Congestion Impact Area Construction 

A congestion impact area is defined as the continuous set of links with epochs which 

describe the spatiotemporal impact area of a congestion. In order to identify 

spatiotemporal extent of congested regions, detected congestion spillbacks in each 

epoch are merged using their level of relatedness in time and space. Construction is 

performed in each sequential epoch to be able to use the method for real-time 

congestion detection. For each epoch, detected congestion spillbacks are either 

merged into a set of spillbacks grouped as a congestion or a new set is initialized. 

Merging is carrying out using a rule-based approach. Front of the spillbacks are 

assumed to be the location of a possible incident or bottleneck causing the 

congestion, therefore used as a reference location to calculate relatedness among 

spillbacks in consequent epochs. A congestion spillback is merged into an existing 

congestion based on the spatial distance of their fronts and time-distance. Spatial 

distance threshold for matching is presented as a constant value, while time-distance 

threshold is proposed as a function of spatial extent of the previous congestion to 
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merge. Time-distance threshold gets higher to provide more tolerant merging as the 

detected congestions covers a larger area. A pseudo-code describing the rule-based 

merging is given in Figure 5.3.  

5.3 Spatiotemporal Information Matching 

In this study, methods to detect traffic incidents using two independent data-sources, 

social media data (SMD) and floating car-data (FCD), are presented. Traffic related 

events reported on Twitter are detected using information retrieval methods and 

geocoded using Traffic Event Geocoder framework. FCD is used to detect local 

incident related non-recurrent congestions (NRC) in the road network.  

A model based on spatial temporal relatedness is proposed to match the information 

which are detected from independently from FCD and SMD. A matching score based 

on a normalized spatial distance and time distance between event tweets and NRCs 

is used for matching. The results are augmented with contribution of two other 

parameters: locations being on the same flow direction of a street and the 

spatiotemporal impact area of the NRC. Individual scores which constitute the 

matching score are: 

Spatial Distance Score: Spatial distance is measured as the network distance 

between geocoded location of an event tweet to the closest link of an NRC. Distance 

score values are normalized using a threshold distance to fit in a scale from 0 to 1, 

e.g., distance at threshold gets a score of 0, and gets a score of 1 when distance is 0 

meter. Pairs which are farther than threshold are not evaluated as a possible match. 
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a)

b) 

 

 

Figure 5.2  Example congestion spillbacks detected for an NRC in a) epoch t and b) in epoch t+3 
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𝑠𝑝𝑖𝑙𝑙𝑏𝑎𝑐𝑘𝑠𝑡: links impacted by a congestion in epoch t 

𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠𝑡: identified congestions which extends to epoch t 

𝑑𝑖𝑠𝑡𝑎,𝑏
𝑆 : number of links constituting shortest path connecting link a to link b 

𝑑𝑖𝑠𝑡𝑎,𝑏
𝑇 : time distance between congestion c and spillback  

𝑇𝑒
𝑇

: time distance threshold based on congestion spatial extend e for merging 

𝑇𝑆 : spatial distance threshold for merging  

𝑓𝑟𝑜𝑛𝑡𝑐,𝑡: link which describe the front of congestion c at epoch t 

𝑓𝑟𝑜𝑛𝑡𝑠: link which describe the front of spillback s 

𝑒𝑥𝑡𝑒𝑛𝑡𝑐: spatial extent of congestion c 

𝑡𝑐
𝐿𝐴𝑆𝑇: last epoch in a congestion timespan 

𝑏: epochs to check in past 

1 For  𝑡 = l in epochs 

2 For each 𝒔 in 𝑠𝑝𝑖𝑙𝑙𝑏𝑎𝑐𝑘𝑠𝑡   

3  For each 𝑐 in 𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠𝑡−𝑏…𝑡−1  

4   If  𝒅𝒊𝒔𝒕𝒇𝒓𝒐𝒏𝒕𝒔 ,,𝒇𝒓𝒐𝒏𝒕
𝒄,𝒕𝒄

𝑳𝑨𝑺𝑻

𝑺  ≤ 𝑇𝑆 & 𝒅𝒊𝒔𝒕𝒔,𝒄
𝑻 ≤  𝑻𝒆𝒙𝒕𝒆𝒏𝒕𝒄

𝑻     

5    merge 𝑠 to 𝑐  

6  If 𝑠 is not merged 

7   create new congestion from 𝑠 

 

Figure 5.3  Congestion Identification Algorithm 

 

Time Distance Score: Time distance is the minimum absolute time difference 

between the post time of an event tweet and the impacted time span of the NRC. 

Time distance value is normalized to interval (0-1) using a maximum threshold 

value, closer pairs are getting a higher score. Values above threshold are excluded 

from evaluation. 

Impact Score: Spatiotemporal impact area of NRCs is included in the score in order 

to give a higher priority to NRCs with a bigger impact area in contesting situations. 

Impact score is an approximation of total delay, calculated using the sum of 

differences of observed and estimated travel times along the segments impacted by 

congestion, multiplied by segments lane count estimated using roadclass of the 

segment. 
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Street Match Score: To improve matching accuracy, an extra score is added, when 

both geocoded location of the event and location NRC are on the same flow direction 

of a street.  Overall matching score is a composite score, consisting of spatial distance 

score, time distance score, impact size score and street match score.  

 

5.3.1 Match Confidence Estimate 

Urban road network has a complex topology, thus producing a noisy travel time data 

impacted by features such as signals and bottlenecks. Such noise can mimic non-

recurrent congestion patterns, causing false alarms and random information matches. 

In order to quantify reliability of information matching a measure based on a delta-

score is introduced. The delta-score is calculated as the difference between the 

matching scores of top and the second-best matches. Since the underlying 

distribution of delta-score is unknown, a distribution can be created using a 

simulation. A simulation is developed by assigning random incidents in road 

network in active hours and matched with the congestion detected in Section 5.2. 

Delta-scores of the simulated matches are calculated as a reference distribution for 

the variable. A match confidence estimate (𝐶) is calculated as the p-value of a match 

in the distribution of the simulated delta-scores. Matches with a match confidence 

estimate (𝐶) below a determined threshold are referred as confident matches. The 

match confidence estimate is used to minimize number of random matches and filter 

congestion detection results to avoid false detections. 
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CHAPTER 6  

6 CASE STUDIES 

In this chapter experiments using methods presented in previous chapters are 

conducted on a case study in Ankara. In Section 6.1, traffic event detection method 

given in Chapter 3 is evaluated on a tweet data set covering a region surrounding 

Ankara city. In Section 6.2, experiments of traffic event localization method given 

in Chapter 4 are conducted on a set of traffic events reported on Twitter. In Section 

6.3, non-recurrent congestion detection method given in Chapter 5 is evaluated on a 

commercial FCD data covering a major arterial, Eskişehir Road. Finally, in Section 

6.4, the traffic event tweets and non-recurrent congestions detected in Section 6.1 

and Section 6.3 respectively are matched using of spatial information matching 

method given in Section 5.3. 

6.1 Traffic Event Detection in Social Media 

In this section, the data set, conducted experiments and the results are presented. The 

codes are implemented in C# language on ASP.NET platform. Machine learning 

models are developed by using Accord framework (Souza et al., 2014). All 

experiments are carried out on a Windows-based PC running on a 6-core Intel Core 

i7 3.2 GHz processor with 32 GB of memory. 

6.1.1 Dataset 

Our data set is a tweet collection that is retrieved by using Twitter Search API with 

a predefined set of keywords under location filtering defining 50mi radius around 

the city center of Ankara. The collection consists of 21,077 tweets, posted from 

January 1st to January 31st, 2017. For ground truth construction, tweets are manually 
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annotated for the traffic entity recognition and classification by using a web-based 

application. In Figure 6.3, locations of the some of the traffic events reported in 

tweets are shown on map of Ankara around Eskişehir Road. As shown on the map, 

the reported sample events typically correspond to locations on the city road 

network.  

The method involves supervised learning methods for named entity recognition and 

classification. A training data set covering 21,077 tweets, posted between January 

1st to January 31st, 2017, are manually annotated for traffic event entity recognition 

(Section 3.4.4) and classification tasks (Section 3.4.5). To this aim, a web based 

custom tool, Entity Annotation Tool, is developed. 

6.1.1.1 Entity Annotation Tool 

Although there exist numerous tools for text annotation, these provide limited 

support for morphologically rich languages. A web-based tool which provide 

functions to handle complex Turkish morphology has been developed for annotation 

purposes for supervised learning models.  

Tool uses TRMorph toolset (Coltekin, 2014) to perform morphological analysis for 

each token and segment tokens into subtokens. Each subtoken is identified with a 

unique identifier for annotation purposes. Annotators can assign tokens with the tags 

which are customized for traffic event related tweets. (Figure 6.1 and Figure 6.2). 

Segmented subtokens and assigned tags are stored in MongoDB as json formatted 

documents. 
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Figure 6.1 Annotating text with entity tags 

 

 

 

Figure 6.2 A tweet annotated with tags using Entity Annotation Tool 
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6.1.1.2 Class Labelling 

The focus of the study is to detect and describe incidents or conditions which affect 

the traffic flow using social media stream and floating car data in real-time. Relevant 

posts in social media stream are detected using supervised machine learning 

methods. A training data set is labelled manually to define the ground truth for the 

classification tasks. Two classes are defined to categorize the stream, Direct Traffic 

Report (DTR), and Other. DTR denotes that the posting is a direct and immediate 

report of an incident or road condition which might affect the traffic flow. On the 

other hand, other denotes that the post does not meet the criteria of DTR. 

More specifically, DTR denotes any of the following cases: 

• Traffic accident reported by individuals 

• Weather condition reported by individuals 

• Road condition and warnings reported by individuals or institutes 

• Ongoing road maintenance work reported by individuals or institutes if the 

report is recent or presumably effective by the time the tweet is posted and 

includes a location reference. 

DTR excludes the following cases: 

•  News article (due to uncertainty in the recency of the article) 

•  Condition that is not clearly affecting traffic flow, such as posts reporting 

conditions affecting pedestrians without a reference to a road or traffic flow 

condition 

• Report without a location reference 

• Indirect report of individuals referring another information source, such as 

media or social media 

• Speed radar location warnings 

 

As the result of the annotation, 649 tweets are labeled as DTR.
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Figure 6.3 Locations of DTR tweets around Eskisehir Road 
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6.1.2 Traffic Event Entity Recognition 

Traffic event related named entity recognition task is performed by using 

Conditional Random Fields (CRF) technique. Annotated tags are transformed into 

Inside-Outside-Beginning (IOB) format, which is a standard annotation format for 

tagging tokens in linguistic tasks. Each annotated token is marked with a suffix, I for 

inside, O for outside and B for begin, to determine the chunks of corresponding 

annotations. More concretely, IOB2 format, which is an extension over IOB by 

annotating the beginning of each chunk as B, is used for entity annotation. Tagging 

is performed on subtokens. Subtokens are represented with their surface text, 

morphological tags that are assigned during morphological analysis, and tag 

annotations in the training set. Subtokens that are not annotated with a tag are 

represented with an S tag. Annotation is performed only on tweets that are labeled as 

DTR.  Training data set is created by including annotated tweets with DTR label and 

equal number of tweets with Other label. Tweets with Other label are not annotated 

with tags and each token is represented with an S tag.  

Performance results for the traffic event recognition model are given in Table 6.1. In 

order to improve the entity recognition accuracy, tags with low recognition rate in 

validation experiments are merged into groups. All tags under incident category 

Incident, ExternalEvent, Maintenance, RoadCondition are modeled as Incident, 

People and Vehicle as Entity, Location and Region as Location.  Resulting 

performance metrics for the merged traffic event recognition model are summarized 

in Table 6.2. For each named entity group, correctly recognized named entities are 

given as true positives (TP) and incorrectly recognized ones are given as false 

negatives (FN). Tokens that are incorrectly recognized to be in the given named 

entity group are given as false positives (FP). Precision is the ratio of the successfully 

recognized named entities to all entities recognized to be in the given group. Recall 

is the ratio of the successfully recognized named entities to all actual named entities 

in the given group. F1-Score (F1) is the harmonic average of Precision and Recall, 
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which provides a single score considering two metrics. The results in the table are 

ranked with respect to F1-Score. As seen in the results, several entity groups 

including Maintenance and Direction have high precision and F1 values, whereas 

some groups are much harder to recognize, such as Incident or Connection. This is 

possibly due to the variety of the tokens in the entity group, such as Maintenance is 

generally denoted by phrases including the word bakım (Eng. maintenance). 

