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ABSTRACT

ANALYSIS AND CONTROL OF A BIO-INSPIRED AERIAL VEHICLE
WITH AN ACTIVELY CONTROLLED ABDOMEN-LIKE APPENDAGE

Güney, Berrin

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Mustafa Mert Ankaralı

September 2022, 104 pages

Animals’ anatomies have control systems combined with multi motors and high-

bandwidth sensors. Their complicated mechanisms give them high maneuverability

with sufficient inertial stabilization performance during walking, jumping, and flying.

From the point of aerial locomotion, flying insects use abdomen reflexes to stabi-

lize their head positions. Articulation of the thoracic–abdominal joint contributes to

the reorientation of their bodies over the law of conservation of angular momentum.

Since acceleration is a fundamental component of maneuverability, increasing the

acceleration without destabilizing the body is achieved with additional appendages

such as the tail and abdomen. The presence of highly actuated abdominal muscles

is an essential feature of these natural flyers conspicuously missing from the current

aerial vehicles regarding maneuverability. In the scope of the thesis, we propose a

bio-inspired aerial vehicle morphology with an actively controlled abdomen-like ap-

pendage. This study takes steps toward understanding the contribution of such an ap-

pendage to flight control. We aim to investigate the advantages and disadvantages of

the abdomen-like appendage mounted on multi-rotor aerial vehicles by constructing

the dynamical model and designing optimization-based controllers; Linear Quadratic

v



Regulator (LQR), Model Predictive Control (MPC), and Adaptive Model Predictive

Control (A-MPC). We complete our analysis with a motion planning algorithm based

on the idea of combining the sampling-based neighborhood graph approach with the

A-MPC strategy. We demonstrate through simulation experiments that the appendage

improves the stability and maneuverability of aerial vehicles, and the resulting mo-

tion planning structure with A-MPC ensures that the state and input constraints are

not violated.

Keywords: abdomen-like appendage, adaptive model predictive control, bio-inspired

aerial vehicle, linear quadratic regulator, sampling-based motion planning
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ÖZ

AKTİF OLARAK KONTROL EDİLEN BİYO-ESİNLENİLMİŞ
ABDOMİNAL UZUVLU BİR HAVA ARACININ ANALİZİ VE KONTROLÜ

Güney, Berrin

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Mustafa Mert Ankaralı

Eylül 2022 , 104 sayfa

Hayvanlar anatomik olarak, çoklu motorlar ve yüksek bant genişlikli algılayıcılar-

dan oluşan kontrol sistemlerine sahiptir. Bu karmaşık mekanizmaları onlara yürüme,

zıplama ve uçuş sırasında yüksek manevra kabiliyeti ve ataletsel stabilizasyon per-

formansı sağlar. Havada hareket açısından bakıldığında, uçabilen böceklerin baş po-

zisyonlarını karın kası refleksleri ile stabilize ettiği görülmüştür. Göğüs-karın ekle-

minin hareketi, vücutlarının açısal momentumun korunumu yasasına göre yeniden

yönlendirilmesine katkıda bulunur. Manevra kabiliyetinin temeli ivmelenmeye dayalı

olduğundan, gövde dengesini bozmadan ivmeyi arttırmak kuyruk ve karın gibi ek-

lentiler ile sağlanır. Uçabilen böceklerin yüksek düzeyde tahrik edebildikleri karın

kaslarının varlığı, manevra kabiliyeti açısından mevcut hava araçlarındaki önemli ek-

sikliklerden biridir. Bu çalışmada, aktif olarak kontrol edilen karın benzeri eklentiye

sahip, biyo-esinlenilmiş bir hava aracı morfolojisi önererek bu eklentinin uçuş kontro-

lüne katkısını inceledik. Sistemin doğrusal olmayan dinamik modelinin türetilmesi ve

optimizasyon tabanlı kontrolcü tasarımları olan Lineer Kuadratik Regülatör (LQR),

Model Öngürülü Kontrol (MPC) ve Uyarlamalı Model Öngörülü Kontrol (A-MPC)
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ile bu eklentinin avantaj ve dezavantajlarının araştırılmasını amaçladık. Önerdiğimiz

hava aracı morfolojisinin analizini örnekleme tabanlı komşuluk grafiği yaklaşımını

A-MPC stratejisiyle birleştirme fikrine dayanan bir hareket planlama algoritması uy-

gulayarak tamamladık. Simülasyon ortamında yapılan deneyler ile, eklentinin hava

araçlarının stabilizasyonunu ve manevra kabiliyetini geliştirdiğini ve uyguladığımız

hareket planlama yapısının sistemin kararlılığını durum ve girdi kısıtlarını ihlal etme-

den sağladığını test sonuçları ile gösterdik.

Anahtar Kelimeler: biyo-esinlenilmiş hava aracı, karın benzeri eklenti, lineer kuadra-

tik regülatör, örnekleme tabanlı hareket planlaması, uyarlamalı model öngörülü kont-

rolcü
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Study

Aerial vehicles of the current era have been used in many areas like rescue opera-

tions, mine detection, agriculture, entertainment, and package delivery. Engineers

have spent a great deal of effort developing more efficient and safer designs as aerial

vehicles are close to daily life.

In nature, free appendages such as the tail and abdomen assist animals in maneuvering

and reorienting their bodies in midair. From the point of bio-inspired aerial robotics,

there are numerous studies about the importance of appendages in stabilizing the

body attitude. Additionally, the behavior of the appendage is an obvious example of

the inertial redirection ability of flying animals. Therefore, we aim to examine the

effects of such an appendage on aerial vehicles.

To the best of our knowledge, this is the first complementary study of the analysis

and control of a bio-inspired aerial vehicle with an actively controlled abdomen-like

appendage considering the nonlinearities and constraints of the system. In this work,

we used dynamical models in the sagittal plane and 3D space with optimization-based

controllers to show the effect of the abdomen-like appendage on the stabilization

performance. Then, we performed a motion planning algorithm based on MPC policy

with sampling-based neighborhood graph generation in a planar region.

Inspiration by the aerial maneuvering ability of the flying insects is the primary moti-

vation of this study. We investigate the advantages and disadvantages of a bio-inspired

aerial vehicle with an actively controlled abdomen-like appendage and analyze its re-
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liability, efficiency, and safety performance. First and foremost, we want to examine

the proposed system in a simulation environment and find the answer to the question,

"Is it worth increasing the nonlinearity and complexity of the system considering

what we get?". Then, according to the simulation results, experiments can be done

on a physical setup of the proposed system as future work.

1.2 Literature Review

Hundreds of years before, Da Vinci [1] performed several observations outlined about

birds. Since then, examining animal behavior has been the subject of extensive re-

search for flight control, and flying animals have inspired scientists and engineers to

design concepts for aerial vehicles. According to Tobalske [2], hovering and inter-

mittent flight, two aspects of bird movement, hold enormous promise for the creation

of autonomous flying robots in the future.

In 1970, Camhi [3, 4] stated that several mechanisms underlie the locust’s flight, one

of which is a central neuronal pattern generator that determines the sequence of wing-

muscle contractions. He recorded the magnitude of abdominal and head movements

of the insect induced by wind angle and observed the relation between them. The

results show that for each experiment, the head, abdomen, and legs movements are

correlated, and the receptors on the head provide information for the activities of the

abdomen and legs in yaw correction.

Then, Gewecke and Philippen [5] investigated the aerodynamic output, the torque

produced by the aerodynamic drag of the deflected abdomen, of tethered flying lo-

custs in front of the wind tunnel to specify the impact of the abdominal reflexes in

flight control. Baader [6] analyzed the posture of the abdomen during flight and

pointed out interneurons that are in charge of controlling abdominal reflexes. Zanker

[7], performed an experiment on tethered flying Drosophila melanogaster (Fig. 1.1a)

and investigated the lateral abdomen deflections in response to visual stimuli for flight

control. Frye [8] carried out an experiment with male and female Manduca sexta (Fig.

1.1b) during tethered flight within a wind tunnel setup and recorded abdominal de-

flections with sensors.
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(a) Drosophila melanogaster (b) Manduca sexta

Figure 1.1: Flying locusts

Hedrick and Daniel [9] reported that Hawkmoths’ abdomens are a sizeable portion

of their overall mass and may contribute to shifting the moment produced by wing

forces. Moreover, they constructed a mathematical model of Manduca sexta includ-

ing the angle between the thorax and abdomen to simulate flight control. Dyhr et

al. [10] experimented on Manduca sexta to observe visual-abdominal reflexes and

developed a mathematical model with the thoracic–abdominal joint suggesting a new

morphology that can be used redirecting thrust forces in flight control. Demir et

al. [11] applied this new mechanism to a quadrotor with a classical control technique,

PD control, and showed that the stability performance of a quadrotor could be im-

proved by inertially redirecting wing forces using abdomen-like appendage inertia.

Ugurlu et al. [12] designed a controller based on reinforcement learning for a bi-rotor

platform with a tail appendage and compared it with classical control approaches.

On the other hand, several studies apply different control techniques to aerial vehicles

to improve their stability. In literature, PID and LQR controllers are the most used

techniques for aerial vehicles [13–15]. Bouabdallah [16] developed five controllers;

Lyapunov-based, PID, LQ, backstepping, and sliding mode concepts. In recent years,

with the improvement in computational power in microprocessors, several studies

have been published using MPC to control UAVs [17–22]. Notter et al. [23] compared

the MPC performance of the multirotor vehicle with a heavy slung load with the LQR

approach. Cai et al. [24] combined the MPC algorithm with the feedback linearization

technique.
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The drawback of linear control approaches such as PID, LQR, and MPC is that they

can stabilize unmanned aerial vehicles around the equilibrium point. As the states

go far from equilibrium, the control performance degrades because of the nonlinear

characteristics of the plant. Adaptive model predictive control (A-MPC) addresses

this degradation by adapting the prediction model for changing operating conditions.

In literature, A-MPC is applied with various methods. Pereida et al. [25] com-

bined model predictive control with L1 adaptive controller for trajectory tracking.

Tanaskovic et al. [26] divided the A-MPC approach into two steps: real-time system

identification based on input-output data and formulation of robust finite-horizon op-

timal control problem. Lorenzen et al. [27] used past state values and inputs to update

the model with guaranteed constraint satisfaction.

Furthermore, motion planning for UAVs is challenging, and numerous approaches

have been developed recently. Goerzen et al. [28], provided an overview of the mo-

tion planning algorithms for UAVs and stated the challenges of the motion planning

of UAVs compared to mobile robots or manipulators in terms of the difficulties about

the differential constraints, unknown aerodynamic disturbances, limited knowledge

about the environment, limited sensor capabilities, etc. There is comprehensive lit-

erature for path planning of UAVs, including heuristic and sample-based approaches

such as A*, D*, ARA* [29–31]. Yang and LaValle [32] presented a sampling-based

neighborhood graph (SNG) approach to execute feedback-motion planning by cover-

ing free configuration space with balls. Karagöz et al. [33] addressed that covering

the free space with rectangular regions is more effective than the circular regions

in terms of the sparsity of the graph structure. Atasoy [34] improved the algorithm

and applied it to the unmanned surface vehicle (USV) models with a nonlinear MPC

control strategy for collision avoidance.

1.3 Contributions

A preliminary version of the quadrotor structure with an actively controlled appendage

inertia was presented by Demir et al. [11]. In this thesis, we comprehensively ana-

lyze the impact of the appendage in both the sagittal plane and 3D space. The main

contributions are listed as follows;
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• We constructed the mathematical model of the bi-rotor platform with an ap-

pendage in the sagittal plane, considering the hard and soft constraints.

• Then, we took our mathematical model one step further by applying the pro-

posed structure to the conventional quadrotor in 3D space. In contrast to the

previous model, we assumed that the appendage has 2-DOF, representing roll

and pitch rotation in the appendage frame.

• We designed LQR for both models and compared their performances with con-

ventional aerial vehicles. To make a fair comparison, we eliminated the weight-

ing parameters of the states and the control effort that belong to the appendage.

Then, we compared the systems’ performances with different weighting param-

eters in terms of settling time, steady-state error, and the average cost value of

the quadratic cost function.

• Since animals have highly actuated muscles, we tried to examine whether the

appendage with significant torque-limit constraint still improves the perfor-

mance or not. Also, we added soft and hard constraints for the appendage

angles and compared the results with the conventional systems.

• We improved the controller performance by designing MPC, which is well

suited for multi-input multi-output (MIMO) and highly nonlinear systems with

constraints. We compared constrained LQR and MPC responses for initially

perturbed systems.

• To increase the performance of MPC, we implemented A-MPC by linearizing

the plant model at each prediction step. We analyzed the A-MPC response with

the initial state values far from the nominal operating point and compared it

with MPC.

• The final contribution relates to a sampling-based feedback motion planning

algorithm with A-MPC policy in a planar region. We aimed to plan collision-

free motion by using A-MPC with hard position constraints. We performed

Monte Carlo simulations with different initial conditions and input noise to test

our algorithm.
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1.4 The Outline of the Thesis

The organization of the thesis is as follows. Chapter 1 gives information about the

motivation of the proposed aerial vehicle configuration. In addition, we provide a

literature review and contributions. The advantages, disadvantages, and challenging

parts of this structure are discussed.

Chapter 2 explains the nonlinear mathematical model of the bi-rotor platform with an

abdomen-like appendage. The equations of motion of the aerial vehicle are derived

based on the Euler-Lagrange method in planar space. We explain the assumptions

used in the modeling and constraints of the system. Furthermore, linearization around

the equilibrium point and the state space representation is given in this chapter.

Chapter 3 takes the analysis to the next level by deriving the mathematical model

of the conventional quadrotor with the Newton-Euler approach and expanding it to

the proposed structure with an actively controlled 2-DOF abdomen-like appendage

dynamics in 3D space.

After deriving the dynamical model of the systems, Chapter 4 gives a background

for optimization-based controller designs; LQR, MPC, and A-MPC. It starts with

explaining the scaling state space model, which is beneficial for weight selections,

and then expresses the controllers step by step.

Chapter 5 discusses the recently published motion planning algorithm called "MPC-

Graph" and its implementation on the proposed aerial vehicle in a planar region.

We present the simulation results and analyze the systems’ performances in Chapter

6. We compare the controllers in terms of performance criteria and constraints.

Finally, Chapter 7 outlines our work and the concluding remarks on the results. In

addition, we discuss future work and extensions of the proposed study.
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CHAPTER 2

PLANAR DYNAMICAL SYSTEM MODELING

This chapter develops the mathematical model of the proposed aerial vehicle with

an actively controlled abdomen-like appendage in the x-z plane. Fig. 2.1 illustrates

the mathematical model of the hawkmoth Manduca sexta in the sagittal plane. The

thorax and head of the animal are considered as a single body with a mass of M ,

for simplicity. The mass of the abdomen is denoted by m, and the abdominal joint

connects the abdomen to the thorax. The body angle, θ1, is defined as the pitch

angle of the body mass. The abdomen angle, θ2, represents the angle deviation of the

abdomen from the x axis.

Figure 2.1: Hawkmoth Manduca sexta and the illustrated mathematical model in the

sagittal plane.
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The proposed system, inspired by the mathematical model of the hawkmoth, has

two propellers (bi-rotor) and an abdomen-like appendage mounted on the bottom of

the body. Conventional bi-rotor platform (Fig. 2.2a) has 3-DOF, (x, z, θ1), whereas

the platform with appendage has additional 1-DOF, which is the appendage angle θ2

shown in Fig. 2.2b.

θ1

F2

F1

x

z

g⃗

M

+

(a) The conventional bi-rotor platform. It has 3-

DOF, translational movement in x and z direction,

and orientation of the body, θ1.

θ1

F2

F1

x

z

g⃗
θ2

M

m

ℓ

+

(b) The proposed bi-rotor platform with an

abdomen-like appendage. It has an additional 1-

DOF, which is the angle of the appendage, θ2.

Figure 2.2: Bi-rotor platforms in the sagittal plane.

We begin our derivation with the nonlinear model of the conventional bi-rotor plat-

form. Then, we expand the equations of motion to the proposed bi-rotor platform

with an abdomen-like appendage. We obtain the mathematical models with respect

to a fixed planar world frame whose axes are denoted as x and z. Accordingly, the

gravitational force is acting along the z direction. We use the Euler-Lagrange ap-

proach to develop equations of motion of the vehicles.

Before deriving the equations of motion, we made the following assumptions for

simplification;

• The structure of the vehicles is supposed as rigid and symmetrical.

• The appendage is assumed as mounted on the bottom of the body. Therefore,

the distance between the CoG of the body and the abdominal joint is half of the

body height, illustrated in Fig. 2.3.

• The appendage is considered an actively controlled pendulum with point mass,
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and we assume that the pendulum rod is weightless.

• The body axes of the vehicle coincide with the axes of inertia.

L

h

x

z F1 F2

g⃗

M

m

Figure 2.3: Illustration of the appendage motion and the abdominal joint

2.1 Conventional Bi-rotor Platform

As stated before, the conventional bi-rotor platform has 3-DOF, in which the state and

the input variables are denoted as follows;

q =
[
x z θ1

]T
,

u =
[
F1 F2

]T
,

(2.1)

where x and z represent the translational movements in planar space and θ1 is the

body angle illustrated in Fig. 2.2a. The input vector consists of the thrust forces F1

and F2. Then, the position of the body and its first derivative are represented as;

r⃗M =
[
x z

]T
, ˙⃗rM =

[
ẋ ż

]T
. (2.2)

Based on the Euler-Lagrange approach, the Lagrange equation is

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q, (2.3)

9



where the Lagrangian (L) is defined as the difference between the kinetic energy and

potential energy of the system. The notation Q denotes the external forces of the

system. The kinetic energy (T ) and potential energy (V ) are expressed as follows;

T =
1

2
M(ẋ2 + ż2) +

1

2
IM θ̇

2
1, (2.4)

V =Mgz. (2.5)

Here, M is the body mass, and IM is the moments of inertia of the body. By applying

the Lagrange equation, we obtain nonlinear dynamic equations below;

Mẍ = −(F1 + F2)sθ1 , (2.6)

Mz̈ +Mg = (F1 + F2)cθ1 , (2.7)

IM θ̈1 = (F2 − F1)
L

2
. (2.8)

Moreover, Euler-Lagrange equations of the nonlinear system can be expressed in the

form of

M(q)q̈ + C(q, q̇) +N(q) = T + Γ. (2.9)

The matrix M(q) is called a mass matrix of the system and includes inertial terms.

