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Abstract—The pivotal storage density win achieved by solid-
state devices over magnetic devices in 2015 is a result of multiple
innovations in physics, architecture, and signal processing. One
of the most important innovations in that regard is enabling the
storage of more than one bit per cell in the Flash device, i.e.,
having more than two charge levels per cell. Constrained coding
is used in Flash devices to increase reliability via mitigating inter-
cell interference that stems from charge propagation among cells.
Recently, capacity-achieving constrained codes were introduced
to serve that purpose in modern Flash devices, which have more
than two levels per cell. While these codes result in minimal
redundancy via exploiting the underlying physics, they result in
non-negligible complexity increase and access speed limitation
since pages cannot be read separately. In this paper, we suggest
new constrained coding schemes that have low-complexity and
preserve the desirable high access speed in modern Flash devices.
The idea is to eliminate error-prone patterns by coding data only
on the left-most page while leaving data on all the remaining
pages uncoded. Our coding schemes work for any number of
levels per cell, offer systematic encoding and decoding, and are
capacity-approaching. Since the proposed schemes enable the
separation of pages, we refer to them as read-and-run (RR)
constrained coding schemes as opposed to schemes adopting read-
and-wait for other pages. We analyze the new RR coding schemes
and discuss their impact on the probability of occurrence of
different charge levels. We also demonstrate the performance
improvement achieved via RR coding on a practical triple-level
cell Flash device.

I. INTRODUCTION

The history of constrained coding dates back to 1948, when
Shannon represented a constrained sequence via a finite-state
transition diagram (FSTD) and derived the capacity under a
constraint [1]. Run-length-limited (RLL) codes were intro-
duced by Tang and Bahl in 1970 to support the evolution of
magnetic recording at that time [2], and these codes were based
on lexicographic indexing. In 1973, Cover presented a result
about enumerative coding [3] that will prove fundamental
for the design of constrained codes based on lexicographic
indexing decades later. Among other researchers, Franaszek
developed constrained codes based on finite-state machines
(FSMs) derived from FSTDs [4]. In 1983, Adler, Coppersmith,
and Hassner introduced a systematic method to develop con-
strained codes based on FSMs [5]. Details about the history
of constrained coding until 1998 are in [6].

Because of their ability to improve performance via elim-
inating error-prone data patterns and undesirable sequences,
constrained codes have a plethora of applications. They find
application in one-dimensional (1D) magnetic recording de-
vices, both the old ones, which are based on peak detection,
and the modern ones, which are based on sequence detection

[7], [8]. They can also be combined with robust signal detec-
tion using machine learning [9]. They find application in the
emerging two-dimensional (2D) magnetic recording devices
as well [10], [11]. Moreover, constrained codes are used to
achieve DC balance and self-calibration in optical recording
devices [12] in addition to many computer standards for data
transmission [13].

In Flash devices, charge propagation from cells programmed
to high charge levels into cells programmed to lower charge
levels is the main reason behind inter-cell interference (ICI)
[14]. This is correct for any number q of charge levels per cell.
Mitigating ICI results in remarkable lifetime gains in Flash as
demonstrated in [15] for multi-level cell (MLC) Flash (q = 4).
There are data patterns that are considered usual suspects for
contributing most to ICI. Coding to eliminate data patterns
resulting in consecutive levels (q− 1)0(q− 1) was considered
in [16] and [17]. Coding to eliminate data patterns resulting
in consecutive levels or level patterns (q − 1)µ(q − 1), for all
µ < q − 1, was presented in [15], [17], and [18].

A number of recent results revisited [2] and [3] in order
to produce efficient constrained codes based on lexicographic
indexing, and one example is [19]. Another example is [7],
in which we introduced binary symmetric lexicographically-
ordered constrained (S-LOCO) codes and demonstrated den-
sity gains in a modern magnetic recording system. We ex-
tended our result to single-level cell (SLC) Flash (q = 2)
[20] then to Flash with any number q of levels per cell [18].
Moreover, we devised a general method to design LOCO codes
for any finite set of patterns to forbid [21], which will be useful
in this paper. We studied the power spectra of binary LOCO
codes in [22]. LOCO codes are capacity-achieving, simple, and
easily reconfigurable [18], [21].

