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ABSTRACT 

 

AN INVESTIGATION OF PRE-SERVICE MATHEMATICS TEACHERS’ 

SEMIOTIC REPRESENTATIONS AND MODELING ROUTES IN A 

MATHEMATICAL MODELING ACTIVITY 

 

 

 

Çetinbaş, Merve 

Master of Science, Mathematics Education in Mathematics and Science Education 

Supervisor: Assoc. Prof. Dr. Bülent Çetinkaya 

 

 

 

September 2022, 149 pages 

 

 

This study aimed to examine the characteristics of pre-service mathematics teachers' 

mathematical modeling processes in terms of semiotic representations and the 

modeling routes varying within the scope of these characteristics. Participants were 

13 pre-service teachers studying at a state university in Ankara and enrolled in an 

elective course entitled “Mathematical Modeling for Teachers.”  Data were collected 

through a technology-integrated mathematical modeling activity. The pre-service 

mathematics teachers' modeling processes were audio and video recorded. Also, the 

groups’ written work, including  their solutions, was collected at the end of the class, 

and the presentations of their final models were video-recorded. The findings 

revealed that prospective teachers were included in all semiotic registers discussed 

in this study, and the semiotic register in which the groups were included differed 

according to the purposes of the actions in the different parts of the modeling activity. 

While the registers in which the students were involved in the actions for determining 

the shape varied as algebraic and geometric, the registers included in the actions 

related to area measurement changed as algebraic and numeric. In determining the 
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shape, it was seen that the group, which was accepted as the algebraic model, 

performed more conversion transformation than others, which was seen as a more 

complex semiotic action. The findings also revealed that pre-service teachers could 

not be assigned to particular semiotic characteristics when their whole modeling 

processes were examined due to the context of the modeling activity. In addition, 

although the semiotic characteristics could be determined in different parts of the 

modeling activity, no pattern was found in the groups' Modeling Transitions 

Diagrams (MTDs). Regardless of the semiotic characteristics of the groups, it was 

observed that there were completed cycles in almost all MTDs and both backward 

and forward movements between the modeling transitions. Moreover, the findings 

revealed that the preferences and purpose of the groups to use technology and group 

dynamics changed the characteristics of the modeling routes represented in MTD. 

 

Keywords: Mathematical Modeling, Semiotic Representations, Modeling Routes, 

Modeling Transition Diagram, Technology Integration 
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ÖZ 

 

MATEMATİK ÖĞRETMEN ADAYLARININ SEMİYOTİK 

GÖSTERİMLERİ VE MODELLEME ROTALARININ BİR 

MATEMATİKSEL MODELLEME ETKİNLİĞİ ARACILIĞIYLA 

İNCELENMESİ  

 

 

 

Çetinbaş, Merve 

Yüksek Lisans, Matematik Eğitimi, Matematik ve Fen Bilimleri Eğitimi  

Tez Yöneticisi: Doç. Dr. Bülent Çetinkaya 

 

 

Eylül 2022, 149 sayfa 

 

Bu çalışma, matematik öğretmen adaylarının matematiksel modelleme süreçlerinin 

göstergebilimsel temsiller açısından özelliklerini ve bu özellikler kapsamında 

değişen modelleme rotalarını incelemeyi amaçlamaktadır. Katılımcılar, Ankara'da 

bir devlet üniversitesinde öğrenim gören ve “Öğretmenler için Matematiksel 

Modelleme” başlıklı seçmeli bir derse kayıtlı 13 öğretmen adayıdır. Veriler, 

teknoloji entegrasyonlu matematiksel modelleme etkinliği aracılığıyla toplanmıştır. 

Matematik öğretmen adaylarının modelleme süreçleri ses ve video kaydına 

alınmıştır. Ayrıca grupların çözümleri de dahil olmak üzere yazılı çalışmaları dersin 

sonunda toplandı ve nihai modellerinin sunumları videoya kaydedildi. Bulgular, 

öğretmen adaylarının bu çalışmada ele alınan tüm göstergebilimsel kayıtlarında yer 

aldıklarını ve modelleme etkinliğinin farklı bölümlerinde grupların yer aldığı 

göstergebilimsel kayıtların, eylemlerin amaçlarına göre farklılık gösterdiğini ortaya 

koymuştur. Öğretmen adaylarının şekil belirleme işlemlerinde yer aldıkları kayıtlar 

cebirsel ve geometrik olarak çeşitlilik gösterirken, alan ölçümü ile ilgili işlemlerde 

yer alınan kayıtlar cebirsel ve sayısal olarak değişmiştir. Şekli belirleme sürecinde 



 

 

viii 

 

cebirsel model olarak kabul edilen grubun, daha karmaşık bir göstergebilimsel eylem 

olarak görülen dönüşüm eylemini diğer gruplara göre daha fazla gerçekleştirdikleri 

görülmüştür. Bulgular, modelleme etkinliğinin bağlamı nedeniyle, tüm modelleme 

süreçleri incelendiğinde öğretmen adaylarının belirli göstergebilimsel karakteristiğe 

atanamadıklarını ortaya koymuştur. Ayrıca modelleme etkinliğinin farklı 

bölümlerinde göstergebilimsel karakteristik belirlenebilse de grupların Modelleme 

Geçiş Diyagramları’nda (MTD'ler) herhangi bir örüntüye rastlanmamıştır. Grupların 

semiyotik özelliklerinden bağımsız olarak, hemen hemen tüm MTD'lerde 

tamamlanmış döngüler ve modelleme geçişleri arasında hem geriye hem de ileriye 

doğru hareketlerin olduğu görülmüştür. Ayrıca bulgular, grupların teknoloji 

kullanma tercihleri ve amaçları ile grup dinamiklerinin MTD'de temsil edilen 

modelleme rotalarının özelliklerini değiştirdiğini ortaya koymuştur. 

 

Anahtar Kelimeler: Matematiksel Modelleme, Göstergebilimsel Temsiller, 

Modelleme Rotası, Modelleme Geçişleri Diyagramı, Teknoloji Entegrasyonu 
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CHAPTER 1  

1 INTRODUCTION  

Communication is a fundamental process that people need in daily life to make sense 

of any situation and to take action towards this understanding. This process that we 

are all familiar with can sometimes occur via channels such as languages, gestures, 

or even symbols. That is exactly why mathematics is very similar to daily life. As 

much as we need communication daily, the same is true for mathematics. From a 

similar point of view, it can be said that representations like channels provide 

communication in mathematics. In this regard, representations have great importance 

in the mathematical world because they have a role in both understanding the 

meaning of the mathematical concepts, ideas, or processes and expressing one’s 

knowledge of this meaning to another one. In this process, it is also crucial to learn 

the relations in mathematics in giving meaning to mathematics. In mathematics, an 

abstract science with many complex structures, multiple representations are used to 

reinforce these relationships and meanings. It can be said that multiple 

representations support individuals to produce different strategies, and they have a 

more meaningful process related to mathematics in this way. 

Individuals can develop their learning processes more meaningfully by producing 

various strategies with different representations. At this point, making 

transformations between these representations can also both support the 

mathematical understanding and give information about this understanding of the 

individuals as well as their use of different representations. Actually, obtaining 

information about the mathematical understanding of individuals can inform 

educators about the difficulties of individuals while realizing this understanding. To 

understand these difficulties, Duval (2006) stated that we need to “determine the 



 

 

2 

cognitive functioning underlying the diversity of mathematical processes” (p. 103). 

In the cognitive functioning of representations, in fact, the existence of semiotic 

representations is mentioned, and they are considered as tools to “produce new 

knowledge” and “communicate any particular mental representation” (Duval, 2006, 

p. 104). Semiotic representations serving such purposes are critical aspects of 

mathematical tasks, and they are powerful tools to make sense of individuals' 

mathematical processes and their difficulties in this process. Thus, semiotic 

representations are considered to have a critical role in comprehending mathematics 

meaningfully.  

Within the scope of learning mathematics in a meaningful way, researchers 

emphasized that seeing mathematics in their daily life significantly impacts 

individuals' conceptual understanding (Altay et al., 2017; Moore et al., 2015). When 

real life and mathematics are considered together, the existence of mathematical 

modeling, serving as a bridge providing the transition between them, can be 

mentioned there. Mathematical modeling is a process requiring translations between 

mathematics and reality which means mathematics outside, including nature, 

society, daily life, and other disciplines (Blum & Borromeo Ferri, 2009). This nature 

of mathematical modeling, which integrates real-life situations into mathematics, 

improves mathematical understanding, seeing the applicability of mathematics to 

real life, and develops skills like communication, working collaboratively, creativity, 

and making meaningful choices (Stohlmann, 2017). The process of mathematical 

modeling, implemented via model-eliciting activities, including well-structured 

realistic problems in an interdisciplinary context, provides students with skills such 

as collaboration, metacognition, multiple processes, self-directed learning, self-

assessment, fostering of ownership, and model development (Chamberlin & Moon, 

2005). The model-eliciting activities are powerful instructional tools, including 

authentic real-life context, group work, open-ended questions, multiple entry points, 

and interdisciplinary relations (Lesh & Zawojewski, 2007). 
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The world continues to improve each day as conditions change fast, but 

developments in almost every field accelerated in the last decades. In this process, 

the focus of the researchers turned to educational innovations in the direction of these 

developments. As a necessity of the digital world, technology has started to be used 

in education to promote individuals’ understanding of the subject matter. In the same 

direction, it is evident that students’ mathematical reasoning can be enhanced, and 

they can be supported to make sense of challenging mathematical concepts with the 

help of technology integration into mathematics lessons (Suh et al., 2008). Students 

can be more active, motivated, and engaged in technology-integrated mathematics 

classes (Kim et al., 2003; Wolf et al., 2011). As the indispensable technological tool 

of this digital process, perhaps the most preferred one is Dynamic Mathematics 

Software (DMS). Straesser (2002) emphasized that DMS is a helpful tool providing 

great convenience in creating shapes and expanding the range of accessible 

geometrical solutions. It is also reported that this environment helps students to build 

complex mental models about shapes at an increasingly higher level and improve 

their understanding of analyzing the property of this shape (Battista, 2002). One of 

the most known DMS is undoubtedly GeoGebra Software, a mathematical 

environment enabling the work dynamically on graphs, geometry, algebra, 

spreadsheets, and much more (GeoGebra, n.d.). Having dynamic properties, such as 

dragging, provides a rich learning environment for students to experience many 

mathematical situations conveniently. 