C(q, q̇) is composed of the Coriolis terms with constraints and N(q) includes the

gravitational terms. The right-hand side of the equation is combined with external

torques, T , and external forces Γ. Therefore, the matrix representation of the dynamic

model can be formed as follows;


M 0 0

0 M 0

0 0 IM


︸ ︷︷ ︸

M(q)


ẍ

z̈

θ̈1

+


0

Mg

0


︸ ︷︷ ︸
N(q)

=


−(F1 + F2)sθ1
(F1 + F2)cθ1
(F2 − F1)

L
2


︸ ︷︷ ︸

T+Γ

. (2.10)
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2.2 Bi-rotor Platform with 1-DOF Abdomen-Like Appendage

The proposed system is equipped with an actively controlled 1-DOF abdomen-like

appendage as indicated in Fig. 2.3. The joint between the body and the appendage is

at the bottom center of the body. The mass and the appendage’s length are denoted as

m and ℓ, respectively. The new state variable related to the joint is represented as θ2.

The joint torque, τ , is added to the input vector as a control input to the system. The

new states and input vector of the nonlinear system are as follows;

q =
[
x z θ1 θ2

]T
,

u =
[
F1 F2 τ

]T
.

(2.11)

To derive the nonlinear dynamic equations, we need to define the position of the bi-

rotor body and the appendage as stated below;

r⃗M =

x
z

 , r⃗m =

x− ℓcθ2 + h
2
sθ1

z − ℓsθ2 − h
2
cθ1

 , (2.12)

where r⃗M and r⃗m are the position vectors of the body and the appendage, respectively.

Taking the first derivative of the position vectors, we obtain velocity vectors of the

body and appendage;

˙⃗rM =

ẋ
ż

 , ˙⃗rm =

ẋ+ ℓsθ2 θ̇2 + h
2
cθ1 θ̇1

ż − ℓcθ2 θ̇2 + h
2
sθ1 θ̇1

 . (2.13)

Then, we calculate the kinetic and potential energy of the system to apply the Euler-

Lagrange approach;

T =
1

2
m ˙⃗ 2rm +

1

2
M ˙⃗ 2rM +

1

2
IM θ̇

2
1, (2.14)

=
1

2
(M +m)(ẋ2 + ż2) +

1

2
mℓ2θ̇2

2
+

1

2

(
mh2

4
+ IM

)
θ̇21

+mℓẋsθ2 θ̇2 +
1

2
mhẋcθ1 θ̇1 +mℓ

h

2
cθ1sθ2 θ̇1θ̇2

−mℓżcθ2 θ̇2 +m
h

2
żsθ1 θ̇1 −mℓ

h

2
sθ1cθ2 θ̇1θ̇2,

V = (M +m)gy +mgℓ(1− sθ2)−mg
h

2
cθ1 . (2.15)
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By using the formulation (2.3), we obtain four Lagrange equations for each state

variable listed below;

x:

d

dt

[
(M +m)ẋ+mℓsθ2 θ̇2 +

1

2
mhcθ1 θ̇1

]
− 0 = Q1,

(M +m)ẍ+mℓsθ2 θ̈2 +mℓcθ2 θ̇
2
2 +

1

2
mhcθ1 θ̈1 −

1

2
mhsθ1 θ̇

2
1 = Q1.

(2.16)

z:

d

dt

[
(M +m)ż −mℓcθ2 θ̇2 +

1

2
mhsθ1 θ̇1

]
+ (M +m)g = Q2,

(M +m)(z̈ + g)−mℓcθ2 θ̈2 +mℓsθ2 θ̇
2
2 +

1

2
mhsθ1 θ̈1 +

1

2
mhcθ1 θ̇

2
1 = Q2.

(2.17)

θ1 :

d

dt

[(
IM +

mh2

4

)
θ̇1 +mẋ

h

2
cθ1 +mℓ

h

2
cθ1sθ2 θ̇2 +mż

h

2
sθ1 −mℓ

h

2
cθ2sθ1 θ̇2

]
−
[
−mẋh

2
sθ1 θ̇1 −mℓ

h

2
sθ1sθ2 θ̇1θ̇2 +mż

h

2
cθ1 θ̇1 −mℓ

h

2
cθ1cθ2 θ̇1θ̇2 −mg

h

2
sθ1

]
= Q3,(

IM +
mh2

4

)
θ̈1 +m

h

2

(
ẍcθ1 + (z̈ + g)sθ1 + ℓθ̈2(cθ1sθ2 − cθ2sθ1) + ℓθ̇22(cθ1cθ2 + sθ2sθ1)

)
= Q3.

(2.18)

θ2 :

d

dt

[
mℓ2θ̇2 +mẋℓsθ2 +mℓ

h

2
cθ1sθ2 θ̇1 −mżℓcθ2 −mℓ

h

2
cθ2sθ1 θ̇1

]
−
[
mẋℓcθ2 θ̇2 +mℓ

h

2
cθ1cθ2 θ̇1θ̇2 +mżℓsθ2 θ̇2 +mℓ

h

2
sθ2sθ1 θ̇1θ̇2 +mgℓcθ2

]
= Q4,

mℓ2θ̈2 +mℓ (ẍsθ2 − (z̈ + g)cθ2) +
1

2
mℓh

(
(cθ1sθ2 − cθ2sθ1)θ̈1 − (sθ1sθ2 + cθ1cθ2)θ̇

2
1

)
= Q4.

(2.19)

The external forces denoted on the right-hand side of the equations are expressed by

the input variables;

Q =


Q1

Q2

Q3

Q4

 =


−(F1 + F2)sθ1
(F1 + F2)cθ1
(F2 − F1)

L
2

τ

 . (2.20)
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For the next step, let us construct a new state vector as

v =
[
v1 v2

]T
, (2.21)

where

v1 =
[
x z θ1 θ2

]T
, v2 =

[
ẋ ż θ̇1 θ̇2

]T
. (2.22)

Therefore, the equations of motion of the nonlinear model can be expressed as the

four-first order equations by using the form of the equation (2.9);

v̇ = f(v, u) =

 v2

M(v1)
−1[T + Γ− C(v1, v2)−N(v1)]

 , (2.23)

with the matrices below;

M =


(M +m) 0 mh

2
cθ1 mℓsθ2

0 (M +m) mh
2
sθ1 −mℓcθ2

mh
2
cθ1 mh

2
sθ1 IM + mh2

4
mℓh

2
s(θ2−θ1)

mℓsθ2 −mℓcθ2 mℓh
2
s(θ2−θ1) mℓ2

 , (2.24)

N(q) =


0

(M +m)g

mg h
2
sθ1

−mgℓcθ2

 , (2.25)

C(q, q̇) =


−mℓcθ2 θ̇2

2 − 1
2
mhsθ1 θ̇1

2

mℓsθ2 θ̇2
2
+ 1

2
mhcθ1 θ̇1

2

1
2
mℓhc(θ2−θ1)θ̇2

2

−1
2
mℓhc(θ2−θ1)θ̇1

2

 , (2.26)

T + Γ =


−(F1 + F2)sθ1
(F1 + F2)cθ1
(F2 − F1)

L
2

τ

 . (2.27)
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2.3 Linearization

Khalil [35] states that as we move from linear to nonlinear systems, the superposition

principle no longer holds, and analysis tools involve more advanced mathematics.

A common practice in analyzing nonlinear systems is linearizing them about some

nominal operating point. For nonlinear systems, a set of equilibrium points may

exist. The equilibrium points of the system are determined by setting f(x, u) = 0.

Therefore, we linearize the nonlinear equations of the systems around the hovering

state. Since the equilibrium point of the conventional bi-rotor platform is translation

invariant, initial x and z states can be anything expressed by the following equilibrium

states and input vector;

xe =
[
x0 z0 0 0 0 0

]T
,

ue =
[
Mg
2

Mg
2

]T
, (2.28)

where

ẋe = f(xe, ue) = 0. (2.29)

The hover condition is satisfied when thrust force is equal to body weight, meaning

that the system preserves its altitude. Examining the linearization at that point al-

lows us to use linear control theory to design controllers that operate properly around

the equilibrium region. We form the state space equation of the nonlinear model

linearized around the equilibrium point as;

˙̄x = Ax̄+Bū,

(2.30)

where A, B matrices and the new state and input vector x̄, ū are defined as below;

A =
∂f(x, u)

∂x

∣∣∣∣
xe,ue

, B =
∂f(x, u)

∂u

∣∣∣∣
xe,ue

,

x̄ = x− xe, ū = u− ue. (2.31)
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Therefore, A and B matrices are obtained as follows for the conventional bi-rotor

platform;

A =


03x3 I3x3

0 0 − (F1+F2)
M

0 0 0

0 0 0

03x3

 , B =


04x2

1
M

1
M

− L
2IM

L
2IM

 . (2.32)

The proposed bi-rotor structure with an actively controlled abdomen-like appendage

is also linearized around the hovering state with the following equilibrium state and

input vectors;

xe =
[
x0 z0 0 π

2
0 0 0 0

]T
,

ue =
[
(M+m)g

2
(M+m)g

2
0
]T
. (2.33)

By using MATLAB Symbolic Toolbox, A and B matrices are found as;

A =



04x4 I4x4
0 0 − (M+m)g

M
mg
M

0 0 0 0

0 0 −mgh
2IM

mgh
2IM

0 0 (M+m)g
Mℓ

+ mgh2

4ℓIM
− (M+m)g

Mℓ
− mgh2

4ℓIM

04x4


, (2.34)

B =



04x3

0 0 − 1
Mℓ

1
(M+m)

1
(M+m)

0

− L
2IM

L
2IM

− h
2ℓIM

hL
4ℓIM

− hL
4ℓIM

h2

4ℓ2IM
+ (M+m)

Mmℓ2


. (2.35)

We also assumed that all state variables are measurable for conventional and proposed

bi-rotor platforms. Thus, the matrix C is the identity matrix, Inxn with n states.

For the controllability and observability properties of the systems, we can analyze

controllability (C) and observability (O) matrices formed as;

C =
[
B AB A2B . . . An−1B

]
, (2.36)
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O =



C

CA

CA2

...

CAn−1


. (2.37)

For both of the systems, (C) and (O) are found as full rank matrices by using MAT-

LAB Symbolic Toolbox [36]. Therefore, the conventional and proposed bi-rotor ve-

hicles are both controllable and observable.
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CHAPTER 3

3D DYNAMICAL SYSTEM MODELING

3.1 3D Dynamical Modeling

This chapter demonstrates the nonlinear mathematical model of the proposed quadro-

tor configuration with an actively controlled 2-DOF abdomen-like appendage in 3D

space. We begin our derivation with the conventional structure and then move to the

proposed model as we did in Chapter 2.

First, we give the definitions of the reference frames used in the derivations. Then,

we derive equations of motion of the 6-DOF conventional quadrotor body dynamics

using the Newton-Euler approach. After that, we add the 2-DOF appendage dynamics

to the equations of the conventional quadrotor and derive the resulting 8-DOF model,

illustrated in Fig.3.1. Then, we linearize the nonlinear models at the hovering state.

3.1.1 Reference Frames

Analysis and control of the aerial vehicles involve various coordinate frames and

the transformations between them. For instance, gyroscopes are inertial sensors that

measure motion relative to an inertial frame of reference; the position and velocity of

the vehicle can be given with respect to the Earth-centered, Earth-fixed (ECEF) frame.

Therefore, we need to transform these quantities from different reference frames to

the same frame to derive the equations of motion. The reference frames used in the

derivation of the mathematical models are defined as follows:
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xB

yB

zB

xA

yA

zA

F2F1

F3F4

θa
ϕa

xE

yE
zE

OE

ℓ

m

M d

ϕ

θ

ψ

P1 P2

P4 P3

Figure 3.1: Illustration of the quadrotor with 2-DOF abdomen-like appendage. The

appendage frame axes coincide with the body frame. The pendulum has 2-DOF, roll

and pitch angles of the appendage, denoted as ϕa and θa, respectively.

• Earth Frame (E): Earth frame {E} = {xE, yE, zE} is defined to be rotating

along with the Earth at a rate ωeie. The frame’s origin is at the center of the mass

of the Earth. The zE axis is along the direction of the gravitational force g⃗. The

xE axis points out the north, and the y axis completes a right-handed system.

• Body Frame (B): The body frame {B} = {xB, yB, zB} is fixed to the quadro-

tor body, and the origin of the body frame is at the center of mass of the body.

The body frame is aligned with the axes of the inertial frame such that xB points
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out north and zB points out the center of gravity.

• Appendage Frame (A): The appendage frame {A} = {xA, yA, zA} is estab-

lished to derive the position of the appendage in the earth frame. The frame’s

origin coincides with the body frame, and the directions of the axes are parallel

to the axes of the earth frame.

• Propeller Frame (P): The propeller frame {P} = {xP , yP , zP} is expressed

in the reference frame of rotor i, and the frame axes are defined in the direction

of the axes of the earth frame.

Each coordinate frame defined above is an orthogonal, right-handed coordinate frame.

In this study, we assume the earth frame is a non-rotating fixed frame and neglect the

earth rate ωeie.

The conventional and the proposed quadrotor models rely on the following assump-

tions for simplification;

• The structure of the quadrotor is supposed as rigid and symmetrical.

• The center of mass of the quadrotor and the origin of the body frame coincide.

• The abdominal joint and the body’s center of mass coincide with the origin of

the body frame.

• The propellers have rigid body dynamics.

• The thrust and drag of each motor are proportional to the square of the motor

velocity.

• The appendage is considered a 2-DOF point mass pendulum.

• We ignore the aerodynamic effects such as hub force, hub moment, and ground

effect in the dynamical model.

• We assumed that the products of inertia of the quadrotor body are equal to zero,

Jxy = Jyz = Jxz = 0.
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3.1.2 Kinematic Equations of Quadrotor

Kinematics is the study of representing the positions and orientations of rigid ob-

jects without considering the forces and torques acting on them. It deals with the

transformations of various coordinate frames that define the vehicle’s position. We

begin to derive kinematics of the conventional quadrotor by defining the generalized

coordinates of the body that describes 6-DOF motion in 3D space;

q =
[
xE yE zE ϕ θ ψ V E

x V E
y V E

z pB qB rB
]T
, (3.1)

where (xE, yE, zE) and (V E
x , V

E
y , V

E
z ) express the position and linear velocities of the

quadrotor with respect to the earth frame, respectively. (ϕ, θ, ψ) are the Euler angles

that transform the body frame to the Earth frame. Lastly, (pB, qB, rB) represents the

angular rate of the quadrotor in the body frame.

Euler angles are defined in different frames, depicted in Fig. 3.2. The first frame is

the body frame, and the roll (ϕ) angle is produced by rotating the body frame about

its x-axis by the amount of ϕ. The resultant frame is denoted as F ′. The frame F ′ is

rotated on its y-axis by the amount of pitch angle θ, and the next frame is named F ′′.

As a final step, rotating the frame F ′′ about its z-axis by the amount of yaw angle ψ

gives us the earth frame.

xB

yB

zB

x′

y′

z′

x′

y′

z′

x′′

y′′

z′′

x′′

y′′

z′′

xE

yE

zE

ϕ

θ

ψ

Figure 3.2: Representation of three successive rotations (x-y-z) of the body frame

and the related Euler angles.
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Therefore, we define the rotation matrices by using Euler angles as follows;

RF ′

B (x, ϕ) =


1 0 0

0 cϕ −sϕ
0 sϕ cϕ

 ,

RF ′′

F ′ (y, θ) =


cθ 0 sθ
0 1 0

−sθ 0 cθ

 , (3.2)

RE
F ′′(z, ψ) =


cψ −sψ 0

sψ cψ 0

0 0 1

 .

Direction cosine matrix (DCM) from the body to the earth frame, CE
B , is derived by

successive multiplication of the rotation matrices defined in (3.2). The resulting DCM

is as follows;

CE
B = RE

F ′′(z, ψ)RF ′′

F ′ (y, θ)RF ′

B (x, ϕ),

=


cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ

 . (3.3)

Then, angular rates with respect to the body frame are derived using the Euler angles

and rotation matrices as;
p

q

r

 =


ϕ̇

0

0

+RF ′

B (x,−ϕ)


0

θ̇

0

+RF ′

B (x,−ϕ)RF ′′

F ′ (y,−θ)


0

0

ψ̇

 ,

=


ϕ̇

0

0

+


1 0 0

0 cϕ sϕ
0 −sϕ cϕ



0

θ̇

0

+


1 0 0

0 cϕ sϕ
0 −sϕ cϕ




cθ 0 −sθ
0 1 0

sθ 0 cθ



0

0

ψ̇

 ,

=


1 0 −sθ
0 cϕ cθsϕ
0 −sϕ cθcϕ


︸ ︷︷ ︸

Rpqr


ϕ̇

θ̇

ψ̇

 . (3.4)
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After obtaining the resultant matrix Rpqr, by taking the inverse of it, we can find the

transformation matrix from angular rates to Euler rates as follows;
ϕ̇

θ̇

ψ̇

 = R−1
pqr


p

q

r

 , (3.5)

=


1 sϕtθ cϕtθ
0 cϕ −sϕ
0

sϕ
cθ

cϕ
cθ



p

q

r

 . (3.6)

Notice that Rpqr is not a regular rotation matrix, nor satisfies its properties such that

R−1
pqr ̸= RT

pqr. Therefore, by combining the obtained kinematic equations, we get the

equation below; 

ẋ

ẏ

ż

ϕ̇

θ̇

ψ̇


=

I3x3 03x3

03x3 Rpqr





Vx

Vy

Vz

p

q

r


. (3.7)

3.1.3 Rigid Body Dynamics

This section expresses the dynamical equations of the quadrotor. Whereas the kine-

matic equations explain the motion of the quadrotor without considering forces and

torques acting on the body, the dynamical equations directly define the relationship

between the forces and motion. We derive the equations of motion by using the

Newton-Euler formulation. In Chapter 2, we used the Euler-Lagrange approach for

bi-rotor platforms by using a Lagrangian function defined as the difference between

kinetic and potential energy. In contrast, in the Newton-Euler method, we derive

the equations describing the linear motion and angular motion of the quadrotor sep-

arately. Both formulations give us the same result, and each has certain advantages.

The Newton-Euler method is better for recursive computation compared to the La-

grangian formulation [37]. Although the Lagrangian approach has an advantage in

simplicity, we move on with the Newton-Euler approach to use vector notation and
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define motion based on forces for the mathematical modeling of the proposed aerial

vehicle in 3D space.

The Newton-Euler method is based on the following statements [37];

• For every action, there is an equal and opposite reaction.

• The linear momentum change rate equals the total force applied to the quadro-

tor.

• The rate of change of the angular momentum equals the total torque acting on

the quadrotor.

We begin writing the equations by stating Newton’s second law, which describes the

dynamic systems in terms of force and momentum, as follows;

dp⃗

dt
≜ F⃗ext,

dh⃗

dt
≜ τ⃗ext, (3.8)

where F⃗ext, τ⃗ext are the external forces and torques that produce the motion of the

quadrotor. According to the assumptions we made, translational equations of motion

in the earth frame are written as follows;
V̇x

V̇y

V̇z

 =
F⃗E
ext

M
+ G⃗E. (3.9)

Here, G⃗E = [0, 0, g]T is the gravitational force vector defined in the earth frame.