While the constrained codes in [17] and [18] are quite
efficient in terms of rate, they require all Flash pages to be pro-
cessed together, which negatively affects the access speed. In
this paper, we propose read-and-run (RR) constrained coding
schemes that allow pages to be accessed separately in modern
Flash devices, thus preserving high access speed. There are
techniques in the literature that allow page separation; how-
ever, they are either incurring notable rate loss [15] or designed
for a specific Flash setup [16]. Our RR coding schemes incur
minor rate loss and work for any Flash device. The key idea is
that the constrained code is applied only on one page, while no
coding is applied on the other log2 q − 1 pages. We present a
2D RR coding scheme as well as a 1D RR coding scheme that
is based on LOCO codes. We study various aspects about these
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schemes, including the charge-level probabilities. We introduce
experimental results in a practical triple-level cell (TLC) Flash
device (q = 8) that demonstrate notable lifetime gains achieved
by our coding schemes.

The rest of the paper is organized as follows. In Section II,
we discuss the detrimental patterns, the Flash mapping, and
our 2D RR coding scheme. In Section III, we introduce our
1D RR-LOCO coding scheme. In Section IV, we study the
rate, complexity, and error propagation of the new schemes. In
Section V, we present the experimental results on TLC Flash.
In Section VI, we conclude the paper.

II. PATTERNS, MAPPING, AND 2D RR CODING

As implied in the introduction, literature works do not
strictly agree on the set of forbidden patterns to operate on.
Additionally, as the Flash device ages, the set of error-prone
patterns is expected to expand [18]. Based on our recent
experimental tests on a practical TLC Flash device, we decided
to focus on the set characterized as follows. Let

β1, β2 ∈ V0 ,
{q
2
,
q

2
+ 1, . . . , q − 1

}
, (1)

where q is the number of levels per Flash cell (a positive power
of 2) and V1 = {0, 1, . . . , q− 1} \V0. Then, the set of interest
is the set resulting in the level patterns in Lq:1

Lq , {β1µβ2,∀β1, β2 | 0 ≤ µ < min(β1, β2)}. (2)

This set already subsumes all 3-tuple forbidden patterns
adopted in the literature for Flash. A block inside the Flash
device can be seen as a 2D grid of wordlines and bitlines, with
a cell being placed at each intersection [15]. Level patterns in
Lq are detrimental whether they occur on 3 adjacent cells along
the same wordline or along the same bitline.

Example 1. Consider an MLC Flash device, i.e., q = 4. In
this case, we have β1, β2 ∈ {2, 3}. Then, the set of interest is
the set resulting in:

L4 = {202, 212, 203, 213, 302, 312, 303, 313, 323}. (3)

The last three elements in L4 are quite known [15], [16], [18].

Algorithm 1 Recursive Alternate Gray Mapping
1: Input: Number of levels per cell q, and p = log2 q.
2: Define map, a binary array of dimensions q × p.
3: Set map(0, :) = 1p. (a sequence of p 1’s)
4: for i ∈ {0, 1, . . . , p− 1} do
5: for j ∈ {0, 1, . . . , 2i − 1} do
6: map(2i + j, :) = map(2i − 1− j, :).
7: Flip the bit map(2i + j, i). (each sequence in map

is indexed from right to left by 0, 1, . . . , p− 1)
8: end for
9: end for

10: Output: Array map that maps each index to binary data.

Next, we discuss how to map from data to charge levels in
Flash and vice versa. Since we are interested in page separation
throughout this work, the mapping here is from a charge level

1Levels are defined through their indices {0, 1, . . . , q − 1} for simplicity.

out of q possible ones to log2 q binary bits, one for each page,
and vice versa. Gray mapping offers the advantage that there
is only one-bit difference between any two adjacent levels,
which is valuable for error performance. We adopt a recursive
alternate Gray mapping (RAGM), and Algorithm 1 shows how
to produce it for any q. We highlight that RAGM has already
been used in the literature in MLC Flash [15] and TLC Flash
[16]. Thus, RAGM is not strictly a new contribution.