Mathematics is generally perceived as a difficult subject by students, and a negative 

attitude is developed towards mathematics due to this misperception (Ünlü, 2007). 

Students could not see how mathematics is related to their daily lives. Within the 

scope of the used mathematical content in the current study, this is also true for the 

area concept because students prefer to memorize area formulas of geometric shapes 

instead of understanding what it means conceptually and what their applications are 

in the real world (Clements & Stephan, 2004; Tan Şişman & Aksu, 2016; Van de 

Walle et al., 2012). In light of this information, it is important to include well-

prepared tasks related to real life in mathematics courses and to provide students with 
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experience in using mathematics to make sense of real-life situations. More 

specifically, instead of traditional teaching in classrooms, the inclusion of tools such 

as mathematical modeling or technology integration into mathematics lessons to 

enrich the course content has great importance for individuals to learn mathematical 

concepts in a meaningful way. However, the relevant literature shows that model-

eliciting activities are not integrated adequately in mathematics classes (Borromeo 

Ferri & Blum, 2013). In Turkey, this is due to factors such as mathematics teachers’ 

unfamiliarity with mathematical modeling and model-eliciting activities and 

insufficient time to implement these activities in the intense curriculum, according 

to the teachers (Urhan & Dost, 2016). On the other hand, it is also stated in the 

literature that prospective mathematics teachers have difficulties in their modeling 

processes (Korkmaz, 2010).  

It is also critical to learn how students are involved in modeling tasks, which are 

important for the cognitive development of individuals. This is valuable to develop 

various tasks for individuals with different mathematical backgrounds and abilities 

and to raise awareness of their difficulties or strengths to improve their learning 

processes. To acquire a deep understanding of these learning processes, determining 

the modeling routes followed by the students between the modeling stages having 

different requirements plays a crucial role in modeling tasks. On the other hand, 

being aware of diverse learners who differ in terms of their mathematical 

representations and their progress between the modeling stages is necessary to ensure 

their cognitive development in the further process. In light of all this information, it 

is important to introduce pre-service teachers to mathematical modeling tasks 

because they may include such activities in their teaching in the future. In addition, 

supporting pre-service teachers' knowledge about mathematical modeling with such 

activities will improve them about when and how they should intervene with 

individuals in case of difficulties experienced by students while implementing these 

tasks (Shahbari & Tabach, 2020). On the other hand, the characteristics determined 

by the semiotic representations used by pre-service teachers, who may be more likely 

to use different representations due to their higher level of mathematical knowledge, 
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will shed important light on how the modeling routes of individuals with different 

mathematical proficiencies change. 

Therefore, this study used a technology-supported modeling activity that involved 

the concept of an area of irregular shapes and that can be solved in multiple ways. 

Additionally, we focused on the semiotic representations of pre-service teachers in 

their mathematical models and modeling processes and examined the modeling 

routes and the relation between the modeling routes and different semiotic 

representations. 

1.1 Statement of the Purpose and Research Questions  

The purpose of this study was to investigate the semiotic representations of pre-

service mathematics teachers in their modeling processes in a technology-

integrated modeling activity and their changing modeling routes according to 

these representations. The research questions that guided the current study were 

as follows. 

1. What are the characteristics of pre-service mathematics teachers’ mathematical 

models and modeling processes in terms of the semiotic representations used in a 

technology-integrated model-eliciting activity? 

2. What are the features of pre-service mathematics teachers’ modeling routes in 

a technology-integrated model-eliciting activity? 

2.1 How do pre-service mathematics teachers’ modeling routes differ 

according to the semiotic characteristics of their mathematical models and 

modeling processes in a technology-integrated model-eliciting activity? 

1.2 Significance of the Study 

The way individuals understand the mathematical concept and their learning 

processes for these concepts may differ from each other. This situation has increased 
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the interest in different teaching methods and promoted researchers to find new ways 

to encourage learners. Integrating mathematical modeling tasks and using the 

modeling approach in teaching mathematics can reverse students’ perception of 

mathematics as a subject where only numbers, formulas, and routine problems exist 

(Lesh & Doerr, 2003). The importance of mathematical modeling, a process 

requiring translations between mathematics and the real world, is exhibited with its 

contributions to individuals, such as providing a better understanding of the real 

world, promoting mathematical understanding, and developing mathematical 

competencies (Blum & Borromeo Ferri, 2009). Although different tools such as 

mathematical modeling that contribute to students' mathematical understanding are 

common in educational settings, there are also mathematical concepts in which 

students cannot achieve this mathematical understanding and have difficulties. More 

specifically, one of them is the area measurement concept within the scope of this 

study. Studies attributed the reason for the difficulties experienced by the students in 

the concept of area measurement to the lack of experience in area measurement, the 

learning of this concept according to traditional teaching methods, and reported that 

students memorized the area formulas instead of understanding the meaning of it 

(Clements & Stephan, 2004; Muir, 2007; Tan Şişman & Aksu, 2016; Van de Walle 

et al., 2012). 

One of the subjects that gained importance with the mathematical modeling approach 

was the “individual modeling routes” that showed how individuals progressed 

through the modeling transitions. The modeling route, defined by Borromeo Ferri 

(2007, p. 267) as “the individual modeling process on an internal and external level,” 

is a valuable research tool to acquire a better understanding of the individuals’ 

thinking processes while involving in a modeling task (Borromeo Ferri, 2017; 

Shahbari & Tabach, 2020). This understanding has a critical role in improving the 

learning processes of students and teaching styles of teachers because each 

individual is unique in the world and each one has a different thinking process. 

Investigating their modeling processes deeply can help educators increase their 

awareness of the existence of different learners and attempt to diversify their 
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teaching in the direction of these different thinking processes, individuals’ 

difficulties and strengths in the modeling tasks. Thus, it is critical to investigate pre-

service teachers’ modeling processes and their modeling routes as they will be the 

ones who use modeling tasks in teaching mathematics. 

Borromeo Ferri (2017, p. 136) stated that “modeling routes reveal how students 

follow different steps of the cycle” and “these routes also correspond to their 

mathematical thinking styles”. Specific to these mathematical thinking styles, 

Borromeo Ferri mentioned that she determined three thinking styles having different 

characteristics in her empirical study (Borromeo Ferri, 2004). In the mentioned 

study, it was observed that students with different thinking styles proceeded 

differently in their modeling processes. The different thinking styles that Borromeo 

Ferri (2004) can be associated with systems containing different semiotic 

representations, which Duval (2020) sees as the power of mathematical thinking. 

Duval (1998) emphasized that the mathematical process requires different semiotic 

representations and there would be no mathematical task without semiotic 

representation (Duval, 2020). In this regard, he said that the development of the 

learning and thinking process can be realized by transitions between these semiotic 

representations (Duval, 1998). Revealing the semiotic representations is important 

to understand how students make a transformation between different semiotic 

representations in a cognitive point. This provides us seeing students’ conceptual 

understanding or difficulties in the mathematical concepts that can be expressed with 

different representations. This is vital to diagnose the particular difficulty of student 

because any unresolved difficulty may prevent seeing the connections between 

mathematical concepts and transforming between those mathematical concepts in 

the further process.  

In his study, Hıdıroğlu (2012) found that technology had a positive effect on different 

modeling competencies of pre-service teachers and emphasized that they could focus 

better on their cognitive processes by reducing the complexity of the operations. 

These prove that technology emerged as a helpful tool for preservice teachers in 

different modeling transitions/phases. In this regard, it has a great importance to 



 

 

8 

understand how technology is involved in these modeling transitions/phases, which 

largely reflect the thinking processes of students. To evaluate it from another 

perspective, technological processes can provide rich course content for students 

especially in mathematics courses. Moreover, technology can play a role both as an 

assistant and a developer in their thinking processes. Therefore, it has a critical role 

to shed light on which modeling stages technology is needed and how it is used in 

these stages in order to understand how students' thinking processes are shaped and 

to monitor how these processes of students with different characteristics change. 

To follow the modeling processes of students, the modeling route was visualized 

differently by different researchers (Ärlebäck, 2009; Borromeo Ferri, 2007; Czocher, 

2016). In the literature, the modeling route is mainly represented by arrows on the 

modeling cycles. This may be a challenging way to show their complex modeling 

processes. On the other hand, the graphical representation of modeling routes may 

enable us to follow groups’ modeling processes chronologically. Therefore, the 

graphical representation was preferred in this study examining the modeling routes 

of groups. According to the literature, in their graphical representation of modeling 

routes, while Ärlebäck (2009) used modeling activities parallel to the modeling 

transitions, Czocher (2016) represented the modeling routes of the individuals by 

using modeling transitions. However, the graphical representations in these studies 

did not include the technological world, included just the real and mathematical 

world in the modeling cycle. In this regard, using graphical representation in 

representing the modeling routes and including the technology stage can offer a 

distinct perspective to the literature.  