Constructed classification model is tested under 10-fold cross-validation. Test is 

performed on test datasets which consist of tweets from both DTR and Others.  

 

Table 6.1 Precision, Recall and F1-score for recognition of merged traffic related named entities 

 

Tag TP FP  FN Recall 

(%) 

Precision 

(%) 

F1 (%) 

Direction 176 31 68 72.1 85.0 78.0 

Maintenance 207 110 25 89.2 65.3 75.4 

DirectionIndicator 131 34 69 65.5 79.4 71.8 

Damage 54 41 17 76.1 56.8 65.1 

Flow 194 90 154 55.7 68.3 61.4 

Lane 36 10 42 46.2 78.3 58.1 

LocationIndicator 276 210 276 50.0 56.8 53.2 

Street 697 1,040 237 74.6 40.1 52.2 

ConnectionIndicator 12 0 23 34.3 100.0 51.1 

RoadFeatures 61 62 82 42.7 49.6 45.9 

Location 271 130 625 30.2 67.6 41.8 

Connection 13 1 38 25.5 92.9 40.0 

Incident 17 1 541 3.0 94.4 5.9 

Accident 0 362 0 N/A 0.0 N/A 

RoadCondition 0 592 0 N/A 0.0 N/A 

Region 0 473 0 N/A 0.0 N/A 

Vehicle 0 57 0 N/A 0.0 N/A 

ExternalEvent 0 0 14 0.0 N/A N/A 

Entity 0 0 101 0.0 N/A N/A 

All 2,145 3,244 2,312 48.1 39.8 43.6 
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Table 6.2 Precision, Recall and F1-score for recognition of merged traffic related named entities 

 

Named Entity TP FP FN Prec. 

(%) 

Recall 

(%) 

F1 

(%) 

Maintenance 295 1 68 99.7 81.3 89.5 

Direction 177 10 71 94.7 71.4 81.4 

Damage 55 8 21 87.3 72.4 79.1 

DirectionInd. 131 12 74 91.6 63.9 75.3 

Flow 201 56 164 78.2 55.1 64.6 

Lane 36 10 42 78.3 46.2 58.1 

Street 781 861 272 47.6 74.2 58.0 

LocationInd. 320 168 306 65.6 51.1 57.5 

Location 652 559 417 53.8 61.0 57.2 

RoadFeatures 64 48 87 57.1 42.4 48.7 

ConnectionInd. 10 0 26 100.0 27.8 43.5 

Incident 289 804 300 26.4 49.1 34.4 

Entity 33 58 74 36.3 30.8 33.3 

Connection 10 0 43 100.0 18.9 31.7 

ExternalEvent 0 0 20 0.0 N/A N/A 

Time 0 0 5 0.0 N/A N/A 

All 3054 2595 1999 54.1 60.4 57.1 

 

6.1.3 Classification Performance 

Classification is the step to detect traffic event related tweets. In this study, SVM, 

Decision Tree classifier with C4.5 algorithm and Naïve Bayes classifier are used for 

classifying tweets as DTR or Other. Feature vector corresponding to a tweet consists 

of three types of features: Stems under bag of words model, Top Named Entities, and 

All Named Entities.  

Stems are the stemmed forms of the words that are generated in morphological 

analysis step. Due to the high number of stemmed words extracted from tweet 

contents, feature selection is applied such that the terms below a term frequency 

threshold are filtered out. Each classifier is run under several term frequency 
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thresholds (TFT), which indicate the percentage of top terms included in the selected 

set with respect to all terms in the training corpus. For instance, feature selection 

under TFT value of 5 consist of only the top 5% of the terms ordered by their term 

frequencies in the corresponding training corpus. 

Top Named Entities are a subset of traffic related named entities, which performed 

best in the Traffic Related Named Entity Recognition model. Top Named Entities 

consist of Direction, Flow, Maintenance, Lane and Damage. All Named Entities 

consist of all entities included in the model. Both Top Named Entities and All Named 

Entities exclude DirectionIndicator, LocationIndicator, ConnectionIndicator, which 

are auxiliary named entities that are used together with other named entities, such as 

in Ümitköy or to 12th Street. 

Classification performance experiments are conducted under 10-fold cross 

validation. This set of experiments aim to analyze the effect of various feature 

groupings for SVM, Naive Bayes and Decision Tree (C4.5) classifiers. The results 

are summarized in Table 6.3. 

 

Table 6.3 Classification performance with different feature sets and classifiers 

 

Feature 

set 

Classifier Tokens1  Subtokens2 

  TFT Recall Prec. F1  TFT Recall Prec. F1 

Stems SVM 33 29,9 81,2 43,7  33 55,5 93,3 69,6 

C4.5 5 61,9 41,7 49,8  10 54,0 60,0 56,8 

NB 10 51,3 62,6 56,4  10 55,5 62,7 58,9 

Stems 

Top 

Named 

Entities 

SVM 10 56,4 82,1 66,8  10 53,3 92,0 67,5 

C4.5 5 68,1 59,4 63,5  5 66,6 61,3 63,9 

NB 5 54,7 71,7 62,1  5 60,2 71,6 65,4 

Stems 

All 

Named 

Entities 

SVM 2 70,7 65,7 68,1  25 67,0 73,7 70,2 

C4.5 2 73,3 50,7 60,0  10 72,4 54,8 62,4 

NB 2 74,6 62,1 67,7  2 70,7 65,7 68,1 

1Models developed disregarding morphological features 

2Using subtokens generated in morphological analysis 
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As given in the previous section, DTR tweets, which are correctly classified as DTR 

are given as true positives (TP) and incorrectly classified as Other are given as false 

negatives (FN). Tweets that belong to Other, which are correctly classified as Other 

are given as true negatives (TN), whereas the ones that are incorrectly classified as 

DTR are given as false positives (FP). Precision is the ratio of the number 

successfully detected DTR to the number of all DTR labeled tweets. Recall is the 

ratio of the number of actual DTR labeled tweets to the number of tweets detected as 

DTR.  A detailed break-down of the analyzed feature sets and their performance 

values for the SVM classifier are given in Table 6.4. 

In order to observe the contribution of the extracted morphological features on the 

classification task, the experiments are conducted separately using models based on 

tokens and subtokens. In Table 6.3, results for several classifiers comparing the 

models built with tokens and subtokens are presented. 

SVM classifier performed best with the subtoken-based feature set including stems 

and AllEntities with a F1-Score of 70.2%. SVM classifier reached this score by using 

the top 25% of all terms sorted by their frequency in all documents. Classifier was 

able to detect 67% of all traffic related events, while 73.7% of the events detected as 

traffic related events were actually traffic related. 

Highest F1-Score of 63.9% was achieved by C4.5 algorithm-based classifier using 

the subtoken-based feature set consisting of stems and TopEntities. This score was 

reached with a TFT level set at 5%. Classifier was able to detect 66.6% of all traffic 

related events, while 61.3% of the events detected as traffic related events were 

actually traffic related. Naive-Bayes classifier reached highest F1-Score of 68.1% 

with subtoken-based models employing stems and AllEntities. Highest score was 

reached at a TFT level of only 2%. 
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Table 6.4 Classification performance of SVM in precision, recall and F1-score 

 

Feature Types: Stems 

TFT TP FP FN TN 

Recall 

(%) 

Precision 

(%) 

F1 

(%) 

1 
0 0 650 18288 0 NA NA 

2 
187 37 463 18281 28.8 83.5 42.8 

5 
322 48 328 18274 49.5 87.0 63.1 

10 
337 26 312 18293 51.9 92.8 66.6 

25 
357 23 292 18297 55.0 93.9 69.4 

Feature Types: Stems and Top Named Entities 

TFT TP FP FN TN 

Recall 

(%) 

Precision 

(%) 

F1 

(%) 

1 
53 12 596 18262 8.2 81.5 14.8 

2 
288 33 362 18278 44.3 89.7 59.3 

5 
329 30 321 18286 50.6 91.6 65.2 

10 
346 30 303 18284 53.3 92.0 67.5 

25 
344 27 305 18289 53.0 92.7 67.5 

33 
341 27 308 18289 52.5 92.7 67.1 

Feature Types: Stems and All Named Entities 

TFT TP FP FN TN 

Recall 

(%) 

Precision 

(%) 

F1 

(%) 

1 460 355 189 17927 70.9 56.4 62.8 

2 453 226 196 18088 69.8 66.7 68.2 

5 430 160 219 18157 66.3 72.9 69.4 

10 432 157 217 18161 66.6 73.3 69.8 

25 435 155 214 18165 67.0 73.7 70.2 

33 434 155 215 18165 66.9 73.7 70.1 
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Models employing subtoken-based feature sets scored better in all classification 

tests. Highest F1-Scores achieved among subtoken and token-based features sets are; 

70.2% and 68.1% for SVM classifier, 63.9% and 63.5% for C4.5 classifier and 

68.1% and 67.7% for NB classifier. Some example tweets which are correctly 

classified as DTR class are given in Table 6.5. Example set consist of tweets 

reporting traffic related incidents, maintenance works and other road conditions. 

Several challenges have been observed due to the strict inclusion criteria for DTR 

class. DTR label is used for only immediate and direct reports. Any tweet not 

matching these criteria are marked as Others. Indirect reports of incidents that refer 

other sources or news articles, which do not reflect a recent incident, are labeled as 

Others. Such tweets affected the performance of classification task negatively, due 

to lack of features to model subtle semantic differences. A set of misclassified tweets 

are given in Table 6.6. 

The difficult cases that lead to incorrect labeling for false positive instances can be 

listed as follows: 

• Non-DTR tweets using traffic terms (FP Example 1 in Table 6.6) 

• Tweets that do not report an immediate condition (FP Example 2 in Table 

6.6) 

• Tweets reporting conditions that do not clearly affect the traffic flow. (FP 

Examples 3, 4 and 5 in Table 6.6) 

• Tweets including a question on traffic flow rather than a report (FP Example 

6 in Table 6.6) 

Similarly, the cases that lead to false negative labeling can be summarized as follows: 

• Tweets in which location descriptions are not successfully identified by 

named entity recognizer (FN Examples 2 and 6 in Table 6.6) 

• Tweets that describe events using irony or in unconventional ways (FN 

Example 3 in Table 6.6) 

• Tweets that do not refer to a particular location in the city (FN Examples 1 

and 4 in Table 6.6) 
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• Unusual event types that are reported rarely (FN Example 5 in Table 6.6) 

 

Table 6.5 TP Examples from classification experiment results 

 

1 Çiftlik Kavşağı Cumhurbaşkanlığı yolu üzerinde sol şerit de araç arızası var bölgeyi olumsuz 

etkiliyor 

Vehicle break-down at Çiftlik Intersection, in the left lane on Presidential Road, is affecting 

region negatively 

2 Elvankent 12.cadde büyük kaza var 10-12 araç birbirine girmiş o caddenin alternatiflerini 

kullanın 

A major incident on Elvankent 12 th Ave involving 10-12 vehicles, use alternative routes 

3 Gölbaşı Taşpınar Mahallesi 2855. Cadde'de yol bakım çalışmamız devam ediyor 

Ongoing road maintenance on 2855th street in Taşpınar neighbourhood of Gölbaşı 

4 1071 Malazgirt Bulvarı kilit. 20 dk oldu böyle bekliyoruz kaza falan mı var? 

Malazgirt Boulevard is gridlocked. We have been waiting here for 20 minutes, is there and 

accident or so? 

5 #YolDurumu İncek Bulvarı, İncek yönünde hasarlı kaza!  

