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ABSTRACT

A DECOMPOSITION FOR THE TILTED CHANNEL OF THE FAST
FADING CHANNELS

Yıldız, Mücahit Furkan
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Barış Nakiboğlu

September 2022, 64 pages

A decomposition property for the tilted channel of the fast fading channels with the

channel state information at the receiver is proposed. A necessary and sufficient con-

dition for the decomposition and the resulting expressions for the sphere packing

exponent and the random coding exponent are determined. These expressions are

used to calculate the error exponents for the discrete memoryless channels with cer-

tain symmetries. The existence of a similar decomposition property for Gaussian

channels under Gaussian input distributions is analyzed.

Keywords: Augustin Information Measures, Sphere Packing Exponent, Random Cod-

ing Exponent, Fast Fading, Discrete Channels, Gaussian Channels

v



ÖZ

HIZLI SÖNÜMLEMELİ KANALLARIN EĞİK KANALLARI İÇİN BİR
DEKOMPOSİZYON

Yıldız, Mücahit Furkan
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Barış Nakiboğlu

Eylül 2022 , 64 sayfa

Kanal durum bilgisinin alıcıda olduğu hızlı sönümlü kanalların eğik kanalları için bir

dekompozisyon özelliği önerildi. Böyle bir dekompozisyonun olabilmesi içim hem

gerekli hem de yeterli olan bir koşul ve bu koşulu sağlayan durumlar için küre sıkış-

tırma üssü ve rassal kodlama üssü ifadeleri elde edildi. Bu ifadeleri kullanarak bazı

simetrilere sahip kanalların hata üssü fonksiyonları belirlendi. Gauss kanallarda girdi

dağılımı Gauss olduğunda benzer bir dekompozisyonun var olup olmadığı incelendi.

Anahtar Kelimeler: Augustin Bilgi Ölüçüleri, Küre Sıkıştırma Üssü, Rassal Kodlama

Üssü, Ayrık Kanallar, Gauss Kanallar
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I would also like to thank TÜBİTAK for financially supporting this thesis under Grant

119E053.

I would like to extend my sincere thanks to all my dear friends. They never wavered

in their support and never let me down.

I could not have undertaken this journey without my precious wife, Feyza. I am thank-

ful for her constant support, encouragement, patience, and understanding throughout

the development of this thesis.

Finally, this endeavor would not have been possible without my beloved mother Şah-
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CHAPTER 1

INTRODUCTION

As a result of the rapid developments in communication technologies, people started

to realize the different usage areas of communication systems. At first, it was only

possible to talk to landline phones. Then cellular phones replaced landline phones

because people wanted to be connected and instantly reachable while walking outside

or sitting in a cafe. When the internet was first presented, computers required cable

to connect to the internet, and people used it for simple tasks such as sending an e-

mail and browsing. However, people want to watch a movie, do online shopping,

and handle their bank accounts on their phones, leading to the development of fast

and robust wireless connections. The development process is accelerating with new

ideas such as machine-to-machine (M2M) connection without human interference,

self-driving cars, and smart homes. The high mobility, high data rate, and low latency

requirements are growing more than ever.

Despite all the exciting ideas of wireless communication, it inherits a genuine prob-

lem that is inevitable and does not exist in wired communication. Wires have char-

acteristics of channel responses, and they do not change over time. However, envi-

ronmental circumstances highly affect wireless channels, and rapid shifts can cause a

reduction in the signal quality, called the fading effect.

To overcome the fading effect, researchers model the wireless channels with some

parameters, i.e., coherence time and bandwidth. Coherence time indicates the dura-

tion in which the wireless channels nearly have the same channel response, and the

coherence bandwidth indicates the bandwidth in which wireless channels nearly have

the same channel response for the frequencies apart from each other. Under these pa-

rameters, different models with different assumptions are used in the literature. Some
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models assume that the channel characteristics can be tracked in the coherence time,

and this response information, i.e., the channel state information (CSI), is known at

the receiver side. This model is known as the fast-fading channel with CSI at the

receiver. We will use this model in the rest of the thesis.

When the high-reliability demands are the primary considerations of the communica-

tion, error exponents and their refinements are used. They give us the relation between

the codelength and the exponential decay rate of the probability of error. Analyzing

the error exponents, one can know the minimum codelength that achieves the required

exponential decay of the error probability in a coding scheme. We aim to understand

the fading effect by deriving the relationship between the corresponding non-fading

channels and the fast-fading channels with CSI at the receiver.

1.1 Related Works

In literature, fast-fading channels with CSI at the receiver is a widely used model by

researchers. In [1], the author calculates the sphere packing exponent (SPE) and the

random coding exponent (RCE) of the fast-fading discrete memoryless channels with

CSI at the receiver by using the conditioned non-fading discrete memoryless channels

for each fading parameter for given input distribution. Then, the author showed that

the calculated SPE and the RCE are always less than the expected value of the SPE

and the RCE of the non-fading discrete memoryless channels conditioned on the fad-

ing parameter. Another significant channel model is the fast-fading Gaussian channel

model with CSI at the receiver because the distribution of the thermal noise is mod-

eled as the Gaussian distribution. Researchers widely adopt this model with various

fading distributions and calculate the RCE using Gallager’s idea [2]. In [3], the author

calculates the RCE of fast-fading Gaussian channels for capacity-achieving input dis-

tribution without showing that the chosen input distribution is optimum. Although it

is optimum for the rate equal to the channel capacity, it may not be the optimum input

distribution for the rates below the channel capacity. We summarized the works on

the fast-fading Gaussian channels in Table 1.1. Generally, authors adopt the massive

input - massive output (MIMO) channel models.
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Article Channel Model Power Allocation Used Techniques

[4] Rayleigh-Fading with Diver-

sity and CSI

Capacity-Achieving

Gaussian Distribution

RCE

[5] Rayleigh-Fading Memoryless

Correlated Channels with

Full or Partial CSI

Equal Power Case RCE

[6] Rayleigh and Nakagami-

Fading with Diversity and

CSI

Capacity-Achieving

Gaussian Distribution

RCE

[7] Rayleigh and Nakagami-

Fading and Diversity

RCE

[8] Rayleigh-Fading with MIMO

and CSI

Capacity-Achieving

Gaussian Distribution

RCE

[9] Rayleigh-Fading with MIMO

and CSI

Capacity-Achieving

Gaussian Distribution

RCE

[10] Rician-Fading with MIMO

and CSI

RCE and Upper-

bound

[11] Rayleigh-Fading Channels

with CSI

Approximations for

Special Cases

Expurgated

Bound, RCE and

SPE

[12] Block Fading MIMO with

CSI

Capacity-Achieving

Gaussian Distribution

Expurgated

Bound and RCE

[13] Block Fading MIMO with

CSI

Binary and Capacity-

Achieving Gaussian

Distribution

RCE

[14] Nakagami-m Fading MIMO

with CSI

Equal Power RCE

[15] Multi-keyhole MIMO with

CSI

Equal Power RCE

[16] Generalized K-Fading

MIMO with CSI

Capacity-Achieving

Gaussian

RCE

3



[17] Rayleigh-Fading Product

MIMO with CSI

Capacity-Achieving

Gaussian

RCE

[18] Multiple-Rayleigh Scattering

MIMO with CSI

Capacity-Achieving

Gaussian

RCE

[18] Multiple-Rayleigh Scattering

MIMO with CSI

Uniform Power Allo-

cated Gaussian Input

RCE

[19] Multiple-Rayleigh Scattering

MIMO with CSI

Uniform Power Allo-

cated Gaussian Input

RCE and Expur-

gated Bound

[20] η-µ Fading MIMO with CSI Capacity-Achieving

Gaussian

RCE

[21] Block Fading MIMO with

CSI

RCE

Table 1.1: The table of the related works

1.2 Contributions and Novelties

In Chapter 3, we proved the Lemma 1. This Lemma explains the required and suf-

ficient conditions to decompose tilted channels of fast-fading discrete memoryless

channels for an input distribution into a tilted fading distribution and tilted channels

of the corresponding non-fading discrete memoryless channels for a given CSI with

the same input distribution. Then we proved that the Lemma 1 conditions are satis-

fied for a particular class of channels. We calculated the parametric expressions of

SPEs and the rates. Then we analyzed fading binary symmetric channels (FBSC)

and fading binary erasure channels (FBEC) as examples. We found that the SPEs of

FBSCs are always greater than SPEs of non-fading binary symmetric channels (BSC)

under the same-capacity condition for all rates lower than the channel capacity. We

found that the fading distribution that takes only two values, 0 and 0.5, maximizes

the SPEs of the FBSCs. We showed that SPEs of all FBECs are equal to the SPEs of

4



non-fading binary erasure channels (BEC) under the same-capacity condition for all

rates lower than the channel capacity. We explain how to generalize the Lemma 1 to

the infinite sets and the probability density functions in Chapter 4. Then, we checked

the Gaussian channels to find that the decomposition described in the Lemma 1 is not

applicable for the fading Gaussian channels. Lastly, we proved that the conditional

output distribution of tilted fading channels conditioned on the fading parameter could

not be a Gaussian channel for the Gaussian input distribution. This result also implies

that the conditional output distribution of the Augustin mean can not be a Gaussian

distribution.

1.3 Thesis Outline

We organized this thesis as follows. We define the preliminary concepts and the

Augustin information measures on the finite sets and the probability mass function

in Chapter 2. Then we explain the notation of the thesis, discrete channels, and the

coding. This chapter discusses the error exponent functions, i.e., the SPE and the

RCE. Chapter 3 explains fading discrete channels, Lemma 1, and its applications with

examples. Then we compare the results of the examples. In Chapter 4, we discuss the

fading Gaussian channels in the aspect of the decomposition of their tilted channels.

Finally, Chapter 5 concludes the thesis.

5
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CHAPTER 2

AUGUSTIN INFORMATION MEASURES AND ERROR EXPONENT

FUNCTIONS

In this Chapter, we describe the notation of the thesis, which we will use hereafter,

and give preliminary definitions. We describe the Augustin information measures,

discrete memoryless channels, and the error exponent functions. Then, we explain the

connections between these concepts and their operational features. Lastly, we discuss

the advantages of the Augustin information measures over the more commonly used

Gallager’s function.

2.1 Notation and Preliminaries

2.1.1 Notation

Throughout the thesis, we will use the word alphabet to denote the finite sets. We

show all the probability mass functions (PMFs) on the alphabet Y, with P(Y). A

Channel W is a function satisfying W : X → P(Y). Thus, for any x ∈ X, W (x ) is

a PMF in P(Y). We show values of W (x ) for any y ∈ Y with W (y |x ). We denote

the set of all strings with length n, which we can construct on the alphabet Y with Yn.

Note that Yn is also a finite set. Therefore, all the previous notations are also valid

for Yn . A PMF w ∈ P(Y) is said to be absolutely continuous in a probability mass

function q ∈ P(Y), denoted by w≺q , if w(y) = 0 for all y where q(y) = 0.

Example 1. For PMFs q1, q2, q3

7



q1(y) =


0 if y = 1

1 if y = 2

0 if y = 3

q2(y) =


0.5 if y = 1

0.5 if y = 2

0 if y = 3

q3(y) =


0 if y = 1

0.5 if y = 2

0.5 if y = 3

Only q1≺q2 and q1≺q3. However, q2⊀q1, q2⊀q3, q3⊀q1, and q3⊀q2.

0 1 2
0

0.2

0.4

0.6

0.8

1

0

1

0

y

q 1
(y
)

Figure 2.1: The plot of the probability mass function q1 in Example 1

0 1 2
0

0.2

0.4

0.6

0.8

1

0.5 0.5

0

y

q 2
(y
)

Figure 2.2: The plot of the probability mass function q2 in Example 1
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0 1 2
0

0.2

0.4

0.6

0.8

1

0

0.5 0.5

y

q 3
(y
)

Figure 2.3: The plot of the probability mass function q3 in Example 1

The absolutely continuity relation has no commutative property. Two PMFs w , q ∈
P(Y) are equivalent if and only if w≺q and q≺w and we show the equivalence rela-

tion with w ∼ q . The equivalence relation has the commutative property.