Lastly, this study was also significant as it is a study testing the rubric that Czocher 

(2013) created by adhering to the literature to determine the modeling transitions and 

extending that rubric within the scope of a different modeling activity. 
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1.3 Definition of Important Terms 

Mathematical Modeling  

Mathematical modeling is the process including to create a model for open-ended, 

practical problems based on real-life situations by using mathematics to represent, 

analyze, make assumptions, and make sense of this model (Consortium for 

Mathematics and Its Applications [COMAP] & Society for Industrial and Applied 

Mathematics [SIAM], 2016; Stohlmann & Albarracin, 2016). 

Model-Eliciting Activity (MEA) 

Model-eliciting activity is an instructional tool including authentic real-life context, 

group work, open-ended questions, multiple entry points, and interdisciplinary 

relations (Lesh & Zawojewski, 2007). 

Models 

Models are described as “conceptual systems of elements, operations, relationships, 

and rules that can be used to describe, explain, or predict the behavior of some other 

familiar system” (Doerr & English, 2003, p. 112). 

Modeling Route 

Borromeo Ferri describe the modeling route as “the individual modeling process on 

an internal and external level” (2007, p. 265). 

Representation 

Representation is described as “the sign and its complex associations” by Duval 

(2006, p. 104).  

Register (Semiotic System) 

The notion of the register is described as “the semiotic systems which fulfill a 

specific cognitive function” (Duval, 2020, p. 724). 
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Semiotic Representation 

The signs, including natural language, iconic/non-iconic figures, symbolic writings 

and diagrams/graphs in semiotic registers described as “the semiotic systems which 

fulfill a specific cognitive function” (Duval, 2006, 2020, p.724). 
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CHAPTER 2  

2 LITERATURE REVIEW 

This study aimed to investigate pre-service mathematics teachers’ characteristics of 

their mathematical models and modeling processes in terms of semiotic 

representations and their changing modeling routes according to these characteristics 

in technology-integrated modeling activity. In the direction of this aim,  models and 

modeling perspective was initially included in this section. Then, it is followed by 

the part of the theoretical framework for the semiotic registers and the related studies 

within the scope of the aims of this study. 

2.1 Mathematical Modeling 

Models and modeling perspective is a theoretical approach that includes conceptual 

systems as cognitive objectives of mathematics education, and through these 

systems, mathematics-related real-life situations are constructed, described, or 

explained (Lesh & Doerr, 2003). According to this perspective, models are described 

as a conceptual system of elements, operations, relationships, and rules by providing 

to describe, explain, construct, interpret, and predict situations for some specific 

purpose (Doerr & English, 2003; Richardson, 2004). Models are powerful tools open 

to sharing and reuse in daily life since they help individuals make sense the real-life 

situations by providing to interpret them for a specific purpose (English et al., 2005). 

On the other hand, the mathematical model is the construction of real objects, data, 

relations, and conditions translated into mathematics (Blum, 2002).  

To realize the models and modeling perspective in mathematics, it can be considered 

the existence of the mathematical modeling process. Mathematical modeling 
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includes creating a model for open-ended, practical problems based on real-life 

situations by using mathematics to represent, analyze, make assumptions, and make 

sense of this model (COMAP & SIAM, 2016; Stohlmann & Albarracin, 2016). This 

process requires translations between mathematics and reality which means 

mathematics outside, including nature, society, daily life, and other disciplines 

(Blum & Borromeo Ferri, 2009). 

2.1.1 Model Eliciting Activities (MEAs) 

Model-eliciting activities, allowing implementation of the mathematical modeling 

process, are instructional tools including authentic real-life context, group work, 

open-ended questions, multiple entry points, and interdisciplinary relations (Lesh & 

Zawojewski, 2007). In model-eliciting activities, including well-structured real-life 

problems instead of traditional word problems like in textbooks (Lesh & Doerr, 

2003), the aim is to provide individuals to create a mathematical model for real-life 

problems and use this model to generate a solution to the existing problem. Model-

eliciting activities are one of the tools to gain individuals various skills valuable in 

mathematics education, such as model development, metacognition, multiple 

processes, self-assessment, etc. (Chamberlin & Moon, 2005). 

2.1.2 Modeling Cycles and Modeling Routes 

The notion of mathematical modeling is too often confronted in the literature as 

applications and modeling. This is because this term expresses the interaction 

between reality and mathematics with products and processes (Blum, 2015). The 

modeling process that encompasses this interaction is visualized by Pollak (1979, p. 

233) with a model that illustrates the transitions between the “rest of the world” and 

mathematics science, as in Figure 2.1 below. Along with Pollak’s modeling cycle, 

which is accepted as the origin, it can be seen that researchers have revealed many 

different modeling schemas to date. In the literature, one of the most common 
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modeling cycles varying in their transitions and stages is the cyclic model given in 

Figure 2.2 (Blum & Leiß, 2007). In their modeling cycle, which is the research 

framework of the study, there are six transitions and six stages to express the 

modeling process. While the transitions are “understanding,” 

“simplifying/structuring,” “mathematizing,” “working mathematically,” 

“interpreting,” and “validating,” the stages are named “real situation,” “situation 

model,” “real model,” “mathematical model,” “mathematical results” and “real 

results” as seen in Figure 2.2. Over time, the rapid development in science and 

technology in the world has also shown itself in mathematical modeling. Along with 

this process, modeling cycles, which show the transitions and phases between the 

real world and the mathematical world, have evolved and included the technology 

world (Greefrath et al., 2011). 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Modeling Cycle of Pollak (1979, p. 233) 
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Figure 2.2 Modeling Cycle of Blum & Leiß (2007, p. 225) 

 

In addition to the modeling process of individuals, how they progressed in the 

modeling stages during this process is another subject that gained importance. 

Specifically, this progression is named “modeling route” and defined as “the 

individual modeling process on an internal and external level” by Borromeo Ferri 

(2007, p. 265). The modeling route is formed by starting with a particular stage and 

going through other stages according to the preferences of the individuals. At this 

point, Borromeo Ferri (2007) stated that visible modeling routes could be determined 

by “verbal utterances and external representations.”  

In the literature, it is seen that the researchers used the arrows between the stages in 

the modeling cycles to represent the modeling routes (Borromeo Ferri, 2007; 

Shahbari & Tabach, 2020). On the other hand, there is also another representation 

style to represent the modeling route shown in a graph (Albarracin et al., 2019; 

Ärlebäck, 2009; Czocher, 2016). Ärlebäck (2009) introduced a two-dimensional 

diagram called the Modeling Activity Diagram (MAD), an example of which is 

shown in Figure 2.3. Considering the other studies in the literature on the 

representation of the modeling route and the studies of Borromeo Ferri, MAD 

differed from the other studies with some points. Ärlebäck (2009) divided the 

modeling activities into six parts: reading, making model, estimating, validating, 

calculating, and writing, respectively, as seen in the vertical axis of MAD given in 
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Figure 2.3. As a different aspect, unlike the literature, Ärlebäck (2009) gave place to 

new activities for the MAD. While estimating and writing were added as new for the 

modeling routes, there are also matching activities with Borromeo Ferri's (2007) 

modeling transitions. Specifically, Ärlebäck’s (2009) reading and calculating are 

similar to Borromeo Ferri’s (2007) understanding of the task and working 

mathematically, respectively; making model is the incorporation of 

simplification/structuring and mathematizing, and validating is the incorporation of 

interpreting and validating transitions. Another important and different point about 

MAD is that Ärlebäck (2009) marked the horizontal axis of MAD as time. Thus he 

made it possible to see when individuals are in a specific activity and how much time 

they spend on it. 

Figure 2.3 A sample Modeling Activity Diagram (MAD) in Ärlebäck (2009) 

 

In her study, Czocher (2016) also used the two-dimensional diagram created by 

Ärlebäck. Unlike Ärlebäck (2009), Czocher (2016) used Borromeo Ferri's (2007) six 

transitions in the Modeling Transitions Diagram (MTD) in her study. An example of 

MTD used by Czocher (2016) is displayed in Figure 2.4 below. Czocher (2016) 
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emphasized that it is difficult to determine how much time individuals spend in any 

specific transition, and therefore she preferred to mark the time with a dot when a 

specific transition was first observed in MTD, as seen in Figure 2.4. 

Figure 2.4 A sample Modeling Transition Diagram (MTD) in Czocher (2016, p. 97) 

2.2 Theory of Registers of Semiotic Representations (TRSR) 

In mathematics, representation can be considered as a way of expressing an 

individual’s mathematical knowledge in different forms, such as using graphs, 

symbols, shapes, or language. Specifically, representations can also be “the sign and 

its complex associations,” according to Duval (2006). At this point, the existence of 

the notion of semiotic representations can be mentioned. Duval (2020, p. 724) 

describes “the semiotic systems which fulfill a specific cognitive function” as a 

register. To classify the semiotic representations, Duval uses the transformations 

between these registers. According to TRSR, conversion is a transformation between 

two representations belonging to different semiotic systems, and treatment is a 

transformation between two representations belonging to the same semiotic system.  
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To clear up the semiotic representations and the registers to which they belong, 

Duval (2006) created the table showing their categorization. To begin with, 

according to TRSR, there are two kinds of the register to classify semiotic 

representations. These are the multifunctional and monofunctional semiotic systems 

(see the first and second rows in Figure 2.5). While the multifunctional register 

includes the natural language and geometrical shapes as a representation type, the 

monofunctional register includes symbolic writings (numerical systems, algebraic 

expressions), graphs, and diagrams. On the other hand, for the columns, semiotic 

representations are classified whether they are discursive or non-discursive 

representations. While discursive representations include numerical or algebraic 

expressions, definitions, and descriptions, non-discursive representations include 

geometrical figures, graphs, and diagrams. This classification can be seen in the 

following figure. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Classification of the registers (Duval, 2006, p.110) 

 



 

 

18 

As seen in the figure above, while rows show the multifunctional and 

monofunctional register, columns show the discursive and non-discursive 

representations, respectively. On the table, Duval (2006) used the arrows to stand for 

the semiotic actions named treatment and conversion. The curved arrows in the 

figure are treatment, meaning the transformation of the semiotic representations 

within the same register. On the other hand, the straight arrows (also dotted arrows) 

in the figure are conversion, meaning the transformation of the semiotic 

representations between two different semiotic registers. In other words, if any 

semiotic representation changes the cell to be expressed in another form, the action 

is named conversion. But if it remains in the same cell, the action is called a 

treatment. 