#RoadCondition Accident with damages on İncek Boulevard in İncek direction 

6 Eskişehir Yoluna dönüşler kapatıldığı için Konya Yolu trafiği Balgat Demirköprü' ye kadar 

kilit. 

Due to blocked ramps to Eskişehir Road, traffic on Konya Road is gridlocked until Balgat 

Demirköprü 

7 Eskişehir Yolu Konutkent kavşağı... çok ciddi kaza can kaybı olabilir 4 araba birbirine girmiş 

durumda  

Konutkent intersection on Eskişehir Road, a serious accident with possible causalities, 4-

vehicle pile-up crash 

8 Pursaklar İlçesi, Saray - Cumhuriyet Mahallesi, As Sokak içerisindeki yağmursuyu ızgaraları 

temizlenmektedir. 

Rainwater grates clean-up is underway on As Sokak, in Saray-Cumhuriyet districts in 

Pursaklar subprovince 

9 Güdül İlçesi muhtelif cadde ve mahallelerinde karla mücadele çalışmamız devam ediyor  

Snow removal is underway in several streets and districts of  Güdül subprovince. 

10 Öveçler 2. ve Öveçler 4. cadde arasında kalan yollar buzla kaplı.Kaldırımlarda da yürümek 

oldukça zor. 

Ice on all the roads between Öveçler 2nd and Öveçler 4th avenues.Very difficult to walk on 

sidewalks 

11 yasamkent 3267 cadde ve atabilge okul yolu tamamen kapalı acil müdahale 

3267th street in Yaşamkent and the road to Atabilge school are blocked completely. Urgent 

intervention needed. 

12 Anadolu bulvarı merkez yöne marsandiz köprüde sol şeritte 2 araçlık kaza 

2-vehicle accident on  inbound Anadolu Boulevard at Marsandiz Bridge 

13 Anadolu bulvarı kilit, kaza var 3 araba var 

Anadolu Boulevard is gridlocked, there is an accident with 3 cars 

14 Elmadağdan Kırıkkale'ye gidiş kaza var trafik kilit 

Accident on the way from Elmadağ to Kırıkkale, traffic is gridlocked 
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Table 6.6 FP and FN examples from classification experiment results 

 

False Positives 

1 Hayallerime giden yolda trafik var 

There is traffic on the roads to my dreams 

2 Etimesgut'taki yeni Gimsanın önündeki ışıklar 4 gündür yanmıyor.  Kaza ihtimali artıyor.. 

The traffic lights in front of the new Gimsa in Etimesgut are not working for the last 4 days. 

Increased accident risk.. 

3 Burası Demetevler 406.cadde YapıKredi ve Ziraat bankasının önündeki kaldırım.buz pisti 

gibi.Acil yardm bekliyoruz… 

This is the sidewalk in front of Yapı Kredi and Ziraat Bank on 406th Street in Demetevler. 

Covered in ice. Urgent help needed. 

4 Ankara Bahçelievler 7.cadde 1966. Son Durak Eser Sitesi İnşaatı devam ediyor. Eser Sitesi 

is under construction at last stop on 7th Street, (1966th) in Bahçelievler, Ankara 

5 Malazgirt mahallesi 1009 sokak ta karlar gerçekten temizlenmiş.  Teşekkürler.  

Snow has indeed been removed from 1009th street in Malazgirt neighborhood. Thank you. 

6 Havaalanı yolu ve Oran ile ilgili yol-kar durumu bilgisi olan var mi 

Has anyone information about road-snow conditions for Airport Road and Oran? 

False Negatives 

1 Kuvvetli Buzlanma ve Don Olayının etkili olduğu Ankara Kent Merkezinde yol tuzlama 

çalışmalarımız devam ediyor… 

Road-salting operation is underway in frost-hit Ankara city center 

2 Zırhlı birlikler çıkışında 4 araç 1 otobüsün karıştığı zincirleme kaza var. Trafik kilit ötesi. 

There is a pile-up accident of 4 vehicles and a bus at the exit of Zırhlı Birlikler 

3 Ankaraya göktaşı falan düştü de insanlar kaçıyor mu anlamadım. Konya yolundaki trafik 

neye hacet? 

Has Ankara been hit by a meteor and are people running from it? Why so much traffic on 

Konya road? 

4 Ankaranın heryeri buz pisti çok kaza var dikkat edin... 

 Everywhere in Ankara seems like an ice rink, many accidents, be careful... 

5 Yaşamkent kavşağı trafik ışıkları yanmıyor curcuna yaşanıyor  

Malfunctioning traffic lights are causing confusion at Yaşamkent intersection 

6 Eskisehir yolu Ümitköy dönüsu.dolmus bilinmeyen nedenle  

Eskişehir Road, Ümitköy exit. Minibus on fire for unknown reason  
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6.2 Traffic Event Localization 

In this section, the performance of Traffic Event Geocoder is evaluated 

independently and along with other geocoder packages commonly used in localizing 

traffic events. The analysis is conducted on a case study covering Ankara city proper. 

Traffic event related tweets are collected for Ankara using Twitter Search API4. For 

the analysis, the following steps are carried out: 

1. Training data set is obtained and annotated to construct TEER model. 

2. OSM data is downloaded, and objects used for geocoding are extracted from 

the OSM data. 

3. For geocoding performance evaluation, test data set of 136 tweets are 

geolocated manually using the location description in their text content. 

4. A custom data set of landmarks are mapped to alleviate the missing data 

problem in OSM data, creating the Enriched-OSM data set. 

 

TEER model is implemented using the CRF method, a supervised learning model 

that is commonly used in named entity recognition tasks (Section 6.1.2). 

Performance results for location entities in precision, recall, and F1-score under 10-

fold cross-validation are given in Table 6.7 (see Table 6.2 for all named entity types). 

Map data covering the extent of the area of interest is downloaded using Overpass 

API5. The data, consisting of 1,371,700 elements in a 261-MB XML file, is parsed 

using OsmSharp6. Some of the landmarks that are frequently used in event reports 

were missing in the OSM data. Such missing landmarks are mapped to create a 

custom dataset, Enriched-OSM. Enriched dataset is used as an alternative to observe 

the effect of enrichment of map data on geocoding. These extensions consist of (1) 

 

 

4 https://developer.twitter.com/en/docs/twitter-api/v1/tweets/search/api-reference/get-search-tweets  
5 https://wiki.openstreetmap.org/wiki/Overpass\_API 
6 http://www.osmsharp.com 
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Ankara Kapıları (eng. Ankara Gates, entrance gate structures of Ankara), which are 

located on main streets at the entrances of Ankara, (2) fixed speed cameras, which 

are referred as 82 Radar due to their speed warning label of 82 km/h on them, (3) 

and some well-known intersections, including Ölüm Kavşağı (eng. Intersection of 

Death) informally named as such after fatal accidents. Locations of such frequently 

used landmarks mapped to construct the Enriched-OSM data are given in Figure 6.4. 

 

Table 6.7 Named entity recognition performance results for the TEER model 

 

Tag TP FP FN Recall 

(%) 

Precision 

(%) 

F1 (%) 

Direction 177 10 71 71.4 94.7 81.4 

Direction Indicator 131 12 74 63.9 91.6 75.3 

Street 781 861 272 74.2 47.6 58.0 

Location Indicator 320 168 306 51.1 65.6 57.5 

Location 652 559 417 61.0 53.8 57.2 

Connection Indicator 10 0 26 27.8 100.0 43.5 

Connection 10 0 43 18.9 100.0 31.7 

 

Traffic Event Geocoder is implemented as a .Net application. A test data set 

consisting of 136 tweets is selected among the traffic event tweets with a clear 

definition of location. Sample tweets from the test data set are given in Table 6.8. In 

the tweets, the tag (IMAGE) denotes that the tweet includes an image. However, 

during processing and annotation, such attachments to the tweets were not 

considered and not processed. Event locations in the test data set are manually 

geocoded by domain expert operators. The number of operators participating in the 

ground truth label annotation was limited to 2, due to the limited availability of field 

experts. Operators, both of which were Geographic Information Systems (GIS) 

specialists, were provided with a map of road network geometry along with the 

following set of instructions to standardize the markings: 

• Markings should be performed on GIS software. 
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• Event locations should be marked on the road network geometry provided. 

• Any reliable sources can be employed to choose the best location for the 

mentioned terms. 

• Locations should be implied only from the terms in the tweet content. Other 

meta information, including embedded images or videos, should be ignored. 

• Event locations can be represented as a point or a polyline if needed for 

continuous location definitions. 

• Directions terms should be considered to mark the event on the stretch with 

the matching flow direction on the divided roadways. 

 

Table 6.8 Sample tweets from the collected test data set 

 

@radyotrafik06 eskişehir yolu merkez yönde gordion köprüsünden itibaren dur kalk ilerliyor. 

Ümitköy köprüsüne kadar… (IMAGE) #YolDurumu 

Stop and go traffic on inbound Eskişehir Road starting from Gordion Bridge. Until Ümitköy 

Bridge... 

Yozgat bulvarı forum Ankara kavşağı kilit acil trafik Ekibi gerek. (IMAGE) 

 Gridlock at Forum Ankara intersection on Yozgat Boulevard(,) traffic patrol needed urgently. 

Eskisehir yolu ümitköy dönüsu.dolmus bilinmeyen nedenle yanıyor (IMAGE) 

Eskişehir Road Ümitköy Exit. Minibus in fire for unknown reason 

Konya Yolu Taurus önünde kalabalık trafik var, buzlanmadan dolayı araçlar çukurambar tarafina 

dönemiyorlar. 

Heavy traffic in front of Taurus on Konya Road, vehicles cannot turn to Çukurambar direction due 

to icing. 

Eskişehir yolu konutkent kavşağı... çok ciddi kaza can kaybı olabilir 4 araba birbirine girmiş 

durumda (IMAGE) 

Konutkent intersection on Eskişehir Road, a serious accident with possible causalities, 4-vehicle 

pile-up crash 

Kuzey Çevre yolu Batıkent yönü Forum Ankara civarı. Yolda araç yangını var. İtfaiye ve ambulans 

geldi. Trafik duruyor! 

Batıkent direction on Northern Ring Road around Forum Ankara. Vehicle fire on the road. A fire 

truck and ambulance arrived. Traffic at standstill! 

Mevlana Bulvarı, Malazgirt Bulvarı bağlantısı Gimat yönünde kaza!!! ... 

Accident at Malazgirt Boulevard exit on Mevlana Boulevard Gimat direction!!! ... 
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Agreement levels among operators are measured using network distances between 

markings. Event locations which are marked within 1000 meters by both operators 

are accepted as agreed locations. Operators agreed on the locations of 118 events, 

while network distances of markings were higher than the threshold in 18 events. An 

agreed location is set by the geometric center of two markings on the road network. 