We derive rotational equations with respect to the body frame. At this point, we need

to consider the Coriolis effect. Since Newton’s laws of motion explain the motion

of an object in an inertial frame of reference, when we transform these laws into a

rotating frame, some additional centrifugal accelerations appear. The effect of these

accelerations is called as "Coriolis effect."

Let the frame A2 is rotated with respect to a non-accelerating (fixed) frame A1, with

angular velocity w⃗A1/A2 . If we define a vector V⃗ rotating in the frame A2, we need to

add Coriolis accelerations to Newton’s second law. In other words, the derivative of
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V⃗ in frame A1 is equal to the sum of its derivative in frame A2 and its cross product

with the angular velocity, w⃗A1/A2;

dV⃗

dt

∣∣∣
A1

=
dV⃗

dt

∣∣∣
A2

+ (ω⃗A1/A2 × V⃗ ). (3.10)

Therefore, the equations of angular motion are expressed in the body frame by using

the angular momentum, H = Jω, as follows;

τext =
dH⃗

dt

∣∣∣
E
=
dH⃗

dt

∣∣∣
B
+ (ω⃗ × H⃗), (3.11)

=
Jω⃗

dt

∣∣∣
B
+ (ω⃗ × H⃗),

where ω ≜ [p q r]T , τext ≜ [τx τy τz]
T .

Therefore, by using (3.11) we get the derivate of the angular rates of the quadrotor

body with respect to the body frame;
τx

τy

τz

 =


Jxx 0 0

0 Jyy 0

0 0 Jzz



ṗ

q̇

ṙ

+


p

q

r

×

Jxx 0 0

0 Jyy 0

0 0 Jzz



p

q

r

 ,

ṗ

q̇

ṙ

 =


τx/Jxx

τy/Jyy

τz/Jzz

+


qr(Jyy − Jzz)/Jxx
pr(Jzz − Jxx)/Jyy
pq(Jxx − Jyy)/Jzz

 . (3.12)

3.1.4 External Forces

Propellers generate thrust force and torque that produce motion for the body. The

conventional quadrotor has four propellers with plus (+) or cross (x) configuration as

illustrated in Fig. 3.3. This work uses the cross (x) configuration to derive dynamical

equations.

Let us start by expressing the thrust force of the quadrotor. The value of the thrust

force is used for the altitude change of the body with respect to the earth frame. The

thrust value of each propeller is calculated using rotor radius R, air density ρ, the
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Figure 3.3: Two common structures for conventional quadrotors: Cross and plus

configuration.

square of the rotor speed ω, and thrust coefficient cT . The equation of the thrust force

generated for each propeller is expressed as follows;

Tp = cTρR
4πω2. (3.13)

Although the thrust coefficient changes in time depending on the rotor speed, we

consider it a constant parameter for simplicity. So, we can calculate external force,

U1, acting on the quadrotor in the body frame using the thrust forces generated by

each propeller;

U1 =
4∑
i=1

T ip = KT (ω
2
1 + ω2

2 + ω2
3 + ω2

4), (3.14)

where KT = cTρπR
4, and T ip represents the thrust force of the ith propeller.

However, we need to define the linear equations of motion in the earth frame. The

calculated thrust force in the body frame is transformed into the earth frame using the

rotation matrix described in (3.3) as follows;

U⃗E
1 = CE

B U⃗
B
1 =


cθcψ sϕsθcψ − cϕsψ cϕsθcψ + sϕsψ
cθsψ sϕsθsψ + cϕcψ cϕsθsψ − sϕcψ
−sθ sϕcθ cϕcθ




0

0

−U1

 =


−(cϕsθcψ + sϕsψ)U1

−(cϕsθsψ − sϕcψ)U1

−(cϕcθ)U1

.
(3.15)
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Another external force is generated by gravitational acceleration. This force acts on

the quadrotor along the positive z-axis in the earth frame. We can transform it into

the body frame by using the DCM from the earth frame to the body frame below;

G⃗B = CB
E G⃗

E = CB
E


0

0

Mg

 =


−Mgsθ
Mgcθsϕ
Mgcθcϕ

 . (3.16)

3.1.5 External Moments

Rotational motions of the quadrotor, roll-pitch-yaw, are primarily due to a moment

produced by the speed change of the four propellers. Since the cross (x) configuration

is used in this study, there are 45◦ between the body frame axes and the quadrotor

arms. Thus, the moment arm is calculated accordingly, which is 1√
2

times the arm

length.

Roll angle can be changed by decreasing propeller speed of the propeller P2 and P3,

while increasing the P1 and P4. Then, the difference creates moments around the x

axis. By using the moment arm and the difference of the thrust forces, roll moment

U2 is calculated as follows;

U2 = KT
d√
2
(ω2

1 − ω2
2 − ω2

3 + ω2
4). (3.17)

If the speed of P3 and P4 decrease while P1 and P2 increase, the pitch moment, U3,

occurs and it is computed as;

U3 = KT
d√
2
(ω2

1 + ω2
2 − ω2

3 − ω2
4). (3.18)

Yaw moment is created by drag acting on the propellers’ rotor, and it changes de-

pending on the speed and direction of the propellers. Drag moment depends on sev-

eral parameters as the propeller thrust values do. Again, for simplicity, we take these

parameters as a combined constant variable and calculate the yaw moment as below;

U4 =
4∑
i=1

Kd(ω
2
1 − ω2

2 + ω2
3 − ω2

4). (3.19)
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The last generated moment is called gyroscopic torque, which occurs due to rotor

rotation. It is calculated with respect to the propeller reference frame P as follows;

τ⃗Pgi = Jr


pi

qi

0

×

0

0

ωi

 , (3.20)

where Jr is the moment of inertia of the propeller rotor. Then, the produced moment

of the four propellers is expressed in the body frame as follows;

τ⃗Bg =


qURJr
Jxx

−pURJr
Jyy

0

 , (3.21)

with the relative rotor speed, UR = ω1 − ω2 + ω3 − ω4.

3.1.6 6-DOF Equations of Motion

After expressing the external forces and torques, we are ready to combine the 6-DOF

equation of motions of the conventional quadrotor as follows;

f(x, u) =



ẋ

ẏ

ż

ϕ̇

θ̇

ψ̇

V̇x

V̇y

V̇z

ṗ

q̇

ṙ



=



Vx

Vy

Vz

p+ qsϕtθ + rcϕtθ
qcϕ − rsϕ
q

sϕ
cθ
+ r

cϕ
cθ

−(cϕsθcψ+sϕsψ)U1

M
−(cϕsθsψ−sϕcψ)U1

M
−(cϕcθ)U1

M
+ g

U2+qURJr+(Jyy−Jzz)qr
Jxx

U3−pURJr+(Jzz−Jxx)pr
Jyy

U4+(Jxx−Jyy)pq
Jzz



. (3.22)
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3.1.7 2-DOF Abdomen-Like Appendage

The reason behind the idea that we use a 2-DOF pendulum to model an abdomen-like

appendage is that the dynamics of a pendulum are well suited to introduce the non-

linear dynamics of the abdomen-like appendage. It is a straightforward mechanical

illustration of a nonuniform oscillator [38].

Therefore, let us consider the abdomen-like appendage as a 2-DOF pendulum mounted

below the body’s center. The abdomen-like appendage has a reference frame, A,

whose axes coincide with the inertial frame axes. Let the angle ϕa represent the ro-

tation angle around xA, and θa denotes the rotation angle around yA. These angles

determine the motion of the abdomen-like appendage since it has two degrees of free-

dom.

According to the assumption that the abdomen-like appendage is considered a point

mass, the position vector of the appendage at the equilibrium point is expressed in the

appendage frame as follows;

PA
Ap =

[
0 0 ℓ

]T
, (3.23)

where ℓ is the appendage length from the appendage center of mass to the origin of

the body frame. When the quadrotor moves, the position of the appendage PE
Ap =

[xp, yp, zp] in the earth frame can be calculated with the position vector of the quadro-

tor body, PE
Q , as follows;

PE
Ap = PE

Q + CE
AP

A
Ap. (3.24)

The matrixCE
A is calculated by using the rotation matricesRot(θa, yA) andRot(ϕa, xA)

with the equation below;

CE
A = Rot(θa, yA)Rot(ϕa, xA),

=


cθa 0 sθa
0 1 0

−sθa 0 cθa



1 0 0

0 cϕa −sϕa
0 sϕa cϕa

 =


cθa sθasϕa sθacϕa
0 cϕa −sϕa
−sθa sϕacθa cθacϕa

 . (3.25)
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By combining (3.24) and (3.25), the position of the appendage with respect to the

earth frame can be expressed as;

PE
Ap =


xAp

yAp

zAp

 =


x

y

z

+


sθacϕaℓ

−sϕaℓ

cθacϕaℓ

 =


x+ sθacϕaℓ

y − sϕaℓ

z + cθacϕaℓ

 . (3.26)

The first derivative of the position vector is as follows;

ṖE
Ap =


ẋAp

ẏAp

żAp

 =


ẋ+ ℓ(θ̇acθacϕa − ϕ̇asθasϕa)

ẏ − ℓϕ̇acϕa
ż − ℓ(θ̇asθacϕa + ϕ̇acθasϕa)

 , (3.27)

and the second derivative is obtained below;

P̈E
Ap =


ẍAp

ÿAp

z̈Ap

 =


ẋ+ ℓ(θ̈acθacϕa − θ̇2asθacϕa − 2θ̇aϕ̇acθasϕa − ϕ̈asθasϕa − ϕ̇2

asθacϕa)

ÿ − ℓ(ϕ̈acϕa − ϕ̇2
asϕa)

z̈ − ℓ(θ̈asθacϕa + θ̇2acθacϕa − 2θ̇aϕ̇asθasϕa + ϕ̈acθasϕa + ϕ̇2
acθacϕa)

 .
(3.28)

The force vector acting on the appendage in the earth frame is calculated using the

DCM from the appendage frame to the earth frame as follows;
fx

fy

fz

 = CE
A


0

0

−f

 =


−fsθacϕa
fsϕa

−fcθacϕa

 , (3.29)

where f is the tension force in the appendage frame. According to Newton’s second

law, the following equations can be obtained with the appendage mass m;

fx = mẍAp = −fsθacϕa ,

fy = mÿAp = fsϕa , (3.30)

fz = mz̈Ap = −fcθacϕa .

From these three equations stated above, we obtain;

m(cθaẍAp − sθa z̈Ap) = −mgsθa , (3.31)

and by rewriting (3.31), we get

−gsθa = ẍcθa − z̈sθa + ℓθ̈acϕa − 2ℓθ̇aϕ̇asϕa . (3.32)
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Then, by adding the external torque to (3.32), we get

θ̈a =
1

ℓcϕa
(−gsθa − ẍcθa + z̈sθa + 2ℓθ̇aϕ̇asϕa) +

τay
Ipy

. (3.33)

For ϕa, we obtain the following equation;

m(cθacϕa ÿAp + sϕa z̈Ap) = mgsϕa , (3.34)

and by rewriting (3.34), we get

gsϕa = ÿcθacϕa + z̈sϕaℓ(θ̈asθasϕacϕa + θ̇2acθasϕacϕa − 2θ̇aϕ̇asθas2ϕa + ϕ̈acθa). (3.35)

By substituting θ̈a and adding the applied torque into (3.35), we obtain the following

equation;

ϕ̈a = −
1

ℓ
(gcθasϕa + ẍsθasϕa + ÿcϕa + z̈cθasϕa − θ̇2aℓsϕacϕa) +

τax
Ipx

. (3.36)

After analyzing the appendage force, we have the nonlinear equations of the quadrotor

with an actively controlled 2-DOF abdomen-like appendage as follows;

f(x, u) =
[
ẋ ẏ ż ϕ̇ θ̇ ψ̇ ϕ̇a θ̇a V̇x V̇y V̇z ṗ q̇ ṙ ϕ̈a θ̈a

]T

=



Vx

Vy

Vz

p+ qsϕtθ + rcϕtθ

qcϕ − rsϕ

q
sϕ
cθ

+ r
cϕ
cθ

ϕ̇a

θ̇a

−1
M+m

[(cϕsθcψ + sϕsψ)U1 +mℓ(θ̈acθacϕa − θ̇2asθacϕa − 2θ̇aϕ̇acθasϕa − ϕ̈asθasϕa − ϕ̇2
asθacϕa)]

−1
M+m

[−(cϕsθsψ − sϕcψ)U1 +mℓ(ϕ̈a(cϕa − ϕ̇2
asϕa)]

−1
M+m

[−(cϕcθ)U1 +mℓ(θ̈asθacϕa + θ̇2acθacϕa − 2θ̇aϕ̇asθasϕa + ϕ̈acθasϕa + ϕ̇2
acθacϕa)] + g

U2+qURJr+(Jyy−Jzz)qr
Jxx

U3−pURJr+(Jzz−Jxx)pr
Jyy

U4+(Jxx−Jyy)pq

Jzz

1
Mℓ

[(−sθasϕa(cϕsθcψ + sϕsψ)− cϕa(cϕsθsψ)− cθasϕacϕcθ)U1]− sϕacϕa θ̇
2
a +

(M+m)τax

MIpx

1
M
[2Mθ̇aϕ̇atϕa + (

cθa
Lcϕa

(cϕsθcψ + sϕsψ)−
sθa
Lcϕa

(cϕcθ))U1] +
(M+m)τay

MIpy



,

(3.37)
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with the following control input;

u =
[
U1 U2 U3 U4 τax τay

]T
. (3.38)

3.2 Linearization

Conventional quadrotors have multiple equilibrium points. Since nonlinear dynamics

complicate the system equations and make controller design a challenging task, sys-

tem dynamics need to be linearized around some operating points to use linear control

theory approaches. The linearization of the quadrotor is performed in the hovering

state. During hovering, the states x, y, z, and ψ can have any value and do not change

the system dynamics.

Thus, the linearization is performed around the equilibrium point represented by the

following states and inputs;

xe =
[
x0 y0 z0 0 0 ψ0 0 0 0 0 0 0 0 0 0 0

]T
,

ue =
[
−(M +m)g 0 0 0 0 0

]T
.

(3.39)

At the equilibrium point, we have

ẋ = f(xe, ue) = 0. (3.40)

The equation for the linearization of the nonlinear function f(x, u) at equilibrium

point (xe, ue) is;

f(x, u) ≈ f(xe, ue) +
∂f(x, u)

∂x

∣∣∣∣
xe,ue

(x− xe) +
∂f(x, u)

∂u

∣∣∣∣
xe,ue

(u− ue). (3.41)

Since f(xe, ue) = 0, the linearized state space equation of the system is as follows;

˙̄x = Ax̄+Bū, (3.42)

where

A =
∂f(x, u)

∂x

∣∣∣∣
xe,ue

, B =
∂f(x, u)

∂u

∣∣∣∣
xe,ue

,

x̄ = x− xe, ū = u− ue.
(3.43)
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Therefore, A and B matrices are as follows;

A =



08x8 I8x8
0 0 0 0 − (M+m)

M
g 0 0 m

M
g

0 0 0 (M+m)
M

g 0 0 −m
M
g 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 (M+m)
M

g 0 0 − (M+m)
ML

g 0

0 0 0 0 (M+m)
M

g 0 0 − (M+m)
ML

g

08x8



, (3.44)

B =



08x6

0 0 0 0 0 − mL
MIpy

0 0 0 0 mL
MIpx

0

− 1
M+m

0 0 0 0 0

0 1
Jxx

0 0 0 0

0 0 1
Jyy

0 0 0

0 0 0 1
Jzz

0 0

0 0 0 0 (M+m)
MIpx

0

0 0 0 0 0 (M+m)
MIpy



. (3.45)
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CHAPTER 4

CONTROLLER DESIGN

Practically, in a control problem, the controller aims to calculate the input to the

plant such that the tracking performance and stabilization are successfully guaran-

teed. Therefore, we design optimization-based controllers; linear quadratic regulator

(LQR), model predictive controller (MPC), and adaptive model predictive control

(A-MPC) to analyze the performance of the proposed aerial vehicle structure with an

actively controlled abdomen-like appendage. In this section, we provide backgrounds

for these controllers. First, we represent the state space models of the nonlinear sys-

tems derived in Chapter 2 and Chapter 3. Then, we explain the scaling method that

makes the selection of the weighting parameters easy for optimization-based con-

trollers. Finally, we give a brief introduction to each controller approach.

4.1 State-Space Model

In predictive control design, Wang [39] states three main approaches: Finite impulse

response (FIR), transfer function, and state space models. The earlier method com-

bines finite impulse response (FIR) and step response models. However, this method

is limited to stable plant dynamics. Then, the transfer function model is introduced,

and it is used for both stable and unstable plant dynamics. This approach is more

effective than the earlier one but has a drawback; it is not well suited for the MIMO

systems. Finally, the state space formulation, appropriate for MIMO systems, has

been presented by Ordys and Clarke [40] for predictive control design. Recently,

state space design methods have been widely used in predictive control design [41].

Therefore, in this study, we used the state space model of the proposed systems to
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design predictive-based controllers.

Table 4.1: Model parameter values

Parameter Symbol Value

Body height of the bi-rotor platform (m) h 0.3

Body length of the bi-rotor platform (m) L 0.5

Drag coefficient (Ns2) Kd 3.02× 10−7

Length of the abdomen-like appendage(m) ℓ 0.15

Length of the quadrotor arm (m) d 0.3

Mass of the body (kg) M 1.5

Mass of the abdomen (kg) m 0.75

Maximum rotor speed (rad/s) ωmax 950

Moments of inertia of the bi-rotor platform (kg.m2) IM 0.0425

Moments of inertia of the quadrotor along the x-axis

(kg.m2)

Jxx 0.0143

Moments of inertia of the quadrotor along the y-axis

(kg.m2)

Jyy 0.0143

Moments of inertia of the quadrotor along the z-axis

(kg.m2)

Jzz 0.0276

Rotor inertia (kg.m2) Jr 9.89× 10−5

Thrust coefficient (Ns2) KT 2.83× 10−5

In Chapter 2 and Chapter 3, we represented the equations of motion of the aerial ve-

hicles parametrically in planar and 3D space. Now, we obtain the state space models

of the systems using the parameter values depicted in Table 4.1.

The inspired insect hawkmoth Manduca sexta has an abdomen weight of approxi-

mately half of the mass of the animal [9]. Demir et al. [11] used a servo-actuated

battery as an appendage, weighing about one-third of the total quadrotor mass in their

experiment. Considering these studies, we chose appendage weight as half of the
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vehicle body weight. We select other parameters, such as moments of inertia val-

ues, thrust and drag coefficients, rotor inertia, and arm length, as consistent with the

manufactured conventional quadrotors. We select the appendage length as 0.15 m,

meaning that the appendage lowers the CoG by 0.2 m at a naturally dropped position.

We derive the discrete-time state-space equations with the parameters in Table 4.1.