Example 2. Consider a TLC Flash device, i.e., q = 8. In this
case, the output of Algorithm 1, which is RAGM, becomes:

0←→ 111, 1←→ 110,

2←→ 100, 3←→ 101,

4←→ 001, 5←→ 000,

6←→ 010, 7←→ 011. (4)

Now, we are ready to discuss coding schemes. Let us first
index the Flash pages the same way the bits in each sequence
in the array map are indexed (see Algorithm 1). This means
that the left-most page is the one indexed by p− 1. From (2)
and Algorithm 1, the level patterns in Lq correspond to binary
patterns where the left-most page(s) always has (have) two
0’s separated by some bit, i.e., 0x0. Based on that, forbidding
{000, 010} on the left-most page(s) guarantees that no level
pattern in Lq would appear while writing to a Flash device,
with any q > 2, at least in one direction. This corresponds to
an interleaved RLL (d, k) = (0, 1) constraint [23]. Notably,
no coding on any other page is needed. Data will therefore be
read from each page independently, and immediately passed
to the low-density parity-check (LDPC) decoder. This idea is
the key idea of our RR constrained coding schemes.2

RR coding can be performed in the wordline direction
only (1D), the bitline direction only (1D), or both directions
(2D). Observe that such coding will also prevent benign level
patterns, e.g., 555 and 676 in TLC Flash, resulting in inevitable
rate loss. However, as we shall see in Section IV, this rate loss
is small, and RR-LOCO codes are capacity-approaching.

We start here with our scheme for 2D RR constrained
coding. As the name suggests, we want to prevent the patterns
in {000, 010} from appearing at the left-most pages in both
wordline and bitline directions through simple encoding and
decoding. The encoding follows the rules:

1) On wordlines with indices congruent to 0 or 1 (mod 4),
you are allowed to write 0’s and 1’s freely in bit positions
congruent to 0 or 1 (mod 4) at the left-most pages.

2) On wordlines with indices congruent to 2 or 3 (mod 4),
you are allowed to write 0’s and 1’s freely in bit positions
congruent to 2 or 3 (mod 4) at the left-most pages.

3) In the other bit positions, you can only write 1’s on
wordlines at the left-most pages.

This 2D RR constrained coding scheme is depicted in Fig. 1.
It is clear from the figure that the patterns in {000, 010} are
eliminated from the left-most pages, which forbids all level
patterns in Lq , in both directions. Upon encoding, input data
bits are freely placed at the positions marked by x and directly
at the other pages. Upon decoding, information at the positions

2An equivalent scheme was proposed for MLC Flash, i.e., q = 4, in [23].



Wordline direction

Fig. 1. The left-most pages of a 2D Flash grid with data encoded via the
proposed 2D RR coding scheme. Symbol x means bit can be 0 or 1 freely.

marked by 1 is omitted, and data bits at the remaining positions
are read with no additional processing and with no correlation
between different Flash pages.3

This 2D scheme is ideal in terms of complexity, access
speed, and error propagation (see Section IV). It might also
seem notably better than any 1D scheme in terms of perfor-
mance. However, as we shall justify later, 1D schemes can
achieve almost the same performance with higher rates.

III. RR-LOCO CODING OVER GF(2)

In this section, we introduce an RR coding scheme that
forbids {000, 010} on the left-most pages in either the word-
line direction or the bitline direction, while leaving all other
pages with no coding, which forbids the level patterns in Lq

and achieves page separation. The code we apply is a binary
LOCO code devised according to the general method in [21].
We start by defining the LOCO code.

Definition 1. A LOCO code RCm, where m ≥ 1, that forbids
{000, 010} is defined by the following properties:

1) Codewords in RCm are defined over GF(2) = {0, 1}
and are of length m bits.

2) Codewords in RCm are ordered lexicographically.
3) Codewords in RCm do not have patterns in {000, 010}.
4) All codewords satisfying 1)–3) are included.

Lexicographic ordering is ordering codewords ascendingly
according to the rule “0 < 1”, where bit significance reduces
from left to right [2], [18]. The first step to devise the LOCO
code is to specify the group structure. Codewords in RCm,
m ≥ 2, can be partitioned into the following groups:
• Group 1: Codewords starting with 0011 from the left.
• Group 2: Codewords starting with 011 from the left.
• Group 3: Codewords starting with 1 from the left.
The second step is to enumerate the codewords, which is

done by Theorem 1. Let N(m) , |RCm|.