Evaluations of the geocoding results are performed on 118 events with the agreed 

locations. The error of geocoding is measured using the distance of the geocoding 

result with the agreed location. Distance is defined as the total length of links 

connecting two locations, geocoded, and agreed location, respecting the link flow 

directions. Traffic Event Geocoder using OSM (TEG) and Traffic Event Geocoder 

using Enriched-OSM (TEGE) are evaluated separately. Although most of the terms 

are mapped correctly on the OSM elements, some incorrect mappings yielded outlier 

errors. Hence median positional error which is more resistant to outliers is used as 

the main metric to evaluate the results. The average and median positional errors of 

geocoding are 757.0 and 232.4 meters for TEGE and 1488.5 and 379.2 meters for 

TEG. TEG geocoded 56 events within 750-meter error, and 7 events within 750 to 

1500-meter error. Whereas TEGE geocoded 68 events within 750-meter error, and 6 

events within 750 to 1500-meter error. The number of events which could not be 

geocoded is 36 in both TEG and TEGE. Geocoding performance of TEG and TEGE 

are summarized in Table 6.9. Median and average positional errors grouped by the 

type and the number of location terms located on the map per event in TEG 

experiments are given in Table 6.10. Geocoder rules are able to locate the events, if 

a single Location term or a Road term along with a Location or a Connection term 

are matched on map data. Median positional error decreases with the increasing 

number of terms geocoded, reaching 183-meter error when geocoding is performed 

using 1 Road term with 2 Location terms. Geocoder fails to locate 23 events in which 

only a single Road term is located on map. No location term is detected in 13 events.  
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Figure 6.4 Frequently referenced landmarks appended to create Enriched-OSM 

 

Table 6.9 Positional errors in the experiments of overall Traffic Event Geocoder method 

 

Positional 

Error 

Number of events (#) and percentages (%) 

 TEG  TEGE 

(meters) # %  # % 

0-750 56 47.5  68 57.6 

750-1500 7 5.9  6 5.1 

1500-5000 12 10.2  5 4.2 

5000+ 7 5.9  3 2.5 

N/A 36 30.5  36 30.5 
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Table 6.10 Average positional errors by location terms located on map in TEG 

 

Location terms 

geocoded 

Median 

positional error 

(meters) 

Average 

positional error 

(meters) 

Number 

of events 

Number 

of events 

geocoded 

1 Location 420 1383.8 27 27 

1 Road 1 

Connection 

211.5 295.0 4 4 

1 Road 1 Location 373 1828.7 32 32 

1 Road 2 Location 183 1758.3 7 7 

2 Locations 486 2574.7 3 3 

2 Road 405 566.6 9 9 

1 Road N/A N/A 0 23 

None N/A N/A 0 13 

 

Performance of TEG is evaluated against the most commonly used geocoders in 

traffic event detection research. To present the results of rule-based road geocoder 

independently from TEER results, performances of TEG, TEGE, Google Maps 

Geocoding API (GM), ArcGIS World Geocoding Service (AG) and Nominatim 

(NOM) and Nominatim using Enriched-OSM (NOME) are evaluated against the set 

of events with successfully detected location terms. For 82 events out of 118, TEER 

task detected all the location terms successfully. Rule-based geocoder processed 

location entities along with their detected functions, whilst reference geocoders are 

provided with an address string consisting of location entities complemented with a 

bounding box of the study area. Terms indicating direction could not be interpreted 

by GM and AG explicitly and increased errors, therefore removed from 

corresponding queries. 

Median positional errors of geocoding by TEG, GM, AG and NOM are 279.3, 739.1, 

3687.6, 3953.8, respectively. Whereas average positional errors of geocoding by 

TEG, GM, AG, and NOM are 1300.6, 2051.2, 8416.5, 5505.6 meters, respectively. 

TEG, interpreting location entities with their detected functions, located more events 

than GM, AG and NOM (65.9% vs. 50.0%, 28.0% and 14.6%) with an under 750-

meter positional error. Use of Enriched-OSM dataset improved results for both 
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Traffic Event Geocoder and Nominatim. TEGE performed better than TEG in terms 

of median position error (217.4 vs 279.3 meters) and located more events within 750-

meter error (80.5% vs. 65.9%), similarly NOME achieved smaller median positional 

errors than NOM (1464.8 vs 3953.8 meters), locating more events within 750-meter 

error (23.2% vs 14.6%). The geocoding performance results for TEG, TEGE, GM, 

AG, NOM, and. NOME under successfully detected location terms are presented in 

Table 6.11. TEG's lead over the reference geocoding services in the number of events 

geocoded with under 750-m error can be seen in Figure 6.5. GM and AG geocoded 

all the events, though 3 events geocoded outside of the study area despite a provided 

bounding box. Events geocoded outside of the network are excluded from averages. 

In the TEGE experiments, 6 over 82 events could not be geocoded. Among these, 2 

cases failed due to missing or inadequate map data. Geolocating of 2 cases failed due 

to incorrect location tags assigned by TEER. Geocoder rules failed to handle detected 

entities in the remaining 2 cases. Being a crowd-sourced data, which is open for 

editing, OSM can further be improved by defining more landmarks which would 

assist geocoding in a region of interest. The proposed ruleset can also be extended to 

improve the geocoding results per need. 
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Table 6.11 Positional errors in the experiments of Traffic Event Geocoder (TEG), Traffic Event Geocoder with Enriched-OSM (TEGE), Google Maps 

Geocoding API (GM), ArcGIS World Geocoding Service (AG), Nominatim (NOM) and Nominatim with Enriched-OSM (NOME) 

 

Positional errors Number of events (#) and percentages (%) 

 TEG  TEGE  GM  AG  NOM  NOME 

(meters) # %  # %  # %  # %  # %  # % 

0-750 54 65.9  66 80.5  41 50.0  23 28.0  12 14.6  19 23.2 

750-1500 6 7.3  5 6.1  6 7.3  7 8.5  2 2.4  4 4.9 

1500-5000 9 11.0  4 4.9  25 30.5  14 17.1  6 7.3  6 7.3 

5000+ 6 7.3  1 1.2  9 11.0  36 43.9  15 18.3  16 19.5 

N/A 7 8.5  6 7.3  1 1.2  2 2.4  47 57.3  37 45.1 
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Figure 6.5 Distribution of positional errors in the experiments of Traffic Event Geocoder (TEG), Traffic Event Geocoder with Enriched-OSM (TEGE), 

Google Maps Geocoding API (GM), ArcGIS World Geocoding Service (AG), Nominatim (NOM) and Nominatim with Enriched-OSM (NOME)
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6.3 Non-recurrent Congestion Detection in FCD 

6.3.1 Floating Car Dataset 

FCD used for this study is a commercial travel speed data provided by Be-Mobile. 

FCD data for Turkey is collected from around 600,000 GPS equipped vehicles 

(Altintasi et al., 2019). Available data covers Eskisehir Road and connecting arterials 

in Ankara. Data provides 1-minute resolution travel speed data for the road network 

which is split into segments with a maximum length of 50 meters (Figure 6.6). FCD 

for the study area consist of 5699 segments covering a total length of 207 kilometers. 

In this study, incidents through the year 2017 is investigated. Obtained FCD for the 

study covers 319 days of 2017, the time periods with missing data are excluded from 

the analysis. Data consists of over 1,3 billion FCD records taking 22.1 GB disk space. 

FCD data covers time from 06:00 to 24:00 with 1080 records per day. An FCD record 

consists of an average travel time and an average travel speed associated with a 

segment and time-epoch (Table 6.12). Daily distribution of FCD records for an 

example segment on a major arterial is given in Figure 6.7. Availability of data varies 

for each segment, while the major arterials has more than 95% daily coverage, some 

minor arterials has almost no FCD records associated (Figure 6.8). In FCD, road 

network is represented as unidirectional connected segments, which is converted into 

an adjacency matrix for further analysis required by the study. In order to handle 

large FCD data efficiently, data is aggregated into 5-minute time windows. 

Throughout this section each time window is denoted as an epoch and segment-

epoch tuples which contain aggregated FCD records of a segment during an epoch 

is referred as an FCD frame. Data is visualized in a 3D environment using Cesium 

3D.  Time dimension is projected on z-axis and displayed as extruded blocks over 

link geographical coordinates. 
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Table 6.12 Data stored in an FCD record 

 

Field Description 

Segment ID ID of the segment record belongs to 

Update Time Measurement time 

Travel Time Average time taken to traverse the segment 

Speed Average speed observed on the segment 

 

 

 
 

Figure 6.6 Segments of FCD 
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Figure 6.7 Daily number of FCD records for an example segment on Eskisehir Road 

 

6.3.2 Anomaly Detection 

In order to evaluate performance of anomaly detection methods, a test data set of 

recurrent and nonrecurrent congestions are annotated manually (Figure 6.9 and 

Figure 6.10). Annotations are conducted on a spatiotemporal profile displaying a 

single flow direction of a road stretch, with segment and epoch axes. FCD frames 

are displayed with a scaled color code representing observed average speeds. 

Although there have been some studies to quantify level of congestion in a network 

using speed thresholds (Long et al., 2008; Sun et al., 2014; Xing et al., 2019), travel 

speeds in a non-recurrent congestion depend on various variables, such as free flow 

speed, weather conditions, time and location of the event (Li and Chen, 2013; Zhao 

et al., 2019). In this study, non-recurrent congestions are identified and annotated 

using incident tweets with a clear location and impact confirmed in the tweet content. 

In annotations, no predetermined threshold speed value is used. Incidents without a 

visually distinguishable spatiotemporal impact area on the speed-based color-coded 

profile are excluded. In order to confirm non-recurrence, the travel speeds observed 

on the corresponding segments for same time window of week in previous weeks are 

checked on corresponding spatiotemporal profiles. Test data set of concurrent 

congestions are annotated via manual inspection of bottleneck locations on the 

network by confirming low speeds on a set of segments through same time window 
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of week in the previous weeks. A total of 31 congestions with 10,567 FCD frames 

are annotated for the tests (Table 6.13). 

In the test data set, travel speeds in the FCD frames annotated in a non-recurrent 

congestion are assumed as anomalous, whilst speeds of those annotated in recurrent 

congestions are treated as expected. The anomaly detection methods classified 

observed speeds on FCD frames in the test set as anomalous or not, using various 

threshold values. A confusion matrix is generated using the comparison of manual 

annotations and classification results. Performance of the anomaly detection 

methods are represented using various measures; accuracy, precision, recall and F1-

Score. 

 

Table 6.13 Number of recurrent and non-recurrent congestions and number of FCD frames 

annotated 

 

 Recurrent Non-recurrent 

Congestions 10 21 

Number of FCD 

frames 

1880 8687 

 

 

Table 6.14 Interpretation of classification results with respect to annotations in a confusion matrix 

 

 Annotations 

Classification Non-recurrently congested Recurrently congested 

Anomalous True Positive False Positive 

Expected False Negative True Negative 
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Figure 6.8 Daily average coverage of 1-minute resolution FCD records 
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 Figure 6.9 An annotated recurrent congestion due to signals at Konutkent Intersection on Eskişehir 

Road  

 

 
 

Figure 6.10 An annotated nonrecurrent congestion due to an accident on Eskişehir Road  
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6.3.2.1 Statistical Methods 

6.3.2.1.1 Standard Normal Deviate 

Standard Normal Deviate metric is used to detect anomalies over historic link speed 

data. A time series data consisting of link speed data observed through same window-

of-week over a previous number (𝑛) of week is used to detect anomalies. SND is 

used to classify the speed observed on a link, as anomalous or not by determining a 

threshold (𝑇) value. Several values of 𝑇 with various range of length of historic data 

(𝑛) is tested to maximize F1-Score. 

Test results achieved with varying historic data length with optimal 𝑇 is given in 

Table 6.15. Tests with 6-week (𝑛=6) historic data yielded highest F1-Scores. Effect 

of threshold on tests with 6-week historic data is given in Table 6.16. 

 

Table 6.15 SND test results with varying 𝑛 with the optimal T values. 

 

𝑛 𝑇 (𝜎) TP FP TN FN Precision Recall F1 

4 0.6 8520 673 1207 167 0.927 0.981 0.953 

5 0.7 8468 512 1368 219 0.943 0.975 0.959 

6 0.7 8509 524 1356 178 0.942 0.98 0.961* 

7 0.8 8411 468 1412 276 0.947 0.968 0.957 

8 0.8 8404 521 1359 283 0.942 0.967 0.954 

 

Table 6.16 SND test results with by different thresholds (T) with 6-week historic data (𝑛 = 6)  

 

𝑇 (𝜎) TP FP TN FN Precision Recall F1 

1.0  7964 300 1580 723 0.964 0.917 0.94 

0.9 8255 360 1520 432 0.958 0.95 0.954 

0.8 8421 436 1444 266 0.951 0.969 0.96 

0.7 8509 524 1356 178 0.942 0.98 0.961* 

0.6 8560 640 1240 127 0.93 0.985 0.957 

0.5 8609 780 1100 78 0.917 0.991 0.953 

0.4 8624 883 997 63 0.907 0.993 0.948 

0.3 8641 991 889 46 0.897 0.995 0.943 
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6.3.2.1.2 Median Absolute Deviate 

Median Absolute Deviate (MAD) is used to detect anomalous speeds in time-series 

consisting of historic link speed data in links. MAD is utilized to classify the 

observed speeds (X) as anomalous or not, by comparing its difference from median 

normalized by the MAD of the time-series dataset with a threshold (𝑇) value 

(Equation 6.1). Several values of 𝑇 with various range of length of historic data (𝑛) 

is tested to maximize F1-Score. 