2.3 Related Studies 

2.3.1 Studies on Area of Irregular Shapes 

The concept of the area has an essential place in the measurement strand of the 

curriculum. In the literature, there are various definitions of the area that is one of 

the measurement concepts. While Van de Walle and his colleagues (2012, p. 384) 

define the area as “two-dimensional space inside a region,” Dickson’s (1989, p. 79) 

definition of area is “the amount of surface of a region.” On the other hand, area 

measurement can be expressed as covering a region conceptually (Muir, 2007).  

In measuring the area of a shape, students can develop or use different strategies. 

While measuring the area of a closed shape, children use strategies such as using 

area formulas for regular shapes, estimating by using standard and non-standard 

units, dividing the shape into sub-shapes, and reshaping to obtain shapes whose area 

formula is known (Civil & Khan, 2001; Kordaki & Potari, 1998; Muir, 2007; Rejeki, 

2015). Although students can develop different strategies in measuring the area, they 

also have some difficulties in this topic. As Dickson (1989) stated, children generally 

see the area concept as multiplying the length by width. At this point, it is important 
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to help students understand that the area means covering the surface rather than 

teaching it as a formula to be calculated (Muir, 2007). Indeed, difficulties with this 

concept result from the traditional teaching of area measurement, including rote 

memorization  (Clements & Stephan, 2004; Tan Şişman & Aksu, 2016; Van de 

Walle et al., 2012). One of the most common difficulties is confusing the area with 

a perimeter (Huang & Witz, 2013; Machaba, 2016; Rejeki, 2015; Ryan & Williams, 

2007). Similarly, on the concept of a circle, Dikkartin Ovez (2012) found that 

students have difficulty in making a distinction between the area and circumference 

of the circle. She also stated other students’ challenges in mixing up the radius and 

diameter while computing the area of the circle. Moreover, children may not be 

aware of what is being measured while determining the area, and this may cause 

another misconception. Specifically, researchers reported that children use the length 

units in area measurement instead of area units (e.g., cm instead of cm2) (Baturo & 

Nason, 1996: Tan Şişman & Aksu, 2016). Indeed, this misconception can be 

considered as the result of the difficulty in comprehending the relationship between 

dimensions and the interdimensional transition in length, area, and volume 

measurement; in other words, children think of an area in one dimension. 

To overcome students’ difficulties in area measurement, activities providing various 

experiences related to the area become an important matter. To illustrate, working 

with irregular shapes may be a great source of experience for students in area 

measurement. Several studies aim to investigate the issues of finding the area of 

irregular shapes (Civil & Khan, 2001; Kordaki & Potari, 1998; Muir, 2007; 

Papadopoulos & Dagdilelis, 2008; Rejeki, 2015; Stehr et al., 2018). When they 

encountered the irregular shape to determine its area, 3-4th grades students made an 

estimation through grid paper, used nonstandard units of measurement like the length 

of their finger, span, or multiplied the width and length of the shape (Civil & Khan, 

2001) while 6th-grade students divided the irregular shape into familiar shapes which 

they know the area formula (Kordaki & Potari, 1998; Papadopoulos & Dagdilelis, 

2008) and reshaped the irregular shape by using the cut-and-paste technique 

(Papadopoulos & Dagdilelis, 2008; Rejeki, 2015). 
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In a study with gifted middle school students, Şengil Akar and Yetkin Özdemir 

(2020) revealed that students could develop their creative thinking and generate 

products in high quality, originality and variability via the MEA in their study, 

including finding the area of irregular shape. According to this study, these students 

could display creative approaches to find the area of the shape given in “Guilt 

Problem.” On the other hand, Moore et al. (2015) conducted a study using an MEA 

named “The Pelican Colonies,” in which students tried to find the number of pelican 

nests placed within a given irregular-shaped area. They mentioned in their study that 

while elementary school students focused on the covering aspect, middle school 

students focused on decomposing irregular shapes into familiar shapes whose 

formulas were known. They reported students' solution strategies in “The Pelican 

Colonies” task as covering the entire irregular shape with centimeter cubes with gaps 

and square units in a regular and not regular array. 

Within the scope of this study, the literature provides several studies, including 

technology-supported activities aiming to find the area of the irregular region 

(Palmas et al., 2020; Papadopoulos, 2004; Papadopoulos & Dagdilelis, 2008, 2009; 

Stehr et al., 2018; Yunianto, 2015). In technology-supported activities, while 

technology is used primarily to verify the solution strategies, students also use it in 

dividing the shapes into sub-shapes for the area measurement with the trial-and-error 

method and using distance and area tools (Papadopoulos, 2004). Indeed, this is 

evidence that the use of the technological tool in such activities facilities the learning 

process of students (Papadopoulos & Dagdilelis, 2009), and thus they can be focused 

on their conceptual understanding of the specific subject.  

Another study, including the irregular shape activity supported by technology, was 

conducted by Stehr et al. (2018). In their study, 3-5 grades students tried to find the 

area of an irregular-shaped puddle via an applet. In this study, students initially had 

difficulty covering the area of the puddle since they were given only rectangles 

having a vertical and horizontal orientation to cover the irregular region in the applet. 

At this point, their difficulties pushed students to devise new strategies to fill the 

irregular region; thus, their thoughts about filling an area and covering meaning of 
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the area measurement were supported through the technological tool. Also, Yunianto 

(2015) conducted a case study to teach area measurement by using an applet. In his 

study, allowing students to display different approaches to finding an area of the 

given shape, their understanding of the conservation of area was examined. 

According to the study, students could reshape the given figure into a rectangle 

through the cut and paste activities via the technological tool, but they used the trial-

and-error method to obtain a rectangle when they encountered the irregular-shaped 

figure. At this point, the study reported that technological tools enabled students to 

create various strategies and to try these strategies in an easier way. Also, students’ 

understanding of the area measurement was supported by the technological tool 

providing different strategies on area, and they were more creative and enthusiastic 

about finding new solutions thanks to the technological tool. 

2.3.2 Studies on Semiotic Representations 

Moyer‑Packenham and her colleagues (2022) investigated the relationship between 

the semiotic actions of students aged 9-12 and their mathematics performance 

outcomes in digital mathematics games by conducting a study with a mixed methods 

design. To display this relationship, pretest and posttest were implemented for 

students in this study. In these tests, students’ verbal responses and external 

representations were coded according to the four types of semiotic representation 

language, images, symbols, and gestures. The frequency of semiotic actions 

(treatment or conversion) between these semiotic representations was determined. 

According to the result of this study, while images and symbols were the most used 

semiotic representations by the students respectively, the most common semiotic 

action made was conversion. Furthermore, they revealed that students’ familiarity 

with the representational transformations is related to their mathematics outcomes, 

and their performances from pretest to posttest are more likely to be affected 

positively if they are familiar with these transformations. 
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In the literature, there is another study based on semiotic representations and actions 

implemented in Turkey (Özcan et al., 2022). In the mentioned study, the conceptual 

understanding of middle school students in the circle concept was examined 

according to the semiotic representations in the TRSR framework of Duval (2006) 

by conducting a teaching experiment method. Within the scope of the flipped 

classroom approaches with the 5E inquiry model, Özcan et al. (2022) implemented 

tasks to the participants to teach the relationship between “the central angle and the 

length of the arc,” “radius and perimeter,” and the“π value” within the scope of the 

circle context by using GeoGebra Software. Participants’ representations were 

examined in five semiotic systems, drawing, verbal, numeric, visual, and algebraic. 

According to their findings, it is seen that participants made a transformation 

between two representations belonging to different semiotic systems. Their study 

also stated that the GeoGebra tasks supported the conceptual understanding of the 

participants who made this transformation named conversion.  

Shahbari & Tabach (2020) carried out a study to examine the modeling routes of 

preservice teachers having different characteristics in terms of their semiotic 

representations and the relation between preservice teachers’ modeling sub-

competencies and semiotic characteristics. In their study, two different types of 

learners having different semiotic characteristics were encountered when the 

mathematical models of pre-service teachers working as a group were examined. 

Also, it was observed that there were differences in the modeling routes of these 

groups, which were determined as numeric and algebraic models. According to the 

results of this study, while the groups determined as an algebraic model had a more 

complex modeling route compared to the groups using the numeric model, it was 

also reported that the modeling routes of the numeric models proceeded more 

sequentially. 
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2.3.3 Studies on Modeling Routes 

Considering the part of this study about the modeling route, it can be mentioned that 

there are numerous studies on this subject in the literature (Albarracin et al., 2019; 

Ärlebäck, 2009; Borromeo Ferri, 2010; Czocher, 2016; Çakmak Gürel & Işık, 2021; 

Hankeln, 2020; Shahbari & Tabach, 2020). Within the theoretical framework of this 

study, there are studies examining the modeling routes and using MAD structure in 

the representation of that routes in this part. 