2.1.2 Preliminary Definitions

Definition 1. For any α ∈ R+ and w , q ∈ P(Y), the order α Rényi divergence be-

tween w and q , denoted by Dα(w∥ q), is

Dα(w∥ q):=


1

α−1
ln
∑

y [w(y)]α[q(y)]1−α if α∈R+\{1}∑
y w(y) ln w(y)

q(y)
if α=1

. (2.1)

The order one Rényi divergence is equal to the Kullback-Leibler divergence. By [22,

Lemma 2], for any α ∈ R+ and w , q ∈ P(Y),

Dα(w∥ q) ≥ min(1,α)
2

∑
y

(w(y)− q(y))2. (2.2)

(2.2) is known as the Pinsker’s inequality for α ∈ (0, 1). As a result of (2.2), for any

w , q ∈ P(Y) and any α ∈ R+ , we get

0 ≤ Dα(w∥ q) , (2.3)

9



and the equality in (2.3) holds only when w(y) = q(y) for all y ∈ Y by (2.2). The

Rényi divergence has no commutative property for α ̸= 1
2
, i.e., for any α ̸= 1

2
, there

exist w , q ∈ P(Y) s.t.

Dα(w∥ q) ̸= Dα(q∥w) . (2.4)

The Rényi divergence has commutative property for α = 1
2
, i.e., for all w , q ∈ P(Y)

D1
2
(w∥ q) = D1

2
(q∥w) . (2.5)

We can interpret the Rényi divergence as a measure of the distance between the prob-

ability mass functions. However, it is not a metric because it has no commutative

property.

Definition 2. For any α ∈ R+ , W :X→P(Y), Q :X→P(Y), and p∈P(X), the order

α conditional Renyi divergence, denoted by Dα(W ∥Q | p), is

Dα(W ∥Q | p):=
∑

x
p(x )Dα(W (x )∥Q(x )) . (2.6)

In the case when the second argument of the conditional Rényi divergence is inde-

pendent of the parameter x , i.e., Q(x ) = q for some q ∈ P(Y), Dα(W ∥ q | p) can be

used instead of Dα(W ∥Q | p).

Definition 3. For any α ∈ R+ , W : X → P(Y), and q ∈ P(Y), the order α tilted

channel, denoted by W q
α (y |x ), is

W q
α (y |x ):=[W (y |x )]α[q(y)]1−αe(1−α)Dα(W (x)∥q), ∀x ∈ X. (2.7)

Using (2.1) in (2.7) , we get

W q
α (y |x ) =


[W (y|x)]α[q(y)]1−α∑
ȳ [W (ȳ|x)]α[q(ȳ)]1−α if α∈R+\{1}

W (y |x ) if α=1
. (2.8)

The conditional Rényi divergence and the tilted channel play a significant role in

characterizing the Augustin mean in Section 2.2.1.

10



2.2 Augustin Information Measures

This section explains the Augustin information measures, including the Augustin in-

formation, the Augustin mean, the Augustin capacity, the Rényi radius, and the Au-

gustin center.

2.2.1 Augustin Mean and Information

Definition 4. For any α ∈ R+ , channel W :X→P(Y) and input distribution p∈P(X),

the order α Augustin information is

Iα(p;W):= infq∈P(Y) Dα(W ∥ q | p) . (2.9)

For the order α = 1

D1(W ∥ q | p) = D1(W ∥ qp| p) + D1(qp∥ q) (2.10)

where

qp:=
∑

x
p(x )W (x ). (2.11)

Since D1(qp∥ q) ≥ 0 by (2.3), infimum in (2.9) is achieved by qp . Therefore,

q1,p = qp (2.12)

I1(p;W) = D1(W ∥ qp| p) . (2.13)

Hence, the order one Augustin information is equal to the mutual information. The

probability distribution that achieves the infimum in (2.9) has a closed-form expres-

sion for the order one. However, a closed-form expression of the probability distri-

bution that achieves the infimum in (2.9) is not available for orders other than one.

Nevertheless, the existence of the unique output distribution that achieves the infimum

in (2.9) for any PMF p on arbitrary classical channels is proved for orders α ∈ (0, 1)

in [23] and for orders α ∈ (1,∞) in [22]. The output distribution that achieves the

infimum in (2.9) is called as the order α Augustin mean, and denoted by qα,p . Thus,

Iα(p;W) = Dα(W ∥ qα,p| p) . (2.14)

11



Although the closed-form of the Augustin mean does not exist for orders other than

one, the Augustin mean can be characterized with the Augustin operator [22, Lemma

13].

Definition 5. The Augustin operator Tα,p (·) : Qα,p → P(Y) is

Tα,p (q):=
∑

x
p(x )W q

α (x ) ∀q ∈ Qα,p , (2.15)

where Qα,p :={q ∈ P(Y) : Dα(W ∥ q | p) <∞}.

The order α Augustin mean satisfies the fixed point property, i.e., Tα,p (qα,p) = qα,p ,

which also satisfies qα,p ∼ qp . Furthermore, any probability distribution q which is

a fixed point of the Augustin operator, i.e., Tα,p (q) = q , that also satisfies qp≺q is

the Augustin mean by [22, Lemma 13]. In addition to the proof of the existence of

the unique Augustin mean for any PMF p on arbitrary classical channels in [22], it

also proved for arbitrary input distribution p on arbitrary classical channels in [24].

Furthermore, the existence of the unique Augustin mean is proved for any PMF p on

the classical-quantum channels in [25].

2.2.2 Rényi Mean and Information

We can define other information measures using the Rényi divergence. One of them

is the Rényi information which is implicitly defined by the Gallager1 in [2].

Definition 6. For any α ∈ R+ , channel W :X→P(Y) and input distribution p∈P(X),

the order α Rényi information is

I g

α(p;W):= infq∈P(Y) Dα(p ⃝∗ W ∥ p ⊗ q) , (2.16)

where p ⃝∗ W denotes the PMF whose marginal on X is p and whose conditional

distribution given x is W (x ). p ⊗ q ∈ P(X⊗ Y) denotes the PMF defined on the

product set of X⊗ Y whose marginal on X is p and marginal on Y is q .

1 With different parametrization and scaling and a restriction s.t. α ∈ (0, 1).
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Definition 7. For any α ∈ R+ , channel W :X→P(Y) and input distribution p∈P(X),

the order α power mean is

µα,p(y) =

[∑
x

p(x )(W (y |x ))α
] 1

α

. (2.17)

Definition 8. For any α ∈ R+ , channel W :X→P(Y) and input distribution p∈P(X),

the order α Rényi mean is

qgα,p =
µα,p

||µα,p||
. (2.18)

We can write

Dα(p ⃝∗ W ∥ p ⊗ q) = Dα

(
p ⃝∗ W ∥ p ⊗ qgα,p

)
+ D1

(
qgα,p
∥∥ q) . (2.19)

Since D1

(
qgα,p
∥∥ q) ≥ 0 by (2.3), infimum in (2.16) is achieved by qgα,p . Therefore,

I g

α(p;W) = Dα

(
p ⃝∗ W ∥ p ⊗ qgα,p

)
. (2.20)

The order one Rényi information is equal to the order one Augustin information,

and the order one Rényi mean is equal to the order one Augustin mean for any input

distribution p. However, unlike the Augustin mean, the Rényi mean has a closed-form

expression for orders other than one. Thus, characterizing the Augustin information

in terms of the Rényi information is helpful. The corresponding characterization is

done in [22]. As a result of this characterization, we get the inequalities

Iα(W ;p) ≥ I g

α(W ;p) ∀α ∈ (0, 1), (2.21)

Iα(W ;p) ≤ I g

α(W ;p) ∀α ∈ (1,∞). (2.22)

2.2.3 Augustin Center and Capacity

The Augustin capacity directly appears in the expressions of the SPE and the RCE.

For this reason, it is the pivotal quantity in the SPE and the RCE analysis with Au-

gustin information measures.

Definition 9. The order α Augustin capacity of a channel W :X→P(Y) for a con-

straint set A ⊂ P(X) is the supremum of the order α Augustin information over all

the possible input distributions p ∈ A. Thus,

Cα,W ,A:= supp∈A Iα(p;W) . (2.23)
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If the constraint set is the whole P(X), we denote the Augustin capacity with the

Cα,W . Thus

Cα,W ,P(X) = Cα,W . (2.24)

Definition 10. The order α Rényi radius of a channel W :X→P(Y) is

Sα,W:= infq∈P(Y) maxx∈X Dα(W (x )∥ q) . (2.25)

Using the definition of the Augustin information in the definition of the Augustin

capacity, we get

Cα,W ,A = supp∈A infq∈P(Y) Dα(W ∥ q | p) . (2.26)

We can change the order of the supremum and infimum for convex input sets by [22,

Theorem 1], and we get

Cα,W ,A = infq∈P(Y) supp∈A Dα(W ∥ q | p) . (2.27)

If the constraint set is the whole P(X), then the Augustin capacity is equal to the

Rényi radius.

Cα,W = infq∈P(Y) maxx∈XDα(W (x )∥ q) , (2.28)

= Sα,W . (2.29)

Suppose Cα,W ,A is finite, which is always the case for DMC’s. In that case, there ex-

ists a unique output distribution that achieves the infimum in (2.27) by [22, Theorem

1]. It is called as the order α Augustin center of the constrained set A, and denoted

by qα,W ,A. Thus,

Cα,W ,A = supp∈ADα(W ∥ qα,W ,A| p) . (2.30)

Similar to the Augustin capacity, if the constraint set is the whole P(X), we denote

the Augustin center with the qα,W . Thus

qα,W ,P(X) = qα,W . (2.31)

In [22], the existence of the unique order α Augustin center is generalized for the

arbitrary input distribution p.
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2.2.4 Rényi Center and Capacity

Similar to the Augustin capacity, Rényi capacity with the constraint set A ⊂ P(X)

can be defined as the supremum of the Rényi information for the possible input dis-

tributions p ∈ A.

Definition 11. The order α Rényi capacity of a channel W :X→P(Y) with constraint

set A is the supremum of the order α Rényi information over all the possible input

distributions p ∈ A. Thus,

C g

α,W ,A:= supp∈A I g

α(p;W) , (2.32)

= supp∈A infq∈P(Y) Dα(p ⃝∗ W ∥ p ⊗ q) . (2.33)

If the constraint set is the whole P(X), we denote the Rényi capacity with the C g

α,W .

Thus,

C g

α,W ,P(X) = C g

α,W . (2.34)

Again, we can change the order of the supremum and infimum for convex A by [26].

C g

α,W ,A = infq∈P(Y) supp∈A Dα(p ⃝∗ W ∥ p ⊗ q) . (2.35)

If the constraint set is the whole P(X), then the Rényi capacity is equal to the Rényi

radius.

C g

α,W = infq∈A maxx∈X Dα(W (x )∥ q) , (2.36)

= Sα,W . (2.37)

If C g

α,W is finite, which is always the case for DMCs, then there exists a unique output

distribution that achieves the infimum in (2.35) by [26]. It is called as the order α

Rényi center and denoted by the qgα,W ,A. Thus,

C g

α,W ,A = supp∈A Dα

(
p ⃝∗ W ∥ p ⊗ qgα,W

)
. (2.38)

Similar to the Rényi capacity, if the constraint set is the whole P(X), we denote the

Rényi center with the qgα,W . Thus,

qgα,W ,A = qgα,W . (2.39)
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Because the order one Augustin information is equal to the Rényi information for any

input p, we can say that the order one constrained Augustin capacity is equal to the

order one constrained Rényi capacity. However, for the orders other than one, the

Augustin information is greater than the Rényi information for α ∈ (0, 1) and the

Augustin information is lower or equal than the Rényi information for α ∈ (1,∞) by

(2.21) and (2.22). Therefore the Augustin capacity is greater than the Rényi capacity

for α ∈ (0, 1) and the Augustin capacity is lower or equal to the Rényi capacity for

α ∈ (1,∞), as well.