 

𝑇 >
𝑋𝑐  − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)

MAD(𝑋𝑐)
 ( 6.1 ) 

 

where 𝑇 is the tested threshold, 𝑋1,𝑋2, … 𝑋𝑛 are the observed speeds, 𝑋𝑐 is the 

tested observation. 
 

 

 

Tests are carried out using different data lengths and presented with their optimal 𝑇’s 

in Table 6.17. Tests with 6-week (𝑛=6) historic data yielded highest F1-Scores. 

Effect of threshold on tests with 6-week historic data is given in Table 6.18. 

 

 

Table 6.17 MAD test results with varying 𝑛 with the optimal T values. 

 

𝑛 T (MAD) TP FP TN FN Precision Recall F1 

4 0.5 7578 653 1227 1109 0.921 0.872 0.896 

5 0.5 7728 749 1131 959 0.912 0.89 0.901 

6 0.5 8468 671 1209 219 0.927 0.975 0.95 

7 0.5 8489 741 1139 198 0.92 0.977 0.948 

8 0.6 8374 634 1246 313 0.93 0.964 0.947 
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Table 6.18 MAD test results with by different thresholds (T) with 6-week historic data (𝑛 = 6)  

 

𝑇 (𝑀𝐴𝐷) TP FP TN FN Precision Recall F1 

1 6904 276 1604 1783 0.962 0.795 0.871 

0.9 7001 303 1577 1686 0.959 0.806 0.876 

0.8 7089 337 1543 1598 0.955 0.816 0.88 

0.7 7202 385 1495 1485 0.949 0.829 0.885 

0.6 8412 632 1248 275 0.93 0.968 0.949 

0.5 8468 671 1209 219 0.927 0.975 0.95* 

0.4 8498 722 1158 189 0.922 0.978 0.949 

0.3 8522 771 1109 165 0.917 0.981 0.948 

0.2 8538 807 1073 149 0.914 0.983 0.947 

0.1 8561 845 1035 126 0.91 0.985 0.946 

6.3.2.1.3 Generalized Extreme Studentized Deviate 

Generalized Extreme Studentized Deviate (GESD) is used to detect anomalies using 

a time-series dataset consisting of a n-week history and a current observation. GESD-

based anomaly detection implementation as described in (Luan et al., 2021) is used 

for tests (Table 6.11). GESD-based classification achieved highest F1-Score using 

6-week history data (Table 6.19) with a threshold (c) of 0.5 (Table 6.20). 

 

Inputs: dataset 𝑥𝑣
𝑇,𝐷𝑛; number of iterations 𝑟, 𝑟 < 𝑛; threshold coefficient 𝑐 

Outputs: outliers; corresponding thresholds 

1 For I in (1:r) 

2 Minimum index: 𝑚𝑖𝑛𝑖𝑛𝑑 = 𝑤ℎ𝑖𝑐ℎ(𝑥 = min(𝑋)) 

3 Set the parameters: 𝑝 = 1 −
𝑐

(𝑛−𝑖−1)
 

4 Calculate the quantile from T distribution: 𝑞 = 𝑞𝑡(𝑝, 𝑑𝑑𝑓 = 𝑛 − 𝑖 − 1) 

5 Calculate the statistics: 𝑇𝑠 =
(𝑛−𝑖)∗𝑞

√(𝑛−𝑖−1+𝑞2)(𝑛−𝑖+1)
 

6 Calculate the threshold: 𝜏𝑣,𝐺𝐸𝑆𝐷
𝑇,𝑑 = 𝑀𝑒𝑎𝑛(𝑋) − 𝑇𝑠 × 𝑆𝐷(𝑋) 

7 If (𝑋[𝑚𝑖𝑛𝑖𝑛𝑑] < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑): 

8  return  𝑋[𝑚𝑖𝑛𝑖𝑛𝑑] 

9 Update dataset: 𝑋 = 𝑋[−𝑚𝑖𝑛𝑖𝑛𝑑] 

 

Figure 6.11 GESD-based anomaly detection algorithm (Luan et al., 2021) 
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Table 6.19 Test results for GESD-based classification over historic data durations (𝑛) 

 

𝑛 Best-c TP FP TN FN Precision Recall F1 

4 0.7 8555 1018 862 132 0.894 0.985 0.937 

5 0.5 8414 829 1051 273 0.91 0.969 0.939 

6 0.5 8388 750 1130 299 0.918 0.966 0.941 

7 0.7 8472 938 942 215 0.9 0.975 0.936 

8 1 8496 959 921 191 0.899 0.978 0.937 

 

 

Table 6.20 Test results for GESD-based classification over different thresholds (𝑛 = 6) 

 

c 𝑛 TP FP TN FN Precision Recall F1 

0.05 6 4957 17 1863 3730 0.997 0.571 0.726 

0.1 6 5937 55 1825 2750 0.991 0.683 0.809 

0.2 6 7065 246 1634 1622 0.966 0.813 0.883 

0.3 6 8020 436 1444 667 0.948 0.923 0.935 

0.4 6 8229 600 1280 458 0.932 0.947 0.939 

0.5 6 8388 750 1130 299 0.918 0.966 0.941* 

0.6 6 8532 931 949 155 0.902 0.982 0.94 

0.7 6 8589 1029 851 98 0.893 0.989 0.939 

0.8 6 8613 1085 795 74 0.888 0.991 0.937 

0.9 6 8646 1189 691 41 0.879 0.995 0.933 

1 6 8669 1239 641 18 0.875 0.998 0.932 

 

6.3.2.2 LSTM 

A LSTM model is developed for link travel time estimation. FCD dataset covers a 

date range from November 2016 until May 2018. Data belong to each link is treated 

as a time series data and split accordingly for model evaluation (Figure 6.12). Due 

to computational complexity of the models, a 15-minute time-window is used for 

analysis. Travel time data is aggregated for each link and time-window. 

Models are trained using Microsoft Cognitive Toolkit and run on a Nvidia GeForce 

GTX1660S using CUDA. A dropout rate of %5 is used in the model. Each evaluation 
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is run for 100 iterations using batch sizes of 100. Root mean squared is used as the 

error function for loss-function.  Learning is carried out using a stochastic gradient 

descent optimizer with a learning rate and momentum. Learning rate is assigned as 

0.005 value per sample. Model is trained using data starting from Nov 1St, 2016 to 

May 30th, 2018, in monthly time series splits. Each model is trained using a 2-month 

and a 4-month long training dataset (Figure 6.12 and Figure 6.13). 

 

 
 

Figure 6.12 Splits when 2-month training data is used for monthly LSTM models 
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Figure 6.13 Splits when 4-month training data is used for monthly LSTM models 

 

LSTM Models are trained for each link and for various input vectors. Expected 

traffic speeds for links are estimated using models and compared with the observed 

values. Estimated and observed speeds are converted into link travel times for 

comparison. For classification a threshold ratio of observed link travel time with 

respect to expected link travel time (O/E) is used (Equation 6.2). In classification, 

O/E values over the threshold are assumed as anomalous. 

 

𝑂 𝐸⁄  =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐿𝑖𝑛𝑘 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐿𝑖𝑛𝑘 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
 

( 6.2 ) 
 

 

Classification results are presented as a confusion matrix along with precision, recall 

and F1-Scores. Various O/E thresholds are tested to maximize the F1-Score. Model 

input types and achieved results are given in their corresponding sections below. 
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6.3.2.2.1 Time-window of Week 

Link travel times have a strong daily and weekly seasonality. In order to model 

expected flow speeds for time-windows of a week, corresponding time-window 

index is used as the input. In the LSTM model using the time-window index (LSTM-

TWI), a one-hot-encoded vector representing the time-of-day and day-of-week (τ) is 

used. Since pattern does not differ on midweek days, Tuesday, Wednesday, and 

Thursday were merged and represented as one day to decrease complexity, 

decreasing the number of days per week to 5. The day dimension is modelled hourly 

starting from 6 AM until 23 PM. Size of the input vector, which is the one-hot 

encoding representation of 18 hours in 5 days, is 90. 

Test result metrics for the classification under various threshold O/E values are given 

in Table 6.21 and Table 6.22, for models trained with 2-month and 4-month data 

respectively. Model achieved highest F1-Score with a threshold O/E value of 1.6. 

Increasing the amount of training data to 4-months did not improve the classification 

performance.   

 

Table 6.21 Test results for classification with LSTM-TWI (2-month training data) 

 

Threshold 

O/E 

TP FP TN FN Precision Recall F1 

1.1 8662 1470 410 25 0.855 0.997 0.921 

1.2 8652 1362 518 35 0.864 0.996 0.925 

1.3 8633 1259 621 54 0.873 0.994 0.93 

1.4 8606 1144 736 81 0.883 0.991 0.934 

1.5 8553 1021 859 134 0.893 0.985 0.937 

1.6 8478 902 978 209 0.904 0.976 0.939* 

1.7 8356 804 1076 331 0.912 0.962 0.936 
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Table 6.22 Test results for classification with LSTM-TWI (4-month training data) 

 

Threshold  

O/E 

TP FP TN FN Precision Recall F1 

1.1 8661 1470 410 26 0.855 0.997 0.921 

1.2 8650 1367 513 37 0.864 0.996 0.925 

1.3 8633 1262 618 54 0.872 0.994 0.929 

1.4 8604 1154 726 83 0.882 0.99 0.933 

1.5 8553 1048 832 134 0.891 0.985 0.936 

1.6 8488 938 942 199 0.9 0.977 0.937* 

1.7 8371 859 1021 316 0.907 0.964 0.935 

 

6.3.2.2.2 Network State 

In the LSTM model based on network state (LSTM-NS) average flow speeds 

observed on the road network at t-1 is used as the input for the model. For a better 

representation, inbound and outbound segments of the network, which produce 

different demand patterns through the day, are modelled separately with average 

speeds observed on the segments which have the same flow direction. To represent 

the network average, a sample link set is created by selecting every third link though 

each street flow direction. 

Test results for classification under various threshold values are given in Table 6.23 

and Table 6.24, for models trained with 2-month and 4-month data respectively. 

Model achieved highest F1-Score with a threshold O/E value where observed travel 

speed is 50% higher than the estimated travel speed. Increasing the amount of 

training data from 2-months to 4-months did not change the performance of the 

classification. 
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Table 6.23 Test results for classification with LSTM-NS (2-month training data) 

 

Threshold  

O/E 

TP FP TN FN Precision Recall F1 

1.1 8651 1390 490 36 0.862 0.996 0.924 

1.2 8636 1233 647 51 0.875 0.994 0.931 

1.3 8593 1063 817 94 0.89 0.989 0.937 

1.4 8529 915 965 158 0.903 0.982 0.941 

1.5 8428 771 1109 259 0.916 0.97 0.942* 

1.6 8308 642 1238 379 0.928 0.956 0.942* 

1.7 8160 513 1367 527 0.941 0.939 0.94 

 

 

Table 6.24 Test results for classification with LSTM-NS (4-month training data) 

 

Threshold  

O/E 

TP FP TN FN Precision Recall F1 

1.1 8645 1408 472 42 0.86 0.995 0.923 

1.2 8627 1263 617 60 0.872 0.993 0.929 

1.3 8585 1099 781 102 0.887 0.988 0.935 

1.4 8518 937 943 169 0.901 0.981 0.939 

1.5 8418 793 1087 269 0.914 0.969 0.941* 

1.6 8287 672 1208 400 0.925 0.954 0.939 

1.7 8147 544 1336 540 0.937 0.938 0.937 

 

6.3.2.2.3 Previous Link State 

FCD dataset aggregated for LSTM model consist of 15-minute epochs on each link. 

As a baseline to LSTM-TWI and LSTM-NS, an LSTM model using flow speed 

observed in t-1 (LSTM-LS) is developed. 