The discrete-time linear models of the systems have the following form;

x(k + 1) = Ax(k) + Bu(k). (4.1)

We transform the continuous state space models to the discrete state space models

using the zero-order hold (ZOH) discretization method. For all four systems derived

before, we assume that all states of the systems are available, meaning that the sys-

tems are completely observable. We discretize the continuous state space models with

a sampling period Ts = 0.05 s.

4.1.1 Conventional Bi-rotor Platform

The discrete state space model of the conventional bi-rotor platform is as follows;

ẋ

ż

θ̇1

ẍ

z̈

θ̈1


=



1 0 −0.01226 0.05 0 −0.0002

0 1 0 0 0.05 0

0 0 1 0 0 0.05

0 0 −0.4905 1 0 −0.01226

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

A



x

z

θ1

ẋ

ż

θ̇1


+



0.00001 −0.00001

0.0005556 0.0005556

−0.004902 0.004902

0.0008015 −0.000802

0.02222 0.02222

−0.1961 0.1961


︸ ︷︷ ︸

B

F1

F2

 ,

(4.2)

and the input-output constraints are listed below;

Cxmin ≤ x ≤ Cxmax, (4.3a)

Cymin ≤ y ≤ Cyumax, (4.3b)

−π
3
≤ θ1 ≤

π

3
, (4.3c)

F1min ≤ F1 ≤ F1max , (4.3d)

F2min
≤ F2 ≤ F2max

, (4.3e)

where the input valuesF1 andF2 are in the interval of [F1min , F1max ] and [F2min , F2max ],

respectively. The position constraints Cxmin, Cxmax, Czmin, Czumax can be changed
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in real-time. The body angle θ1 is limited to avoid singularity and produce proper

control inputs.

4.1.2 Bi-rotor Platform with an Actively Controlled Abdomen-like Appendage

The discrete state space model of the proposed bi-rotor platform with an actively
controlled abdomen-like appendage is as follows;

ẋ

ż

θ̇1

θ̇2

ẍ

z̈

θ̈1

θ̈2



=



1 0 −0.01814 0.005876 0.05 0 −0.000304 0.00001

0 1 0 0 0 0.05 0 0

0 0 0.9685 0.03146 0 0 0.04947 0.0005309

0 0 0.1503 0.8497 0 0 0.002537 0.04746

0 0 −0.7155 0.225 1 0 −0.01814 0.005879

0 0 0 0 0 1 0 0

0 0 −1.219 1.219 0 0 0.9685 0.03146

0 0 5.823 −5.823 0 0 0.1503 0.8497


︸ ︷︷ ︸

A



x

z

θ1

θ2

ẋ

ż

θ̇1

θ̇2



+



0.00003 −0.00003 −0.005325

0.0005556 0.0005556 0

−0.007274 0.007274 −0.0285

0.006978 −0.006978 0.1362

0.002374 −0.002374 −0.2039

0.02222 0.02222 0

−0.2879 0.2879 −1.104

0.2643 −0.2643 5.276


︸ ︷︷ ︸

B


F1

F2

τ

 , (4.4)

with the following input-output constraints;

Cxmin ≤ x ≤ Cxmax, (4.5a)

Cymin ≤ y ≤ Cymax, (4.5b)

−π
3
≤ θ1 ≤

π

3
, (4.5c)

π

6
≤ θ2 ≤

5π

6
, (4.5d)

F1min
≤ F1 ≤ F1max

, (4.5e)

F2min ≤ F2 ≤ F2max , (4.5f)

τmin ≤ τ ≤ τmax, (4.5g)

τ̇min ≤ τ̇ ≤ τ̇max. (4.5h)
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The appendage can rotate in the interval (π
6
, 5π

6
), and this is the soft constraint of the

joint. As Dyhr et al. [10] state, moths change the abdominal joint angle along with

the highly actuated muscles; we must limit the applied torque to fairly compare the

animals with physical systems. Therefore, the model includes the torque limits and

constraint of the applied torque rate of change, τ̇ , to represent the joint as a physical

actuator.

4.1.3 Conventional Quadrotor Platform

We continue with the quadrotor models in 3D space for the next step. The conven-
tional quadrotor platform has the following discrete state space model;

ẋ

ẏ

ż

ϕ̇

θ̇

ψ̇

V̇x

V̇y

V̇z

ṗ

q̇

ṙ



=



1 0 0 0 −0.01226 0 0.05 0 0 0 −0.0002044 0

0 1 0 0.01226 0 0 0 0.05 0 0.0002044 0 0

0 0 1 0 0 0 0 0 0.05 0 0 0

0 0 0 1 0 0 0 0 0 0.05 0 0

0 0 0 0 1 0 0 0 0 0 0.05 0

0 0 0 0 0 1 0 0 0 0 0 0.05

0 0 0 0 −0.4905 0 1 0 0 0 −0.01226 0

0 0 0 0.4905 0 0 0 1 0 0.01226 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

A



x

y

z

ϕ

θ

ψ

Vx

Vy

Vz

p

q

r



(4.6)

+



0 0 −0.0001786 0

0 0.0001786 0 0

−0.0007353 0 0 0

0 0.08741 0 0

0 0 0.08741 0

0 0 0 0.04529

0 0 −0.01429 0

0 0.01429 0 0

−0.02941 0 0 0

0 3.497 0 0

0 0 3.497 0

0 0 0 1.812


︸ ︷︷ ︸

B


U1

U2

U3

U4

 ,
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with the following input-output constraints;

U1min ≤ U1 ≤ U1max , (4.7a)

U2min ≤ U2 ≤ U2max , (4.7b)

U3min ≤ U3 ≤ U3max , (4.7c)

U4min ≤ U4 ≤ U4max , (4.7d)

−π
3
≤ ϕ ≤ π

3
, (4.7e)

−π
3
≤ θ ≤ π

3
, (4.7f)

−π
3
≤ ψ ≤ π

3
, (4.7g)

where thrust force U1, and roll, pitch, and yaw moments U2, U3, U4 have boundaries

due to rotor speed limitations. We calculate the maximum thrust and minimum thrust

values from the equation (3.14) with the following formula;

U1max = 4KTω
2
max, (4.8)

U1min = 0. (4.9)

And, the maximum and minimum values of the roll, pitch, and yaw moments, which

are derived in equations (3.17,3.18,3.19), are calculated as follows;

U2max = 2KT
d√
2
ω2
max, U2min = −2KT

d√
2
ω2
max, (4.10)

U3max = 2KT
d√
2
ω2
max, U3min = −2KT

d√
2
ω2
max, (4.11)

U4max = 2Kdω
2
max, U4min = −2Kdω

2
max. (4.12)

We also put angle constraints as we did for the bi-rotor platforms to avoid singularity

and produce proper control inputs.
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4.1.4 Quadrotor Platform with an Actively Controlled 2-D0F Abdomen-like

Appendage

Lastly, the discretized state-space equation of the proposed quadrotor structure is as
follows;



ẋ

ẏ

ż

ϕ̇

θ̇

ψ̇

ϕ̇a

θ̇a

V̇x

V̇y

V̇z

ṗ

q̇

ṙ

ϕ̈a

θ̈a



=



1 0 0 0 −0.0176 0 0 0.00538 0.05 0 0 0 −0.00029 . . .

0 1 0 0.0176 0 0 −0.00538 0 0 0.05 0 0.00029 0 . . .

0 0 1 0 0 0 0 0 0 0 0.05 0 0 . . .

0 0 0 1 0 0 0 0 0 0 0 0.05 0 . . .

0 0 0 0 1 0 0 0 0 0 0 0 0.05 . . .

0 0 0 0 0 1 0 0 0 0 0 0 0 . . .

0 0 0 0.0351 0 0 0.965 0 0 0 0 0.00059 0 . . .

0 0 0 0 0.0351 0 0 0.965 0 0 0 0 0.00059 . . .

0 0 0 0 −0.704 0 0 0.214 1 0 0 0 −0.0176 . . .

0 0 0 0.704 0 0 −0.214 0 0 1 0 0.0176 0 . . .

0 0 0 0 0 0 0 0 0 0 1 0 0 . . .

0 0 0 0 0 0 0 0 0 0 0 1 0 . . .

0 0 0 0 0 0 0 0 0 0 0 0 1 . . .

0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 1.397 0 0 −1.397 0 0 0 0 0.0351 0 . . .

0 0 0 0 1.397 0 0 −1.397 0 0 0 0 0.0351 . . .

. . . 0 0 0.000089

. . . 0 −0.000089 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0.05 0 0

. . . 0 0.0494 0

. . . 0 0 0.0494

. . . 0 0 0.00538

. . . 0 −0.00538 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 1 0 0

. . . 0 0.965 0

. . . 0 0 0.965





x

y

z

ϕ

θ

ψ

ϕa

θa

Vx

Vy

Vz

p

q

r

ϕ̇a

θ̇a



+



0 0 −0.00026 0 0 −0.0015

0 0.00026 0 0 0.0015 0

−0.0005 0 0 0 0 0

0 0.0874 0 0 0 0

0 0 0.0874 0 0 0

0 0 0 0.0453 0 0

0 0.00051 0 0 0.0095 0

0 0 0.00051 0 0 0.0095

0 0 −0.0206 0 0 −0.058

0 0.0206 0 0 0.058 0

−0.0204 0 0 0 0 0

0 3.497 0 0 0 0

0 0 3.497 0 0 0

0 0 0 1.812 0 0

0 0.041 0 0 0.379 0

0 0 0.041 0 0 0.379


︸ ︷︷ ︸

B



U1

U2

U3

U4

τax

τay


,

(4.13)

with the following input-output constraints;

Uimin ≤ Ui ≤ Uimax , i = 1, 2, 3, 4 (4.14a)

−π
3
≤ ϕ, θ, ψ, ϕa, θa ≤

π

3
, (4.14b)

τxmin ≤ τx ≤ τxmax , (4.14c)

τ̇xmin ≤ τ̇x ≤ τ̇xmax, (4.14d)

τymin ≤ τy ≤ τymax , (4.14e)

τ̇ymin ≤ τ̇y ≤ τ̇ymax. (4.14f)
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4.2 Scaling State-Space Model

In practical applications, tuning the weight parameters for the optimization-based

controller design becomes easier if we scale the model considering the boundaries of

the input-output variables. One of the most used scaling techniques is to make the

input-output variables less than one in magnitude [42]. Therefore, we have reference

|r(t)| ≤ 1 and disturbance |d(t)| ≤ 1, with control input |u(t)| ≤ 1 such that the error

|e(t)| = |y(t) − r(t)| ≤ 1. To specify scale factors, we need to estimate the span of

the input and output variables.

C(s) G̃(s)

G̃d(s)

R
−

+ +

+

r̂ r̃ ẽ ũ
d̃

d

ỹ

Figure 4.1: Block diagram of the system in terms of scaled variables

Let us denote the original linear model of the MIMO plant G(s) with reference input

u and output y. We also represent the disturbance input d and disturbance model

Gd(s) in the output equation. The output and error equations are as follows;

y = Gu+Gdd, (4.15a)

e = y − r. (4.15b)

Then, we divide each input variable by its maximum value and obtain scaled input

variables whose magnitudes are less than equal to one;

ũ =
u

umax
, d̃ =

d

dmax
. (4.16)

After that, we scale (4.15b) by dividing emax because the primary purpose is to mini-
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mize the control error. The new scaled variables ỹ, r̃ and ẽ are as follows;

ỹ =
y

emax
, r̃ =

r

emax
, ẽ =

e

emax
. (4.17)

Since the system we work with is MIMO, we need to introduce the scaling matrices

Dd, Du, De, Dr, whose diagonal elements are the maximum value of the correspond-

ing variables. Then, the scaled variables become

d̃ = D−1
d d, ũ = D−1

u u, ỹ = D−1
e y, ẽ = D−1

e e, r̃ = D−1
e r.

(4.18)

With the introduced matrices, the new scaled plant and disturbance model are as

follows;

G̃ = D−1
e GDu, G̃d = D−1

e GdDd. (4.19)

To make the reference signal less than 1 in magnitude, we divide the reference signal

by the maximum reference signal change value as follows;

r̂ =
r

rmax
= D−1

r r. (4.20)

Then, we have

r̃ = Rr̂, R ≜ D−1
e Dr. (4.21)

From the point of our models, we have state variables; some have much larger or

smaller magnitudes or different units than others. For example, the position states are

inmeters, and the angles are defined in rad. Therefore, we use the scaling method in

our controller designs to choose weight parameters easily compared to the unscaled

models.

4.3 Controller Background and Design

The most commonly used technique for a conventional quadrotor control is to design

a PID controller using a cascaded loop controller [43]. In that structure, the inner loop

controls the attitude of the body, whereas the outer loop includes a position controller.

In this study, we design optimization-based controllers as a single loop, and in this

section, we give a brief background about LQR, MPC, and A-MPC methods.
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4.3.1 Linear Quadratic Regulator

Linear Quadratic Regulator (LQR) is a type of optimal control based on state-space

representation. LQR structure feeds back the entire state vector, then multiplies it by

a gain matrix K and subtracts it from the scaled reference. It is like a pole placement

technique, but we do not pick the pole locations. We find the optimal K matrix by

choosing closed-loop characteristics.

The LQR finds the optimal control input u[k] to the system

x[k + 1] = Ax[k] +Bu[k], (4.22)

that minimizes the following equation

min
N−1∑
n=0

xT [n]Qx[n] + uT [n]Ru[n]. (4.23)

In the equation above, Q and R are positive definite weighting matrices that penalize

the state performance and the control effort, respectively.

The quadratic cost function is defined as;

J(x, n− 1) = min
u
xTQx+ uTRu+ J(Ax+Bu, n). (4.24)

Since the cost function is quadratic, let us use a positive definite symmetric matrix S

that satisfies the equation below

J(x, n) = xTS[n]x, S[n] = ST [n] > 0, (4.25)

and we have the optimum control input, u∗[n]

u∗[n] = −K[n]x[n] = −(R +BTS[n]B)−1BTS[n]Ax[n]. (4.26)

Then, (4.26) yields that

S[n− 1] = Q + ATS[n]A− (ATS[n]B)(R +BTS[n]B)−1(BTS[n]A), S[N ] = 0,

(4.27)

the Riccati difference equation. The infinite horizon LQR solution is found as fol-

lows;

S = Q + ATSA− (ATSB)(R +BTSB)−1(BTSA). (4.28)
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The general choices for the matrices Q and R are based on the Bryson’s rule [44]

which scales the variables in the cost function as follows

Qii =
1

maxx2i
, Rjj =

1

maxu2j
. (4.29)

Then, they can be tuned by the trial-and-error approach to obtain better performance.

4.3.2 Model Predictive Control

UAVs are vehicles whose velocity and acceleration constraints are critical for the

reference tracking problem, and we must consider the constraints to get satisfactory

tracking performance. However, LQR does not directly impact the output constraints,

whereas the model predictive control determines the optimum control signal using

constraints of the output signals directly.

Model Predictive Control (MPC) has been used in the process industry since the

1980s. Richalet et al. [45] presented the first MPC control applications in 1977.

As the computing power increases, MPC becomes mostly chosen control algorithm

for multivariable control applications in automation, aerospace, energy, and several

industries.

The idea behind the MPC is to predict the system’s behavior over a specified time

horizon and produce a control input sequence that minimizes a predetermined cost

function without any input-output violation. It solves an online optimization prob-

lem at each time step of the system to select the best control action that drives the

states to the desired value. It uses a mathematical model of the plant to run an opti-

mization problem with quadratic programming (QP) to make predictions about future

output behaviors, illustrated in Fig. 4.2. By solving an optimization problem, MPC

minimizes the error between the set point and the predicted path of the outputs. Ad-

ditionally, MPC is also known as Receding Horizon Control (RCH) since it moves

toward a state farther from the current state. Moreover, the power of the MPC comes

from its capability to explicitly handle hard state and input limitations and proper per-

formance criteria in the controller design. Another advantage of the MPC is that it

is well suited for multi-input multi-output (MIMO) systems and considers the states’

coupling interactions.
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Plant Model

Quadratic Programming

u(t)
r(t)

y(t)

Model Predictive Control

Aerial Vehicle Dynamics

Figure 4.2: Block diagram of the MPC. Model Predictive Control solves an optimiza-

tion problem at each prediction step with quadratic programming and uses the plant

model to predict the future states of the system.

The main part of the MPC is the model used to predict the system’s future states. Let

us consider the discrete time state space model of the form;

x[k + 1] = Ax[k] + Bu[k], (4.30)

and the variables x ∈ Rn and u ∈ Rm have constraints

xmin ≤ x ≤ xmax, (4.31)

umin ≤ u ≤ umax. (4.32)

The cost function J of the optimization problem is in the form of

J =

Np∑
i=1

(
x[k + i− 1]TQx[k + i− 1] + u[k + j − 1]TRu[k + i− 1]

)
+ x[k +Np]

TPx[k +Np], (4.33)

where Np represents the prediction horizon. Q, R, and P are positive semi-definite

matrices that weigh the state vector, control effort, and final state value in the predic-

tion horizon, respectively.

The optimization problem minimizes the cost function subject to

xmin ≤ x[k + i] ≤ xmax, i = 0, 1, ..., Np, (4.34)

umin ≤ u[k + i] ≤ umax, i = 0, 1, ..., Np, (4.35)

x[k + i+ 1] = Ax[k + i] + Bu[k + i], i = 0, 1, ..., Np − 1. (4.36)

44



And the P matrix can be found by solving the following Riccati equation;

P = Q+ ATPA− ATPB(R +BTPB)−1BTPA. (4.37)

4.3.2.1 MPC Design Parameters

The performance of the MPC highly depends on the design parameters such as sample

time, prediction horizon, control horizon, and weight selections. There are rules of

thumb for choosing the proper design parameters in MPC design. In this section, we

briefly mention these rules.

Sample time is one of the most critical parameters that should be chosen first. By

choosing sample time, we determine the rate at which the controller executes the

control algorithm. If it is selected as too big, when a disturbance comes in, the con-

troller cannot be able to react to the disturbance fast enough. On the contrary, if the

sample time is too short, the controller responds much faster to the disturbances and

set point changes, which causes some overshoots and unneeded computational load.

In literature, the suggestion is to choose sample time considering these counter ef-

fects such that the open-loop system response has approximately 20 samples within

the rise time, Tr.

The number of predicted future time steps is called the prediction horizon, denoted by

Np. It presents how far the controller predicts into the future. We should choose the

prediction horizon considering the significant dynamics of the system, which can be

measured by examining the open-loop transient response. It is ideal to have sufficient

samples covering the settling time, Tset. We can choose the prediction horizon as

NpTs ≥ Tset.

The number of control moves, Nc, to be optimized at the control interval is called

a control horizon. After Nc time steps, the inputs stay constant. As Nc increases,

we obtain better closed-loop performance, but the computational load increases sig-

nificantly. Since MPC uses only the first computed control input and ignores the

remaining actions, there is no need to choose a massive control horizon parameter.