Cα,W ,A ≥ C g

α,W ,A ∀α ∈ (0, 1), (2.40)

Cα,W ,A ≤ C g

α,W ,A ∀α ∈ (1,∞). (2.41)

The equality in (2.40) and (2.41) holds only if Dα(W ∥ qα,W ,A) equal to each other

for all x s.t. p(x ) > 0 for the Augustin capacity-achieving input distribution p ∈ A.

Furthermore, the Augustin capacity is equal to the Rényi capacity for the case A =

P(X) because they are both equal to the Rényi radius.

2.3 Discrete Memoryless Channels and Coding

Before introducing the error exponent functions, we describe the discrete memoryless

channels and coding, which are the concepts that should be known beforehand. A

discrete channel, shown in Figure 2.4, is a channel that takes an input symbol from

the finite input set X and produces a probability mass function on the finite output set

Y. We consider the discrete channel memoryless if the output distribution on the

Input Set X
Channel

W : X → P(Y)
Output Space P(Y)

X Y

Figure 2.4: The block diagram of the discrete channel.

finite output set Y is independent of the previously transmitted input symbols. We can

characterize this channel with the equation

W (yn |xn) =
∏n

i=1
W (yi|xi) (2.42)
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for any n ∈ Z+ , yn ∈ Yn , xn ∈ Xn , and xi denotes the i-th element in the sequence

xn . An encoder ψ : M → Xn is a function that maps the integers m ∈ M, where

M = {1, . . . ,M}, into the strings xn ∈ Xn of length n. Each of these strings

ψ(1), . . . , ψ(M) are called the codeword, their length is called the blocklength, and

M is called the message set containingM number of messages. A code is a collection

of the M codewords, and a code ensemble is the group of the codes. A list decoder

Θ : Yn → M̂ is a function that maps the strings yn ∈ Yn into the set of messages

L ∈ M̂, where M̂ = {L : L ⊂ M}. Figure 2.5 shows the encoder and the decoder

blocks combined with the discrete channel.

M
Encoder

ψ : M → Xn

Channel

W : Xn → P(Yn)

Decoder

Θ : Yn → M̂
M̂

Xn Yn

Figure 2.5: The block diagram of the discrete channel with the coding.

We can define the code rate R

R =
ln(M)

n
. (2.43)

An error occurs when the decoder decodes string yn to the message list, which does

not contain m. We can indicate the probability of error of the message m

Pm
e = P(m /∈ Θ(yn)|xn = ψ(m)), (2.44)

and we can calculate the average error probability

Pav
e =

1

M

M∑
m=1

Pm
e . (2.45)

2.4 Error Exponent Funtions

In his seminal work, E. C. Shannon [27] showed that for a broad class of channels,

there is a threshold rate at which we can decrease the probability of error as much as

we want if we communicate at rates below a threshold. This threshold rate is called

the channel capacity. However, this theorem does not say how fast the error probabil-

ity decreases with increasing the block-length n. It is essential to know the relation
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between the decay rate of error probability and the block-length if the high-reliability

constraints are the primary concerns for the application. Error exponent functions es-

tablish an exponential connection between the error probability, the code-length, and

transmission rates and show how the error probability decreases by increasing the

block-length. Error exponent functions fully characterize the channel for the fixed

rates between the critical rate and the channel capacity. Furthermore, error exponents

provide a better opportunity for more comprehensive comparisons between the chan-

nels than the channel capacity. RCE, derived by Gallager [2] in 1965, is an upper

bound, and the SPE, derived by Shannon, Gallager, and Berlekamp [28] in 1967, is a

lower bound for the error probability.

KL(n)e
−nEsp(R) ≤ Pe ≤ KU(n)e

−nEr(R), (2.46)

where the coefficients KL and KU satisfy

lim
n→∞

lnKL(n)
n

= 0, (2.47)

lim
n→∞

lnKu(n)
n

= 0. (2.48)

We reproduce and explain the proof of the RCE in Appendix A.

2.4.1 Exponent Function and Augustin Information Measures

Gallager’s function characterizes the SPE and the RCE; when they are first found, see

[2], [28]. However, they can be characterized by the constrained Augustin capacity,

see [29], [25].

Esp(R,W ,A):= supα∈(0,1)
1−α
α

(Cα,W ,A − R) , (2.49)

Er(R,W ,A):= supα∈(0.5,1)
1−α
α

(Cα,W ,A − R) . (2.50)

For the case when constraint set is equal to whole P(X), i.e., A = P(X), we get,

Esp(R,W ):= supα∈(0,1)
1−α
α

(Cα,W − R) , (2.51)

Er(R,W ):= supα∈(0.5,1)
1−α
α

(Cα,W − R) . (2.52)

For the cost constraint case, Rényi-Gallager capacity, see [22], can be used as pointed

out by Gallager in [2]. It includes an additional non-standard use of the Lagrange
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multiplier. The primary advantage of Augustin information measures over Gallager’s

functions (hence Renyi information [26] measures) is that when a cost constraint

or a convex composition constraint is imposed on the codes, the resulting exponent

functions can be obtained by using the constrained Augustin capacity with the same

constraint in the input set. Furthermore, for the constant composition codes, we can

write the parametric expression of the SPE in terms of the tilted channel by [29]. For

any R ∈ (limα↓0 Iα(p;W) , I1(p;W)), there exists a unique order α ∈ (0, 1) satisfying

Esp(R,W , p) = D1(W
qα,p
α ∥W | p) , (2.53)

R = D1(W
qα,p
α ∥ qα,p| p) , (2.54)

= I1(p;W
qα,p
α ) . (2.55)
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CHAPTER 3

FADING DISCRETE MEMORYLESS CHANNELS

3.1 Introduction

In this Chapter, we explain the fading discrete memoryless channel model with CSI

at the receiver. Secondly, we prove the main lemma of the thesis. Lemma shows how

to decompose tilted channels of the fast-fading discrete memoryless channels using

the tilted fading distribution and tilted channels of the discrete memoryless channels

conditioned on fading parameters. Thirdly, we describe one particular class of chan-

nels that satisfies the requirements of the decomposition lemma. Afterward, we apply

the decomposition lemma to some example channels from this class, i.e., fast-fading

BSCs, BECs, and Gallager symmetric channels. Then, we calculate the resulting Au-

gustin capacity, SPE, and RCE for any fading distribution. Lastly, we compare the

results with the corresponding non-fading channels under the equal capacity condi-

tion.

3.1.1 Fading Discrete Memoryless Channels

Fading discrete channels, shown by the Figure 3.1, are described over the discrete

memoryless channels with an additional fading parameter h ∈ H. Like discrete

channels, we define the fading discrete channel as a channel that takes an input symbol

from the finite input set X and produces a PMF on the finite output set Y and the finite

fading set H. We say that the fading discrete channel is a fast-fading discrete

memoryless channel if the output distribution on the finite output set Y is independent

of the previously used input symbols, and the fading parameter is independent and

identically distributed for every input letter for every use of the channel. The equation
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Input Set X
Fading Channel

V

Fading Set H

Output Space P(Y)
X

H

Y

Figure 3.1: The block diagram of the fading discrete channel.

characterizes a fast fading discrete memoryless channel

V (hn , yn |xn) =
∏n

i=1
V (hi, yi|xi), (3.1)

=
∏n

i=1
g(hi|xi)W (yi|xi, hi). (3.2)

where g ∈ P(H) is the fading distribution and for any n ∈ Z+ , hn ∈ Hn , yn ∈
Yn , xn ∈ Xn , and xi denotes the i-th element in the sequence xn . We assume that

fading parameters are independent of transmitted letters xi.

V (hn , yn |xn) =
∏n

i=1
g(hi)W (yi|xi, hi) (3.3)

If receivers knows the CSIs, resulting channels are called a fast-fading discrete mem-

oryless channels with CSI at the receiver. We will use this model used in the thesis.

Remark 1. Notice that the discrete memoryless channels are a special case of the fast

fading discrete memoryless channels, in which the fading distribution has a single

fading parameter h in the H satisfying g(h) = 1. More interestingly, the fast-fading

discrete memoryless channels are also discrete memoryless channels. Consider an

input set X and a new output set Z = H × Y. Z is the cartesian product of the fading

set ant the previous output set. Then the fast fading discrete memoryless channel

V : X → Z is a discrete memoryless channel, and its probability distributions satisfy

the equality

V (z |x ) = g(h)W (y |x , h), ∀x , h, y . (3.4)

The idea of the discrete memoryless channels and fast fading discrete memoryless

channels covering each other has significant operational importance in the discussions

of the following sections.
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3.2 Decomposition Property of the Fast-Fading Discrete Memoryless Channels

with CSI at the Receiver

By [22, Lemma 13], the unique order α Augustin mean exists for the discrete mem-

oryless channels and by Remark 1, fast fading discrete memoryless channels are also

discrete memoryless channels. Consequently, the unique order α Augustin mean ex-

ists for fast fading discrete memoryless channels, satisfying the properties of the order

α Augustin mean of discrete memoryless channels. Explicitly, the order α Augustin

mean of the fast fading discrete memoryless channel sα,p ∼ sp satisfies,

sα,p(z ) =
∑

x
p(x )V sα,p

α (z |x ). (3.5)

For the order α = 1

D1(V ∥ s| p) = D1(W ∥ sp| p) + D1(sp∥ s) , (3.6)

where

sp:=
∑

x
p(x )V (x ), (3.7)

since D1(sp∥ s) ≥ 0 by (2.3), infimum is achieved by sp . Therefore,

s1,p = sp , (3.8)

I1(p;V) = D1(V ∥ sp| p) . (3.9)

Tilted fading channel V s
α : X → P(Z) is

V s
α (z |x ):=[V (z |x )]α[s(z )]1−αe(1−α)Dα(V (x)∥s). (3.10)

Furthermore, for each realization of the fading parameter h ∈ H, conditioned chan-

nels W (· | ·, h) : X → P(Y) are a discrete memoryless channels and by [22, Lemma

13] has their own unique Augustin mean qα,p(h) ∼ qp(h) satisfying

qα,p(y |h) =
∑

x
p(x )W qα,p(h)

α (y |x , h), (3.11)

where qp is defined as

qp(h):=
∑

x
p(x )W (x , h), (3.12)
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and tilted channel W q(h)
α (y |x , h) :X→P(Y) is defined in (2.7) for each h ∈ H. By

(2.12), order one Augustin mean of the channel W (· | ·, h) is equal to the qp(h)

q1,p(h) = qp(h) (3.13)

Using (3.4), (3.7), and (3.12)

s1,p(h, y) = sp(h, y) (3.14)

=
∑

x
p(x )V (h, y |x ), (3.15)

=
∑

x
p(x )g(h)W (y |x , h), (3.16)

= g(h)
∑

x
p(x )W (y |x , h), (3.17)

= g(h)qp(y |h) (3.18)

= g(h)q1,p(y |h). (3.19)

We can decompose the order one Augustin mean, s1,p(h, y), of the fast fading dis-

crete memoryless channel V , into the order one Augustin mean, q1,p(y |h), of the

corresponding non-fading discrete memoryless channels W (· | ·, h), and the original

fading distribution, g(h), of the original fast fading memoryless channel V .

We ask the question of that, is there any similar relationship between the order α Au-

gustin mean of the fast-fading discrete memoryless channel and conditioned discrete

memoryless channels W (· | ·, h) for the orders other than one or not. We answer this

question in Lemma 1.

Lemma 1. For a given discrete channel V : X→ P(H×Y) of the form (3.4), input

distribution p ∈ P(X), and order α ∈ R+ , the following two statements are equiva-

lent

(i) There exist gα ∈ P(H) satisfying

V sα,p
α (h, y |x ) = gα(h)W

qα,p(h)
α (y |x , h) ∀h, y , (3.20)

and for all x s.t. p(x ) > 0, for V
sα,p
α defined in (3.10) and W

qα,p
α defined in

(2.7).