Classifier based on model estimation is tested using the test data set. Results are 

given in Table 6.25 and Table 6.26 for models trained with 2-month and 4-month 

data respectively. Model achieved highest F1-Score with 1.7 O/E threshold value. 

Increasing the amount of training data from 2-months to 4-months did not change 

the performance of the classification. 
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Table 6.25 Test results for classification with LSTM using Previous Link State input (2-month 

training data) 

 

Threshold  

O/E 

TP FP TN FN Precision Recall F1 

1.1 8668 1568 312 19 0.847 0.998 0.9163 

1.2 8659 1497 383 28 0.853 0.997 0.9194 

1.3 8647 1420 460 40 0.859 0.995 0.922 

1.4 8629 1349 531 58 0.865 0.993 0.9246 

1.5 8608 1274 606 79 0.871 0.991 0.9271 

1.6 8572 1207 673 115 0.877 0.987 0.9288 

1.7 8523 1145 735 164 0.882 0.981 0.9289* 

1.8 8455 1068 812 232 0.888 0.973 0.9286 

1.9 8361 1004 876 326 0.893 0.962 0.9262 

 

 

Table 6.26 Test results for classification with LSTM using Previous Link State input (4-month 

training data) 

 
Threshold  

O/E 

TP FP TN FN Precision Recall  F1 

1.1 8668 1552 328 19 0.848 0.998 0.9169 

1.2 8657 1462 418 30 0.856 0.997 0.9211 

1.3 8647 1393 487 40 0.861 0.995 0.9232 

1.4 8628 1318 562 59 0.867 0.993 0.9257 

1.5 8605 1245 635 82 0.874 0.991 0.9288 

1.6 8571 1168 712 116 0.88 0.987 0.9304 

1.7 8521 1097 783 166 0.886 0.981 0.9311* 

1.8 8453 1017 863 234 0.893 0.973 0.9313 

1.9 8361 1004 876 326 0.893 0.962 0.9262 

 

6.3.2.3 Road Network-based Model 

A classifier has been developed using the Road Network-based Model given in 

Section 5.1.3. Links are annotated with the direction information (𝑑), inbound, 

outbound or none, to calculate network state ratio (𝑟𝑑,τ) for a time-window of interest 
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(τ). Classification is carried out using threshold ratio of observed link travel time 

with respect to expected link travel time (O/E). Performance of classification is 

tested using different historic data lengths (𝑛) and various O/E threshold levels. Best 

F1-Score is achieved when estimation is done using a 4-week link travel speed 

history is used (Table 6.27). Classifier performed best with a threshold O/E value of 

1.5 (Table 6.28). 

 

Table 6.27 Test results for classification using Road Network-based Model with respect to 𝑛 

 

𝑛 Best Thr. 

O/E  

TP FP TN FN Precision Recall F1 

3 1.4 8386 318 1562 301 0.963 0.965 0.964 

4 1.5 8400 244 1636 287 0.972 0.967 0.969* 

5 1.5 8402 408 1472 285 0.954 0.967 0.960 

6 1.5 8455 424 1456 232 0.952 0.973 0.962 

7 1.5 8456 490 1390 231 0.945 0.973 0.958 

8 1.5 8456 551 1329 231 0.939 0.973 0.955 

 

Table 6.28 Test results for classification using Road Network-based Model, 𝑛 = 4 

 

Threshold 

O/E 

TP FP TN FN Precision Recall F1 

1.1 8620 812 1068 67 0.914 0.992 0.9514 

1.2 8583 604 1276 104 0.934 0.988 0.9602 

1.3 8543 450 1430 144 0.95 0.983 0.9662 

1.4 8483 332 1548 204 0.962 0.977 0.9694 

1.5 8400 244 1636 287 0.972 0.967 0.9695* 

1.6 8283 185 1695 404 0.978 0.953 0.9653 

1.7 8163 146 1734 524 0.982 0.94 0.9605 

1.8 8008 116 1764 679 0.986 0.922 0.9529 

1.9 7829 84 1796 858 0.989 0.901 0.943 

2.0 7679 68 1812 1008 0.991 0.884 0.9344 
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6.3.2.4 Discussion of Anomaly Detection Results 

Detecting anomalous flow speeds on the links is the first step of the proposed non-

recurrent congestion detection methods. Various anomaly detection methods which 

are commonly used in the literature is evaluated along with a new method, Road 

Network-based Model, based on the spatiotemporal nature of the FCD data. 

Performance of the methods are evaluated using a manually annotated data set of 

recurrent and non-recurrent congestions. Results are compared using F1-Scores 

calculated using a confusion matrix (Table 6.29). Road Network-based Model 

achieved highest F1-Score of 0.969, closely followed by SND-based anomaly 

detection method. Road Network-based Model achieved highest score using the past 

4-week historic data, whereas SND used 6-week historic data for best results. MAD-

based anomaly detection method has a 0.95 F1-Score, outperforming GESD-based 

method which achieved an F1-Score of 0.941. Performance of LSTM-based models 

are inferior to SND and MAD-based methods and Road Network-based Model. Even 

F1-Scores of LSTM models are on par with the evaluated statistical methods, high 

computational costs of LSTM models make statistical methods and the proposed 

Road Network-based Model less costly and robust choices to detect anomalies in an 

FCD dataset with a weekly repeating pattern. Anomaly Factor metric which 

quantifies the level of anomaly is calculated for each FCD frame using O/E 

parameter of Road Network-based Model. The threshold AF value (𝑇𝐴𝐹)  which is 

used to classify FCD frames as anomalous or not is determined as the threshold O/E 

value with achieved highest F1-Score in the tests.  

6.3.3 Incident Related Congestion Identification 

Proposed congestion front detection method is based on supervised learning. In this 

step non-recurrently congested FCD frames, detected using Network-based Model 

(see Section 6.3.2.3), are classified into two classes (see Section 5.2.2): 

• Incident related congestion fronts (ICF) 
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• Non-incident related congestion fronts and congestion upstream 

segments for all NRCs (Other) 

A set of accidents with a clearly identifiable impact region on FCD are selected from 

the accident log and incident tweets. FCD frames which form the congestion fronts 

of the accidents are annotated manually as ICF (Figure 6.14).  The days on which 

network links observe lower average travel speeds are identified as network-wide 

congested days. Congestion fronts from bottleneck locations on network-wide 

congested days are identified as non-incident related congestion front and annotated 

as Other (Figure 6.15). Some sample upstream links of both incident and non-

incident related congestion FCD frames are also annotated as Other. For training set, 

783 non-recurrently congested segments are annotated manually with the 

corresponding class (Table 6.30). 

 

Table 6.29 Overall comparison of performances of anomaly detection methods 

 

Model Name Parameters TP FP TN FN Precision Recall F1 

SND 𝑛 = 6  𝜎 = 

0.7 

8509 524 1356 178 0.942 0.98 0.961 

GESD 𝑛 = 6 c = 

0.5 

8388 750 1130 299 0.918 0.966 0.941 

MAD 𝑛 = 6 

MAD = 0.5 

8468 671 1209 219 0.927 0.975 0.95 

LSTM-TWI O/E = 1.6 8478 902 978 209 0.904 0.976 0.939 

LSTM-LS  O/E=1.5 8428 771 1109 259 0.916 0.97 0.942 

LSTM-NS  O/E=1.8 8453 1017 863 234 0.893 0.973 0.9313 

Road 

Network-

based Model  

𝑛 = 4 

O/E=1.5 

8400 244 1636 287 0.972 0.967 0.9695* 
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Table 6.30 FCD Segment annotations for congestion front detection 

 

Class Description Number of annotations 

ICF Incident related congestion fronts 

 

169 

Other Non-incident related congestion fronts 383 

Congestion upstream 231 

 

 

 
 

Figure 6.14 Incident related congestion front annotation example for on inbound Eskisehir Road 
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Figure 6.15 A signal induced congestion front annotation example on inbound Eskisehir Road  

 

Classification model is developed using decision tree and support vector machine-

based learning models. Input vector for classification model consists of three 

dimensions (Section 5.2.2) 

• Upstream/downstream speed difference: ∆𝑉𝑠,𝑡
𝑢,𝑑

 
 

• Upstream/downstream speed difference variate: 𝑆𝑁𝐷𝑠,𝑡
𝑢,𝑑,ℎ

 

• Downstream anomaly factor: 𝐴𝐹𝑠,𝑡
𝑑  

Where 𝑠 denote to segment of interest on epoch 𝑡. 

𝑢 is subgraph depth consisting of upstream segments of segment 𝑠, and 𝑑 is 

the number of downstream segments. ℎ is the number of datapoints used to 
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calculate the standard deviate. In the case study last 14 days are used to 

calculate the SND. 

 

Performance of the models are evaluated using a 5-fold cross validation method, in 

which data is split using day number of a year. Optimum values for 𝑢 and 𝑑 are found 

for each input vector using a grid-search. Parameters describing number of segments 

to be used to calculate input values are given in Table 6.31. 

A decision tree-based (DT) and a support vector classifier (SVM) is evaluated for 

congestion front classification. A decision tree classifier based on C4.5 Algorithm is 

used to carry out classification tests. A grid search seeking for the optimum number 

of segments to be used to calculate input parameters is performed using values 

between 0 to 15 (0 to ~525 meters). Each test is performed as a 5-fold cross validation 

test. DT model using parameters 𝑢𝑁𝐷 = 10, 𝑑𝑁𝐷 = 5, 𝑢𝑆𝑁𝐷 = 1, 𝑑𝑆𝑁𝐷 = 10, 𝑑𝐴𝐹 = 2 

performed best with an F1-Score of 81.9%. SVM model achieved highest F1-Score 

of 74.1% using parameters 𝑢𝑁𝐷 = 8, 𝑑𝑁𝐷 = 4, 𝑢𝑆𝑁𝐷 = 8, 𝑑𝑆𝑁𝐷 = 8, 𝑑𝐴𝐹 = 1. 

 

Table 6.31 Parameters of input values for classification model 

 

Name Description 

𝑢𝑁𝐷 Depth of the upstream subgraph (𝑢), constituting the upstream of a segment, average 

speeds of which are used to calculate Speed Difference 

𝑑𝑁𝐷 Length of downstream of a segment used to calculate Speed Difference (𝑑) 

𝑢𝑆𝑁𝐷 Depth of upstream subgraph (𝑢), constituting the upstream of a segment, average speeds 

of which are used to calculate Speed Difference Deviate 

𝑑𝑆𝑁𝐷 Length of downstream of a segment used to calculate Speed Difference Deviate (𝑑) 

𝑑𝐴𝐹  Length of downstream of a segment used to calculate Downstream Anomaly Factor (𝑑) 
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Figure 6.16 Identification Congestion at Bilkent Intersection on Eskisehir Road 

 

Large number of incidents detected with a 5-minute (1 epoch) duration may be an 

indicator of short-lived fluctuations in speed data caused by non-incident related 

factors, such as signals or bottleneck locations. When detected NRCs are explored 

on the network, most of the congestions with a 1-epoch duration are a result of 

misclassified non-recurrent congestions fronts which took place usually in 

bottleneck locations, mostly during rush hours (Figure 6.17 and Figure 6.18). 

However, duration of misdetected NRCs in signalized intersections might extend to 

multiple epochs (Figure 6.19). In such cases anomaly detection classified travel 

speed in such segments as anomalous and signal location is also classified as a 

congestion front, but spatial extent of such congestions is limited. Thus, a timespan 

threshold along with a spatial extent threshold could be used together to minimize 

the number of misdetections. 
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Table 6.32 Number of detected NRCs by their spatial and temporal impact extent 

 
  Timespan 

 
 

≥ 5 

min. 

≥ 10 

min. 

≥ 15 

min. 

≥ 20 

min. 

≥ 25 

min. 

≥ 30 

min. 

≥ 45 

min. 

≥ 60 

min. 