In addition, if the system includes delay, we must select a small Nc to satisfy inter-

nal stability. The general rule of thumb is set to control horizon value as 10% of the
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prediction horizon.

4.3.3 Adaptive Model Predictive Control

The linear time-invariant (LTI) MPC is for the systems that can be represented by the

LTI model with linear constraints so that we build up a quadratic convex cost function.

The performance of the LTI MPC depends highly on the accuracy of the model used

in the prediction step. For the systems used in this work, linearization only around the

hovering state is not a proper method to obtain high performance since the models are

highly nonlinear and have differential constraints. In literature, Adaptive MPC, gain-

scheduled MPC, and nonlinear MPC have been proposed for highly nonlinear systems

to overcome performance reduction. Since the systems we use are nonlinear, but their

constraints are linear, we can use linear MPC with two alternatives: Adaptive MPC

(A-MPC) and gain-scheduled MPC. A-MPC overcomes the model inaccuracies in

real-time by updating the linearized model at each prediction step, whereas the gain-

scheduled MPC switches between a predesigned set of MPC controllers for several

operating points.

Plant Model

Quadratic Programming

Linearized Model Update

u(t)
r(t)

A,B

y(t)

q(t)

Aerial Vehicle DynamicsAdaptive MPC

Figure 4.3: Block diagram of the A-MPC. The main difference from the conventional

MPC is that it uses a linearized plant model updated for each prediction step to predict

future outputs.
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Considering that we have the same constraints for all operating points, we can apply

adaptive A-MPC to increase the tracking and stabilization performance of the system.

As seen in Fig. 4.3, the linearized model is updated using the current state and input

variables. The controller then uses the updated model to predict the future states

of the systems. Using this approach, we obtain a more accurate model to predict

the future at each step. Therefore, A-MPC performs better than the common MPC,

especially when the states are far from the hovering state. For the linearized model

update block, the linearization equations and the resulting matrices A and B of the

systems are given in Appendix A.
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CHAPTER 5

MOTION PLANNING

We can roughly define motion planning as the ability to answer the question of how a

vehicle can navigate through a defined environment without colliding with obstacles.

For aerial locomotion, UAV’s motion planning is a more complicated task rather than

traditional mobile robots and manipulators. They have limited environmental knowl-

edge because of limited sensors compared to mobile ones. They also have many DOF

associated with highly nonlinear equations of motion. Another significant difficulty

is that UAVs have differential constraints such as velocity and acceleration, leading

engineers to use different techniques for motion planning algorithms.

Most currently used algorithms solve the motion planning problem by decomposing

it into stages like solving path planning problems, applying constraints, forming a

trajectory, and using feedback control techniques to follow the trajectory.

Karagöz et al. [33] proposed a motion planning algorithm, called MPC-Graph, con-

sisting of sparse random neighborhood graphs and constrained nonlinear Model Pre-

dictive Control (MPC). Atasoy [34] implemented this algorithm’s extended and im-

proved version to autonomous surface vessel models. Based on the power of the

MPC, which handles constraints very well, we implemented this motion planning

algorithm for the proposed aerial vehicle structure.

MPC-Graph algorithm has three consecutive stages to accomplish the motion plan-

ning task: sampling-based graph generation, graph search, and motion control based

on MPC. The first stage, graph generation, samples the obstacle-free region with

overlapping rectangular areas. The graph search algorithm includes Dijkstra’s search

algorithm [46] to find an optimum path in terms of the predefined cost function. The
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Quadratic Programming

Plant Model

Plant

Linearized Model Update

r(t)
MPC-Graph

C(t)map

goal

A,B

u(t)

y(t)

q(t)

Figure 5.1: Block diagram of the MPC-Graph motion planning algorithm with A-

MPC. MPC-Graph block takes the map, goal position, and current vehicle states as

inputs and generates reference signal, r(t) and constraints, C(t). A-MPC takes these

outputs with the linearized model update and generates control input, u(t). At each

prediction step, constraints and the linearized model are updated.

last stage is MPC-based motion control. We implement this algorithm using A-MPC

instead of nonlinear MPC in the motion control stage. As the aerial vehicle moves

from one rectangular region to another, the constraints are updated, and A-MPC takes

the aerial vehicle to the goal position without violating these constraints. We repre-

sent the block diagram of the algorithm with A-MPC in Fig. 5.1.

5.1 Graph Generation

Let us assume that the aerial vehicle operates in a closed planar (R2) region called

workspace W . The free workspace, Wfree, is the set of points;

Wfree = W\
⋃
i

WOi, (5.1)

where WOi represents the ith obstacle. Let C denote configuration space, i.e., the set

of configurations of the aerial vehicle with an abdomen-like appendage. Cfree is the

obstacle-free region in the configuration space, C. Let B represent the subset of Cfree
that is covered by rectangular nodes:

B =
⋃
i

Nodei, (5.2)
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where Nodei is the rectangular region that constructs the graph. Algorithm 1 gives

the outline of the graph generation stage step by step. The first step of this algorithm

is sampling a random point, qrand, in the obstacle-free region of the map. To get

a successful random point, qrand, it should be lied neither in the obstacle region,

qrand ∈ Cfree, nor in the rectangular regions generated before.

Algorithm 1 Generate Graph
i = 1

G.init(qinit)

while !(TerminationSatisfied(G,Pc, α)) do

repeat

qrandi ← GenerateRandomSample()

d = CalculateObstacleDistance(qrandi)

until (d > 0) and (qrand /∈ B)
Ci ← GenerateCircle(d)

Nodei ← GenerateNode(Ci)

Nodei ← ExpandNode(Nodei)

G.AddNode(Nodei)

i = i+ 1

end while

G.RemoveRedundantNodes

G.RemoveSingletons

return G

After we get qrand successfully, we obtain the minimum distance from qrand to the

obstacles as follows;

qobs = arg min
q∈WO

∥q − qrand∥, (5.3)

d⃗min = qrand − qobs. (5.4)

We use the distance, ∥dmin∥, to create the largest possible imaginary circle that is

centered at qrand and lies in Cfree. After this step, the largest square with one edge

perpendicular to the vector d⃗min is constructed inside the circle. Therefore, we obtain
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the node and add it to the graph G after applying the node expansion procedure. Fig.

5.2 illustrates these steps in an environment example.

5.1.1 Node Expansion

Larger nodes are advantageous in terms of computational load and ability to design

aggressive feedback motion strategies. To cover more areas in the free space, we ex-

tend the generated nodes until they hit an obstacle or area boundaries, as demonstrated

in Fig. 5.2.

O x

z

Figure 5.2: Node construction and expansion example. The red dot and the dashed

circle represent the qrand and the imaginary circle. The black node is the first gen-

erated square node. By expanding this square node along the direction that green

arrows indicate, the expanded node is generated.

The first step in the node expansion procedure is extending the obtained square node

in the direction perpendicular to the vector d⃗min until the node meets the obstacle or
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the environment’s boundaries. If the node hits the obstacle or edge of the environ-

ment, it comes one step back. Then, we apply the same extension procedure to the

direction along the d⃗min with the new rectangular region.

The overall algorithm continues to sample and expand nodes until the Bayesian termi-

nation condition is satisfied, meaning that TerminationSatisfied(G,Pc, α) returns

true. Yang and Lavalle [32] reports the Bayesian termination condition based on the

equation below;

m ≥ ln (1− Pc)
lnα

− 1, (5.5)

where m is the number of consecutive failures after the first success of generating

a random point in Cfree, α is the percentage of the area covered by the rectangular

nodes in Cfree with probability Pc.

In conclusion, by generating qrand and Nodei successfully, we apply the following

rules;

• Point qrand should be lied neither in the obstacle region, qrand ∈ Cfree, nor in

the nodes generated before, qrand /∈ B.

• If the generated node is a subset of other nodes or overlaps with any nodes with

a ratio greater than 90%, it should be removed from the graph.

• If the generated node does not intersect with any nodes, it should also be re-

moved from the graph.

Fig. 5.3 illustrates the example of the planar environment that an aerial vehicle navi-

gates and the randomly generated graph.
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Figure 5.3: Example of the generated nodes in the planar environment: (a) an envi-

ronment example with static obstacles, (b) the generated random points represented

by red markers, and the related extended nodes.
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5.2 Dijkstra’s Search Algorithm

The motion planning algorithm starts to search the constructed graph after the ter-

mination condition in (5.5) is satisfied. Next, the algorithm finds the center of each

overlapping area Ai,i+1, which is the intersection area of the node Ni and Ni+1 in the

map. Then for each overlapping region, the cost function, Jnodes is constructed using

the equation that Atasoy reported [34];

Jnodes = ∥CNi − CAi∥+ ∥CNi+1
− CAi∥+

1

Ai,i+1

, (5.6)

where CNi is the center of the Nodei, shown in Fig. 5.4. The cost function includes

the distances from the center of the overlapping area to the center of the corresponding

node. In addition, the size of the overlapping area inversely increases the cost because

the larger areas allow vehicles to move faster.

CAi

CNi

CNi+1

O x

z

Figure 5.4: Illustration of the cost parameters. The distances are represented with

a dashed line. The red dots represent the center points of the corresponding node,

whereas the blue one represents the center of the overlapping area.
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Based on this cost function, we use Dijkstra’s search algorithm to find the optimum

trajectory that takes the aerial vehicle from the start to the goal point. Then, we

move on to the next stage, A-MPC based motion control algorithm, after obtaining

the optimum trajectory, as shown in Fig. 5.5.

5.3 A-MPC Based Motion Control

The last stage of the MPC-Graph motion planning algorithm is motion control. This

section implements the A-MPC control strategy instead of the nonlinear MPC as a

feedback motion strategy. This stage is mainly responsible for navigating the aerial

vehicle from its start to the goal position using the previously calculated trajectory.

qstart

qgoal

CAi+1CAi

O x

z

Figure 5.5: Illustration of the motion control algorithm. The dashed lines represent

the path to the center of the intersection areas. The orange lines indicate the vehicle’s

path as the current node is updated.
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The motion control algorithm starts with detecting the node that the vehicle is cur-

rently in it. Dijkstra’s search algorithm selects the next node based on our constructed

cost function. Then, the algorithm computes the reference signal as the center of the

intersection area of the current node and the next node. When the vehicle moves to

the next node, the algorithm assigns the next node to the current node and updates the

next node. The reference signal is also updated as the center of the intersection area

of the updated current and next node. Additionally, as the current node changes, the

output constraints are updated according to the boundaries of the new current node.

The algorithm executes until the robot is currently in the node containing the qgoal.

If the vehicle moves to the point that is not in the sets of the nodes, B, new nodes

are constructed, and the path is updated to reach qgoal. Algorithm 2 gives detailed

steps about the motion control stage. After the algorithm finds the current and next

node, A-MPC generates the control input ucurr using the corresponding reference

signal. If somehow the vehicle is in the unsampled region in the environment, then

the algorithm uses the node generation stage again for the current vehicle point qcurr.

If the vehicle is already in the node that contains qgoal, it directly uses the point qgoal

as a reference signal.
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Algorithm 2 A-MPC Based Motion Control

currentNode← FindCurrentNode(G, qcurr)

[nextNode, intersectionArea]← Path.Next(currentNode)

refSignal← FindCenteroid(intersectionArea)

while qcurr! = qgoal do

if qcurr ∈ goalNode then

refSignal← qgoal

else if qcurr ∈ nextNode then

currentNode← nextNode

[nextNode, intersectionArea]← Path.Next(currentNode)

refSignal← FindCenteroid(intersectionArea)

else if qcurr /∈ B then

d = CalculateObstacleDistance(qcurr)

C ← GenerateCircle(d)

Node← GenerateNode(C)

Node← ExpandNode(Node)

G.AddNode(Node)

Path← DijkstraSearchAlgorithm(G)

currentNode← Node

[nextNode, intersectionArea]← Path.Next(currentNode)

refSignal← FindCenteroid(intersectionArea)

else

currentNode← FindCurrentNode(G, qcurr)

[nextNode, intersectionArea]← Path.Next(currentNode)

refSignal← FindCenteroid(intersectionArea)

end if

ucurr ← AdaptiveMPC(qcurr, refSignal, currentNode)

end while
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CHAPTER 6

IMPLEMENTATION AND RESULTS

This chapter performs several simulations to analyze the performance of the proposed

systems compared to conventional aerial vehicles. We used MATLAB Simscape

Multibody to verify the derived equations of motion of the bi-rotor and quadrotor

platforms with/without appendage. We implemented the controller designs and the

motion planning algorithm in MATLAB Simulink [36].

6.1 Planar Models with Bi-rotor Platform

Firstly, we start with the bi-rotor platform models with and without an abdomen-like

appendage with the controller designs explained in Chapter 4. We begin with LQR

and then move to MPC and A-MPC designs and implementations.

6.1.1 Linear Quadratic Regulator

LQR performance depends highly on the selection of the weighting matrices. Tuning

the weight matrices is an iterative process in which we analyze the plant’s response

and modify the weights according to the performance criteria. To make a fair com-

parison between the conventional and the proposed system, we first start selecting

the weight matrices such that the weighting parameters of the appendage state θ2 and

θ̇2 are equal to zero. On the other hand, we propose this structure to increase the

body states’ performance and optimize the propellers’ control effort. Thus, we do

not penalize the appendage actuator control input, τ , since the highly actuated insect

abdomen muscles inspire it. However, for weighing the control efforts, we cannot
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entirely make zero the corresponding weight for the input τ because it makes the

R matrix singular. One possible solution is to give a smaller non-zero value to the

weighting parameter of the input τ . The other solution is making the Frobenius

norm of the R matrices equal.

Let the Rconv and Rapp represent the input weighting matrices for the conventional

bi-rotor platform and the one with an appendage, respectively;

Rconv =

a11 0

0 a22

 , Rapp =


b11 0 0

0 b22 0

0 0 b33

 . (6.1)

Since the input F1 and F2 are assumed to be generated by the identical actuators,

we penalize them in the same way, meaning that a11 = a22 and b11 = b22. Thus,

weighting parameters are supposed to satisfy the equation below to have an equal

Frobenius norm; √
a211 + a222 =

√
b211 + b222 + b233. (6.2)

Therefore, as a first approach, we choose the weighting matrices for the conventional

bi-rotor platform Qconv = I6x6, Rconv = I2x2 and for the one with an appendage as

follows;

Qapp =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0


, Rapp =


1 0 0

0 1 0

0 0 0.01

 . (6.3)

With these matrices, we obtain state feedback gains Kconv and Kapp for the conven-
tional bi-rotor and the proposed one as follows;

Kconv =

 0.7071 0.7071 −5.3949 1.1304 1.4460 −1.3696

−0.7071 0.7071 5.3949 −1.1304 1.4460 1.3696

 , (6.4)
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Kapp =


0.3501 0.7071 −1.1010 −0.0678 0.4403 1.4460 −0.3393 −0.0479

−0.3501 0.7071 1.1010 0.0678 −0.4403 1.4460 0.3393 0.0479

8.6886 0 −53.9866 −0.5573 13.2109 0 −10.3399 0.5297

 .
(6.5)

We apply these state feedback gains to linearized and nonlinear plant models with

initially perturbed body angle, θ10 = 15◦. The responses of the states are shown in

Fig. 6.1.
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Figure 6.1: LQR controller response of the linearized and nonlinear systems with

initially perturbed body angle (θ10 = 15◦)
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The results show that the appendage enhances the stabilization of the bi-rotor body

angle with the help of redirecting thrust forces. The advantage can be seen for the

linearized model, whereas the nonlinear dynamics slightly reduce the performance

improvement. The x position response also gives remarkably better results with the

appendage since the angle change affects the horizontal movement directly.

We choose different weighting parameters to compare the conventional bi-rotor plat-

form and the one with appendage as depicted in Table 6.1 and 6.2. We examine the

step response of the position x with initial body perturbation θ10 = 5◦. Table 6.1

expresses the results of the step response for both systems in terms of performance

metrics such as overshoot Mp, settling time Tsett, steady state error Ess, and the av-

erage cost J . With this analysis, we can conclude that the appendage improves the

position x response in settling time, Tsett, and it simultaneously reduces the average

cost, J .

Table 6.1: Step response analysis of the position x for the bi-rotor platforms with-

/without appendage

Qdiag Rdiag Mp(%) Tsett(s) Ess(%) J

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

0

0

4.66

4.50

0

0

1.5043

1.4358

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {10, 10}
w/. appendage

Rdiag = {10, 10, 0.01}

0

0

4.99

4.47

0

0

1.6693

1.4608

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

0

0

4.62

4.51

0

0

1.5549

1.4920

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {10, 10}
w/. appendage

Rdiag = {10, 10, 0.01}

0

0

4.98

4.46

0

0

1.7083

1.5136

w/o appendage

Qdiag = {10, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {10, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

2.55

1.64

1.72

1.65

0

0

8.9456

8.6899

62



We apply the same procedure to the position z, and the results are given in Table 6.2.

The table shows that the proposed system slightly overshoots, whereas the conven-

tional one does not. When we compare the average costs, the conventional bi-rotor

platform has a slightly lower average cost for the state z. Nonetheless, settling time

is significantly improved compared to the step response of the conventional bi-rotor

platform.

Table 6.2: Step response analysis of the position z for the bi-rotor platforms with-

/without appendage

Qdiag Rdiag Mp(%) Tsett(s) Ess(%) J

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

0

1.2

5.94

4.85

0

0

1.9034

1.9651

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {10, 10}
w/. appendage

Rdiag = {10, 10, 0.01}

0

3

8.82

7.45

0

0

2.6560

2.7940

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

0

1.2

5.93

4.85

0

0

1.9082

1.9710

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {10, 10}
w/. appendage

Rdiag = {10, 10, 0.01}

0

3.1

8.82

7.52

0

0

3.0239

3.2105

w/o appendage

Qdiag = {10, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {10, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

0

1.2

5.94

4.86

0

0

1.9071

2.2267

Moreover, stabilizing the body attitude is critical for aerial vehicles. Therefore, we

apply both step input to the x and z position, and we analyze the body angle response

with initial condition θ10 = 5◦. Table 6.3 indicates the results with previously chosen

weighting parameters. The body angle settles down its steady state value, which is

zero, by making some amount of overshoots. This time, we compare the responses

using overshoot value and zero-crossing time. We define zero-crossing time as when
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the state crosses its steady state value for the first time. Table 6.3 shows that the aver-

age cost J decreases with improved zero-crossing time with the proposed structure.