Ärlebäck (2009) investigated the mathematical problem-solving behaviors of 

students at the upper secondary level in his study and introduced mathematical 

modeling with Fermi problems in different contexts. He developed the MAD 

framework, a graphical representation of modeling routes that reflects students' 

modeling processes (see Figure 2.3). There were six modeling activities in MAD, 

reading, making model, estimating, calculating, validating, and writing as 

alternatives to the six modeling transitions. This diagram enabled Ärlebäck (2009) 

to determine how much time was spent on the different modeling activities and 

follow which modeling activities were done by groups simultaneously. According to 

the result of this study, Ärlebäck (2009) revealed that group dynamics, such as group 

discussions, and sharing of group opinions and preferences, are crucial in shaping 

the modeling processes and problem-solving behaviors of groups.  

In another study examining the modeling routes based on the MAD framework, 

Albarracin and his colleagues (2019) aimed to extend the MAD framework by 

implementing Fermi problems with secondary school students. They also expected 

to examine the potential and possibilities of the extended MAD. According to the 

result of this study, Albarracin and his colleagues demonstrated the complex 

problem-solving processes of students in modeling cycles on the MAD, and thus 

they could present a more detailed analysis tool for the students’ problem-solving 

processes having their different choices and actions. 
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Lastly, Czocher (2016) constructed the Modeling Transition Diagram (MTD) (see 

Figure 2.4), developed based on the MAD, to examine the modeling routes of four 

undergraduate students studying engineering. In MTD, Czocher used the six 

modeling transitions, understanding, simplification/structuring, mathematizing, 

working mathematically, interpreting, and validating instead of six modeling 

activities, and therefore changed the name of MAD to MTD. Czocher (2016) 

developed a methodological tool including various indicators specific to particular 

modeling transition according to the actions of participants in different Fermi 

problems. According to her study, there were presented findings such as identifying 

no pattern in MTDs and mostly no sequential progression, and that 

mathematical/nonmathematical knowledge was essential for students’ progression in 

mathematical modeling. Her study also supported that modeling is a complex 

process.
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CHAPTER 3  

3 METHOD 

This study aimed to examine the characteristics of the pre-service mathematics 

teachers’ mathematical models and modeling processes in terms of semiotic 

representations and how their modeling routes differed based on these characteristics 

in a technology-integrated model-eliciting activity. This chapter includes sections on 

the design of the study, the context of the study and participants, model-eliciting 

activity (MEA), data collection procedures and data sources, data analysis 

procedures, researchers’ role and trustworthiness, respectively.  

3.1 Research Design 

A qualitative study is a research type that researchers aim to search and understand 

specific phenomena by collecting and analyzing data where the researcher is the 

primary instrument and presenting a rich description for that (Merriam & Grenier, 

2019). According to the nature of the study aims and the research questions, 

qualitative research techniques were adopted in this study. Specifically, the 

researcher conducted a case study research method to answer the research questions. 

A case study is a research method aiming to explore the bounded system profoundly 

during the large-scale data collection process where a case represents individuals, 

organizations, processes, programs, institutions, or events (Creswell, 2011; Fraenkel 

et al., 2012; Yin, 2017).  

Yin (2003) divided the case study design into four types, single-case (holistic), 

single-case (embedded), multiple-case (holistic), and multiple-case (embedded) 

according to the number of cases and unit of the analysis. In other words, while Yin 

(2003) categorized the case studies as a single or multiple according to the number 

of the case, he also divided the case studies into two as holistic and embedded 
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according to the number of the unit of analysis. More specifically, embedded single 

case studies include one case and more than one unit of analysis (Yin, 2003). 

In the current study, there was one case, the modeling processes of five groups 

consisting of pre-service mathematics teachers. In this regard, to investigate these 

processes, I determined two units of analysis: the shortest uninterrupted dialogue, 

and general solutions and actions of groups. Therefore, an embedded single case 

study approach Yin (2003) was adopted in the current study as a research design to 

answer the research questions. 

3.2 Context of the Study and Participants 

The participants of this study were 16 junior and senior prospective mathematics 

teachers studying in the elementary mathematics education program at a public 

research university in Ankara, Turkey. This department provides a certificate for 

them to be a mathematics teacher in middle school covering grades 5 to 8. They were 

enrolled in an elective course entitled “Mathematical Modeling for Teachers.” In the 

program of elementary mathematics education, there were 43 courses including 37 

must and six elective courses (see Appendix A). More specifically, in addition to 

general education courses and elementary mathematics education courses, must 

courses also included higher level mathematics courses such as Calculus, 

Differential Equations, Linear Algebra, and Elementary Geometry. On the other 

hand, courses such as Physics, Turkish and English language, Statistics and History 

were among must courses. Before participating in this study, participants reported 

that they had not taken any mathematical modeling courses. 

In the course entitled “Mathematical Modeling for Teachers”, which was taken for 

the first time by the participants in the context of “Model and Modeling Perspective”, 

different objectives were aimed for the development of pre-service teachers. The 

main objectives of this course were explaining the characteristics of modeling 

activities and their difference from the other mathematics problems, improving pre-
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service teachers’ modeling competencies, using their mathematical knowledge in 

modeling activities, and implementing modeling activities and using technology in 

their teaching. In line with these objectives, the pre-service teachers both acquired 

knowledge about mathematical modeling and worked on various modeling tasks 

such as “Water Tanks” and “The Summer Job” during a 14-week course period. The 

modeling task that was used to collect data was implemented after the prospective 

teachers had familiar with model eliciting activities and the process of mathematical 

modeling. Pre-service teachers took the course in the “Mathematics Laboratory” 

classroom where there was access to technological devices and mathematical tools. 

Pre-service teachers working as a group of 2-3 actively participated in the lesson 

during the three-hour weekly lesson period by the course requirements. In this sense, 

each of them was expected to share their knowledge and ideas within the group and 

class discussion, and take on a task such as using technology, making calculations, 

writing a report, and presenting their modeling process in a modeling activity. 

Additionally, the responsibilities of the pre-service teachers after the lesson were to 

read the articles of the course, write a reflection paper related to mathematical 

modeling and implement a modeling activity as a final project created by them.  

At the beginning of the semester, the participants were asked to form the groups that 

they wanted to be in. During the implementation of Model-Eliciting Activity (MEA), 

participants participated in modeling activity in six groups including 2 or 3 members. 

Although all groups wanted to be involved in the study, one of the groups having 

three participants was eliminated because of data loss resulting from the inaudible 

voices of group members. Therefore, the data of five groups were used in this study 

and the number of the remaining participants was 13 (all of them female).  

Each group was named alphabetically in order of analysis and the names of the 

participants were replaced with pseudonyms with the first letter starting with the 

group name. Group A included three participants whose pseudonyms are Ahsen, 

Asya, and Aylin. The mathematical modeling process of Group A was audiotaped 

and videotaped during the MEA. Within the group, participants had various duties. 
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While Ahsen got involved in the process by writing a report predominantly, Aylin 

used the technology to represent their mathematical model. Apart from that, all group 

members contributed to the development of various solutions and models. 

Group B also included three participants, Bahar, Beliz, and Berna. In this group, 

while Berna got involved in the process by writing a report and using the technology 

in the process, Bahar and Beliz mainly worked on calculations and measuring. In the 

development of the model, all members of the group contributed to the process.  

Group C included two participants, Canan and Ceren. Both of the participants 

contributed to their modeling process by producing various solutions and creating a 

model. Predominantly, while Canan worked on calculations and measuring, Ceren 

used technology for the representation of the model.  

Group D included two participants, Deniz and Doğa. Since the use of technology 

was optional in this study, this group did not use it due to the personal preferences. 

Except for this, participants of this group worked together on calculations and 

measuring for the development of the model.  

Group E included three participants, Ece, Elçin, and Eylül. While Elçin worked on 

the writing of the report and Eylül used the technology mainly, all participants 

produced new ideas to improve their mathematical model. 

Within the context of the current study, it was also important characteristic whether 

pre-service teachers were familiar with technology in advance or not. The 

prospective teachers’ background information shows that most of them had taken an 

elective course entitled “Exploring Geometry with Dynamic Geometry 

Applications” before. In this lab-based elective course, some of the main goals were 

to introduce pre-service mathematics teachers with the GeoGebra Software and teach 

them how they use this program. In each group, there was at least one pre-service 

teacher taking this elective course. 
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3.3 MEA: Tumor Surgery 

As an MEA, the “Tumor Surgery” task (Hall and Lingefjärd, 2017, p.136) was 

adapted and used in this study. In 14-week course period, “Tumor Surgery“ task was 

implemented in 8th week. The context of the task is related to tissue with a tumor in 

the lung that could not be treated with medicine. In this task, groups are expected to 

determine the size and location of this irregular-shaped tumor to operate it provided 

that minimum healthy tissue is taken with the whole tumor. One of the important 

requirements expected from the groups is to prepare a practical guide for similar 

surgeries. The Tumor Surgery task is given in Figure 3.1. 

“Tumor Surgery” task served three general course aims. One of these aims was 

related to development of pre-service teachers’ modeling competencies. Within the 

scope of this aim, the implemented task may enhance pre-service teachers’ modeling 

competencies such as understanding the real problem situation, constructing a 

mathematical model, solving mathematical questions by using the created model, 

interpreting the reached mathematical results in context of the problem and 

validating the conditions and assumptions by evaluating the results. Moreover, this 

modeling task can enable the pre-service teachers to apply their mathematical 

knowledge to solve nonroutine real-world problems. Lastly, “Tumor Surgery” task 

may also develop pre-service mathematics teachers’ reasoning and communication 

skills by providing an environement to use mathematical language and 

representations.  
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Figure 3.1. MEA: Tumor Surgery Task Adapted from Hall and Lingefjärd (2017, 

p.136) 
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3.4 Data Collection Procedures and Data Sources 

Data was collected in a mathematics classroom that provided an environment 

suitable for group work and provided easy access to needed technological and 

concrete materials. The seating arrangement of the classroom during the MEA was 

U-shaped, and Figure 3.2 shows where the groups sit. The groups freely selected the 

desk that they would use throughout the semester. 