S
p

at
ia

l 
ex

te
n

t 

≥ 0 m. 13059

2 

6052 2392 1560 1131 874 418 250 

≥ 100 m. 37791 5864 2376 1557 1129 873 418 250 

≥ 200 m. 14364 4285 2181 1515 1119 867 417 250 

≥ 300 m. 8757 3365 1969 1433 1088 850 416 250 

≥ 400 m. 6555 2819 1784 1345 1043 825 411 247 

≥ 500 m. 5264 2460 1646 1274 994 792 399 241 

≥ 750 m. 3262 1759 1273 1026 819 668 351 220 

≥ 1000 

m. 

2084 1264 983 819 671 554 304 193 

≥ 1500 

m. 

936 642 542 462 404 344 198 124 

≥ 2000 

m. 

453 334 294 257 232 205 130 82 

≥ 2500 

m. 

272 206 184 168 152 132 84 59 

≥ 5000 

m. 

21 16 14 13 12 12 9 9 

 

 
 

Figure 6.17 A misdetected NRC on a bottleneck location, at an underpass entrance in İnönü 

Boulevard 
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Figure 6.18 Misdetected NRCs at the intersection of Eskisehir Road and Anadolu Boulevard. 

 

 
 

Figure 6.19 Segments with anomalous travel speed in a signalized intersection misdetected as NRC 
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6.4 Spatiotemporal Information Matching 

In this section proposed spatiotemporal information matching method (Section 5.3) 

is evaluated using congestions detected in Section 6.3.3 and incidents detected in 

social media. Traffic event tweets classified by SVM classifier are geocoded using 

Traffic Event Geocoder. While spatial extend of traffic event detection carried out 

on SMD is Ankara proper area, FCD covers only Eskişehir Road proximity. A 

geographical extend including Eskişehir Road and its intersections with connecting 

roads is determined for matching traffic events with NRC. Events impact area of 

which overflow extends of FCD are eliminated due to missing coverage for 

congestion analysis. Events which are mislocated by word similarity to the study 

area extend are removed manually. A total of 161 traffic incident related posts fell 

within the extend of the FCD. Some traffic incident related posts examples are given 

by type in Table 6.33 and number of traffic related posts by type is given in Table 

6.34. 

Traffic incident related posts are matched with detected NRCs using spatiotemporal 

information matching method using score parameters given in Table 6.35. In order 

to calculate match confidence estimates, p-values of delta-scores among match 

scores are calculated. A distribution of delta-score is calculated using simulation. To 

this aim, 1000 incidents are randomly generated on Eskisehir Road, for time 

windows starting from 07:00 AM until 21:00 PM all year around in 2017. A 

distribution of simulated delta-scores is created as a reference to calculate p-values 

(Figure 6.20). Delta scores are calculated for each available match.  

Due to geocoding errors and report time uncertainty, a buffer should be defined in 

time and distance to match incidents. Match confidence estimate (𝐶) is calculated 

based on the p-value of corresponding delta score (Section 5.3.1). A match is 

considered a confident match if 𝐶 is below 0.05. Various spatial buffer sizes (from 

0 to 1,000 meters) and time buffer sizes (from 15 to 60 minutes) are tested in order 

to explore percentage of matches and confident matches in the corresponding buffer 

sizes. 
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Table 6.33 Example traffic related posts by type 

 

Type Tweet Content 

Accident Eskişehir yolu konutkent kavşağı... çok ciddi kaza can kaybı olabilir 4 

araba birbirine girmiş durumda  

Konutkent intersection on Eskişehir Road, a serious accident with 

possible causalities, 4-vehicle pile-up crash  

 

Accident Eskişehir yolu Ortadoğu Üniversitesi kavşağı kazası @radyotrafik06  

Accident at Middle East (Technical) University Intersection on 

Eskişehir Road @radyotrafik06 

 

Breakdown @radyotrafik06 Eskişehir yolundan Anadolu Bulvarı'na girişte sağda 

Tır arızalanmış! Biraz etkileyecektir muhakkak ki.. 

A truck broke down on the right at the entrance to Anadolu Boulevard 

from the Eskişehir road! It will probably affect a little. 

 

Breakdown @radyotrafik06 eskişehir yolu merkez yönde gordion köprüsünü 

geçince sağdan ikinci şeritte kamyon  arızası duruyor.  

Truck malfunction in the second lane from the right, where inbound 

Eskişehir Road crosses the Gordion Bridge  

 

Traffic State Eskişehir yolu Eskişehir istikametine doğru. ATO dan Bilkent 

kavşağına 10 dakika da geldik. Trafik dur kalk ile ile…  

Eskişehir Road towards Eskişehir direction. We came to Bilkent 

junction from ATO in 10 minutes. With a stop-and-go traffic… 

 

Traffic State Eskişehir yolu > kizilay istikameti medicana önünde 10 dakikadır 

duruyor, ilerlemiyor  @radyotrafik06  

Eskişehir road > kizilay direction, stalled in front of the medicana for 

10 minutes, not moving @radyotrafik06 

 

Other Information Eskişehir Yolu Bilkent Şehir Hastaneleri Atık Su Yağmursuyu hatları 

yapım çalışmaları nedeni ile Eskişehir yönünden gelip Bilkent… 

Due to construction work on Bilkent Şehir Hospital wastewater 

pipelines, coming from Eskişehir direction to Bilkent… 

 

Unknown Eskişehir yolu biliyorum Ümitköy köprüsünü geçtikten sonra Kızılay 

yönünde  

I know it’s Eskişehir Road, on Kızılar direction after passing Ümitköy 

overpass 
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Table 6.34 Traffic related posts in study area by type 

 

Type Number 

of posts 

Accident 47 

Breakdown 6 

Traffic State 93 

Other Information 12 

Unknown 1 

Total 161 

 

 

Table 6.35 Scores used in traffic-event-NRC matching 

 

Score Name Values Score threshold Weight 

Spatial Distance 

Score 

1-0 2 km 1 

Time Distance Score 1-0 60 minutes 1 

Impact Size Score 1-0 - 1 

Street Match Score 1 or 0 - 0.5 

 

 

 

 

Figure 6.20 Distribution of simulated delta-scores 
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Matching is performed for NRCs with various timespan thresholds. Percentage of 

posts matched with a NRC depended highly on the size of buffer, reaching 81.1% 

percent with a 750-meter by 30-minute buffer, and 83% with a 1000-meter by 45-

minute buffer. Whereas percentage of confident matches reached highest value of 

47.2% using a 750-meter by 15-minute buffer (Figure 6.21). Low percentage of 

confident matches could be attributed to misdetected NRCs, which are the small, 

congested regions caused by operational features of the urban network. In order to 

remove noise than can mimic incidents, two thresholds are applied to the detected 

set of NRCs: Time span and spatial extend thresholds. Time span is the total impact 

duration of an incident in minutes, while spatial extend is the total length of segments 

impacted from the congestion throughout the time span. 

 

 

  
 

Figure 6.21 Percentage of accident and breakdown posts matched by an NRC by various temporal 

and spatial buffer sizes 

 

30

40

50

60

70

80

90

250 m 500 m 750 m 1000 m

M
at

ch
 r

at
e 

(%
)

Matching buffer sizes
15 min 30 min

45 min 60 min

30

40

50

60

70

80

90

250 m 500 m 750 m 1000 m

C
o

n
fi

d
en

t 
m

at
ch

 r
at

e 
(%

)

Matching buffer sizes
15 min 30 min

45 min 60 min



 

 

 

111 

To determine the thresholds to remove noise, matching rates are explored for a subset 

of accident and breakdown posts, which are expected to have an impact on traffic 

flow. Subset of accidents and breakdowns are consisted of 53 events. Events are 

matched with the NRCs using various time spans (5, 10, 15 and 20 minutes) and 

spatial extends (from 0 to 500 meters), using a 750-meter spatial by 30-minute and 

100-meter by 45-minute match buffer. Percentage of posts matching with an NRC 

decreased with the increasing timespan and spatial extent thresholds applied to NRCs 

(Figure 6.22), though, when only confident matches are considered, a 10-minute 

timespan threshold along with an up to 300-meter spatial extent yielded the highest 

match rate of 54.7% (Figure 6.22a) with a 750-meter by 30-minute buffer and 58.5% 

with a 1000-meter by 45-minute buffer (Figure 6.22b). Number of detected NRCs 

dropped from 130,592 to 3,365 for year 2017 with a 10-minute timespan and 300-

meter spatial extent thresholds (Figure 6.23). When NRCs are filtered by a 10-minute 

timespan and 300-meter spatial extent threshold, percentage of posts matched with 

an NRC dropped from 81.1% to 64.2% using a 750-meter by 30-minute matching 

buffer, and from 83% to 69.8% with a 1000-meter by 45-minute matching buffer. 

Whereas percentage of confident matches increased from 43.4% to 54.7% using a 

750-meter by 30-minute buffer, and from 39.6% to 58.5%, using a 1000-meter by 

45-minute buffer (Figure 6.21 and Figure 6.24). It should be noted that a timespan 

threshold would increase mean time to detect incidents, as the proposed method 

would ignore any NRCs until its duration reaches to the determined minimum 

timespan threshold. 
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a) 

  
b) 

  
 

Figure 6.22 Percentage of accident and breakdown posts matched by an NRC using various spatial 

extends and timespan thresholds using a) 750-meter by 30-minute buffer b) 1000-meter by 45-

minute buffer 
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Figure 6.23 Number of NRCs by various spatial extent and timespan thresholds. 

 

 

  
 

Figure 6.24 Percentage of accident and breakdown posts matched by an NRC by various temporal 

and spatial buffer sizes, using NRCs satisfying 10-minute timespan and 300-meter spatial extent 

thresholds  
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Spatiotemporal information matching method is applied to all types of traffic-event 

related posts, using a matching buffer of 750-meter by 30-minutes. A 10-minute 

timespan and 300-meter spatial extent thresholds are used to eliminate noise from 

detected NRCs to minimize random-matches. Posts reporting accidents and 

breakdowns has a higher matching rate with NRCs than that of the posts reporting 

traffic state or other information (63.8%, 66.7% vs 37.6%, 33.3% respectively). 

 

Table 6.36 Match statistics by traffic related post type 

 

Post Type Number 

of posts 

Matches Match 

Rate (%) 

HCM 

Accident 47 30 63.8 25 

Breakdown 6 4 66,7 4 

State 93 35 37.6 23 

Information 12 4 33.3 4 

Unclassified 1 0 0 0 

 

Matching rate of detected NRCs with the posts varied with the size of NRCs. When 

no timespan or spatial extent thresholds are applied, only 121 of 130,592 NRCs 

(0.09%) are matched with a post. Verification of NRCs with posts increased with the 

increase of their impact area. 2.2% of the NRCs are matched with at least one post 

when a 10-minute timespan and 300-meter spatial extent thresholds are used to filter 

NRCs. Percentage of matching with at least one post exceeded 10% for NRCs with 

an impact area above 45-minute timespan and 1000-meter spatial extent. 33% of 

NRCs with an above 45-minute timespan and an above 5000-meter spatial extent, 

are verified by at least one tweet post (Figure 6.25). 
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Figure 6.25 Percentage of NRCs matched with a tweet post, by their impact area 

 

6.4.1 Verification using Accident Log 

Accident log data released by General Directorate of Security of Ankara consist of 

events which are registered by police officers. Accidents which are self-reported are 

not included in the data set. Accident log data has 11,382 records for the year 2017, 

197 of which took place on Eskişehir Road. Data includes fields for address 

definition, geographic coordinates, road features details, injury, and casualty 

information. In manual inspection of the data, it was observed that there are 

inconsistencies between the address definition and geographic coordinates of the 

accidents. Similarly registered times presented an uncertain offset for some accidents 

when compared with FCD. An accident records set of 59 events with confirmed 

locations has been created by comparing geographic coordinates with accidents that 

has a clear definition of address. Various spatial buffer sizes (from 250 to 1,000 

meters) and temporal buffer sizes (from 15 to 60 minutes) are evaluated to match 

accident records with detected NRCs. Percentage of accident records match with an 
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highest scores with a 30-minute temporal buffer, reaching 57.3% using a 30-minute 

by 500-meter and 1000-meter matching buffers (Figure 6.26). Low percentage of 

confident matches can be an indicator of random matches. Effect of an NRC 

timespan threshold in decreasing random matches is observed in the matching 

evaluations performed with various buffer sizes. Along with the timespan thresholds, 

effect of NRC spatial extent thresholds on the match ratios are explored, using 750-

meter by 30-minute and 1000-meter 45-minute matching buffers. 