(ii) There exist aα : X → R and bα : H → R satisfying

Dα(W (x , h)∥ qα,p(h)) = aα(x ) + bα(h) ∀h, (3.21)

and for all x s.t. p(x ) > 0.
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Furthermore, if either statement holds, then

sα,p(h, y) = gα(h)qα,p(y |h). (3.22)

Proof. If the (3.20) is true, then by taking the expectation of both sides over the input

distribution p and using the Augustin operator given in (2.15),

∑
x

p(x )V sα,p
α (h, y |x ) =

∑
x

p(x )gα(h)W
qα,p(h)
α (y |x , h), (3.23)

= gα(h)
∑
x

p(x )W qα,p(h)
α (y |x , h), (3.24)

sα,p(h, y) = gα(h)qα,p(y |h). (3.25)

Therefore, statement (i) implies the decomposition of the Augustin mean of the fast

fading discrete memoryless channel.

If we insert (3.4), (3.22), and the statement (i) into (3.10) and use (2.7),

gα(h)W
qα,p(h)
α (y |x , h) = [g(h)W (y |x , h)]α[gα(h)qα,p(y |h)]1−αe(1−α)Dα(V (x)∥sα,p)

(3.26)

W
qα,p(h)
α (y|x ,h)

[W (y|x ,h)]α[qα,p(y|h)]1−α = [g(h)]α

[gα(h)]α
e(1−α)Dα(V (x)∥sα,p) (3.27)

e(1−α)Dα(W (x)∥qα,p) = [g(h)]α

[gα(h)]α
e(1−α)Dα(V (x)∥sα,p) (3.28)

Dα(W (x )∥ qα,p) = α
1−α

ln g(h)
gα(h)

+ Dα(V (x )∥ sα,p) (3.29)

= α
1−α

ln g(h)
gα(h)

+ Dα(V (x )∥ gαqα,p) (3.30)

Then, for the expressions

aα(x ) = Dα(V (x )∥ gαqα,p) , (3.31)

bα(h) =
α

α−1
ln gα(h)

g(h)
. (3.32)

statement (i) implies statement (ii).

Let’s assume that the statement (ii) holds and choose s(h, y) to be

s(h, y):= g(h)e
α−1
α bα(h)∑

h̃
g(h̃)e

α−1
α bα(h̃)

qα,p(y |h). (3.33)
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Then, we can write (3.10) as

V s
α (z |x ) = [V (h, y |x )]α[s(z )]1−αe(1−α)Dα(V (x)∥s) (3.34)

= [g(h)W (y |x , h)]α
[

g(h)e
α−1
α bα(h)∑

h̃
g(h̃)e

α−1
α bα(h̃)

qα,p(y |h)
]1−α

e(1−α)aα(x) (3.35)

= [g(h)]α
[

g(h)e
α−1
α bα(h)∑

h̃
g(h̃)e

α−1
α bα(h̃)

]1−α
1

e(1−α)bα(h)
W qα,p(h)

α (y |x , h) (3.36)

= g(h)e
α−1
α bα(h)∑

h̃
g(h̃)e

α−1
α bα(h̃)

W qα,p(h)
α (y |x , h) (3.37)

In addition, s satisfies the fixed point property and s ∼ sp . For this reason, s is the

Augustin mean. Then the statement (ii) holds for the tilted fading distribution

gα(h) =

∑
h̃

g(h̃)e
α−1
α

bα(h̃)

−1

g(h)e
α−1
α

bα(h) (3.38)

Remark 2. Lemma 1 is important for the fading channels because the only thing that

is necessary to understand if the fast fading discrete memoryless channels have the

decomposition property or not is looking at the Rényi divergence between the discrete

memoryless channels W (·|·, h) and their order α Augustin means qα,p(h) for every

fading parameter h by (3.32). One can ask if the decomposition of the Augustin mean

of the fading DMC V implies the decomposition of the tilted channel. In our opinion,

it is not valid. However, it is still an open problem to solve.

For the channels, which satisfy the decomposition lemma, we can write parametric
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expressions of SPE and the rate as,

Esp(R,V , p) =D1(V
sα,p
α ∥V | p) , (3.39)

=
∑
x

p(x )

[∑
y,h

V sα,p
α (h, y |x ) ln V

sα,p
α (h,y|x)
V (h,y|x)

]
(3.40)

=
∑
x

p(x )

[∑
y,h

gα(h)W
qα,p(h)
α (y |x , h) ln gα(h)W

qα,p(h)
α (y|x ,h)

g(h)W (y|x ,h)

]
(3.41)

=
∑
x

p(x )

[∑
y,h

gα(h)W
qα,p(h)
α (y |x , h) gα(h)

g(h)

]

+
∑
x

p(x )

[∑
y,h

gα(h)W
qα,p(h)
α (y |x , h)W

qα,p(h)
α (y|x ,h)
W (y|x ,h)

]
(3.42)

=D1(gα∥ g) + D1

(
W qα,p(h)

α

∥∥W ∣∣ pgα) , (3.43)

R =D1(V
sα,p
α ∥ sα,p| p) (3.44)

=
∑
x

p(x )

[∑
y,h

V sα,p
α (h, y |x ) ln V

sα,p
α (h,y|x)
sα,p(h,y)

]
(3.45)

=
∑
x

p(x )

[∑
y,h

gα(h)W
qα,p(h)
α (y |x , h) ln gα(h)W

qα,p(h)
α (y|x ,h)

gα(h)qα,p(y|h)

]
(3.46)

=D1

(
W qα,p(h)

α

∥∥ qα,p∣∣ pgα) . (3.47)

3.2.1 Fast Fading DMCs with Common Capacity Achieving Input Distribution

Lemma 1 is not applicable for all fast-fading discrete memoryless channels with CSI

at the receiver and all the input probability distributions. However, for a special class

of the channels, i.e., fast-fading discrete channels with CSI at the receiver with the

common Augustin capacity-achieving input distribution for the channels W (·, h) :

X → P(Y) for all h, Lemma 1 holds. Augustin capacity of the channel W (·, h) will

be denoted as Cα,h instead of Cα,W (·,h) to make the notation more easy to follow.

This subsection will prove that the channels in this class satisfy the Lemma 1, and

the resulting Augustin mean, Augustin capacity, and error exponent functions are

derived.

For channels in this class, there exist a p ∈ P(X),

Iα(p;W (·, h)) = Cα,h ∀h : g(h) > 0. (3.48)
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Necessary condition to (3.48) be true is the Augustin mean that corresponding to the

p is the Augustin center of the channel W (·, h) by [22, Theorem 1]. Consequently, it

also implies

Dα(W (x , h)∥ qα,p(h)) = Cα,h , (3.49)

for all x s.t. p(x ) > 0, and h s.t. g(h) > 0. Because if the L.H.S of the (3.49) is

strictly less than Cα,h for at least one {x : p(x ) > 0}, by (2.14)

Iα(p;W (·, h)) = Dα(W (x , h)∥ qα,p(h)| p) (3.50)

=
∑
x

p(x )Dα(W (x , h)∥ qα,p(h)) (3.51)

< Cα,h . (3.52)

which is a contradiction with the (3.48). Thus (3.48) holds and the channels in this

class satisfy the Lemma (1) through (3.21) where

bα(h) = Cα,h , (3.53)

aα(x ) = 0. (3.54)

Tilted fading distribution can be calculated by using (3.38) as

gα(h) =

∑
h̃

g(h̃)e
α−1
α

C
α,h̃

−1

g(h)e
α−1
α

Cα,h . (3.55)

Derivations until here are enough to satisfy the requirements of the Lemma 1 for this

class of channels. However, we can show that the p is also the Augustin capacity-

achieving input distribution for channel V . We show that the Augustin information

between the channel V and input distribution p is equal to the maximum value of the

conditional Rényi divergence between the channel V and the Augustin mean sα,p for

any input distribution p ′ ∈ P(X). Using (2.14), (2.6), (3.22), the Augustin informa-
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tion between the channel V and the input distribution p is

Iα(p;V) = Dα(V (x )∥ sα,p| p) , (3.56)

=
∑
x

p(x ) 1
α−1

ln
∑
h,y

[V (h, y |x )]α [sα,p(h, y)]1−α , (3.57)

=
∑
x

p(x ) 1
α−1

ln
∑
h,y

[g(h)W (y |x , h)]α [gα(h)qα,p(y |h)]1−α , (3.58)

=
∑
x

p(x ) 1
α−1

ln
∑
h

[g(h)]α [gα(h)]
1−α e(α−1)Cα,h , (3.59)

=
∑
x

p(x ) 1
α−1

ln
∑
h

∑
h̃

g(h̃)e
α−1
α

C
α,h̃

α−1

g(h)e
α−1
α

Cα,h , (3.60)

= α
α−1

ln
∑
h

g(h)e
α−1
α

Cα,h , (3.61)

where ∑
y

[W (y |x , h)]α [qα,p(y |h)]1−α = e(α−1)Cα,h (3.62)

by (3.49). However, (3.62) is valid for the values of x s.t. p(x ) > 0. For other values

of x , ∑
y

[W (y |x , h)]α [qα,p(y |h)]1−α ≥ e(α−1)Cα,h (3.63)

since Cα,h is the Augustin capacity. For this reason, the conditional Rényi divergence

between the channel V and the Augustin mean sα,p for any p ′ ∈ P(X)

Dα(V (x )∥ sα,p| p ′) ≤ α
α−1

ln
∑
h

g(h)e
α−1
α

Cα,h . (3.64)

Thus, the equality in (3.64) happens when p ′ = p, and it indicates that the input

distribution p is the Augustin capacity-achieving input distribution for the channel V

Iα(p;V) = Cα,V . (3.65)

Another result of the input distribution p being the Augustin capacity-achieving input

distribution of the fast fading discrete memoryless channel V is,

Esp(R,V ) = Esp(R,V , p) . (3.66)

if (3.48) holds for every α ∈ (0, 1). We drop the input distribution p because the

SPE corresponding to the input distribution p becomes the SPE of the channel due to
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optimal, i.e., Augustin capacity-achieving, input distribution p and by the parametric

expression of the error exponent functions (3.39), and (3.44),

Esp(R,V ) = D1(gα∥ g) + D1(Wα,p∥W | pgα) , α ∈ (0, 1) (3.67)

R = D1(Wα,p∥ qα,p| pgα) . (3.68)

For the tilted fading distribution gα given in (3.55).

3.3 Examples

In this section, we applied the Lemma 1 to the fast-fading BSC and the fast-fading

BEC because these channels are type of channels described in Section 3.2.1. We

determine the tilted channel and the tilted fading distribution for these channels. Au-

gustin capacity and the parametric expression of the sphere packing exponent func-

tion are derived. Then, these channels’ sphere packing exponents are analyzed and

compared with the non-fading binary symmetric channel and non-fading binary era-

sure channels under the equal Augustin capacity condition. Lastly, we expand our

examples to the Fading DMC’s with Gallager Symmetric channels.

3.3.1 Fading Binary Erasure Channel (FBEC)

FBEC V : X → P(H,Y) is a fading channel satisfying (3.4) for X = {0, 1},Y =

{0, 1, e} and H, which is the finite subset of the interval [0, 1]. For a given input

symbol x , and the fading parameter h, the distribution of the output symbol y is equal

to

W (y |x , h) =


1− h if y = x ,

h if y = e,

0 else,

(3.69)

Figure 3.2 shows the fading binary erasure channel diagram.