Theorem 1. The cardinality of a LOCO code RCm is given
by the recursive formula:

N(m) = N(m− 1) +N(m− 3) +N(m− 4), m ≥ 2, (5)

3An equivalent 2D scheme forbidding patterns {101, 111} on the right-
most pages in both worline and bitline directions in MLC Flash was proposed
in [23].

where the defined cardinalities and N(1) are:

N(−2) = N(−1) = N(0) , 1 and N(1) = 2. (6)

Proof: We compute the cardinalities of each group then
add them all. Let the cardinality of Group i be Ni. As for
Group 3 in RCm, there is a bijection between its codewords
and the codewords in RCm−1 (attach 1). Thus,

N3(m) = N(m− 1). (7)

As for Group 2 in RCm, there is a bijection between its
codewords and the codewords starting with 1 from the left
in RCm−2 (attach 01). Thus using (7),

N2(m) = N3(m− 2) = N(m− 3). (8)

As for Group 1 in RCm, there is a bijection between its
codewords and the codewords starting with 1 from the left
in RCm−3 (attach 001). Thus using (7),

N1(m) = N3(m− 3) = N(m− 4). (9)

Adding (7), (8), and (9) gives (5). The defined cardinalities
can be computed by observing that N(1) = 2, N(2) = 4, and
N(3) = 6, which sets up three equations. This observation is
immediate given the forbidden patterns.

Define a codeword c in RCm as c , cm−1cm−2 . . . c0,
with ci , ζ for i ≥ m, where ζ represents out of codeword
bounds. The integer equivalent of a LOCO codeword bit ci,
0 ≤ i ≤ m − 1, is ai, i.e., ai is 0 (1) when ci is 0 (1).
Denote the lexicographic index of a codeword c among all
codewords in the LOCO code RCm by g(c). In general, g(c)
is in {0, 1, . . . , N(m)− 1}.

The third step is to specify the special cases of occurence
for a 1 inside a codeword in RCm. These cases are:
• Case 1: ci+2ci+1ci = 001.
• Case 2: ci+2ci+1ci = 011.
• Case 3: ci+2ci+1ci = 101 or ci+2ci+1ci = ζ01.

The typical or default case is simply the case of “otherwise”.
In particular, it is the case that ci+2ci+1ci = 111, ci+2ci+1ci =
ζ11, or ci+1ci = ζ1.

The fourth and fifth steps are to find the encoding-decoding
rule, which specifies the mapping from index to codeword and
vice versa. This rule for RCm is given in Theorem 2.

Theorem 2. The relation between the lexicographic index
g(c), c ∈ RCm, and the codeword c itself is given by:

g(c) =

m−1∑
i=0

ai

[
(1− yi,1)N(i− 2)

+ (1− yi,1 − yi,2)N(i− 3)
]
, (10)

where yi,1 and yi,2 are specified as follows:

yi,1 = 1 if ci+2ci+1ci ∈ {001, 011}, and yi,1 = 0 otherwise,
yi,2 = 1 if ci+2ci+1ci ∈ {101, ζ01}, and yi,2 = 0 otherwise.

(11)

Proof: We compute the contributions gi,j(ci) of a bit ci
under Case j, for all j ∈ {0, 1, 2, 3}, in a LOCO codeword
then merge them all. As for the typical case, which we index



by 0, this contribution is the number of codewords starting
with 0 from the left in RCi+1. Thus using (8) and (9),

gi,0(ci) = N2(i+ 1) +N1(i+ 1)

= N(i− 2) +N(i− 3). (12)

As for Case 1 (Case 2), this contribution is the number of
codewords starting with 000 (010) from the left in RCi+3.
Note that 000 and 010 are forbidden patterns. Thus,

gi,1(ci) = 0 and
gi,2(ci) = 0. (13)

As for Case 3, this contribution is the number of codewords
starting with 00 from the left in RCi+2. Thus using (9),

gi,3(ci) = N1(i+ 2) = N(i− 2). (14)

Using yi,1 and yi,2 from (11) along with ai to merge (12),
(13), and (14) gives:

gi(ci) = ai

[
(1−yi,1)N(i−2)+(1−yi,1−yi,2)N(i−3)

]
. (15)

Substituting (15) in g(c) =
∑m−1

i=0 gi(ci) gives (10).
For brevity, we skip the sixth step, which is to assemble

the encoding and decoding algorithms. These algorithms are
a direct consequence of the rule in (10), and we refer the
reader to [2], [18], [21], and [24] for details. Note that
we sometimes refer to RCm as a 1D RR-LOCO code. The
encoding-decoding rule of a LOCO code is the reason behind
its low complexity algorithms, where reconfiguration becomes
as easy as reprogramming an adder [7], [21].