 

  
 

Figure 6.26 Percentage of accident records matched by an NRC by various temporal and spatial 

buffer sizes 
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(Figure 6.27). Accident record matching experiments indicate that using a 200-meter 

spatial-extent along with a 15-minute timespan threshold, would minimize the 

number of misdetected NRC cases originating from urban operational or other 

constrains. When NRCs are filtered by a 15-minute timespan and 200-meter spatial 

extent threshold, percentage of posts matched with an NRC dropped from 91.5% to 

72.9% using a 750-meter by 30-minute matching buffer, and from 100% to 79.7% 

with a 1000-meter by 45-minute matching buffer. Whereas percentage of confident 

matches increased from 54.2% to 66.1% using a 750-meter by 30-minute buffer, and 

from 55.9% to 67.8%, using a 1000-meter by 45-minute buffer (Figure 6.27a and 

Figure 6.27b). A 15-minute interval was also used in Luan et al. (2021) to eliminate 

data noise in urban road networks.  

Proposed incident matching method detected 72.9% of the events in accident log, 

using a buffer of 750-meter by 30 minutes, using a spatial-extend threshold of 200 

meters and timespan threshold of 15 minutes for detected congestions, which are 

applied to minimize noise and random matches. With the thresholds, number of 

incidents detected on Eskisehir Road around the year 2017 was 2181. Accident log 

does not include the self-reported events; therefore, a false-alarm rate could not be 

calculated. 

6.5 Discussion of Results 

In this chapter methods proposed to detect and match traffic events in floating car 

data (FCD) and social media data (SMD) are evaluated on a case study in Ankara. 

The traffic related event detection method in Twitter stream given in Chapter 3 is 

evaluated on a collection of tweets collected using a keyword-based search in 

Ankara. Detection is performed in a morphologically complex language. Hence, 

proposed method employing morphological analysis improved the performance of 

the information retrieval tasks in Turkish language.  
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a) 

  
 

b) 

  
 

 

Figure 6.27 Percentage of accident records matched by an NRC using various spatial extends and 

timespan thresholds using a) 750-meter by 30-minute buffer b) 1000-meter by 45-minute buffer 
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Figure 6.28 Percentage of accident records matched by an NRC by various temporal and spatial 

buffer sizes, using NRCs satisfying 15-minute timespan and 200-meter spatial extent thresholds  

 

The method has been tested on a set of tweets that is collected within this study. Only 

the tweets that are direct and immediate reports of incidents are considered as traffic 

event related within the ground truth. Even though the strict inclusion criteria for 

labeling exposed classification challenges, the performance of overall system is 

promising as a cost-effective solution to retrieve traffic-related incidents. 

Experiments reveal that extracting traffic related entities contributed to the 

classification performance resulting with higher F1-Scores.  

For localization of detected events, Traffic Event Geocoder (TEG), is evaluated on 

a manually located traffic event data set along with the commonly used off-the-shelf 

geocoders. TEG employs a named entity recognition model (TEER) customized for 

detecting terms related to traffic incidents and a rule-based geocoder that interprets 

the output of TEER, by mapping location entities along with their detected functions 
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using topological relations on the road network. To the best of our knowledge, this 

is the first work presenting a road-segment level event localization method using a 

named entity recognition model and a geocoder integrated in a way to complement 

one another's capabilities. Results show that TEG consisting of a simple set of rules 

running on a GIS using OpenStreetMap (OSM) data achieves better results localizing 

unstructured location definitions than the reference geocoding services, geocoding 

65.9% of the events under 750-meter positional error. 

For detection of non-recurrent congestions (NRCs) in FCD, a two-phase approach is 

proposed. In, anomaly detection phase, an anomaly factor comparing the estimated 

and observed travel speeds on FCD segments is calculated. The proposed anomaly 

detection metric, Road Network-Based Estimator, which is only valid in the 

existence of a city-wide travel speed data, such as FCD, performed best among other 

commonly used methods in the anomaly detection studies. In spatiotemporal 

congestion identification phase, congestion fronts and spillbacks are detected using 

travel speeds and anomaly factors calculated in the first phase. 

Detected NRCs are confirmed with social media posts using the proposed 

spatiotemporal information matching method. It is observed that percentage of 

detected NRC could reach up to 33% percent for big-scale events. Figure 6.29 

presents a congestion impacting a 2625-meter spatial extent and a 50-minute 

timespan, which is reported by two tweets, one showing photos about the extent of 

the congestion, while another includes a photo of the crash causing the congestion. 

Similarly, in Figure 6.30, an accident causing a congestion is described in detail with 

the help of a photo.  
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Figure 6.29 A congestion at METU Intersection on Eskisehir Road, with matched traffic-event 

tweets 

 

In this study 1-minute resolution FCD was aggregated to 5-minute time-windows for 

computational simplicity. It was possible to detect minor events taking place during 

off-peak hours using an FCD resampled to 5-minute time resolution. For instance, a 

minor incident taking place in a 4-lane section of Eskisehir Road during off-peak 

hours has been detected using 5-minute aggregated FCD (Figure 6.31). 
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Figure 6.30 A congestion at Konutkent Intersection on Eskisehir Road, with matched traffic-event 

tweet 

 

 

 

 

Figure 6.31 A congestion due to a burning bus on Eskisehir Road outbound, with matched traffic-

event tweet 
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CHAPTER 7  

7 CONCLUSION AND FURTHER RECOMENDATIONS 

Traffic management in big cities is a major challenge due to complexity of the road 

network as well as congestion during peak hours. Traffic incidents further exacerbate 

the situation as they create congestion and delays in the system, too. Management 

traffic incidents require real time-detection of them; in intercity road network with 

limited entry and exit points, this can be done by traditional road sensors which are 

physically installed at certain locations to detect flow and/or speed data. However, 

for urban networks, such methods require enormous number of sensors that is not 

economically not feasible. As an alternative, there is a new source of speed data, 

called floating car data (FCD), obtained from GPS-equipped vehicles traveling in the 

network. Especially, the commercial FCD provides a continuous spatiotemporal data 

which can be further investigated for anomalies (such as queues, congested regimes, 

etc.) as indicators of traffic incidents. On the other hand, it requires confirmation 

from other sources as it traces incidents indirectly.  

In this study, a framework is proposed to detect and describe non-recurrent 

congestions using two independent crowdsourced data streams, social media data 

(SMD) and FCD. Methods are proposed to detect events for each data stream 

independently and match the results in order to present potential of each data stream 

to describe and verify non-recurrent congestions. 

While SMD is a rich data source including verbal and visual descriptions, it is a 

challenge to filter out necessary details and detect an “event” of interest, as it requires 

analysis of the messages using information retrieval techniques. To the best of our 

knowledge, this is the first study in Turkish language on traffic event detection in 

social media. Taking agglutinative nature of Turkish language into account, a 

language model is proposed based on morphological segments of the words. The 
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proposed method employing morphological analysis improved the performance of 

the information retrieval tasks in Turkish language. A customized named-entity 

recognition model, Traffic Event Entity Recognition model (TEER), is developed to 

identify traffic event related terms in Twitter posts. The proposed language model 

achieved higher accuracy rates in event detection, using commonly used 

classification methods in event detection studies. Though presented methods are not 

domain specific and can be used to detect relevant information posted in social media 

concerning other topics, such as disaster management, health monitoring and various 

public administration purposes. Proposed language model for Turkish language can 

also be employed in information retrieval tasks in other domains to achieve higher 

accuracy. 

A knowledge-based approach, Traffic Event Geocoder (TEG), is presented to locate 

detected traffic event related tweets with road segment level granularity. The method 

employed the customized named-entity-model, TEER and a rule-based geocoder that 

is designed to localize traffic event location entities using OpenStreetMap (OSM) 

data as the knowledgebase. Combining strengths of named entity recognition and 

GIS, the integrated method provides a better geocoding solution for localizing 

informal location terms and fills the gap of an end-to-end solution. OSM data is 

presented as a useful data-source for transportation applications. TEG outperforms 

reference commercial geocoding services with the existing completeness level of 

OSM in the study area, and the results are improved further by simply enriching 

OSM data with a small set of commonly used landmarks.  

TEG presented promising results as a specialized geocoder to fulfill the requirements 

of intelligent transportation applications. The overall geocoding method achieved a 

median positional error of 379.2 meters in the experiments. Experiments show that 

geocoding can further be improved by enriching map data. The proposed method 

geocodes 80.5% of the events under 750-meter positional error with an enriched 

version of OSM data. 
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TEG is evaluated on a manually annotated dataset with a limited size. The 

performance of the proposed geocoding method should further be tested on larger 

datasets and different regions. In TEER, a generic set of location tags and rules are 

defined in the method for easy applicability to other urban areas or languages. 

Relying solely on a freely available dataset with a global coverage, the proposed 

method can be applied as-is or customized for localizing events in other regions. 

Retrieving localized information from social content is valuable in domains such as 

disaster management, local governance, social analytics, and marketing. As a future 

research direction, the proposed integrated approach can be customized for such 

applications where localization of unstructured location definitions is needed.  

A two-step approach is proposed to detect non-recurrent congestions (NRCs) in 

floating car data (FCD); anomaly detection and spatiotemporal congestion impact 

area construction. In anomaly detection step, anomalous travel speeds observed in 

FCD segments in each epoch are quantified using commonly used statistical metrics, 

a long short-term memory-based model and a novel metric, Road Network-based 

Estimator (RNE), which make use of available spatiotemporal travel speed data in 

FCD. RNE presented better performance than the reference metrics in quantifying 

anomaly levels on FCD segments. In the case study, time-series data used in 

statistical methods are not tested for normality, due to limited size of the datasets. 

Further robust statistical methods can be applied to anomaly detection step to 

evaluate their performance in anomaly quantification using time-of-day day-of-week 

based time series data obtained from FCD.  

NRCs detected in FCD are matched with the events two event sets, 1) traffic related 

events detected in social media data and official accident log dataset from General 

Directorate of Security of Ankara. Matching experiments presented that up to 33% 

of the NRCs can be confirmed by at least one tweet for large scale traffic events. 

Congestions detected in FCD provided us with a detailed coverage of impacted street 

stretches and time intervals, whereas tweets verified and complemented FCD to 

describe event details causing the congestion. 
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The matching experiments with the official accident log revealed inconsistencies in 

the accident location and time fields in the dataset. Incident location inconsistencies 

are observed between geo-coordinate and address definition fields. Whereas 

spatiotemporal information matching results indicate possible errors also in registry 

times of the accidents. Due to quality issues observed in the official accident log, the 

methods presented lack a validation with a ground-truth data. Validation of the 

proposed methods with a consistent and complete data set is recommended as a 

future work. 

The methods presented in the study rely on public data created by individuals. The 

proposed event detection method using social media data is based on the 

observations of individuals, or human sensors. In that sense, human sensors 

contribute to event detection studies as citizen scientists. OpenStreetMap (OSM), 

which is used as the knowledge base of event geolocation, can also be considered as 

a citizen science project.  

The presented method offers a cost-effective solution to traffic event detection, 

which can be used as a component of an incident management system or other 

decision support systems concerning traffic events. Relying solely on the data 

collected from vehicles and social media users, proposed method does not require 

any instruments to be installed on the road network. Hence, it could be used in any 

region with any scale for traffic management applications. 
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APPENDICES 

A. Twitter Data Structure 

 

Figure A.1 Data structure of a tweet 
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B. Grid-search Results for Congestion Front Classification Parameters 

Table B.1 Top F1-Scores in grid-search for parameters of input values using decision tree-based 

model 
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10 5 1 10 5 135 34 586 28 82.8 79.9 81.3 
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14 6 1 10 2 126 43 597 17 88.1 74.6 80.8 
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Table B.2 Top F1-Scores in grid-search for parameters of input values using SVM model 
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