30



1 1

e

0 0
1− h

h

h

1− h

Figure 3.2: FBEC

Now, let p be the uniform distribution on X and qα(·|h) be

qα(y |h) =


1− h

2− 2h + 21/αh
if y ∈ {0, 1}

21/αh

2− 2h + 21/αh
if y = e

. (3.70)

on Y for all h ∈ [0, 1]. Then, by (2.8), the order α tilted channel of the channel

W (·, h) : X → P(Y) for qα(·|h) is

W qα(h)
α (y |x , h) = [W (y |x , h)]α[qα(y |h)]1−α∑

ỹ [W (ỹ |x , h)]α[qα(ỹ |h)]1−α
(3.71)

=



2− 2h

2− 2h + 21/αh
if y = x ,

21/αh

2− 2h + 21/αh
if y = e,

0 else,

(3.72)

If we take the expectation of both sides over the p, we get the Augustin operator of

qα(·|h) equal to

Tα,p (qα(y |h)) =
∑
x

p(x )W qα(h)
α (y |x , h)

=


1− h

2− 2h + 21/αh
if y ∈ {0, 1}

21/αh

2− 2h + 21/αh
if y = e

,

which equals qα(·|h).

Tα,p (qα(y |h)) = qα(y |h), (3.73)
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Thus, qα satisfies the fixed point property. Moreover, qα≺qp , where qp is defined in

(3.12). Therefore, qα is the order α Augustin mean of the channel W (·, h) : X →
P(Y) for the input distribution p for any fading parameter h ∈ [0, 1], by [22, Lemma

13].

qα(h) = qα,p(· | h) (3.74)

Iα(p;W (·, h)) = Dα(W (·, h)∥ qα(h)| p) . (3.75)

Moreover, if we calculate the Rényi divergence between the distribution W (x , h) and

the distribution qα,p(h), we get

Dα(W (x , h)∥ qα,p(h)) =


α

α−1
ln
[
h + 2

α−1
α (1− h)

]
if α ̸= 1,

(1− h) ln 2, if α = 1,
(3.76)

Thus, Dα(W (x , h)∥ qα,p(h)) is independent of x . Then, for all x ∈ X, Augustin

information for the input distribution p is equal to Dα(W (x , h)∥ qα,p(h))

Iα(p;W (·, h)) =
∑
x

p(x )Dα(W (x , h)∥ qα,p(h)) , (3.77)

= Dα(W (x , h)∥ qα,p(h)) ∀x ∈ X. (3.78)

Therefore, Iα(p;W (·, h)) = Cα,h , and (3.49) hold. Consequently,

Cα,h =


α

α−1
ln
[
h + 2

α−1
α (1− h)

]
if α ̸= 1,

(1− h) ln 2, if α = 1,
(3.79)

Cα,V =


α

α−1
ln
[
h̄ + 2

α−1
α (1− h̄)

]
if α ̸= 1,(

1− h̄
)
ln 2, if α = 1,

(3.80)

gα(h) =
g(h)

h̄+2
α−1
α (1−h̄)

[
h + 2

α−1
α (1− h)

]
, (3.81)

where

h̄ =
∑
h

g(h)h. (3.82)

Remark 3. Tilted channel of the fading binary erasure channel using the order α

Augustin center, i.e., qα,h is also a fading binary erasure channel with the erasure

probability

W (e|x , h) = 21/αh

2− 2h + 21/αh
. (3.83)
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Inserting (3.81) in (3.67), and (3.68), parametric expressions of the SPE and the rate

are

Esp(R,V ) = ln 1

h̄+2
α−1
α (1−h̄)

+ α−1
α

2
α−1
α (1−h̄)

h̄+2
α−1
α (1−h̄)

ln 2, (3.84)

R = 2
α−1
α (1−h̄)

h̄+2
α−1
α (1−h̄)

ln 2. (3.85)

Lastly, we compare the sphere packing exponent of the non-fading binary erasure

channels and the fading binary erasure channels to understand the fading effect on

the sphere packing exponent. However, to make a fair comparison, we include the

equal channel capacity condition. By comparing the two different fading channels

having the same channel capacity, the difference in the sphere packing exponent of

the channels only originates from the fading effect. We derive the following lemma.

Lemma 2. For a fading binary erasure channel V and a non-fading binary erasure

channel W , described in Section 3.3.1,

Esp(V ,R) = Esp(W ,R) (3.86)

if and only if

Cα,V = Cα,W (3.87)

Proof. By (3.80),

Cα,V =


α

α−1
ln
[
h̄ + 2

α−1
α (1− h̄)

]
if α ̸= 1(

1− h̄
)
ln 2 if α = 1

, (3.88)

where

h̄ =
∑
h̃

g(h̃)h̃ (3.89)

where g is the fading distribution of the fading binary erasure channels V . Similarly,

Cα,W =


α

α−1
ln
[
h + 2

α−1
α (1− h)

]
if α ̸= 1

(1− h) ln 2 if α = 1
, (3.90)

Therefore, the expected value of the fading distribution g and the erasure probability

of the non-fading BEC must be the same for equal channel capacity conditions, and
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we get

h̄ = h. (3.91)

Because the expected value of the fading parameter of g and the erasure probability

h of the non-fading BEC are the same, by (3.84) and (3.85), their sphere packing

exponent functions are the same for all rates.

Esp(V ,R) = Esp(W ,R) (3.92)

Furthermore, the expected value of the fading parameter of g and the erasure proba-

bility h̄ of the non-fading binary erasure channel must be the same as the SPEs to be

same with each other. Then, their capacities are the same.

Interestingly, fading does not affect SPEs of the FBECs under the same channel ca-

pacity condition, and fading binary erasure channels have the same sphere packing

exponents as the non-fading binary erasure channels under the same channel capacity

condition. Recall that the binary erasure channel has the largest sphere packing ex-

ponent among all the discrete memoryless channels with the same channel capacity

by [30–32]. Therefore, we know that the SPE of FBEC cannot be greater than the

SPE of the non-fading BEC with equal channel capacity; however, all discussions in

terms of the fading binary erasure channels and the Lemma 2 are new.

3.3.2 Fading Binary Symmetric Channel (FBSC)

FBSC V : X → P(H,Y) is a fading channel satisfying (3.4) for X = {0, 1},Y =

{0, 1} and H, which is the finite subset of the interval [0, 0.5]. For a given input

symbol x , and the fading parameter h, the distribution of the output symbol y is equal

to

W (y |x , h) =

1− h if y = x

h if y ̸= x
. (3.93)

Figure 3.3 shows the fading binary symmetric channel diagram.
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Figure 3.3: FBSC

Now, let p be the uniform distribution on X and qα(·|h) be the uniform distribution

on Y for all h ∈ [0, 0.5]. Then, by (2.8), the order α tilted channel of the channel

W (·, h) : X → P(Y) for qα(·|h) is

W qα(h)
α (y |x , h) = [W (y |x , h)]α[qα(y |h)]1−α∑

ỹ [W (ỹ |x , h)]α[qα(ỹ |h)]1−α
(3.94)

=


(1− h)α

hα + (1− h)α
if y = x ,

hα

hα + (1− h)α
if y ̸= x .

(3.95)

If we take the expectation of both sides over the p, we get the Augustin operator of

qα equal to

Tα,p (qα(y |h)) =
∑
x

p(x )W qα(h)
α (y |x , h)

=


1
2

if y = 0,

1
2

if y = 1.

which is the uniform distribution on the Y.

Tα,p (qα(y |h)) = qα(y |h) (3.96)

Thus, qα satisfies the fixed point property. Moreover, qα≺qp , where qp is defined in

(3.12). Therefore, qα is the Augustin mean of the channel W (·, h) : X → P(Y) for

the input distribution p for any fading parameter h ∈ [0, 0.5], by [22, Lemma 13].

qα(h) = qα,p(· | h) (3.97)

Iα(p;W (·, h)) = Dα(W (·, h)∥ qα(h)| p) . (3.98)
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Furthermore, if we calculate the Rényi divergence between the distribution W (x , h)

and the distribution qα,p(h), we get

Dα(W (x , h)∥ qα,p(h)) =


1

α−1
ln
[
hα
(
1
2

)1−α
+(1−h)α

(
1
2

)1−α
]

if α∈R+\{1}

h ln h
0.5

+ (1− h) ln 1−h
0.5

if α = 1

(3.99)

Thus, Dα(W (x , h)∥ qα,p(h)) is independent of x . Then, for all x ∈ X, order α Au-

gustin information for the input distribution p is equal to Dα(W (x , h)∥ qα,p(h)),

Iα(p;W (·, h)) =
∑
x

p(x )Dα(W (x , h)∥ qα,p(h)) , (3.100)

= Dα(W (x , h)∥ qα,p(h)) ∀x ∈ X. (3.101)

Therefore, Iα(p;W (·, h)) = Cα,h and (3.49) hold. Consequently,

Cα,h = dα(h∥ 1/2) (3.102)

Cα,V =


α

α−1
ln
∑

h g(h)e
α

α−1
dα(h∥1/2) if α ̸= 1∑

h g(h)d1(h∥ 1/2) if α = 1
(3.103)

gα(h) =
g(h)(hα + (1− h)α)

1
α∑

h̃ g(h̃)(h̃
α + (1− h̃)α)

1
α

(3.104)

where dα(·∥ ·) : [0, 1]× [0, 1] → [0,∞] is defined as

dα(ε∥ τ):=


ln(εατ1−α+(1−ε)α(1−τ)1−α)

α−1
if α ̸= 1

ε ln ε
τ
+ (1− ε) ln 1−ε

1−τ
if α = 1

. (3.105)

Remark 4. Tilted channel of FBSCs corresponding to the order α Augustin center,

i.e., qα,h is also a FBSC with the cross-over probability

W (y ̸= x |x , h) = (1− h)α

hα + (1− h)α
. (3.106)

Inserting (3.104) in (3.67), and (3.68), we get the parametric expressions of the SPE

and the rate.

Esp(R,V ) = D1(gα∥ g) +
∑
h

gα(h)d1

(
hα

hα+(1−h)α

∥∥∥ h) , (3.107)

R =
∑
h

gα(h)d1

(
hα

hα+(1−h)α

∥∥∥ 1
2

)
, (3.108)
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where gα is given in (3.104). Lastly, we proved the following lemma to determine the

fading effect on the SPE of the FBSC.

Lemma 3. For a FBSC V , described in Section 3.3.2, the fading distribution that

maximizes the SPE, among all fading distributions which result in the same channel

capacity, is

g(h) =

p, if h = 0,

(1− p), if h = 1
2
,

(3.109)

.

Proof. To prove the Lemma 3, we first show that the channel capacity of the V is

same with the channel capacity of the FBEC V1 described in the Subsection 3.3.2

with the fading distribution g1 which is

g1(h) =

p, if h = 0,

(1− p), if h = 1,
(3.110)

and their sphere packing error exponents are the same. By (3.102),

Cα,V = ln 2(1− p), (3.111)

and by (3.80),

Cα,V1 = ln 2(1− p). (3.112)

. Thus, their channel capacities are the same. Then, by (3.104) the tilted fading

distribution of the V is

gα(h) =


p

p+(1−p)2
1−α
α
, if h = 0,

(1−p)2
1−α
α

p+(1−p)2
1−α
α
, if h = 1

2
.

(3.113)

Furthermore, for h = 0 and h = 1
2
, we get

d1

(
hα

hα+(1−h)α

∥∥∥ h) = 0. (3.114)

Therefore, ∑
h

gα(h)d1

(
hα

hα+(1−h)α

∥∥∥ h) = 0, (3.115)
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for the fading distribution g . Thus by (3.107),

Esp(V ,R) = D1(gα∥ g) (3.116)

= ln 1

p+(1−p)2
1−α
α

+ 1−α
α

(1−p)2
1−α
α

p+(1−p)2
1−α
α

ln 2 (3.117)

For the fading binary erasure channel V1, the expected value of the fading parameter

h is

h =
∑
h

g1(h)h (3.118)

= 1− p (3.119)

Thus, by (3.84) the SPE of the channel FBEC V1 is

Esp(V1,R) = ln 1

(1−p)+p2
α−1
α

+ α−1
α

2
α−1
α p

(1−p)+p2
α−1
α

ln 2 (3.120)

= ln 2
1−α
α

p+(1−p)2
1−α
α

+ α−1
α

2
α−1
α p

(1−p)+p2
α−1
α

ln 2 (3.121)

= ln 1

p+(1−p)2
1−α
α

+ 1−α
α

(
1− 2

α−1
α p

(1−p)+p2
α−1
α

)
ln 2 (3.122)

= ln 1

p+(1−p)2
1−α
α

+ 1−α
α

(1−p)2
1−α
α

p+(1−p)2
1−α
α

ln 2 (3.123)

= Esp(V ,R) (3.124)

Therefore their sphere packing exponents are the same. We know that the SPE of the

FBECl V1 is equal to the SPE of the non-fading BEC with the same channel capacity

by Lemma 2 and the non-fading BEC has the greatest SPE among all the binary input

DMCs by [30–32]. Therefore the g maximizes the SPE of the FBSC among the

FBSCs with the same Augustin capacity.