Table 6.3: Performance analysis for the angle θ1 of the bi-rotor platforms with/without

appendage

Qdiag Rdiag Overshoot value (deg) Zero-crossing time (s) J

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

−6.52

−6.03

1.18

1.04

3.0856

3.0519

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {10, 10}
w/. appendage

Rdiag = {10, 10, 0.01}

−5.38

−6.55

1.56

0.97

4.7073

4.6327

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

−6.06

−5.51

1.21

1.07

3.4806

3.4489

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {10, 10}
w/. appendage

Rdiag = {10, 10, 0.01}

−5.12

−6.04

1.58

1.01

4.7418

4.6893

w/o appendage

Qdiag = {10, 1, 10, 1, 1, 1}
w/. appendage

Qdiag = {10, 1, 10, 0, 1, 1, 1, 0}

w/o appendage

Rdiag = {1, 1}
w/. appendage

Rdiag = {1, 1, 0.01}

−12.8

−13.3

2.55

2.45

9.8375

9.7317

The next analysis is to demonstrate the effect of the torque limit-constraint, |τ | ≤
τmax. Given enough torque, the simulation results show that the appendage improves

the tracking and stabilization performance. It means that, as highly actuated abdomen

reflexes improve head stabilization of the flying animals, the abdomen-like appendage

with unlimited actuator performs better for multi-rotor aerial vehicles. However, in

the real world, the actuators have limits, and we need to analyze the proposed system

with these limits to ensure that the proposed system still has an advantage in these

conditions.

For a simple pendulum system with mass m and length ℓ, if the maximum torque is

greater than mgℓ, we can drive and stabilize the pendulum by finding a feasible con-
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trol input. The system becomes interesting when we have a torque limit smaller than

mgl because we cannot achieve the control task for some states. Since we modeled

the appendage as a pendulum, we analyzed the system with different torque limits

around the value of the mgl Nm.

We give the initial condition to the body angle θ1 = 30◦ for the nonlinear models

and observe the state responses in different torque-limit conditions. The x and z

position responses given in Fig. 6.2, show that the better response is achieved with

the unlimited torque input, τmax =∞. The response worsens when we decrease τmax

step by step. However, the worst case with τmax = 1 Nm, still gives better response

than the conventional bi-rotor platform for x-position. For the position z, the torque

limit does not ruin the appendage’s advantages for the vertical motion until τmax = 1

Nm. For the case, τmax = 1, the performance of the conventional bi-rotor platform

is better in terms of the overshoot parameter. However, the proposed system still

converges faster.
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Figure 6.2: Analysis of how torque constraint affects the response of the translational

movements, x and z.
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Furthermore, the bi-rotor platform without an appendage performs worst in stabiliz-

ing the body attitude. Fig. 6.3 shows the body and the appendage angle responses

under different torque limits. The appendage increases the attitude stabilization per-

formance even if there is a hard torque-limit constraint. On the other hand, for the

case τmax ≥ 20 Nm, the appendage angle θ2 reaches its maximum limit. Another

remark from this analysis is that even if we do not have a torque-limit constraint, the

system has mechanical limits for the appendage angle that needs to be considered.
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Figure 6.3: Analysis of how torque constraint affects the response of the body attitude,

θ1, and appendage angle, θ2.

Fig. 6.4 presents the control efforts of the propellers with different appendage torque-

limit constraints. The appendage reduces the control effort belonging to the pro-

pellers, F1 and F2. The main task of the propellers is to overcome gravity, and the

appendage assists the propellers with the body’s orientation and horizontal move-

ment. As a result, we can consider this remark as another benefit of the abdomen-like

appendage.
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Figure 6.4: Control efforts of the propellers, F1 and F2, with different appendage

torque-limit constraints, τmax, and the appendage actuator response, τ .

6.1.2 Model Predictive Control

Model predictive control mainly differs from the LQR by constructing the cost func-

tion. In LQR, the weighting matrices Q and R correspond to the internal states x(k)

and u(k). The input-output constraints are not considered while calculating the cost

function.
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Another difference is that LQR optimization is done for the whole horizon, whereas

MPC optimizes its controller in a receding horizon. Therefore, the optimization prob-

lem of the MPC may have a suboptimal solution. On the other hand, MPC handles

nonlinearities and hard constraints, which is the MPC’s primary advantage over the

LQR.

First, we choose the MPC design parameters, which are indicated in Table 6.4. We

choose sample time, Ts, identical to the linearized model update rate, as 0.05 seconds.

The prediction and control horizon parameters are tuned by using the trial and error

method. We increase the prediction horizon step by step and examine the controller

performance. When the performance improvement stops, we choose that value as the

prediction horizon length. We pay attention not to increasing the control horizon too

much since it adds computational load to the controller. Moreover, we try to select

closer MPC parameters for both systems. Then, we tune the parameters to get a better

response for each system. We choose a slightly smaller control horizon value for the

conventional bi-rotor platform to get better performance. The constraints are chosen

according to the assumptions made in Chapter 4. In addition, we used a scaled state

space model to tune weighting parameters easily. We increase the weight of the body

angle since it is the most crucial factor in improving the stabilization performance of

the system.

Table 6.4: Comparison of the MPC parameters for bi-rotor platform with/without

appendage

MPC Parameters w/o appendage w/. appendage

Sample Time, Ts 0.05 seconds 0.05 seconds

Prediction Horizon, Np 45 steps 45 steps

Control Horizon, Nc 6 steps 10 steps

Input Constraints
Min: [0, 0]

Max: [30, 30]

Min: [0, 0, -5]

Max: [30, 30, 5]

Output Constraints
Min: [-30, -30, -π

3
, -∞, -∞, -∞ ]

Max: [30, 30, π
3
,∞,∞,∞ ]

Min: [-30, -30, -π
3
, π
6
, -∞, -∞, -∞, -∞ ]

Max: [30, 30, π
3
, 5π

6
,∞,∞,∞,∞ ]

Input Weights
Weight: [1,1]

Rate Weight: [0.1,0.1]

Weight: [1,1,0.1]

Rate Weight: [0.1,0.1,0.1]

Output Weights [1,1,10,1,1,1] [1,1,10,0.1,1,1,1,0.1]
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Then, we compare the MPC performance with constrained LQR. Fig. 6.5 shows the

step response of the system’s x and z positions with constrained LQR and MPC. The

left side of the figure indicates the constrained LQR responses of the bi-rotor plat-

forms with/without appendage. In contrast, the right side demonstrates the MPC re-

sponses. The appendage angle reached its limit in the constrained LQR case, whereas

MPC gives a better solution with optimal appendage movement.
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Figure 6.5: Constrained LQR and MPC responses of the bi-rotor platforms with/with-

out appendage
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6.1.3 Adaptive Model Predictive Control

We design A-MPC for the conventional and proposed bi-rotor platforms as a final

controller approach. We use the MPC, which we already tuned in the previous sec-

tion, to implement the A-MPC. Then, we update the plant model by linearizing it

using the current states and the current input values at the beginning of each pre-

diction step so that the update rate equals the controller’s sample time, Ts = 0.05.

Fig. 6.6 shows the responses of the conventional bi-rotor platform with three config-

urations: linearized plant model with conventional MPC (MPClp), nonlinear plant

model with conventional MPC (MPCnp), and nonlinear plant model with adaptive

MPC (AMPCnp).
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Figure 6.6: The state responses of the conventional bi-rotor platform under different

initial body angle with A-MPC.

We give different initial conditions to the body angle and step input to the x position

for the test scenario. As seen from the results, when we linearize the model only
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at the hovering state, we lose the coupling effects between the z position and other

body states. Thus, using this plant model in the prediction step of the MPC gives a

significant performance degradation in the z position. Updating the linearized plant

model at each prediction step enhances the performance of the z response. Also, the

results indicate that the A-MPC becomes more advantageous when the system is far

from its nominal operating point.
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Figure 6.7: The state responses of the bi-rotor platform with appendage under differ-

ent initial body angle with A-MPC.

We applied the same analysis to the proposed bi-rotor platform, as shown in Fig. 6.7.

With A-MPC, the x and θ1 responses are improved compared to MPC responses as

the nonlinearity increases. Also, the body angle settles down rapidly with increased

inertial redirection force applied by the appendage.
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6.1.4 Motion Planning

In this section, we present the results obtained from the motion planning algorithm,

MPC-Graph, implemented on a bi-rotor platform with an abdomen-like appendage.

We implemented the MPC-Graph algorithm based on the A-MPC control strategy,

which improves the trajectory tracking performance of the proposed system. We im-

plemented the SNG algorithm with the termination condition provided in (5.5). For a

sufficient cover in the obstacle-free region, we implement termination condition with

parameters α = 0.95, Pc = 0.9 and these parameters give the number of consecutive

failures as m = 44. Fig. 6.8 illustrates the generated nodes in the free space with

unsampled regions.

Figure 6.8: Illustration of the generated nodes. The red dots indicate the points qrand,

used for node generation. The white spaces are the regions that none of the nodes

cover.
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Then, we obtained the path from the start to the goal point, passing through the se-

lected generated nodes. Dijkstra’s search algorithm chooses the nodes with larger

intersection areas to give vehicle flexibility for aggressive behavior during motion.

The example of the nodes selected for the trajectory and the path executed by the

aerial vehicle is shown in Fig. 6.9. When the robot passes through the next node,

the reference point is updated as the center point of the next intersection area. The

constraints are also updated according to the boundaries of the current node.

Figure 6.9: Representation of the trajectory generated by Dijkstra’s search algorithm

and the movement of the aerial vehicle. The red and green dots represent the start and

goal points, respectively, whereas the blue dots represent the center of the intersection

areas. The orange line shows the path generated from the algorithm, and the blue line

indicates the motion of the aerial vehicle. Note that the reference signals (dashed gray

lines) are updated when the vehicle enters the next node.
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The result shows that the aerial vehicle follows the path without any input-output con-

straint violation in the absence of disturbance and noise. To analyze the algorithm’s

performance, we performed Monte-Carlo simulations in the presence of input noise,

and the results are visualized in Fig. 6.10. Some of the tests ended with obstacle

collision in the case that we have an initial condition with large body angles such as

θ1 = 60◦. In addition, the constraint violation occurred mainly in the first node, in

which the aerial vehicle moved along x and z direction simultaneously with a distur-

bance coming from the initial body angle. On the other hand, based on most of the

results, we can conclude that A-MPC performs effectively in the presence of the input

noise.

Figure 6.10: Results of the Monte-Carlo simulations with different initial conditions

in the presence of input noise. The blue curves indicate the successful trajectories,

whereas the red ones present the motion that ended with the obstacle collision.
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6.2 3D Models with Quadrotor Platform

After completing our analysis in planar space, we now move on to 3D space with

a conventional quadrotor and the one with an actively controlled 2-DOF abdomen-

like appendage. Again, we start with LQR and then examine the conventional and

adaptive MPC responses.

6.2.1 Linear Quadratic Regulator

As we did in the Section 6.1.1, we begin with the weighting matrices for the conven-

tional quadrotor as Qconv = I12x12 and Rconv = I4x4. The weighting matrices for the

one with a 2-DOF appendage are as follows;

Qapp =


I6x6 06x2

02x6 02x2

08x8

08x8

I6x6 06x2

02x6 02x2

 , Rapp =


I4x4 04x2

02x4

0.01 0

0 0.01

 . (6.6)

For the conventional and the proposed quadrotor structure, we obtain state feedback

gains Kconv and Kapp with these weighting matrices as follows;

Kconv =


0 0 −1 0 0 0 0 0 −2.0976 0 0 0

0 1 0 5.6305 0 0 0 1.4656 0 1.0775 0 0

−1 0 0 0 5.6305 0 −1.4656 0 0 0 1.0775 0

0 0 0 0 0 1 0 0 0 0 0 1.0272

, (6.7)

Kapp =



0 0 −1 0 0 0 0 0 0 0 −2.4290 0 0 0 0 0

0 0.7527 0 4.9702 0 0 −0.2422 0 0 1.1394 0 1.0687 0 0 −0.1753 0

−0.7527 0 0 0 4.9702 0 0 −0.2422 −1.1394 0 0 0 1.0687 0 0 −0.1753
0 0 0 0 0 1 0 0 0 0 0 0 0 1.0272 0 0

0 6.5839 0 0.5193 0 0 −0.9098 0 0 6.4960 0 −0.0101 0 0 0.5446 0

−6.5839 0 0 0 0.5193 0 0 −0.9098 −6.4960 0 0 0 −0.0101 0 0 0.5446


.

(6.8)

Then, we apply these state feedback gains to linearized and nonlinear plant mod-

els with initial state x0 = 1 and θ0 = 30◦. Fig. 6.11 shows the response of the
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states x, θ and θa. The left side represents the linearized model response, whereas

the right represents the nonlinear model response. For both analyses, it can be seen

that the appendage improves the pitch stabilization of the quadrotor, and the transla-

tional movement along the x axis makes less overshoot compared to the conventional

one. In the nonlinear system response, the overshoot of the angle θ slightly increases

compared to the linearized system. This outcome is related to the appendage angle

change, which is smaller in the nonlinear system response.
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Figure 6.11: Comparison of the linearized system and nonlinear system response with

initial state x0 = 1 and θ0 = 30◦
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We also comprehensively analyzed different weighting parameters for the quadrotor

platforms with/without an abdomen-like appendage. Table 6.5 compares the quadro-

tor platforms’ responses regarding overshoot, settling time, steady-state error, and

the average cost value. We investigated the step responses of the translational move-

ments x, y and z with initial body angles, ϕ0 = θ0 = 5◦. The results show that the

appendage improves x and y response in settling time and decreases the average cost

J . However, for position z, the conventional quadrotor reaches the desired value a

bit quicker than the one with an appendage. Therefore, we obtain a slightly higher

average cost for the z response of the proposed quadrotor system.

Table 6.5: Step response analysis for the position x, y, z of the quadrotor with/without

abdomen-like appendage appendage

Qdiag Rdiag Mp(%) Tsett(s) Ess(%) J

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0}

w/o appendage

Rdiag = {1, 1, 1, 1}
w/. appendage

Rdiag = {1, 1, 1, 1, 0.01, 0.01}

0, 0, 5.80

0, 0, 2.11

4.45, 4.27, 4.60

4.16, 4.09, 5.55

0, 0, 0

0, 0, 0

1.1272, 1.1805, 1.6729

1.0279, 1.0717, 1.8618

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0}

w/o appendage

Rdiag = {10, 10, 10, 10}
w/. appendage

Rdiag = {10, 10, 10, 10, 0.01, 0.01}

0, 0, 8.60

0, 0, 3.52

4.49, 4.28, 7.51

4.17, 4.11, 8.98

0, 0, 0

0, 0, 0

1.2114, 1.2537, 2.9245

1.1017, 1.1317, 3.2602

w/o appendage

Qdiag = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0}

w/o appendage

Rdiag = {10, 10, 10, 10}
w/. appendage

Rdiag = {9.975, 9.975, 9.975, 9.975, 1, 1}

0, 0, 8.61

0, 0, 3.51

4.49, 4.28, 7.50

4.43, 4.23, 8.99

0, 0, 0

0, 0, 0

1.2203, 1.2350, 2.9216

1.2003, 1.2146, 3.2462

w/o appendage

Qdiag = {1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 1, 10, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0}

w/o appendage

Rdiag = {1, 1, 1, 1}
w/. appendage

Rdiag = {1, 1, 1, 1, 0.01, 0.01}

0, 0, 5.85

0, 0, 2.11

4.43, 4.27, 4.61

4.37, 4.21, 5.56

0, 0, 0

0, 0, 0

1.1488, 1.1681, 1.7078

1.1337, 1.1492, 1.8959

w/o appendage

Qdiag = {1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 1, 1, 10, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0}

w/o appendage

Rdiag = {10, 10, 10, 10}
w/. appendage

Rdiag = {10, 10, 10, 10, 0.01, 0.01}

0, 0, 8.61

0, 0, 3.52

4.47, 4.28, 7.51

4.18, 4.12, 8.99

0, 0, 0

0, 0, 0

1.2503, 1.2526, 2.9159

1.1495, 1.1305, 3.2507

w/o appendage

Qdiag = {10, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {10, 1, 1, 1, 10, 1, 0.1, 0.1, 1, 1, 1, 1, 1, 1, 0.1, 0.1}

w/o appendage

Rdiag = {1, 1, 1, 1}
w/. appendage

Rdiag = {1, 1, 1, 1, 0.01, 0.01}

1.30, 0, 5.84

2.10, 0, 2.11

1.59, 4.27, 4.61

1.30, 4.17, 5.57

0, 0, 0

0, 0, 0

6.3465, 1.1060, 1.5364

5.6016, 1.0681, 1.7155

w/o appendage

Qdiag = {1, 10, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 10, 1, 10, 1, 1, 0.1, 0.1, 1, 1, 1, 1, 1, 1, 0.1, 0.1}

w/o appendage

Rdiag = {1, 1, 1, 1}
w/. appendage

Rdiag = {1, 1, 1, 1, 0.01, 0.01}

0, 1.28, 5.88

0, 1.85, 2.11

4.45, 1.54, 4.61

4.32, 1.32, 5.57

0, 0, 0

0, 0, 0

1.0339, 6.4652, 1.5607

1.0015, 5.6613, 1.7404

w/o appendage

Qdiag = {1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1}
w/. appendage

Qdiag = {1, 1, 10, 1, 1, 1, 0.1, 0.1, 1, 1, 1, 1, 1, 1, 0.1, 0.1}

w/o appendage

Rdiag = {1, 1, 1, 1}
w/. appendage

Rdiag = {1, 1, 1, 1, 0.01, 0.01}

0, 0, 8.61

0, 0, 3.52

4.45, 4.26, 2.39

4.32, 4.17, 2.87

0, 0, 0

0, 0, 0

1.3091, 1.1443, 9.7141

1.2649, 1.1051, 10.8775
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We also examine the effects of the weighting parameters for the states belonging to

the appendage on the body angles. Fig. 6.12 presents the effect of the weighting pa-

rameter of θa on the quadrotor pitch angle, θ and itself. We give the initial condition to

the system with θ = 15◦ and increase the weight of the appendage angle step by step

to observe the body angle responses. The minimum weight value causes the higher

appendage angle changes and results in less overshoot in the body angle response.

When the weight parameter equals 1, the appendage angle changes its position by

2.5◦, and its produced force is almost negligible for the stabilization improvement.

Therefore, we have almost the same body angle response when the quadrotor plat-

form has no appendage.
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Figure 6.12: Responses of the quadrotor pitch angle, θ, and the appendage angle, θa,

under different weight parameters of the appendage angle.
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Table 6.6 also summarizes the results shown in Fig. 6.12 by emphasizing the results

in terms of performance metrics.

Table 6.6: Effect of the weight parameter Qapp on the body angle θ

Weighting parameter for θa Overshoot value of θ (%) Zero-crossing time of θ (s) Max value of θa (deg)

Qapp = 0.001 6.85 2.94 85.51

Qapp = 0.01 8.93 2.32 50.55

Qapp = 0.1 11.10 1.85 16.51

Qapp = 1 11.63 1.77 2.77

6.2.2 Model Predictive Control

MPC is a well-suited controller strategy for a conventional quadrotor, an underactu-

ated MIMO system with several constraints. Therefore, after LQR, we move to MPC

to benefit from its ability to handle input-output constraints for conventional and the

proposed quadrotor structure, as we did before for the planar bi-rotor platforms.