Figure 3.2 Seating Arrangement 

 

Pre-service mathematics teachers were provided a (digital and printed) copy of an x-

ray image of a lung having tumor tissue, a grid paper, a ruler, a compass, and a 

notebook. During the data collection process, they were informed that they can use 

any technology or application whenever they felt they needed. All groups using 

technology preferred GeoGebra Software and each group had an access to it during 

the activity. The data were collected in a three-hour course period. In the 

implementation of the MEA, there were two instructors and one assistant involved. 

Instructors conducted all processes, guided pre-service teachers’ modeling 

processes, and facilitated small group and whole class discussions throughout the 
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lesson. In addition to these, one of the instructors and the course assistant dealt with 

technical issues such as managing audio recorders and cameras to collect data, and 

helped pre-service teachers with their questions regarding the use of GeoGebra 

Software. The course assistant also was responsible for providing necessary 

instructional materials to the groups during the implementation of the activity. 

Three groups (Group A, Group D, and Group E) were both audiotaped and 

videotaped, the remaining (Group B and Group C) were just audiotaped during the 

activity, and their GeoGebra files including their solutions (apart from Group D 

because the technology was not used) were recorded. Furthermore, the groups 

recorded their process in their report including their mathematical models, findings, 

and guide for future operations. After the implementation of the modeling task, all 

groups shared their mathematical models and findings with the whole class. Thus the 

main data used to analyze pre-service mathematics teachers’ modeling processes 

were audiotaped and videotaped classroom observations. The groups’ solutions and 

reports on the modeling task were used to better understand their modeling 

processes. 

3.5 Data Analysis 

As it was mentioned before, the main data for the study was gathered via groups’ 

audiotaped and videotaped observations while they worked on the modeling task. 

Thus in analyzing the data, I initially watched all the videos and listened to the audio 

recordings carefully. Then, all of these recordings were transcribed word by word to 

prepare the data for the analysis. To answer research questions, I aimed to determine 

the modeling routes of the groups and the characteristics of their modeling processes 

in terms of semiotic register. In this section, I first explained the development of the 

data analysis approach, then briefly describe the rubric developed to analyze 

modeling routes and the details of data analysis procedures. 
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3.5.1 The Process of Deciding on Data Analysis Procedures 

A data analysis framework was developed to identify modeling routes and semiotic 

representations of the groups. In this section, I explain how the data analysis 

framework was developed by focusing on the ways of determining the representation 

of the modeling route and modeling transitions, the rubric for determining the 

modeling route, and methods of determining the semiotic representations. 

3.5.1.1 Determination of the representation of the modeling route and 

modeling transitions  

One of the main goals of this study was to determine the modeling routes of groups. 

Because of this, as a first step, I tried to divide the whole transcript into dialogues. 

This is needed to assign groups’ actions to the correct modeling transitions and 

determine their modeling routes more easily since transcripts contained long 

modeling processes that took almost 2 hours to complete the modeling task by the 

pre-service teachers in the current study. Ärlebäck (2009) also used the same method 

and stated that the categorization of the transcript was done according to the 

modeling sub-activities in the dialogues formed with the sequence of utterances 

made by the groups. Then, the data of the two groups were organized by adopting 

the data formatting structure developed by Shahbari and Tabach (2020). According 

to their research, groups’ general solutions and actions are placed in a table so that 

modeling phases and transitions are ordered from understanding to validating. This 

system did not work in this study because the modeling processes of groups took a 

long time, and the categorization of the modeling transitions of the whole transcript 

was too difficult. Moreover, some problems were observed in the representation of 

modeling transitions when two groups were analyzed. One of the problems was that 

most of the data were ignored and not included in the modeling routes of the groups. 

Another problem was that the representation of these modeling routes in the extended 

modeling cycle, including the real, mathematical, and technological world 
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(Greefrath et al., 2011), was too complex in this study because participants’ actions 

were placed many times in different modeling transitions. It was almost impossible 

to show them with arrows clearly. Lastly, the structure of modeling transitions 

continuing step by step in an orderly way from understanding to validating did not 

fit this study's data. Therefore, the representation of modeling routes with arrows as 

in the Shahbari and Tabach’s (2020) study was not preferred in this study. This study 

was not used in the parts related to the representation of the modeling routes, but 

their study sheds light on the current study in the determination of the semiotic 

representations according to the particular modeling stages/transitions mentioned in 

the following parts of the data analysis (see Table 3.5). 

As a result of all these reasons, I needed a new modeling cycle structure in which all 

recorded modeling transitions can be shown, and new stages such as technology can 

be included. At this point, I decided that Ärlebäck’s (2009) Modeling Activity 

Diagram (MAD) and Czocher's (2016) Modeling Transitions Diagram (MTD) would 

be more useful in representing and analyzing our data. In his study, Ärlebäck (2009) 

created a graphical representation called MAD whose horizontal and vertical axis 

represent time and modeling activities, respectively. As mentioned in the literature 

review chapter, in the MAD, Ärlebäck (2009) categorized the modeling activities 

into six: reading, making model, estimating, validating, calculating, and writing. 

Constructing a similar structure as in MAD, Czocher (2016) uses Borromeo Ferri's 

six transitions in the MTD: understanding, simplification-structuring, 

mathematizing, working mathematically, and interpreting-validating. Borromeo 

Ferri (2007) used the mentioned transitions in the modeling cycle of Blum & Leiß 

(2007) (see Figure 2.2) in order to represent individual modeling routes of students 

with arrows on that modeling cycle. In the MAD, Ärlebäck used the phrase 

“modeling activities” instead of “modeling transitions”. In his framework, Ärlebäck 

included activities similar to Borromeo Ferri's modeling transitions, but also he 

added new activities to the MAD, like estimating and writing. Ärlebäck’s reading 

and calculating activities are similar to Borromeo Ferri’s understanding of the task 

and working mathematically transitions; making model activity is similar to 
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simplification/structuring and mathematizing, and validating activity is similar to 

interpreting and validating transitions in Borromeo Ferri’s model (see Figure 2.3 for 

Ärlebäck’s MAD and “modeling activities”). 

For this study, using Ärlebäck's (2009) MAD and Czocher’s (2016) MTD was 

meaningful as they allowed displaying the modeling transitions exactly when they 

were observed. Czocher’s (2016) MTD was also helpful in developing a rubric to 

identify and interpret the modeling routes of the groups. In this study, in the 

preliminary analysis, Ärlebäck’s framework was used with three revisions (see Table 

3.1 below). One of them was removing the estimating activity from the framework 

since it was not used in the Tumor Surgery problem. Thinking about the nature of 

the modeling task, I also found that “working mathematically” would explain the 

modeling process better than “calculating”. In addition to these, the technology stage 

was added to the framework. As a result of these changes, in this study, the following 

transitions were initially used: reading, making model, working mathematically, 

technology, validating, and writing. 

After the preliminary data analysis using this framework, I noticed that the actions 

of all groups were intensively assigned to the “making model” transition. This may 

be caused by the scope of the making model transition which encompasses 

simplification/structuring and mathematizing transitions, and thus it had too many 

indicators in the developed rubric to assign the transitions. Furthermore, activity 

terminology was found to be not handy in analyzing and explaining the 

transformation between semiotic registers, which was the other issue explored in this 

study. Ultimately, I decided to use Borromeo Ferri’s transitions like in Czocher’s 

study with some additions and changes. While six transitions were used verbatim, 

using technology was added to MTD. Also, the writing stage was changed to 

reporting because groups reported their processes by writing a report, conveying it 

to the instructor, and presenting it at the end of the class. In Table 3.1 below, 

modeling transitions used in this study were given together with Ärlebäck’s MAD 

and Czocher’s MTD frameworks. 
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Table 3.1 The modeling activity/transitions frameworks of Ärlebäck (2009), 

Czocher (2016), and the current study 

Ärlebäck’s MAD Czocher’s MTD The Current Study 

Reading Understanding Understanding 

Estimating + Making 

Model 

Simplification/Structuring + 

Mathematizing 

Simplification/Structuring + 

Mathematizing 

Calculating Working Mathematically Working Mathematically 

Validating Interpreting + Validating Interpreting + Validating 

- - Using Technology 

Writing - Reporting 

3.5.1.2 Development of a Rubric for Modeling Routes 

In this study, the methods used in Ärlebäck’s and Czocher’s studies were a guide in 

analyzing and representing modeling routes. One of these methods was related to 

identifying the modeling transitions. Since the data included long and intense 

dialogues, assigning modeling transitions using sub-competencies mentioned in the 

study of Maaß (2006) was inadequate as these competencies were too general for 

this study. On the other hand, the rubric provided in Czocher’s (2016) study was 

handy as it included an indicator table for each particular observed event in order to 

assign modeling transitions of participants. This rubric was used in this study with 

various additions and changes. While some of the indicators were used as they were, 

the wordings in some of the indicators were revised to better explain the data 

collected in this study.  For example, Czocher’s “mentioning variables, parameters, 

constants” indicator was changed as “mentioning components of the model (e.g., 

Radius, center, focus, origin…) in the extended rubric because groups’ models were 

related to shapes instead of equations and they spoke intensely on the components of 

that shapes. Secondly, since the modeling task, Tumor Surgery, involved 

requirements such as technology use and report writing, new indicators were added 

to meet these requirements. To do this, the studies including technology-supported 

MEAs and mathematical modeling competencies were examined. Moreover, the 
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works of Maaß (2006), Galbraith and Stillman (2006), Ärlebäck (2009), and 

Hıdıroğlu (2012) were used in adding and refining the indicators of the rubric. After 

a pre-analysis of the data, a few new indicators were added (see the explanations 

below). The extended rubric is given in Table 3.2 below. 