The intuition behind the Lemma 3 is the following. The fading binary symmetric

channel V with the fading distribution g given in the Lemma 3 can be thought as the

combination of the two non-fading binary symmetric channel W1 : {0, 1} → {0, 1}
and W2 : {0, 1} → {0, 1} which the channel transition probabilities are

W1(y | x ) =

1 if y = x ,

0 if y ̸= x ,
(3.125)
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and

W2(y | x ) =


1
2

if y = x ,

1
2

if y ̸= x .
(3.126)

and the fading binary symmetric channel V switches between the non-fading bi-

nary symmetric channels W1 and W2 according to the fading distribution. The fad-

ing binary erasure channel V1 with the fading distribution g1 given in the Lemma

3 can be thought as the combination of the two non-fading binary erasure channel

W3 : {0, 1} → {0, e, 1} and W4 : {0, 1} → {0, e, 1} which the channel transition

probabilities are

W3(y | x ) =


1 if y = x ,

0 if y = e,

0 else,

(3.127)

and

W4(y | x ) =


0 if y = x ,

1 if y = e,

0 else,

(3.128)

and the fading binary erasure channel V1 switches between the non-fading binary era-

sure channels W3 and W4 according to the fading distribution. The non-fading BSC

W1 and the non-fading BEC W3 are the same channels. In addition, the non-fading

binary symmetric channel W2 can not be distinguished from the non-fading binary

symmetric channel W4 combined with the coin flip. Their contributions to channel

capacity and error exponent are zero. Therefore the fading channels V and the V1

defined in the Lemma 3 should have the same SPEs. After proving the Lemma 3,

we calculated the SPE function of the non-fading BEC with the cross-over probabil-

ity equal to 0.1 and the FBSC with g given in (3.109) with the same capacity of the

non-fading channel. Figure 3.4 represents the resulting sphere packing exponents.

The SPE of the FBSC is much greater than the SPE function of the non-fading BSC

for every rate lower than the channel capacity. Lastly, we calculate ratio of SPE of

non-fading BSC with the cross-over probability equal to 0.1 and the FBSCs having
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Figure 3.4: The SPEs of BSC with crossover probability 0.1 and FBSC with g(0) =

0.531 and g(0.5) = 0.469.

two fading parameters and the same capacity with the non-fading BSC at one refer-

ence rate equal to 0.130812 to see how fading effects the SPE of the FBSC. The plot

of resulting ratios can be seen as a surf plot in Figure 3.5, and as a heat map in Figure

3.6. As expected, the SPE is maximized for the fading distribution g which is given

in (3.109) and minimized when the channel has no fading. We know that the binary

symmetric channel has the smallest sphere packing exponent among all the discrete

memoryless channels with the same channel capacity by [30–32].

3.3.3 Fading Discrete Memoryless Channels with Gallager Symmetry

A fading discrete memoryless channel V : X → P(H,Y) satisfying (3.4) is Gallager-

symmetric if the output set Y of each channel W (·, h) : X → P(Y) can be partitioned

into disjoint subsets Yh,1, · · · ,Yh,kh in such a way that within each |X|×|Yh,kh | transi-

tion matrix all rows are permutations of each other and all columns are permutations

of each other. Previously given example channels (FBEC, FBSC) are examples of the
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Figure 3.5: The surf plot of the ratios of the SPEs of the non-fading BSC with the

cross-over probability equal to δ = 0.1, and the FBSCs having 2 different crossover-

probability and same channel capacities (C = 0.368064) at the reference rate (R =

0.130812)

Gallager-symmetric channels. For Gallager-symmetric FDMCs, we can define a α

output norm for each output symbol, i.e.,

||W (y | ·, h)||α =

[∑
x∈X

W (y | x , h)α
] 1

α

. (3.129)

If two output symbols y , ỹ ∈ Yh,k, their α output norms are the same because the

columns in the same partitioning are permutations of each other.

||W (y | ·, h)||α = ||W (ỹ | ·, h)||α. (3.130)

We can denote the α output norms of the outputs symbols in the same partitioning i

for a given fading parameter h with rα,h,i.

rα,h,i = ||W (y | ·, h)||α ∀y ∈ Yh,i, (3.131)

=

[∑
x∈X

W (y | x , h)α
] 1

α

∀y ∈ Yh,i. (3.132)
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0.130812)

Now, let p be the uniform distribution on X and qα(·|h) be

qα(y |h) =
rα,h,i∑kh

j=1 rα,h,j|Yh,j|
∀y ∈ Yh,i, (3.133)

on Yh for all h ∈ H. Then, by (2.8), the order α tilted channel of the channel

W (·, h) : X → P(Y) for qα(·|h) is

W qα(h)
α (y |x , h) = [W (y |x , h)]α[qα(y |h)]1−α∑

ỹ [W (ỹ |x , h)]α[qα(ỹ |h)]1−α
, (3.134)

=
W (y | x )αr1−α

α,h,i∑kh
j=1 rα,h,j

|Yh,j |
|X|

∀y ∈ Yh,i. (3.135)

If we take the expectation of both sides over the p, we get the Augustin operator of

qα(·|h) equal to

Tα,p (qα(y |h)) =
∑
x

p(x )W qα(h)
α (y |x , h),

=
rα,h,i∑kh

j=1 rα,h,j|Yh,j|
∀y ∈ Yh,i,
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which is equal to the qα(·|h).

Tα,p (qα(y |h)) = qα(y |h), (3.136)

Thus, qα satisfies the fixed point property. Moreover, qα≺qp , where qp is defined in

(3.12). Therefore, qα is the order α Augustin mean of the channel W (·, h) : X →
P(Y) for the input distribution p for any fading parameter h ∈ H, by [22, Lemma

13].

qα(h) = qα,p(· | h) ∀y ∈ Y (3.137)

Iα(p;W (·, h)) = Dα(W (·, h)∥ qα(h)| p) . (3.138)

Furthermore, if we calculate the Rényi divergence between the distribution W (x , h)

and the distribution qα,p(h), we get

Dα(W (x , h)∥ qα,p(h)) =


α

α−1
ln
[

1
|X|

(∑kh
j=1 rα,h,j|Yh,j|

)α] 1
α

if α ̸= 1

ln |X|+
kh∑
j=1

∑
y∈Yh,j

W (y | x , h) ln W (y|x ,h)
r1,h,j

, if α = 1
.

(3.139)

Thus, Dα(W (x , h)∥ qα,p(h)) is independent of x . Then, for all x ∈ X, Augustin

information for the input distribution p is equal to Dα(W (x , h)∥ qα,p(h))

Iα(p;W (·, h)) =
∑
x

p(x )Dα(W (x , h)∥ qα,p(h)) , (3.140)

= Dα(W (x , h)∥ qα,p(h)) ∀x ∈ X. (3.141)

Therefore, Iα(p;W (·, h)) = Cα,h , and (3.49) hold. Consequently,

Cα,h =


α

α−1
ln
[

1
|X|

(∑kh
j=1 rα,h,j|Yh,j|

)α] 1
α

if α ̸= 1

ln |X|+
kh∑
j=1

∑
y∈Yh,j

W (y | x , h) ln W (y|x ,h)
r1,h,j

, if α = 1
, (3.142)

Cα,V =


α

α−1
ln
∑

h g(h)
[

1
|X|

(∑kh
j=1 rα,h,j|Yh,j|

)α] 1
α

, if α ̸= 1

ln |X|+
∑

h g(h)
kh∑
j=1

∑
y∈Yh,j

W (y | x , h) ln W (y|x ,h)
r1,h,j

, if α = 1
, (3.143)

gα(h) =
g(h)∑

h̃ g(h̃)
[

1
|X|

(∑kh
j=1 rα,h,j|Yh,j|

)α] 1
α

[
1
|X|

(
kh∑
j=1

rα,h,j|Yh,j|

)α] 1
α

. (3.144)

Parametric expressions of the sphere packing exponent and the rate can be found by

inserting (3.144), (3.135), and (3.133) in (3.67), and (3.68).
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CHAPTER 4

GAUSSIAN CHANNELS

4.1 Introduction

The most commonly used model in communication systems is the Gaussian channel

model. Because we can model the thermal noise as a zero-mean Gaussian random

variable with some variance σ2. A Gaussian random variable with variance σ2 is

denoted with the symbol φσ2 , and its probability density function is

φσ2(x ) = 1√
2πσ2

e
−x2

2σ2 , ∀x ∈ R . (4.1)

We can say that the output of the Gaussian channel y ∈ R is the sum of the input of

the channel x ∈ R and a Gaussian random variable k,

y = x + k. (4.2)

Thus, the probability density function (PDF) of the output of W is

W (y |x ) = φσ2(y − x ), (4.3)

= 1√
2πσ2

e
−(y−x)2

2σ2 ∀x , y ∈ R . (4.4)

Often, Gaussian channels are considered with the constraints on the input to model

the real world more accurately. If the constraint function ρ is

ρ(x ) = x 2, ∀x ∈ R , (4.5)

and the constraint is

E[ρ] ≤ ϱ, (4.6)

then, the resulting constraint is called the average power constraint. In Chapter 2,

we define the Rényi divergence, the conditional Rényi divergence, the tilted channel,
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and the Augustin information measures for the finite sets and the probability mass

functions on finite sets. We can generalize these definitions to the infinite sets and the

probability density functions on infinite sets by replacing the sum operators with the

integral operators. The resulting definitions are presented in [22]. Furthermore, we

can use them in the same way with the finite case because all the proofs, including the

existence of the unique Augustin mean with the fixed point property and the unique

Augustin center for arbitrary input distribution on the arbitrary channels in [24] and

[22], respectively.

4.1.1 Fading Gaussian Channels

Fading Gaussian channels are described over the Gaussian channels with an addi-

tional fading parameter h, also known as the channel state information (CSI). A fad-

ing Gaussian channel V is said to be a fast fading Gaussian channel if the produced

output probability density function is independent of the previously transmitted in-

puts, and the fading parameter is independent and identically distributed for every

input letter for every use of the channel.