Remark 1. If the coded bits are complemented before writing
to pages, the set of forbidden patterns on the left-most pages
becomes {101, 111} instead, which appears in [15] as well.
In this case, the cardinality of the LOCO code remains as in
(5), while the encoding-decoding rule becomes exactly that of
an asymmetric LOCO code in [20] for x = 1:

g(c) =

m−1∑
i=0

aiN(i− ai+1). (16)

Encoding and decoding on the left-most pages are just
subtractions and additions. As for the remaining pages, data is
written and read directly. This guarantees simplicity and main-
tains high access speed via our 1D RR-LOCO coding scheme.

IV. RATE, COMPLEXITY, AND ERROR PROPAGATION

We start by calculating asymptotic rates. Unfortunately,
deriving the capacity for 2D constrained codes is known to be
notoriously hard. Therefore, we will derive the capacity C1D

Lq

only under the 1D constrained coding setup, which is already
higher than the capacity under the 2D setup. Thus, C1D

Lq
serves

as a ceiling for the highest achievable rate in a device where
patterns in Lq are forbidden at least in one direction. We will
shortly show that 1D constrained coding suffices.

An FSTD of a sequence where level patterns in Lq are
forbidden is shown in Fig. 2. Based on this FSTD, the general
adjacency matrix is:
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Fig. 2. An FSTD of a constrained sequence forbidding level patterns in Lq ,
for any q. We operate directly on level patterns for simplicity.

TABLE I
CAPACITY GAP BETWEEN C1D

Lq
AND 1D RR-LOCO CAPACITY C1D

RR

q C1D
Lq

C1D
RR Capacity gap %

4 0.8941 0.8471 5.257%
8 0.9235 0.8981 2.750%
16 0.9401 0.9235 1.766%

A1 =



q
2 1T

q
2

0 0T
q
2−1

0 q
2

U1
q
2

q
21 q

2

0T
q
2−1

L1
q
2−1

q
2 0T

q
2

0 0T
q
2−1

0 q
2−1

I q
2−1 0 q

2−1
q
21 q

2−1
0T

q
2−1

L1
q
2−2

0 q
2−2


.

(17)
Thus and from [1], the normalized capacity of a 1D constrained
code forbidding the level patterns in Lq is:

C1D
Lq

=
log2(λmax(A1))

log2 q
, (18)

where λmax(A) is the maximum real positive eigenvalue of
the matrix A.4

The capacity of a 2D code preventing {000, 010} is the
capacity of a 2D (0, 1) RLL code, which is ≈ 0.5879 [26].
Thus, the normalized capacity of our 2D RR coding scheme is:

C2D
RR ≈

0.5879 + log2 q − 1

log2 q
=

log2 q − 0.4121

log2 q
. (19)

As mentioned above, the constrained system where patterns
in {000, 010} are forbidden can be interpreted as an interleaved
RLL (d, k) = (0, 1) constraint, whose capacity is known to be
log2((1+

√
5)/2) ≈ 0.6942. Thus, the normalized capacity of

our 1D RR-LOCO coding scheme is

4For positive integers a + b ≤ q, the set H of the a largest symbols
and the set L of the b smallest symbols in {0, 1, . . . , q − 1}, a formula for
the (count-constrained) capacity of the constrained system forbidding patterns
{β1β2β3 | β1, β3 ∈ H,β2 ∈ L} was derived in [25].



C1D
RR =

log2((1 +
√
5)/2) + log2 q − 1

log2 q
≈ log2 q − 0.3058

log2 q
.

(20)
The capacity gap between C1D

Lq
and C1D

RR for different values
of q is given in Table I. The table shows that the capacity gap
is small, and it gets even smaller as q increases.

Next, we discuss the finite-length rates. First, the normalized
rate of our 2D RR constrained coding scheme is:

R2D
RR =

0.5 + log2 q − 1

log2 q
=

log2−0.5
log2 q

(21)

since the rate of our left-most page coding is 0.5.
Regarding our 1D RR-LOCO coding scheme, we bridge

with the pattern 11 between consecutive codewords in RCm
on the left-most page, and we remove the codeword 1m for
self-clocking [18], [21]. Thus, the rate on the left-most page
is blog2(N(m)− 1)c/(m+2), and the normalized rate of our
1D RR-LOCO coding scheme is:

R1D
RR =

1

log2 q

[
blog2(N(m)− 1)c

m+ 2
+ log2 q − 1

]
. (22)

1D RR-LOCO coding schemes are capacity-achieving
schemes in the sense that the limit as m → ∞ of R1D

RR
is C1D

RR (see also [18]). Another capacity-achieving 1D RR
constrained coding scheme, implementable using enumerative
coding without the need for bridging bits, can be obtained by
interleaving codewords from an optimal block code for the
RLL (d, k) = (0, 1) constraint [27] on the left-most pages.
LOCO codes, however, offer simplicity and reconfigurability,
which is important as the device ages [18].