Table 3.2 Extended Rubric Including New Indicators  

Modeling 

Transitions Code Indicators Source 

Understanding U1 Reading the task Czocher (2016) 

U2 Returning to elements in the statement of the task Czocher (2016) 

U3 Clarifying what needs to be accomplished Czocher (2016) 

U4 Explaining/Expressing the problem/task in simple terms  Hıdıroğlu (2012) 

U5 Questioning the given information Researcher 

Simplification/ 

Structuring 

S1 Making assumptions to “simplify” the problem Czocher (2016) 

S2 Referring to assumptions Czocher (2016) 

S3 Listing possible solutions/models/strategies Czocher (2016) 

S4 Mentioning variables, parameters, constants Czocher (2016) 

S5 Mentioning components of the model (e.g., Radius, center, 

focus, origin…) 

Czocher (2016) 

S6 Specifying conditions Czocher (2016) 

S7 Introducing outside knowledge Czocher (2016) 

S8 “Running out” of conditions, assumptions, variables, 

parameters 

Czocher (2016) 

S9 Drawing or labelling sketches that correspond to stated or 

implied conditions/assumptions/variables/parameter 

Czocher (2016) 

S10 Identifying strategic entit(ies) Galbraith & 

Stillman (2006) 

S11 Specifying the correct elements of strategic entit(ies) Galbraith & 

Stillman (2006) 

 S12 Counting/Measuring by using material to solve the task Researcher 

Mathematizing M1 Writing/Drawing mathematical representations of ideas (e.g., 

symbols, equations, graphs, tables, shapes etc.) 

Czocher (2016) 

M2 Speaking in terms of symbols, operations, or relationships Czocher (2016) 

Working 

Mathematically 

WM1 Explicit mathematical operations that may not be 

arithmetic/algebraic (e.g., comparing, rounding, partitioning) 

Czocher (2016) 

 WM2 Making inferences and deductions without reference to 

nonmathematical knowledge 

Czocher (2016) 
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Table 3.2 (continued) 

 WM3 Carrying out symbolic or verbal operations (e.g., solving an 

algebraic equation, taking a derivative) 

Czocher (2016) 

 WM4 Changing mathematical representation Czocher (2016) 

Interpreting I1 Speaking about the result in context of the problem Czocher (2016) 

 I2 Referring to conditions/ variables/parameters from 

“simplifying/ structuring” 

Czocher (2016) 

Validating V1 Implicit or explicit statements about the reasonableness of the 

answer/model  

Czocher (2016) 

 V2 Checking extreme cases by using the developed model Czocher (2016) 

 V3 Comparing an answer to a known (theoretical or practical) 

result 

Czocher (2016) 

 V4 Comparing merits of different models  Czocher (2016) 

 V5 Generalizing solutions (strategies) that were developed for a 

special situation 
Maaß (2006) 

Using 

Technology 

UT1 Choosing the appropriate technology to represent the model  

This also belongs to the simplification/structuring transition. 

Hıdıroğlu (2012), 

Galbraith & 

Stillman (2006) 

 UT2 Switching between technological  and mathematical 

representation 

Hıdıroğlu (2012) 

 UT3 Utilizing the (visual) opportunities of technology 

(enlargement of the image, making background image, using 

GeoGebra grids as base, encolouring, thickening)  

Hıdıroğlu (2012) 

 UT4 Obtaining necessary data/information for the model by using 

technology 

Hıdıroğlu (2012) 

 UT5 Using technology to produce geometric representations 

This also belongs to mathematizing transition. 

Galbraith & 

Stillman (2006) 

Reporting R1 Writing a report  Ärlebäck (2009) 

 R2 Reporting/Conveying what has been done to instructor Researcher 

 R3 Presenting of the modeling process to the class Researcher 

 

As seen in Table 3.2, the extended rubric includes modeling transitions, codes, 

indicators, and references columns. The codes are created according to the first letter 

of the related transition and the number of indicators belonging to that transition. In 

the extended rubric, there are four indicators created by me. Their codes are U5, S12, 

R2, and R3. U5 includes the action of making sense of and questioning the given 

information, which is the difference between lungs’ sizes. S12 corresponds to the 
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actions regarding groups’ measure of the size of an x-ray for establishing a 

proportion between the size of it in reality and in the x-ray. R2 includes the 

conversation between group members and instructors, and R3 includes the 

presentations of the groups. 

In the current study, two indicators of the Using Technology transition/stage were 

used in another transition. UT1 was included in the Simplification/Structuring 

transitions and UT5 was included in the Mathematizing transition. These indicators 

were taken from the study of Galbraith and Stillman (2006) for the technology stage 

of the extended rubric. I initially included them in the transitions of Mathematizing 

and Working Mathematically as in the study of Galbraith and Stillman (2006). Then, 

the transitions that they are involved in were changed, due to the content of MEA. 

Since the key elements in Tumor Surgery task were the area and location of the 

tumor, geometrical shapes used to remove this tumor aimed to both create a 

mathematical model and generated a mathematical representation of the ideas. Then, 

groups continued their actions by finding an area and a location through this model. 

Therefore, it was more plausible to include UT5 in the Mathematizing transition 

instead of Working Mathematically. On the other hand, UT1 was involved in the 

Simplification/Structuring transition since the choice of technology is related to the 

structuring of the given situation in the activity. 

3.5.1.3 Determination of Semiotic Representations 

In the current study, the work of Shahbari and Tabach (2020) was used as a base for 

analyzing semiotic representations of groups. In their study, groups’ modeling 

actions were included in six modeling transitions/phases. Then, within the scope of 

Duval’s (2006) framework related to semiotic representations, these actions were 

analyzed using three types of semiotic registers, natural, numeric, and algebraic 

registers; and two types of semiotic actions, treatment and conversion. In this part of 

the data analysis, I initially watched videos and listened to audio recordings carefully 

to determine the semiotic registers that the groups used. Here, I identified another 
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semiotic register in addition to the registers in Shahbari and Tabach’s (2020) study. 

As the context of the implemented modeling task required, the groups were also used 

geometric register in addition to the natural, numeric, and algebraic semiotic 

registers. Therefore, in the current study, four types of semiotic representations were 

used to determine the semiotic characteristics of the groups.  

3.5.2 Data Analysis 

The data were analyzed in two steps in the current study. The first one was to 

determine the modeling routes of the groups, while the second one is to determine 

what characteristics the groups have in terms of semiotic registers. Hence, this 

section explains how data was analyzed in depth regarding modeling routes and 

semiotic registers. 

3.5.2.1 The Analysis of Modeling Routes 

As mentioned before, to prepare data for analysis, each word spoken by the group 

members was transcribed word by word. The completeness of the transcript for this 

part of the analysis was important to determine the units of analysis. The unit of 

analysis can be each expression (utterance) as in Czocher’s (2016) study where she 

analyzed each individual’s modeling routes or it can be the shortest uninterrupted 

dialogue as in Albarracin and his colleagues’ (2019) study where they analyzed 

student’s modeling routes as groups. In the current study, since we examined the 

modeling processes of the groups, like in Albarracin et al. (2019), it was more 

appropriate to determine the unit of analysis as the shortest uninterrupted dialogue. 

Thus, to analyze data, the dialogues of the groups whose modeling processes were 

transcribed were broken into the shortest uninterrupted dialogues. These dialogues 

were then transferred into a spreadsheet to organize the data for analysis. In the 

spreadsheet, the following headings were used to systematically analyze the data:  
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time in the format of seconds and hh:mm:ss, dialogues, indicators, indicators’ codes, 

and modeling transitions, respectively.  

After splitting the transcript into dialogues and getting the spreadsheet ready to 

organize the data, the first step was to analyze each of the units in itself. The analysis 

of dialogues proceeded as follows. To begin with, the dialogue was examined in 

detail, and the video recording was carefully monitored simultaneously. Then, using 

the rubric (see Table 3.2) the expressions in the dialogue were assigned to the 

indicators of the relevant modeling transitions. Although some expressions were 

sufficient to assign the dialogue to any transition, it was important to look at the 

dialogue holistically. Because participants worked as a group in this study, dialogues 

might include some expressions independent from the process of the group. At this 

point, it was more reasonable to analyze dialogue with a holistic approach instead of 

micro-level analysis.  

In any unit of analysis, there may be one or more indicators involved in the same or 

different modeling transition. Thus, a dialogue may include different modeling 

transitions. For instance, while understanding the situation, a group may also make 

assumptions as a next step in the same dialogue. Thus, in analyzing the data, the 

group’s actions were sometimes assigned to two different transitions. Also, any 

expression or action in each unit of analysis might be assigned to two different 

indicators or modeling transitions. Specifically, when indicators of UT1 and UT5 

(see Table 3.2) were assigned for any action, it was also placed in the 

simplification/structuring and mathematizing transitions. This situation was also 

possible for the other indicators and illustrated in the sixth row of the data analysis 

table given below (see Table 3.3). Lastly, some of the expressions and utterances 

that were not related to the focus of the study were not included in the analysis.  

Considering all of these, another important point here was time. In this study, as 

Czocher (2016) did in her study, the first moment when each new transition observed 

in the dialogue was recorded. In the time (hh:mm:ss) column, the exact time of the 

observed action was recorded according to the time of the video recording. Then, it 
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was converted to seconds in order to represent the recorded time in the MTD 

framework, and it was placed in the first column of the analysis table (see Table 3.3). 

In addition to this, the start time of the dialogues was also recorded to easily follow 

the dialogues. Another thing that was ignored in the analysis was break times. 