V (hn , yn |xn) =
∏n

i=1
V (hi, yi|xi) (4.7)

=
∏n

i=1
g(hi|xi)W (yi|xi, hi) (4.8)

=
∏n

i=1
g(hi|xi) 1√

2πσ2
e

−(yi−xihi)
2

2σ2 (4.9)

for any n ∈ Z+ , hn ∈ Rn , yn ∈ Rn , xn ∈ Rn where g is the PDF of the fading

parameter. xi denotes the ith element in the sequence xn . If the fading parameter is

independent of the input letter xi, we can rewrite the channel equation (4.9) as

V (hn , yn |xn) =
∏n

i=1
g(hi)

1√
2πσ2

e
−(yi−xihi)

2

2σ2 (4.10)

Suppose receivers know the value of the CSI. In that case, the resulting channels are

called a fast-fading Gaussian channel with CSI at the receiver. This is the model used

in this Chapter with the average power constraint.
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4.2 An Analysis on the Tilted Channel of the Fading Gaussian Channels

Assume the fading Gaussian channel V satisfying (4.10), with the variance σ2, cost

function ρ given in (4.5) and the cost constraint ϱ given in (4.6). For Gaussian

channels, zero-mean Gaussian input distribution with the variance ϱ is the Augustin

capacity-achieving, i.e., optimum, input distribution of the channel, and the order α

Augustin mean is a zero-mean Gaussian distribution with the variance θα,σ,ϱ by [22].

p = φϱ (4.11)

qα,p = φθα,σ,ϱ (4.12)

θα,σ,ϱ = σ2 + ϱ
2
− σ2

2α
+

√
ϱ
2
− σ2

2α
+ ϱσ2 (4.13)

Therefore, for the fixed value of the fading parameter h, the optimum input distribu-

tion of the channel W (·, h), which achieves the order α Augustin capacity, is also a

zero-mean Gaussian input distribution with the variance ϱ and the order α Augustin

mean of the channel W (·, h) is also a zero mean Gaussian distribution with the vari-

ance θα,σ,ϱ,h ,

p = φϱ (4.14)

qα,p(h) = φθα,σ,ϱ,h
(4.15)

θα,σ,ϱ,h = σ2 + ϱh2

2
− σ2

2α
+

√
ϱh2

2
− σ2

2α
+ ϱσ2 (4.16)

The order α Rényi divergence between the channel W (·, h) and its order α Augustin

mean is

Dα

(
W (·, h)∥φθα,σ,ϱ,h

)
=


αh2x2

2(αθα,σ,ϱ,h+(1−α)σ2)
+ 1

α−1
ln

θ
α
2
α,σ,ϱ,hσ

(1−α)

√
αθα,σ,ϱ,h+(1−α)σ2

, α ̸= 1

σ2+h2x2−θα,σ,ϱ,h

2θα,σ,ϱ,h
+ 1

2
ln

θα,σ,ϱ,h

σ2 , α = 1

(4.17)

Remark 5. Because the existence of the unique Augustin mean is proved in [24] for

arbitrary input distribution on the arbitrary channels, we can generalize the Lemma 1

to use in the Gaussian channels by going through the same set of steps of the proof of

the Lemma 1 with the Augustin information measures for infinite sets and probability

density functions.
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We cannot write the (4.17) in the form of the statement (ii) of the Lemma 1.

Dα

(
W (·, h∥φθα,σ,ϱ,h

)
= aα(x )cα(h) + dα(h), (4.18)

̸= aα(x ) + bα(h). (4.19)

Therefore, we immediately conclude that the tilted channel of the fading Gaussian

channel cannot be decomposed into the tilted fading distribution and the tilted chan-

nel, i.e., W
qα,φϱ (h)
α , of the Gaussian channels W (·, h). However, the tilted channel

of the fading Gaussian channels can be written as a tilted fading distribution time a

conditional distribution of y for a given h. Let us determine if the conditional dis-

tribution of y of the tilted channel can still be a Gaussian distribution with properly

chosen mean γ and the variance Θ. Our assumption for the following analysis is

V
sα,φϱ
α (h, y | x ) = gα(h)φΘ(y − γx |h). (4.20)

Then, if we take the expected value of the tilted channel over the input distribution

φϱ,

Eφϱ

[
V

sα,φϱ
α (h, y |x )

]
= Eφϱ [gα(h)φΘ(y − γx |h)] (4.21)

= gα(h)Eφϱ [φΘ(y − γx |h)] (4.22)

= gα(h)φγ2ϱ+Θ(y |h) (4.23)

Because the order α Augustin mean of the fading Gaussian channel should satisfy the

fixed point property, it should be

sα,φϱ(h, y) = gα(h)φγ2ϱ+Θ(y |h). (4.24)

By the tilted channel definition,

V
sα,φϱ
α (h, y | x ) =

[g(h)V (y | h, x )]α
[
gα(h)φγ2ϱ+Θ(y | h)

]1−α∫∫ [
g(h̃)V (ỹ | h̃, x )

]α [
gα(h̃)φγ2ϱ+Θ(ỹ | h̃)

]1−α

dh̃dỹ
, (4.25)

and if we put (4.20) in (4.25) and rearrange, we get

[g(h)V (y |h, x )]α
[
φγ2ϱ+Θ(y |h)

]1−α

[gα(h)]
α
φΘ(y − γx )

=

∫∫ [
g(h̃)V (ỹ | h̃, x )

]α [
gα(h̃)φγ2ϱ+Θ(ỹ | h̃)

]1−α

dh̃dỹ .

(4.26)

The R.H.S of (4.26) only depends on x . Therefore, the L.H.S of (4.26) must be
independent of the output y and the fading parameter h for all α and all x . If we write
the left-hand side of (4.26) explicitly, we get

[g(h)V (y |h, x )]α
[
φγ2ϱ+Θ(y |h)

]1−α

[gα(h)]
α
φΘ(y − γx )

=

[
g(h)

gα(h)

]α
Θ

1
2

σα(γ2ϱ+Θ)
1−α
2

f(y), (4.27)
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where

f(y) = exp

(
1

2

(
− (y − hx )

2
α

σ2
− y2(1− α)

γ2ϱ+Θ
+

(y − γx )
2

Θ

))
, (4.28)

=
1

2

[
y2

(
1

Θ
− α

σ2
− 1− α

γ2ϱ+Θ

)
+ 2y

(
hxα

σ2
− γx

Θ

)
+

(
γ2x 2

Θ
− h2x 2α

σ2

)]
. (4.29)

In (4.27), the only thing that depends on the output y is the function f . Thus, it
must be independent of the output y . To make f independent of the output y , the
coefficient of y2 and the coefficient of y must be zero individually. Then, if we make
the coefficient of y2 equal to zero, we get

0 =
1

Θ
− α

σ2
− 1− α

γ2ϱ+Θ
, (4.30)

γ2 =
αΘ
(
Θ− σ2

)
ϱ(σ2 − αΘ)

. (4.31)

For this expression to be valid, Θ must satisfy the equation

Θ ≥ σ2 ≥ αΘ. (4.32)

If we make the coefficient of y equal to zero, we get

0 =
hxα

σ2
− γx

Θ
, (4.33)

γ =
hαΘ

σ2
. (4.34)

By (4.31) and (4.34), we get the quadratic equation for the Θ,

Θ

(
Θ2 −Θ

(
σ2

α
− σ4

α2h2ϱ

)
− σ6

α2h2ϱ

)
= 0. (4.35)

(4.31) and (4.34) are satisfied if Θ is the root of the (4.35). The only root of the (4.35)
which is greater than the σ2, i.e., satisfying the (4.32), is

Θ̂ =
1

2

σ2

α
− σ4

α2h2ϱ
+

√(
σ2

α
− σ4

α2h2ϱ

)2

+ 4
σ6

α2h2ϱ

 (4.36)

If we put the Θ̂ into the (4.27), we get

[g(h)V (y |h, x )]α
[
φγ2ϱ+Θ̂(y |h)

]1−α

[gα(h)]
α
φΘ̂(y − γx )

= j(h) exp
(
k(h)x 2

)
, (4.37)

where

j(h) =

[
g(h)

gα(h)

]α
Θ

1
2

σα(γ2ϱ+Θ)
1−α
2

, (4.38)

k(h) =
1

2

(
γ2x 2

Θ
− h2x 2α

σ2

)
. (4.39)

49



Until here, we find the conditions to the left-hand side of (4.26) to be independent of
the output y and get the expression (4.37) when the conditions are met. However, the
left hand side of (4.26) must be also independent of fading parameter h for all α and
all x . Thus, the functions j and k must be independent of the fading parameter h,
because for the x = 0 case, function j must be independent of the fading parameter h
and if function j is independent of the fading parameter h, function k must be inde-
pendent of the fading parameter h to make the left hand side of (4.26) be independent
of the fading parameter h for all the values of inputs x . Using (4.31), we get

k(h) =
1

2
h2 α

σ2

1
2

1− σ2

αh2ϱ
+

√(
1− σ2

αh2ϱ

)2

+ 4
σ2

h2ϱ

− 1

 . (4.40)

If we draw function k for α = 1, σ2 = 1, and the ϱ = 2, we get

0.2 0.4 0.6 0.8 1.0

−2.0

−4.0

·10−2 h

k(h)

Figure 4.1: The function k(h) with α = 0.1, σ2 = 1 and ϱ = 2.

Therefore, the function k is not independent of the fading parameter h, which is a

contradiction. Thus the conditional output distribution of the tilted channel cannot be

a Gaussian distribution.

Remark 6. In contrast to the DMC results, the conditional output distribution of the

Augustin mean of the fading Gaussian channel must be the Gaussian distribution to

the conditional output distribution of the tilted channel of the fading Gaussian channel

be a Gaussian distribution by the definition of the tilted channel. Therefore, by show-

ing the impossibility of the conditional output distribution of the tilted channel of the

fading Gaussian channel being Gaussian distribution, we also showed that the condi-
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tional output distribution of the Augustin mean cannot be a Gaussian distribution for

fading Gaussian channels.
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CHAPTER 5

CONCLUSIONS

In this thesis, we proved a decomposition for the tilted channel of the fast-fading

DMCs with the CSI at the receiver as a product of a tilted fading distribution and the

tilted channels of the non-fading channels for every channel state. We determined

the necessary and sufficient conditions. We showed that the fading discrete channels

with the common Augustin capacity achieving distributions for every channel state

satisfy the conditions of the decomposition lemma, i.e., Lemma 1. We calculated the

parametric expressions of the SPE and the rate of channels in the class. We used our

calculations and determined the results of the FBSCs, FBECs, and fading channels

with Gallager symmetry. Then we compare these channels with the corresponding

non-fading channels under the equal Augustin capacity circumstances. We had the

observations that are

1. By Lemma 2, the fading binary erasure channels always have the same SPEs

with the corresponding non-fading BEC. The only thing to characterize the

SPE of the FBEC is the expected value of the fading parameter, which is the

erasure probability in the non-fading BEC. Furthermore, if the sphere packing

exponents of the two binary erasure channels are the same, then the expected

value of the fading distribution must be the same.

2. By Lemma 3, the fading binary symmetric channels have greater sphere pack-

ing exponents than the non-fading binary symmetric channels for every rate and

fading distribution. Furthermore, the sphere packing exponent of the fading bi-

nary symmetric channels is maximized when the fading distribution only has

two fading parameters, which are 0 and 0.5.
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Then we turn our attention to the Gaussian channels. We used the optimal input distri-

bution of the non-fading Gaussian channel, i.e., the zero-mean Gaussian distribution

with the variance equal to the cost constraint, as the input distribution. Then, we

showed that the Lemma 1 is not applicable for fast-fading Gaussian channels with

the CSI at the receiver for this input distribution. Lastly, we assumed that the con-

ditional output distribution of the tilted channel is Gaussian distributed and proved

that the assumption could not be valid. By the observation that the conditional output

distribution of the tilted channel cannot be a Gaussian distribution, we found out that

the conditional output distribution of the Augustin mean also cannot be a Gaussian

distribution.
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APPENDIX A

Let Xn is the input alphabet and Yn be the output alphabet. We consider a code

consisting of M code word with the encoder function ψ that maps the integers from 1

to M into the codewords ψ(1), . . . , ψ(M), where ψ(m) ∈ Xn and m ∈ {1, . . . ,M}.

We assume that the Maximum Likelihood (ML) decoding is used at the receiver. ML

decoder decodes the output sequence yn into the integer m̂ if

P(yn |ψ(m̂)) > P(yn |ψ(m)) ∀m ̸= m̂. (A.1)

In the equality case, decoder chooses randomly between the possible messages. De-

coder makes an error if the output sequence is more probable for an input message M̂

other than the ψ(m). Then the probability of error for a message m is

Pm
e =

∑
yn∈Yn

P(yn |ψ(m))ϕm(y
n), (A.2)

where the indicator function ϕm(y
n) indicates if the decoder makes an error when the

output yn is received or not.