The 2D RR constrained coding scheme we propose requires
no additional complexity for encoding and decoding since data
is written/read directly to/from pages. As for the 1D RR-LOCO
coding scheme, the complexity is governed by the size of the
adder that executes the encoding-decoding rule, which is:

s = blog2(N(m)− 1)c (23)

bits. For ease of implementation and to avoid affecting the
access speed, we prefer to apply the 1D RR-LOCO coding
scheme along wordlines instead of bitlines since the perfor-
mance is almost the same, as demonstrated by the experimental
results in Section V.

Similarly, the 2D RR coding scheme does not incur any
error propagation. Thus, the error propagation factor of it is
E2D

RR = 1. As for the 1D RR-LOCO coding scheme, there is
no codeword-to-codeword error propagation. However, there
exists limited error propagation resulting from the codeword-
to-message conversion [7], [18] on the left-most page only.
This error propagation reaches s

2 bits on average, where s is
the message length as well from (23). Consequently, the error
propagation factor averaged over log2 q pages is:

E1D
RR =

1

log2 q

[s
2
+ log2 q − 1

]
. (24)

Table II gives the rates, adder sizes, and error propagation
factors of the proposed RR schemes under various parameters.
The 1D RR-LOCO coding scheme has a remarkable rate ad-
vantage that reaches 10.147%, 6.096%, and 4.343% for q = 4,
q = 8, and q = 16, respectively over the 2D RR constrained

TABLE II
RATE, COMPLEXITY, AND ERROR PROPAGATION COMPARISONS BETWEEN

2D AND 1D RR CONSTRAINED CODING

q m R2D
RR R1D

RR s E2D
RR E1D

RR
4 7 0.7500 0.7778 5 1.000 1.750
4 11 0.7500 0.8077 8 1.000 2.500
4 21 0.7500 0.8261 15 1.000 4.250
8 7 0.8333 0.8519 5 1.000 1.500
8 11 0.8333 0.8718 8 1.000 2.000
8 21 0.8333 0.8841 15 1.000 3.167
16 7 0.8750 0.8889 5 1.000 1.375
16 11 0.8750 0.9038 8 1.000 1.750
16 21 0.8750 0.9130 15 1.000 2.625

coding scheme. The 2D RR scheme has a clear advantage in
terms of both complexity and error propagation as it requires
no processing to encode and decode. Having said that, the error
propagation factor of the 1D RR scheme decreases notably as q
increases. For example, E1D

RR = 2.625 for q = 16 and m = 21,
which is remarkably small given the code length.

The two coding schemes can be used in the same device, but
at different lifetime stages. The 1D RR-LOCO coding scheme
can be used when the device is still fresh or until a moderate
number of program/erase (P/E) cycles, while the 2D RR
constrained coding scheme can be used when the device ages,
where preventing the error-prone patterns in both directions
could make a difference and the rate loss could be acceptable.
However, this performance difference is shown to be small in
Section V, at least for the TLC Flash device we used.

Remark 2. An idea that allows page separation for MLC
Flash was introduced in [15]. However, the rate offered is only
0.7500, which is significantly below the rates offered via our
1D RR coding scheme for MLC. Another idea that allows page
separation for TLC Flash was introduced in [16]. However, it
only heuristically addresses the level pattern 707.

V. EXPERIMENTAL RESULTS ON TLC FLASH

To characterize the performance of the RR constrained
coding schemes, we conducted program/erase (P/E) cycling
experiments on several blocks of a commercial 1X-nm TLC
Flash chip, as follows:

1) Erase Flash memory block under test.
2) Program all pages of block under test with data. For

uncoded experiments, program pseudo-random data at
each P/E cycle. For RR experiments, program prepared
data satisfying RR constraints at each P/E cycle.