At this time, we have additional four states since the appendage has 2-DOF, repre-

sented by the angles ϕa, θa, and their derivatives. We choose the MPC parameters

such that the stabilization of the body angles ϕ and θ have higher importance than

other states. Table 6.7 gives the MPC parameters for the quadrotor structure with-

/without appendage.

Table 6.7: Comparison of the MPC parameters for quadrotor with/without appendage

MPC Parameters w/o appendage w/. appendage

Sample Time, Ts 0.05 seconds 0.05 seconds

Prediction Horizon, Np 35 steps 30 steps

Control Horizon, Nc 5 steps 4 steps

Input Constraints
Min: [0, -5, -5, -0.55]

Max: [100, 5, 5, 0.55]

Min: [0, -5, -5, -0.55, -5, -5]

Max: [100, 5, 5, 0.55, 5, 5]

Output Constraints
Min: [-30, -30, 0, -π

3
, -π

3
, -π

3
]

Max: [30, 30, 30, π
3
, π
3
, π
3
]

Min: [-30, -30, 0, -π
3
, -π

3
, -π

3
, -π

3
, -π

3
]

Max: [30, 30, 30, π
3
, π
3
, π
3
, π
3
, π
3
]

Input Weights
Weight: [1,1,1,1]

Rate Weight: [0.1,0.1,0.1,0.1]

Weight: [1,1,1,1,0.01,0.01]

Rate Weight: [0.1,0.1,0.1,0.1,0.01,0.01]

Output Weights [1,1,1,10,10,1,1,1,1,1,1,1] [1,1,1,10,10,1,0.1,0.1,1,1,1,1,1,1,0.1,0.1]
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The state responses of the conventional and the proposed quadrotor can be seen in

Fig. 6.13. For the analysis of the performances, we give step inputs to x and y

positions with initial roll and pitch angle, ϕ0 = θ0 = 10◦. These responses show that

the proposed system performs better stabilization for the body attitude. However, the

position x and z reach their steady-state values a bit slower than the conventional one

due to appendage movement.
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Figure 6.13: The conventional and proposed quadrotor response with MPC. The step

input, xref = yref = 1, is given to the systems with initial body angles ϕ = θ = 10◦.

The appendage movement is also shown in Fig. 6.13 with ϕa and θa responses. The

change in the angle ϕa mainly improves the response of the translational movement
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along the y direction and the body roll angle ϕ, whereas θa improves the tracking

performance along the x axis and the body pitch angle θ. Since we increase the

weights for ϕ and θ responses, the main improvement is related to these states, as the

results presented. The inputs applied to the systems are also shown in Fig. 6.14.
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Figure 6.14: The conventional and proposed quadrotor input responses with MPC.

As we concluded in the analysis of the bi-rotor platforms, the propellers expend less

effort with the help of appendage redirection. The only exception occurred in the

yaw moment, U4. However, the increased effort improves the yaw stabilization in the

proposed system response.
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6.2.3 Adaptive Model Predictive Control

This section presents the results of the A-MPC applied to the conventional and the

proposed quadrotor platforms. MPClp, MPCnp, and AMPCnp again refer to lin-

earized plant model with conventional MPC, nonlinear plant model with conventional

MPC, and nonlinear plant model with adaptive MPC, respectively. We first apply the

A-MPC, which consists of the conventional MPC and linearized model update at each

prediction step, to the conventional quadrotor. We give step input to the x position

with different initial pitch angles, and the results are shown in Fig. 6.15.
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Figure 6.15: State response of the conventional quadrotor with A-MPC. The step

input, xref = 1, is given to the system with different initial body pitch angles.
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Then, we applied the same scenario to the quadrotor platform with an appendage, and

we present the results in Fig. 6.16. For both systems, the results show that A-MPC

improves the response of the position z significantly compared to conventional MPC.

This outcome has arisen from losing the coupling effects between z and the other

states if we keep using the model linearized only at the equilibrium point.
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Figure 6.16: State response of the proposed quadrotor with A-MPC. The step input,

xref = 1, is given to the system with different initial body pitch angles.

As we expected, the proposed system also performs better than the conventional one

with A-MPC. The other states give better performance with A-MPC as we increase

the nonlinearity by providing the initial condition to the pitch angle far from its equi-

librium point.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

We proposed a bio-inspired aerial vehicle design with an actively controlled abdomen-

like appendage in this work. The proposed system is inspired by flying insects that

use abdomen reflexes to adjust their body orientation. We began our analysis in planar

space, with a bi-rotor platform with and without the appendage. We derived the non-

linear mathematical models of the systems by using the Euler-Lagrange formulation.

Then, we take our analysis to the next step by investigating the proposed morphology

in 3D space with a quadrotor platform. We added 2-DOF abdomen-like appendage to

the conventional quadrotor and constructed the bio-inspired aerial vehicle structure.

Towards analyzing the effect of the actively controlled abdomen-like appendage, we

designed an LQR controller for conventional and proposed systems and compared

their responses considering performance criteria such as settling time, overshoot,

steady-state error, and average cost value. We kept the weighting parameters of the

additional states smaller as much as possible to make a fair comparison. The results

showed that the appendage improves the systems’ performance and decreases the av-

erage cost.

In the next step, since the systems have several constraints, such as rotor speed lim-

its, mechanical angular limitations, and rate of change of the inputs, we designed

MPC, which sufficiently deals with input-output constraints. We went one step fur-

ther by designing A-MPC for the highly nonlinear proposed systems. Comparing

these controllers shows that MPC gives optimum results by considering input-output

constraints compared to the LQR controller. The A-MPC performs best since it deals
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with nonlinearities based on linearization at each prediction step.

As a final step of the study, we implemented a recently reported motion planning

algorithm, MPC-Graph, in a planar space. The algorithm first generates sampling-

based connected rectangular regions to represent free space in the environment. It

calculates the cost function for moving one rectangle to another, considering the Eu-

clidian distance between the center of the corresponding node and the intersection

area. After calculating the cost function, Dijkstra’s algorithm finds the optimum path

from the start to the goal point. Then, designed MPCs navigate the aerial vehicle to

the goal by passing through the predefined nodes. MPC updates the x and y position

constraints with the corresponding rectangular boundaries during each rectangular re-

gion. Therefore, the vehicle stays in the rectangles that are defined in the free space

during its movements. We analyzed the algorithm performance by applying input dis-

turbances to the system and examined the constraint violations. We performed Monte

Carlo simulations under different initial conditions. For higher initial body angles,

the motion planning algorithm sometimes fails in the presence of input noise. Over-

all, we can conclude that the MPC-Graph algorithm handles the disturbances with an

A-MPC based feedback motion policy.

To sum up, the main results of this study can be summarized as follows;

• The appendage makes propellers use less thrust force to accomplish the control

tasks.

• Although we use additional control effort for the actively controlled abdomen-

like appendage, the average LQR cost is still lower than the conventional aerial

vehicles.

• The advantages of the appendage clearly appear when we have a wider ap-

pendage angle range and larger maximum torque limits as constraints.

• The worst case of the proposed system with hard torque constraint still gives

better/equal performance with the conventional aerial vehicle.

• The advantage of the appendage can be used in industrial applications in which

body stabilization is critical such as film-making, since the body angles of the
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proposed system change less than the conventional one during horizontal move-

ment.

• Model predictive control performs better than the constrained LQR when we

have several constraints for the states of the system.

• A-MPC handles nonlinearities by linearizing the plant model at each predic-

tion step. Thus, the performance of the controller increases compared to the

conventional MPC.

• The final and essential point is that the bio-inspired aerial vehicle with an ac-

tively controlled abdomen-like appendage can be preferred for performance

improvement, although it increases the mechanical complexity of the system.

7.2 Future Work

In this study, we analyzed the proposed structure in a simulation environment. Since

the real-world implementation cost is high, we decided to perform the system analysis

in simulations as a first step. In the future, we plan to test the proposed structure with

a physical setup experimentally.

In the derivations of the quadrotor models, we simplified the nonlinear model with as-

sumptions such as neglecting the Earth rate and aerodynamic effects because we want

to emphasize the impact of the abdomen-like appendage on the stability performance

of the system. Also, for simplicity, we considered the abdomen-like appendage as

a 2-DOF point mass pendulum. It can be modeled as appendage inertia with a pre-

cisely defined center of mass. Therefore, we can advance the mathematical model by

considering these improvements.

Furthermore, we only tested the motion planning algorithm, MPC-Graph, in a planar

environment. We can expand the algorithm to a 3D space with 3D convex polytopes

instead of planar obstacles to examine the algorithm’s performance.
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APPENDIX A

ANALYTIC LINEARIZATION EQUATIONS OF THE SYSTEMS

In this section, the Jacobian linearization of the systems is derived analytically. First,

we begin with bi-rotor platforms and then we move to the quadrotor platforms used

in this study.

A.1 Conventional Bi-rotor Platform

The conventional bi-rotor platform has the A and B matrix, defined with the current

states and inputs, as follows;

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 A4,3 0 0 0

0 0 A5,3 0 0 0

0 0 0 0 0 0


, B =



0 0

0 0

0 0

B4,1 B4,2

B5,1 B5,2

B6,1 B6,2


, (A.1)

where

A4,3 = −
(F1 + F2)cθ1

M
, A5,3 = −

(F1 + F2)sθ1
M

, (A.2)

B4,1 = −
sθ1
M

, B4,2 = −
sθ1
M

, (A.3)

B5,1 =
cθ1
M

, B5,2 =
cθ1
M

, (A.4)

B6,1 = −
L

2IM
, B6,2 =

L

2IM
. (A.5)
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A.2 Proposed Bi-rotor Platform with Abdomen-Like Appendage

The state transition matrix A of the bi-rotor platform with abdomen-like appendage

is as follows;

A =



0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 A5,3 A5,4 0 0 A5,7 A5,8

0 0 A6,3 A6,4 0 0 A6,7 A6,8

0 0 A7,3 A7,4 0 0 A7,7 A7,8

0 0 A8,3 A8,4 0 0 A8,7 A8,8



, (A.6)

where

A5,3 = −
1

2Mℓσ7

[
4Mh2mτc(2θ1−θ2) − IM ℓm

(
σ2 − cθ1

)
σ5 + IMMℓcθ1σ4 + LMhℓm

(
σ1 + sθ1

)
+Mh2ℓm (F1 + F2)

(
3cσ3 − σ2 + 2cθ1

)
− 4IMMθ̇21hℓm

(
σ2 + cθ1

) ]
−

1

ℓσ2
7

[
h2msσ8

(
16IM τsθ2 (M +m)

+ 2Mh2mτ(s(2θ1−θ2) + sθ2 )− IM ℓmσ5(σ1 − sθ1 ) + IMMℓsθ1σ4 + 16IMMθ̇22ℓ
2mcθ2

+Mh2ℓm(F1 + F2)(sσ3 − σ1 + 2sθ1 )− LMhlm(σ1 + cθ1 )σ6 − 4IMMθ̇21hℓm(σ1 + sθ1 )
)]
, (A.7)

A5,4 =
1

ℓσ2
7

[
h2msσ8

(
16IM τsθ2 (M +m) + 2Mh2mτ(s(2θ1−θ2) + sθ2 )− IM ℓm8(F1 + F2)(σ1 − sθ1 )

+ IMMℓsθ1σ4 + 16IMMθ̇22ℓ
2mcθ2 +Mh2ℓm(F1 + F2)(sσ3 − σ1 + 2sθ1 )− LMhℓm(σ1 + cθ1 )(2F1 − 2F2)

− 4IMMθ̇21hℓm(σ1 + sθ1 )
)]

−
1

2Mℓσ7

[
8IMMmσ2θ̇

2
1hℓ− 16IMMmsθ2 θ̇

2
2ℓ

2 − 2Mmτ(c(2θ1−θ2) − cθ2 )h
2,

+Mm(σ2 − cσ3 )(2F1 + 2F2)h
2ℓ− 4LMmσ1(F1 − F2)hℓ+ IMmσ2σ4ℓ+ 16IM τcθ2 (M +m)

]
(A.8)

A5,7 =
4IM θ̇1hm(s(θ1−2θ2) + sθ1 )

σ7
, (A.9)

A5,8 = −
16IM θ̇2ℓmcθ2

σ7
, (A.10)

A6,3 =
1

ℓσ2
7

[
h2msσ8

(
16IM (M +m)(τcθ2 −Mgℓ) + IM ℓm(σ2 + cθ1 )σ5 + 2Mh2m(τc(2θ1−θ2) + τcθ2 −Mgℓ)

+ IMMℓcθ1σ4 − 2M2gh2ℓmcσ8 +Mh2ℓm(F1 + F2)(σ2 + cσ3 + 2cθ1 )− 16IMMθ̇22ℓ
2msθ2

+ 4IMMθ̇21hℓm(σ2 − cθ1 )− LMhℓmσ6(σ1 − sθ1 )
)]

−
1

2Mℓσ7

[
IM ℓm(σ1 + sθ1 )σ5 + 4Mh2mτs(2θ1−θ2)

+ IMMℓsθ1σ4 − 4M2gh2ℓmsσ8 +Mh2ℓm(F1 + F2)(σ1 + 3sσ3 + 2sθ1 ) + LMhℓm(σ2 − cθ1 )σ6

+ 4IMMθ̇21hℓm(σ1 − sθ1 )

]
, (A.11)
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A6,4 =
1

2Mℓσ7

[
IM ℓmσ1σ4 − 8IMMℓm(2θ̇22ℓcθ2 − θ̇21hσ1)− 16IM τsθ2 (M +m) + 2Mh2mτ(s(2θ1−θ2) − sθ2 )

− 4M2gh2ℓmsσ8 +Mh2ℓm2(F1 + F2)(σ1 + sσ3 ) + LMhℓmσ24(F1 − F2)

]
−

1

ℓσ2
7

[
h2msσ8

(
IMMℓcθ1σ4

+Mh2ℓm(F1 + F2)(σ2 + 3cσ3 + 2cθ1 ) + 2Mh2m(τ(c(2θ1−θ2) + cθ2 )−Mgℓ) + IM ℓm(σ2 + cθ1 )8(F1 + F2)

+ 16IM (M +m)(τcθ2 −Mgℓ)− 2M2gh2ℓmcσ8 − 16IMMθ̇22ℓ
2msθ2 − 2LMhℓm(F1 − F2)(σ1 − sθ1 )

+ 4IMMθ̇21hℓm(σ2 − cθ1 )
)]
, (A.12)

A6,7 =
4IM θ̇1hm(c(θ1−2θ2) − cθ1 )

σ7
, (A.13)

A6,8 = −
16IM θ̇2ℓmsθ2

σ7
, (A.14)

A7,3 =
h

ℓσ7

[
4τc(θ1−θ2)(M +m) + ℓmcσ84(F1 + F2) + 2Mℓm(hcσ8 θ̇

2
1 + 2ℓs(θ1−θ2)θ̇

2
2)

]
+

1

ℓσ2
7

[(
Mmsσ8 θ̇

2
1h

2ℓ

− 4Mmc(θ1−θ2)θ̇
2
2hℓ

2 + 2msσ8 (F1 + F2)hℓ+ 4τs(θ1−θ2)(M +m)h− 4L(M +m)(F1 − F2)ℓ
)
2Mh2msσ8

]
,

(A.15)

A7,4 = −
1

ℓσ7

[
4hτc(θ1−θ2)(M +m) + hℓmcσ84(F1 + F2) + 2Mhℓm(hcσ8 θ̇

2
1 + 2ℓs(θ1−θ2)θ̇

2
2)

]

−
1

ℓσ2
7

[
2Mh2msσ8

(
Mmsσ8 θ̇

2
1h

2ℓ− 4Mmc(θ1−θ2)θ̇
2
2hℓ

2 + 2msσ8 (F1 + F2)hℓ+ 4τs(θ1−θ2)(M +m)h

− 4L(M +m)(F1 − F2)ℓ
)]
, (A.16)

A7,7 =
2Mθ̇1h2ms(2θ1−2θ2)

σ7
, (A.17)

A7,8 = −
8Mθ̇2hℓmc(θ1−θ2)

σ7
, (A.18)

A8,3 =
1

ℓ2σ2
7

[
2h2sσ8

(
8IM τ(M +m)2 +M2h2ℓm2(hc(θ1−θ2)θ̇

2
1 − ℓsσ8 θ̇

2
2 + c(θ1−θ2)2(F1 + F2))

+ 2Mh2mτ(M +m) + 8IM ℓmc(θ1−θ2)(M +m)(F1 + F2) + 4IMMθ̇21hℓmc(θ1−θ2)(M +m)

− 2LMhℓms(θ1−θ2)(M +m)(F1 − F2)
)]

−
1

Mℓ2mσ7

[
s(θ1−θ2)

(
8IM ℓm(M +m) + 2Mh2ℓm2

)
(F1 + F2)

+ 2M2θ̇22h
2ℓ2m2cσ8 +Mθ̇21hℓms(θ1−θ2)

(
Mmh2 + 4IM (M +m)

)
+ 2LMhℓmc(θ1−θ2)(M +m)(F1 − F2)

]
,

(A.19)

A8,4 =
1

Mℓ2mσ7

[
s(θ1−θ2)

(
8IM ℓm(M +m) + 2Mh2ℓm2

)
(F1 + F2) + 2M2θ̇22h

2ℓ2m2cσ8

+Mθ̇21hℓms(θ1−θ2)
(
Mmh2 + 4IM (M +m)

)
+ 2LMhℓmc(θ1−θ2)(M +m)(F1 − F2)

]

−
1

ℓ2σ2
7

[
2h2sσ8

(
8IM τ(M +m)2 +M2h2ℓm2(hc(θ1−θ2)θ̇

2
1 − ℓsσ8 θ̇

2
2 + c(θ1−θ2)2(F1 + F2))

+ 2Mh2mτ(M +m) + 8IM ℓmc(θ1−θ2)(M +m)(F1 + F2) + 4IMMθ̇21hℓmc(θ1−θ2)(M +m)

− 2LMhℓms(θ1−θ2)(M +m)(F1 − F2)
)]
, (A.20)

A8,7 =
2M2θ1h3ℓm2c(θ1−θ2) + 8IMMθ̇1hℓmc(θ1−θ2)(M +m)

Mℓ2mσ7
, (A.21)

A8,8 = −
2Mθ̇2h2ms(2θ1−2θ2)

σ7
. (A.22)
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The B matrix is,

B =



0 0 0

0 0 0

0 0 0

0 0 0

B5,1 B5,2 B5,3

B6,1 B6,2 B6,3

B7,1 B7,2 B7,3

B8,1 B8,2 B8,3



, (A.23)

where

B5,1 =
1

2Mℓσ7

[
−Mℓm

(
(s(3θ1−2θ2) − σ1 + 2sθ1 )h

2 + 2L(c(θ1−2θ2) + cθ1 )h
)
+ 8IM ℓm(σ1 − sθ1)− 16IMMℓsθ1

]
,

(A.24)