ϕm(y
n) =

1 if P(yn |ψ(m)) ≤ P(yn |ψ(m)) for some m ̸= m

0 otherwise
. (A.3)

We can upper bound the indicator function with

ϕm(y
n) ≤

[∑
m ̸=m P(yn |ψ(m))

1
1+ρ

P(yn |ψ(m))
1

1+ρ

]ρ
ρ > 0. (A.4)

Then, the probability of error of the message m can be upper bounded by

Pm
e ≤

∑
yn∈Yn

P(yn |ψ(m))

[∑
m ̸=m P(yn |ψ(m))

1
1+ρ

P(yn |ψ(m))
1

1+ρ

]ρ
ρ > 0, (A.5)

≤
∑
yn∈Yn

P(yn |ψ(m))
1

1+ρ

[∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

]ρ
ρ > 0. (A.6)
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Upper bound on the indicator function is valid because it is always greater than 0,

which makes it true for the case ϕm(y
n) = 0. When it is equal to one, at least

one other codeword has more probability of generating the output sequence than the

transmitted codeword. It makes the right hand side of (A.4) greater than one. This

bound is true for any codes and codewords; however, it is not useful for many codes,

particularly the codes, including a large number of the codewords. Therefore, calcu-

lating another simple bound on the probability of error is required. We can simplify

(A.6) by averaging. Assume that the P(xn) is defined on the input alphabet Xn . As

an ensemble, let us consider all the codes generated by the randomly chosen code-

words according to the P(xn). The code consisting ψ(1), . . . , ψ(M) has the proba-

bility
∏M

m=1 P(ψ(m)) and at least one code has a lower probability of error than the

ensemble-average probability of error. If we take the expected value of the (A.6),

E[Pm
e ] ≤ E

[ ∑
yn∈Yn

P(yn |ψ(m))
1

1+ρ

(∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

)ρ]
ρ > 0, (A.7)

≤
∑
yn∈Yn

E

[
P(yn |ψ(m))

1
1+ρ

(∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

)ρ]
ρ > 0, (A.8)

≤
∑
yn∈Yn

E
[
P(yn |ψ(m))

1
1+ρ

]
E

[(∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

)ρ]
ρ > 0, (A.9)

≤
∑
yn∈Yn

E
[
P(yn |ψ(m))

1
1+ρ

](
E

[∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

])ρ

0 < ρ ≤ 1,

(A.10)

≤
∑
yn∈Yn

E
[
P(yn |ψ(m))

1
1+ρ

](∑
m ̸=m

E
[
P(yn |ψ(m))

1
1+ρ

])ρ

0 < ρ ≤ 1.

(A.11)

We get (A.8) because the position of the expectation and the summation can be

changed.

P(yn |ψ(m))
1

1+ρ (A.12)

and [∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

]ρ
(A.13)
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are independent random variables in (A.8) and for the independent random variables

A and B, we have

E[AB] = E[A]E[B] .

Thus, we can split (A.8) up to (A.9). Random variable inside of the brackets in (A.13)

is a concave function for the exponent ρ ∈ (0, 1] at the outside of the bracket. For this

reason, by Jensen’s inequality,

E

[(∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

)ρ]
≤

(
E

[∑
m ̸=m

P(yn |ψ(m))
1

1+ρ

])ρ

. (A.14)

Again, by using the interchange property of the expectation and summation, we attain

(A.11). Moreover, since the codewords are selected independently,

E
[
P(yn |ψ(m))

1
1+ρ

]
=
∑

xn∈Xn

P(xn)P(yn | xn)
1

1+ρ . (A.15)

Furthermore, the expected values of the random variables in (A.11) are independent

of the message m, and we can replace them with the right hand side of the (A.15).

E[Pm
e ] ≤ (M − 1)ρ

∑
yn∈Yn

[ ∑
xn∈Xn

P(xn)P(yn | xn)
1

1+ρ

]1+ρ

0 < ρ ≤ 1. (A.16)

This bound is applicable for any discrete channel, for any selection of P(xn), and any

ρ ∈ (0, 1]. Provided that the discrete channel is also memoryless, we can simplify

(A.16) more. A discrete channel is memoryless if

P(yn | xn) =
n∏

i=1

P(yi| xi) . (A.17)

where xi ∈ X is the i-th letter of the codeword xn and similarly yi ∈ Y is the i-th

letter of the output sequence Yn . Now, we restrict the code ensemble with the codes

in which the codewords are constructed according to the P(x ) randomly to simplify

the bound of the error probability. In that case, the probability of the codeword in a

code is equal to,

P(xn) =
n∏

i=1

P(xi) . (A.18)

If we insert (A.17) and (A.18) into (A.16),

E[Pm
e ] ≤ (M − 1)ρ

∑
yn∈Yn

[ ∑
xn∈Xn

n∏
i=1

P(xi)P(yi| xi)
1

1+ρ

]1+ρ

0 < ρ ≤ 1. (A.19)
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If we rearrange the terms inside the summation and product operators,

E[Pm
e ] ≤ (M − 1)ρ

n∏
i=1

∑
yi∈Y

[∑
xi∈X

P(xi)P(yi| xi)
1

1+ρ

]1+ρ

0 < ρ ≤ 1. (A.20)

Because the multiplied values are independent of the operator of the product, i,

E[Pm
e ] ≤ (M − 1)ρ

∑
yi∈Y

[∑
xi∈X

P(xi)P(yi| xi)
1

1+ρ

]1+ρ
n

0 < ρ ≤ 1. (A.21)

Transmission rate R, is defined in (2.43) and if the M − 1 is upper bounded by the

M = enR. (A.22)

Then, (A.21) is turned to be

E[Pm
e ] ≤ en[E0(ρ,P(x))−ρR] 0 < ρ ≤ 1, (A.23)

where

E0(ρ,P(x )) = − ln
∑
yi∈Y

[∑
xi∈X

P(xi)P(yi| xi)
1

1+ρ

]1+ρ

. (A.24)

This upper bound is true for any discrete memoryless channel, 0 < ρ ≤ 1, and P(x ).

Furthermore, it should be satisfied if the error probability is minimized over the ρ and

P(x ). Because the right hand side of the (A.23) is independent of the m, it is bound

to the average probability of decoding error for the ensemble of the codes. Because

at least one code must have a lower probability of error than the average, then there

should be a code in which the probability of decoding error is upper bounded by

Pav
e ≤ e−nEr(R), (A.25)

where the Er(R), called as the random coding exponent [2, Theorem 1] function, is

Er(R) = max
ρ,P(x)

[E0(ρ,P(x ))− ρR] . (A.26)

where the maximization is over all 0 < ρ ≤ 1, and all possible P(x ).

Important properties of the Random Coding Exponent function is

• It is a non-negative and non-increasing function of rate R.

• It is equal to the zero at the rate R equal to the channel capacity.
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• ρ that maximizes the Er(R) is non-increasing function for rate R.

• Because the maximizing ρ is non-increasing function, maximum rate for which

the ρ that maximizes the Er(R) is named as critical rate, and denoted as Rcrit.

• For every rate below the critical rate, Er(R) is a linear line with the slope -1,

and maximization happens at the ρ = 1.

For the lower rates, an improved version of the Random Coding Exponent function,

i.e., Expurgated Random Coding Exponent function Ex(R), is derived in [2]. More

detailed analysis of the function E0(ρ,P(x )), Er(R), and proof of the Ex(R), [2] can

be examined.

59



60



REFERENCES

[1] A. Ingber and M. Feder, “Finite blocklength coding for channels with side in-

formation at the receiver,” in 2010 IEEE 26-th Convention of Electrical and

Electronics Engineers in Israel, pp. 000798–000802, IEEE, 2010.

[2] R. G. Gallager, “A simple derivation of the coding theorem and some applica-

tions,” IEEE Transactions on Information Theory, vol. 11, pp. 3–18, Jan. 1965.

[3] T. Ericson, “A gaussian channel with slow fading (corresp.),” IEEE Transactions

on Information Theory, vol. 16, no. 3, pp. 353–355, 1970.

[4] W. K. M. Ahmed and P. J. McLane, “The information theoretic reliability func-

tion for multipath fading channels with diversity,” in Proceedings of ICUPC -

5th International Conference on Universal Personal Communications, vol. 2,

pp. 886–890 vol.2, 1996.

[5] W. K. M. Ahmed and P. J. McLane, “Achievable performance over fading chan-

nels with antenna diversity,” in WCNC. 1999 IEEE Wireless Communications

and Networking Conference (Cat. No.99TH8466), vol. 1, pp. 25–29 vol.1, 1999.

[6] W. K. M. Ahmed and P. J. McLane, “Random coding error exponents for

two-dimensional flat fading channels with complete channel state information,”

IEEE Transactions on Information Theory, vol. 45, no. 4, pp. 1338–1346, 1999.

[7] W. K. M. Ahmed and P. J. McLane, “Information theoretic considerations for

coded modulation over fading channels,” IEEE Transactions on Communica-

tions, vol. 48, no. 12, pp. 1970–1974, 2000.

[8] M. Z. I. Sarkar, H. Shin, and M. Z. Win, “Random coding exponent for

mimo channels,” in VTC Spring 2008 - IEEE Vehicular Technology Conference,

pp. 559–563, 2008.

[9] H. Shin and M. Z. Win, “Gallager’s exponent for mimo channels: a reliability-

61



rate tradeoff,” IEEE Transactions on Communications, vol. 57, pp. 972–985,

April 2009.

[10] E. Malkamaki and H. Leib, “Coded diversity on block-fading channels,” IEEE

Transactions on Information Theory, vol. 45, pp. 771–781, March 1999.

[11] J. S. Richters, Communication over fading dispersive channels. Technical re-

port 464, Research Laboratory of Electronics at Massachusetts Institute of Tech-

nology, Cambridge, MA, 1967. (http://hdl.handle.net/1721.1/

4279).

[12] H. Shin, Capacity and error exponents for multiple-input multipleoutput wire-

less channels. PhD thesis, Ph. D. dissertation, Seoul National University, Seoul,

Korea, 2004.

[13] E. Biglieri, G. Caire, and G. Taricco, “Coding for the block-fading channel: op-

timum and suboptimum power-allocation schemes,” in 1998 Information Theory

Workshop (Cat. No.98EX131), pp. 96–97, 1998.

[14] J. Xue, M. Z. I. Sarkar, and T. Ratnarajah, “Error exponents for nakagami-m

fading channels,” Problems of Information Transmission, vol. 50, pp. 144–170,

April 2014.

[15] J. Xue, T. Ratnarajah, and C. Zhong, “Error exponents for multi-keyhole mimo

channels,” Problems of Information Transmission, vol. 51, pp. 1–19, January

2015.

[16] J. Xue, M. Z. I. Sarkar, C. Zhong, and T. Ratnarajah, “Error exponents for or-

thogonal stbc in generalized-k fading mimo channels,” in 2012 IEEE Wireless

Communications and Networking Conference (WCNC), pp. 1925–1929, 2012.

[17] J. Xue, M. Z. I. Sarkar, T. Ratnarajah, and C. Zhong, “Error exponents for

rayleigh fading product mimo channels,” in 2012 IEEE International Sympo-

sium on Information Theory Proceedings, pp. 2166–2170, 2012.

[18] G. Alfano, C. Chiasserini, A. Nordio, and S. Zhou, “Information-theoretic char-

acterization of mimo systems with multiple rayleigh scattering,” IEEE Transac-

tions on Information Theory, vol. 64, no. 7, pp. 5312–5325, 2018.

62

http://hdl.handle.net/1721.1/4279
http://hdl.handle.net/1721.1/4279


[19] G. Alfano, C. . Chiasserini, A. Nordio, and S. Zhou, “A unifying analysis of

error exponents for mimo channels with application to multiple-scattering,” in

2015 International Symposium on Wireless Communication Systems (ISWCS),

pp. 321–325, 2015.

[20] J. Zhang, M. Matthaiou, G. K. Karagiannidis, Z. Tan, and H. Wang, “Gallager’s

error exponent analysis of stbc systems over η-µ fading channels,” in 2013 IEEE

International Conference on Communications (ICC), pp. 5829–5834, 2013.

[21] A. Karadimitrakis, A. L. Moustakas, and R. Couillet, “Gallager bound for mimo

channels: Large- n asymptotics,” IEEE Transactions on Wireless Communica-

tions, vol. 17, no. 2, pp. 1323–1330, 2018.
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