3) For each successive P/E cycle of RR experiments, “ro-
tate” the data, so the data that was written on the page i
is written on the page (i+ 1), wrapping around the last
page to the first page.

4) Record bit errors and compute channel bit error rate
(BER) every 100 P/E cycles.

Remark 3. Gray mappings used in Flash devices may vary
between manufacturers and product generations. The forbid-
den patterns can usually be modified in accordance with the
mapping so that RR coding on one page per wordline will
eliminate all or most of the patterns in Lq that induce the
most severe ICI.



Fig. 3 presents the channel BER from P/E cycle 0 to P/E
cycle 10,000 using pseudo-random data and a rate 24:36
1D RR-LOCO code either along wordlines or along bitlines.
Using (22), R1D

RR = 0.8889. Therefore, the 1D coding scheme
achieves about 99% (96%) of the capacity C1D

RR (C1D
Lq

). The
uncoded performance is better than that of the RR codes up
to around 1,800 P/E cycles and is notably worse thereafter.

At the later stages of P/E cycling, ICI increases, and the
results in Fig. 3 reflect this phenomenon. Specifically, RR-
LOCO codes along wordlines increase device lifetime by about
1,200 P/E cycles when channel BER is 2 × 10−3, i.e., 37%
lifetime gain, and achieve about 2,600 P/E cycles gain when
channel BER is 3× 10−3, i.e., 58% lifetime gain. After 2,000
P/E cycles, the BER of 1D RR coding is almost the same on
wordlines as it is on bitlines.

Fig. 4 compares the BER performance of the 24:36 1D RR-
LOCO code with the interleaved 12:18 RLL (d, k) = (0, 1)
code (which has an overall block length 36 after interleaving)
and the 2D RR code. Using (21), R2D

RR = 0.8333. Therefore,
the 2D coding scheme achieves about 93% (90%) of the
capacity C2D

RR (C1D
Lq

). The two 1D RR coding schemes have
similar performance, with both showing that bitline coding
performs almost the same as wordline coding. The 2D RR
coding scheme achieves a slightly better performance than the
two 1D RR coding schemes.

An examination of level probabilities induced by 1D RR
constraints builds intuition towards the experimental results in
Figs. 3 and 4. The probabilities of binary symbols 0 and 1
under the RLL (d, k) = (0, 1) constraint are approximately
0.2764 and 0.7236, respectively [23]. Asymptotically, this
leads to probabilities of individual symbols in V0 and V1 of
about 0.0691 and 0.1809, respectively.

The cross-over behavior observed in Fig. 3 can be explained
if the level patterns eliminated by the code, especially ICI-
prone patterns, are not the only significant contributors to
error early in the device lifetime. The RR coding significantly
changes level probabilities compared with the uncoded setting,
increasing the probability of some of the remaining level
patterns that cause errors due to other effects, and accordingly
increasing their contribution to the BER at low P/E cycles. One
suggestion to prevent this behavior is applying two different
constraints before and after the cross-over point, making use
of the LOCO reconfigurability feature that could be directed
by a machine learning module.

Similarly, 1D RR coding in the wordline direction will
reduce the probabilities of detrimental patterns in the bitline
direction, and vice versa. This reduces the impact of the more
severe ICI in the bitline direction on the overall error rate,
while simultaneously reducing the expected advantage of the
2D RR coding (even without taking into account the rate
penalty associated with the 2D coding).

These effects on level-pattern probabilities have been con-
firmed by examination of the data written to the Flash memory
block and the observed error-inducing patterns.

VI. CONCLUSION

We introduced 2D and 1D RR coding schemes for modern
Flash devices. RR coding schemes are systematic, and they

Fig. 3. Measured average channel BER comparison when all pages are
programmed with random data, 1D RR-LOCO coded data (rate 24:36) along
wordlines or bitlines.

Fig. 4. Measured average channel BER comparison of 1D RR-LOCO codes
(rate 24:36) along wordlines or bitlines, 1D interleaved RLL-(0, 1) codes (rate
12:18) along wordlines or bitlines, and 2D RR code.

incur limited redundancy to improve performance. Experimen-
tal results reveal significant P/E cycles gains in a commercial
Flash device. In summary, RR codes offer an efficient and
practical approach to mitigating ICI that can enhance Flash de-
vice lifetime. Future work includes combining RR constrained
codes with effective LDPC codes [28].
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