B5,2 = −
1

2Mℓσ7

[
Mℓm

(
(s(3θ1−2θ2) − σ1 + 2sθ1 )h

2 + 2L(c(θ1−2θ2) + cθ1 )h
)
− 8IM ℓm(σ1 − sθ1) + 16IMMℓsθ1

]
,

(A.25)

B5,3 = −
2Mm(s(2θ1−θ2) + sθ2 )h

2 + 16IM sθ2 (M +m)

2Mℓσ7
, (A.26)

B6,1 =
1

2Mℓσ7

[
Mℓm

(
(σ2 + c(3θ1−2θ2) + 2cθ1 )h

2 − 2L(s(θ1−2θ2) − sθ1 )h
)
+ 8IM ℓm(σ2 + cθ1) + 16IMMℓcθ1

]
,

(A.27)

B6,2 =
1

2Mℓσ7

[
Mℓm

(
(σ2 + c(3θ1−2θ2) + 2cθ1 )h

2 + 2L(s(θ1−2θ2) − sθ1 )h
)
+ 8IM ℓm(σ2 + cθ1) + 16IMMℓcθ1

]
,

(A.28)

B6,3 = −
2Mm(c(2θ1−θ2) + cθ2 )h

2 + 16IM cθ2 (M +m)

2Mℓσ7
, (A.29)

B7,1 = −
4Lℓ(M +m)− 2hℓms(2θ1−2θ2)

ℓσ7
, (A.30)

B7,2 =
4Lℓ(M +m) + 2hℓms(2θ1−2θ2)

ℓσ7
, (A.31)

B7,3 =
4hs(θ1−θ2)(M +m)

ℓσ7
, (A.32)

B8,1 =
1

Mℓ2mσ7

[
8IM ℓmc(θ1−θ2)(M +m) + 2Mh2ℓm2c(θ1−θ2) − 2LMhℓms(θ1−θ2)(M +m)

]
, (A.33)

B8,2 =
1

Mℓ2mσ7

[
8IM ℓmc(θ1−θ2)(M +m) + 2Mh2ℓm2c(θ1−θ2) + 2LMhℓms(θ1−θ2)(M +m)

]
, (A.34)

B8,3 =

(
2Mmh2 + 8IM (M +m)

)
(M +m)

Mℓ2mσ7
, (A.35)
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with the variables below;

σ1 = s(θ1−2θ2), (A.36a)

σ2 = c(θ1−2θ2), (A.36b)

σ3 = 3θ1 − 2θ2, (A.36c)

σ4 = 16F1 + 16F2, (A.36d)

σ5 = 8F1 + 8F2, (A.36e)

σ6 = 2F1 − 2F2, (A.36f)

σ7 =Mm(cσ8 + 1)h2 + 8IM (M +m), (A.36g)

σ8 = 2θ1 − 2θ2. (A.36h)

A.3 Conventional Quadrotor Platform

The conventional quadrotor platform has A matrix defined below;

A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 A4,4 A4,5 0 0 0 0 1 A4,11 A4,12

0 0 0 A5,4 0 0 0 0 0 0 A5,11 A5,12

0 0 0 A6,4 A6,5 0 0 0 0 0 A6,11 A6,12

0 0 0 A7,4 A7,5 A7,6 0 0 0 0 0 0

0 0 0 A8,4 A8,5 A8,6 0 0 0 0 0 0

0 0 0 A9,4 A9,5 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 A10,11 A10,12

0 0 0 0 0 0 0 0 0 A11,10 0 A11,12

0 0 0 0 0 0 0 0 0 0 0 0



, (A.37)

where

A4,4 = qcϕtθ − rsϕtθ, (A.38)

A4,5 = qsϕ(1 + t2θ) + rcϕ(1 + t2θ), (A.39)

A4,11 = sϕtθ, (A.40)

A4,12 = cϕtθ, (A.41)

A5,4 = −qsϕ − rcϕ, (A.42)

A5,11 = cϕ (A.43)

A5,12 = −sϕ (A.44)

A6,4 =
qcϕ
cθ

−
rsϕ
cθ

, (A.45)

A6,5 =
qsϕsθ

c2θ
+
rcϕsθ

c2θ
, (A.46)

(A.47)
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A6,11 =
sϕ
cθ
, (A.48)

A6,12 =
cϕ
cθ
, (A.49)

A7,4 = −
1

M

(
−sϕsθcψ + cϕsψ

)
U1, (A.50)

A7,5 = −
1

M

(
cϕcθcψ

)
U1, (A.51)

A7,6 = −
1

M

(
−cϕsθsψ + sϕcψ

)
U1, (A.52)

A8,4 = −
1

M

(
−sϕsθsψ − cϕcψ

)
U1, (A.53)

A8,5 = −
1

M

(
cϕcθsψ

)
U1, (A.54)

A8,6 = −
1

M

(
cϕsθcψ + sϕsψ

)
U1, (A.55)

A9,4 = −
1

M

(
−sϕcθ

)
U1 (A.56)

A9,5 = −
1

M

(
−cϕsθ

)
U1, (A.57)

A10,11 =
URJr + (Jyy − Jzz)r

Jxx
(A.58)

A10,12 =
(Jyy − Jzz)q

Jxx
(A.59)

A11,10 =
(Jzz − Jxx)r − URJr

Jyy
(A.60)

A11,12 =
(Jzz − Jxx)p

Jyy
. (A.61)

And B matrix is as follows;

B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

B7,1 0 0 0

B8,1 0 0 0

B9,1 0 0 0

0 B10,2 0 0

0 0 B11,3 0

0 0 0 B12,4



, (A.62)

where

B7,1 = −
1

M
(cϕsθcψ + sϕsψ), (A.63)

B8,1 = −
1

M
(cϕsθsψ − sϕcψ), (A.64)

B9,1 = −
1

M
(cϕcθ), (A.65)

B10,2 = 1/Jxx, (A.66)

B11,3 = 1/Jyy , (A.67)

B12,4 = 1/Jzz . (A.68)
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A.4 Proposed Quadrotor Platform with 2-DOF Abdomen-like Appendage

The linearized state-space model of the quadrotor platform with 2-DOF abdomen-like

appendage has the matrix A below;

A =



0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 A4,4 A4,5 0 0 0 0 0 0 1 A4,13 A4,14 0 0

0 0 0 A5,4 0 0 0 0 0 0 0 0 A5,13 A5,14 0 0

0 0 0 A6,4 A6,5 0 0 0 0 0 0 0 A6,13 A6,14 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 A9,4 A9,5 A9,6 A9,7 A9,8 0 0 0 0 0 0 A9,15 A9,16

0 0 0 A10,4 A10,5 A10,6 A10,7 A10,8 0 0 0 0 0 0 A10,15 A10,16

0 0 0 A11,4 A11,5 A11,6 A11,7 A11,8 0 0 0 0 0 0 A11,15 A11,16

0 0 0 0 0 0 0 0 0 0 0 0 A12,13 A12,14 0 0

0 0 0 0 0 0 0 0 0 0 0 A13,12 0 A13,14 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 A15,4 A15,5 A15,6 A15,7 A15,8 0 0 0 0 0 0 0 A15,16

0 0 0 A16,4 A16,5 A16,6 A16,7 A16,8 0 0 0 0 0 0 A16,15 A16,16



,

(A.69)

where

A4,4 = qcϕtθ − rsϕtθ, (A.70)

A4,5 = qsϕ(1 + t2θ) + rcϕ(1 + t2θ), (A.71)

A4,13 = sϕtθ, (A.72)

A4,14 = cϕtθ, (A.73)

A5,4 = −qsϕ − rcϕ, (A.74)

A5,13 = cϕ, (A.75)

A5,14 = −sϕ, (A.76)

A6,4 = q
cϕ
cθ

− r
sϕ
cθ
, (A.77)

A6,5 = q
sϕsθ
c2θ

+ r
cϕsθ

c2θ
, (A.78)

A6,13 =
sϕ
cθ
, (A.79)

A6,14 =
cϕ
cθ
, (A.80)

A9,4 = −
1

M +m

(
(−sϕsθcψ + cϕsψ)U1 +mL

(
∂θ̈a

∂ϕ
cθacϕa −

∂ϕ̈a

∂ϕ
sθa sϕa

))
, (A.81)

A9,5 = −
1

M +m

(
(cϕcθcψ)U1 +mL

(
∂θ̈a

∂θ
cθacϕa −

∂ϕ̈a

∂θ
sθa sϕa

))
, (A.82)

A9,6 = −
1

M +m

(
(−cϕsθsψ + sϕcψ)U1 +mL

(
∂θ̈a

∂ψ
cθacϕa −

∂ϕ̈a

∂ψ
sθa sϕa

))
, (A.83)

A9,7 = −
1

M +m

(
mL

(
∂θ̈a

∂ϕa
cθacϕa + θ̇2asθa sϕa − 2θ̇aϕ̇acθacϕa −

∂ϕ̈a

∂ϕa
sθa sϕa + ϕ̇2asθa sϕa

))
, (A.84)
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A9,8 = −
1

M +m

(
mL

(
∂θ̈a

∂θa
cθacϕa − θ̇2acθacϕa + 2θ̇aϕ̇asθa sϕa −

∂ϕ̈a

∂θa
sθa sϕa − ϕ̇2acθacϕa

))
, (A.85)

A9,15 = −
1

M +m

(
mL

(
∂θ̈a

∂ϕ̇a
cθacϕa − 2θ̇acθa sϕa −

∂ϕ̈a

∂ϕ̇a
sθa sϕa − 2ϕ̇asθacϕa

))
, (A.86)

A9,16 = −
1

M +m

(
mL

(
∂θ̈a

∂θ̇a
cθacϕa − 2θ̇asθacϕa −

∂ϕ̈a

∂θ̇a
sθa sϕa − 2ϕ̇acθa sϕa

))
, (A.87)

A10,4 =
1

M +m

(
− (−sϕsθsψ − cϕcψ)U1 +mL

(
∂ϕ̈a

∂ϕ
cϕa

))
, (A.88)

A10,5 =
1

M +m

(
− (cϕcθsψ)U1 +mL

(
∂ϕ̈a

∂θ
cϕa

))
, (A.89)

A10,6 =
1

M +m

(
− (cϕsθcψ + sϕsψ)U1 +mL

(
∂ϕ̈a

∂ψ
cϕa

))
, (A.90)

A10,7 =
1

M +m

(
mL

(
∂ϕ̈a

∂ϕa
cϕa − ϕ̇2acϕa

))
, (A.91)

A10,8 =
1

M +m

(
mL

(
∂ϕ̈a

∂θa
cϕa

))
, (A.92)

A10,15 =
1

M +m

(
mL

(
∂ϕ̈a

∂ϕ̇a
cϕa − 2ϕ̇asϕa

))
, (A.93)

A10,16 =
1

M +m

(
mL

(
∂ϕ̈a

∂θ̇a
cϕa

))
, (A.94)

A11,4 =
1

M +m

(
(sϕcθ)U1 +mL

(
∂θ̈a

∂ϕ
sθacϕa +

∂ϕ̈a

∂ϕ
cθa sϕa

))
, (A.95)

A11,5 =
1

M +m

(
(cϕsθ)U1 +mL

(
∂θ̈a

∂θ
sθacϕa +

∂ϕ̈a

∂θ
cθa sϕa

))
, (A.96)

A11,6 =
1

M +m

(
mL

(
∂θ̈a

∂ψ
sθacϕa +

∂ϕ̈a

∂ψ
cθa sϕa

))
, (A.97)

A11,7 =
1

M +m

(
mL

(
∂θ̈a

∂ϕa
sθacϕa − θ̇2acθa sϕa − 2θ̇aϕ̇asθacϕa +

∂ϕ̈a

∂ϕa
cθa sϕa − ϕ̇2acθa sϕa

))
, (A.98)

A11,8 =
1

M +m

(
mL

(
∂θ̈a

∂θa
sθacϕa − θ̇2asθacϕa − 2θ̇aϕ̇acθa sϕa +

∂ϕ̈a

∂θa
cθa sϕa − ϕ̇2asθacϕa

))
, (A.99)

A11,15 =
1

M +m

(
mL

(
∂θ̈a

∂ϕ̇a
sθacϕa − 2θ̇asθa sϕa +

∂ϕ̈a

∂ϕ̇a
cθa sϕa + 2ϕ̇acθacϕa

))
, (A.100)

A11,16 =
1

M +m

(
mL

(
∂θ̈a

∂θ̇a
sθacϕa + 2θ̇acθacϕa +

∂ϕ̈a

∂θ̇a
cθa sϕa − 2ϕ̇asθa sϕa

))
, (A.101)

A12,13 =
URJR + (Jyy − Jzz)r

Jxx
, (A.102)

A12,14 =
(Jyy − Jzz)q

Jxx
, (A.103)

A13,12 =
(Jzz − Jxx)r − URJR

Jyy
, (A.104)

A13,14 =
(Jzz − Jxx)p

Jyy
, (A.105)

A15,4 =
1

ML

(
(−sθa sϕa (−sϕsθcψ + cϕsψ)− cϕa (−sϕsθsψ − cϕcψ) + cθa sϕa sϕcθ)U1

)
, (A.106)

A15,5 =
1

ML

(
(−sθa sϕa (cϕcθcψ)− cϕa (cϕcθsψ) + cθa sϕacϕsθ)U1

)
, (A.107)

A15,6 =
1

ML

((
− sθa sϕa (−cϕsθsψ + sϕcψ)− cϕa (cϕsθcψ + sϕsψ)

)
U1

)
, (A.108)
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A15,7 =
1

ML

(
(−sθacϕa (cϕsθcψ + sϕsψ) + sϕa (cϕsθsψ − sϕcψ)− cθacϕacϕcθ)U1

)
− (c2ϕa

− s2ϕa
)θ̇2a, (A.109)

A15,8 =
1

ML

(
(−cθa sϕa (cϕsθcψ + sϕsψ) + sθa sϕacϕcθ)U1

)
, (A.110)

A15,16 = −2sϕacϕθ̇a, (A.111)

A16,4 =
1

M

(
(−sϕsθcψ + cϕsψ)U1

cθa
Lcϕa

+ (sϕcθ)U1
sθa
Lcϕa

)
, (A.112)

A16,5 =
1

M

(
(cϕcθcψ)U1

cθa
Lcϕa

+ (cϕsθ)U1
sθa
Lcϕa

)
, (A.113)

A16,6 =
1

M

(
(−cϕsθsψ + sϕcψ)U1

cθa
Lcϕa

)
, (A.114)

A16,7 =
1

M

(
2θ̇aϕ̇aM(1 + t2ϕa

) + (cϕsθcψ + sϕsψ)U1
cθa sϕa

Lc2ϕa

+ (−cϕcθ)U1
sθa sϕa

Lc2ϕa

)
, (A.115)

A16,8 =
1

M

(
− (cϕsθcψ + sϕsψ)U1

sθa
Lcϕa

+ (−cϕcθ)U1
cθa
Lcϕa

)
(A.116)

A16,15 = 2θ̇atϕa , (A.117)

A16,16 = 2ϕ̇atϕa , (A.118)

and the B matrix is as follows;

B =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

B9,1 B9,2 B9,3 B9,4 B9,5 B9,6

B10,1 B10,2 B10,3 B10,4 B10,5 B10,6

B11,1 B11,2 B11,3 B11,4 B11,5 B11,6

0 B12,2 0 0 0 0

0 0 B13,3 0 0 0

0 0 0 B14,4 0 0

0 0 0 0 B15,5 0

0 0 0 0 0 B16,6



, (A.119)

where

B9,1 = −
1

M +m

(
(cϕsθcψ + sϕsψ) +mL

(
∂θ̈a

∂U1
cθacϕa −

∂ϕ̈a

∂U1
sθa sϕa

))
, (A.120)

B9,2 = −
1

M +m

(
mL

(
∂θ̈a

∂U2
cθacϕa −

∂ϕ̈a

∂U2
sθa sϕa

))
, (A.121)

B9,3 = −
1

M +m

(
mL

(
∂θ̈a

∂U3
cθacϕa −

∂ϕ̈a

∂U3
sθa sϕa

))
, (A.122)
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B9,4 = −
1

M +m

(
mL(

∂θ̈a

∂U4
cθacϕa −

∂ϕ̈a

∂U4
sθa sϕa )

)
, (A.123)

B9,5 = −
1

M +m

(
mL

(
∂θ̈a

∂τx
cθacϕa −

∂ϕ̈a

∂τx
sθa sϕa

))
, (A.124)

B9,6 = −
1

M +m

(
mL

(
∂θ̈a

∂τy
cθacϕa −

∂ϕ̈a

∂τy
sθa sϕa

))
, (A.125)

B10,1 =
1

M +m

(
− (cϕsθsψ − sϕcψ) +mL

(
∂ϕ̈a

∂U1
cϕa

))
, (A.126)

B10,2 =
1

M +m

(
mL

(
∂ϕ̈a

∂U2
cϕa

))
, (A.127)

B10,3 =
1

M +m

(
mL

(
∂ϕ̈a

∂U3
cϕa

))
, (A.128)

B10,4 =
1

M +m

(
mL

(
∂ϕ̈a

∂U4
cϕa

))
, (A.129)

B10,5 =
1

M +m

(
mL

(
∂ϕ̈a

∂τx
cϕa

))
, (A.130)

B10,6 =
1

M +m

(
mL

(
∂ϕ̈a

∂τy
cϕa

))
, (A.131)

B11,1 =
1

M +m

(
− (cϕcθ) +mL

(
∂θ̈a

∂U1
sθacϕa +

∂ϕ̈a

∂U1
cθa sϕa

))
, (A.132)

B11,2 =
1

M +m

(
mL

(
∂θ̈a

∂U2
sθacϕa +

∂ϕ̈a

∂U2
cθa sϕa

))
, (A.133)

B11,3 =
1

M +m

(
mL

(
∂θ̈a

∂U3
sθacϕa +

∂ϕ̈a

∂U3
cθa sϕa

))
, (A.134)

B11,4 =
1

M +m

(
mL

(
∂θ̈a

∂U4
sθacϕa +

∂ϕ̈a

∂U4
cθa sϕa

))
, (A.135)

B11,5 =
1

M +m

(
mL

(
∂θ̈a

∂τx
sθacϕa +

∂ϕ̈a

∂τx
cθa sϕa

))
, (A.136)

B11,6 =
1

M +m

(
mL

(
∂θ̈a

∂τy
sθacϕa +

∂ϕ̈a

∂τy
cθa sϕa

))
, (A.137)

B12,2 =
1

Jxx
, (A.138)

B13,3 =
1

Jyy
, (A.139)

B14,4 =
1

Jzz
, (A.140)

B15,5 =
(M +m)

MIpx
, (A.141)

B16,6 =
(M +m)

MIpy
. (A.142)
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