Because it may cause misinterpretation while reading MAD, the break time of the 

group was not involved in MAD.  

The graphical representation of MTD was created by using GeoGebra. The sample 

MTD created in this study is displayed in Figure 3.3 below. While recorded times 

were placed in the horizontal axis of the MTD, the modeling transitions were in the 

vertical axis. After each of the dialogues was assigned to modeling transitions, they 

were transferred to MTD with recorded time for the representation of modeling 

routes of groups. In MTD, each modeling transition is enumerated from 1 to 8 

respectively. While transferring identified transitions and recorded times, the 

command (in the format of recorded time in seconds, the number of related modeling 

transition) was entered into the input in GeoGebra. This operation helped me to mark 

the transitions with recorded time in MTD. 

 

 

Figure 3.3 A Sample Modeling Transitions Diagram (MTD) created in the current 

study. 

The abbreviated “modeling transitions”, understanding, simplification/ structuring,  

mathematizing, working mathematically, interpreting, validating, using technology, 

and reporting take place in the vertical axis of MTD.
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3.5.2.2 The Analysis of Semiotic Registers 

The second step of the data analysis was to determine the characteristics of the groups 

in terms of semiotic registers. In the Theory of Registers of Semiotic Representations 

(TRSR) framework, Duval (2006) includes various semiotic representations such as 

symbolic writings and natural language. In this study, considering the content of the 

modeling task, I categorized representation types into four groups: natural, 

geometric, numeric, and algebraic. At this point, the descriptions of three types of 

semiotic representations (natural, numeric, and algebraic) were taken from the 

Shahbari and Tabach’s (2020) study because their analysis method was used in a 

similar way in the current study. As a different semiotic representation, the 

description of geometric representation was incorporated from the Duval’s (2006) 

TRSR framework. To be more precise how I coded these four types of 

representations, the explanations of semiotic representations with their examples are 

given in Table 3.4 below. 

Table 3.4 Explanations and Examples of Semiotic Representations  

Semiotic 

Representations 

 

Explanations 

 

Examples 

Natural Verbal statements not including 

numeric or algebraic notation  

(Shahbari & Tabach, 2020) 

 

- Explaining and simplifying the situation 

(e.g., Tumor can be considered as circle.) 

- Interpreting the created model or 

mathematical results 

(e.g., The created shape does not cover the 

entire tumor.) 

- Validating actions verbally 

(e.g., Ellipse model is more appropriate than 

the circle for the different tumor shapes.) 

 

Numeric Representations including just 

specific numbers 

(Shahbari & Tabach, 2020) 

- The size of the tumor is 53.5 cm2 

- Establishing a ratio between image and 

real distance between two lungs as 14:2.5 
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Table 3.4 (continued) 

Geometric Geometrical shapes created by 

tools, drawings, and sketches 

(Duval, 2006) 

- Drawing a circle around the tumor on x-ray 

- Created geometric shapes such as ellipse, 

circle, and pentagon in the GeoGebra 

environment 

- GeoGebra CAS (Computer Algebra 

System) inputs not including algebraic 

notations such as 

FitImplicit({F, G, C, J, E, I, D, H}, 2) 

 

Algebraic Representations including 

variables (algebraic notations) 

(Shahbari & Tabach, 2020) 

- The area formula of a circle is 𝜋𝑟2 

- The location of the tumor is  

c: (x - 8.8)² + (y - 18.7)² = 17.64 

- The input command including algebraic 

notations such as (x-a)2 + (y-b)2 = r2 

 

 

In the study, the groups’ general solutions and actions were examined for the semiotic 

registers according to Duval’s TRSR. In analyzing data, I used the suggestions of 

Shahbari and Tabach (2020) who also used  Duval’s TRSR. To begin with, three of 

the semiotic representations (natural, numeric, and algebraic) were coded as 

described by Shahbari and Tabach as seen in Table 3.4. Depending on the context of 

this study, the three registers discussed in their study were used in the same way, only 

the geometric register was used in accordance with Duval's (2006) description. 

Similar to Shahbari and Tabach’s study, a unit of analysis for this part was 

determined as general solutions and actions of groups. In this regard, their 

presentation style in the categorization of the modeling competencies according to 

modeling transitions (understanding, simplification/structuring, mathematizing, 

working mathematically, interpreting, and validating), modeling phases (situational 

model, real model, mathematical model, mathematical results, and real results), 

semiotic representations (natural, numeric, geometric, and algebraic) and semiotic 

actions (treatment and conversion) was also used in the current study exactly the 

same like in the study of Shahbari and Tabach (2020). Initially, groups’ general 
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solutions and actions were determined in accordance with the modeling transitions 

and phases. Then, modeling transitions and phases were placed in a regular 

progression in a table as seen in Table 3.5 below. Here, regular progression means 

that modeling transitions/phases are put in order from understanding to validating 

without moving backward in the modeling transitions. Each new part of the solution 

was determined as a new cycle. As a next step, I classified each action according to 

four types of semiotic representation. Then, semiotic action was classified as a 

treatment if the representation types of the two adjacent actions are the same. If the 

representation types changed (for instance, changing from natural to numeric), the 

semiotic action was classified as a conversion. Table 3.5 illustrates the second part 

of the analysis of this study. 

Table 3.5 The modeling transitions and semiotic actions of Group C in the first 

cycle 

1st  Cycle 

Transitions/Phases Semiotic Actions Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

       Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/ 

Structuring 

 

  

Natural Simplifying and making assumptions 

Real Model         

 

 

            

   Conversion 

 

         

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created by using the “Circle through three 

points” tool 

For the location of the tumor: The chest x-

ray can be put on a coordinate system. 

Mathematizing  

                       

 

        Treatment                     

Geometric Identifying several points around the tumor 

on GeoGebra.  

Drawing a circle via “Circle through three 

points” tool on GeoGebra by using 

identified points 
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Table 3.5 (continued) 

Mathematical Model  

   Conversion 

Geometric Circle passing through the identified points 

around the tumor (K, L, M points) 

Interpreting  

       Conversion 

Natural Interpreting to reality: Created circle could 

cover the whole tumor. 

Real Results  Numeric The size of the tumor is 53.5 cm2. 

Validating    Conversion Natural Generalization: To identifying the location 

and area of the tumor, x-ray is needed to be 

switched in coordinate system in actual 

size, then the circle is drawn around the 

tumor by looking the farthest points of it. 

 

3.6 The Role of the Researchers 

“Tumor Surgery” task was implemented in advance within the scope of the elective 

course entitled “Mathematical Modeling for Teachers.” The course was followed by 

two instructors and one assistant during the data collection process (see section 3.4 

for the roles of instructors and an assistant). As a researcher of the current study, I 

was not involved in the modeling task implementation. In the research, I played a 

role in watching and listening to the modeling processes of groups, the transcription 

of data, data analysis, and reporting all of the processes from beginning to end.   

3.7 Trustworthiness 

The fact that any research presents accurate and reliable findings for the reader is an 

important criterion for that study to be quality. In this regard, there are several 

techniques to make the research trusted and ensure validity and reliability issues. In 

qualitative studies, the validity and reliability terms change as “trustworthiness” 

concerning the persuasion of the reader that the study is worth reading (Lincoln & 

Guba, 1985). The terms such as internal validity, external validity, reliability, and 

objectivity in quantitative studies were discussed under different names in a 

qualitative study by Lincoln & Guba (1985) and called credibility, transferability, 
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dependability, and confirmability in their book. Specifically, the trustworthiness of 

the current study was ensured with the credibility and dependability concepts.  

The concept that appears as “internal validity” in quantitative studies is called 

“credibility” in qualitative studies; credibility is related to the correct reporting and 

interpretation of research findings (Lincoln & Guba, 1985). To ensure credibility, 

there are several techniques, such as member checking and triangulation. For this 

study, triangulation techniques were used to present correct findings, and two 

different triangulation methods were adopted, data triangulation and investigator 

triangulation. For the data triangulation, multiple data sources were used in the 

current study. Specifically, groups whose whole processes were audiotaped and 

videotaped also wrote a report and made a presentation reflecting their processes at 

the end of the modeling activity. 

Moreover, GeoGebra files containing the mathematical models of the groups that 

preferred to use technology were also used as multiple data sources and contributed 

to the accurate presentation of the data. Secondly, investigator triangulation, 

recommended as another mode of triangulation to ensure trustworthiness by Denzin 

(1978), was employed in the current study. This mode was related to asking for 

coding the data from a second researcher. Therefore, a definite percentage of the data 

was sent to the second coder for individual analysis. The second coder was a master’s 

student in a mathematics education program, and she had sufficient knowledge of 

analysis methods in educational research and was familiar with the context of the 

study because she had taken the elective course mentioned in this study in advance. 

In the literature, it is stated that the size of the data that the second coder analyzes 

should be between 10% and 25% of the total data (O’Connor & Joffe, 2020). In this 

regard, data of two random groups was sent to the second coder as two different 

analyzes of this study, semiotic representations and a data analysis table for the 

modeling routes. 23.5% of the data related to the analysis of the modeling route was 

sent, while 44.70% of the data covering part of the analysis of semiotic representation 

was sent to the second coder. At this point, the reason that more than 25% of semiotic 

representations data sent to the second coder was because one of the analyzed groups 
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had too many modeling cycles. After the analysis process, we reached an agreement 

on the percentage of %84.21 over the total data. In the next step, we discussed the 

incompatible parts, and we finally reached a total agreement. 

The concept that appears as “reliability” in quantitative studies is called 

“dependability” in qualitative studies; dependability is related to the consistency of 

the findings (Lincoln & Guba, 1985). In the current study, expert opinion was also 

taken on whether the analyzes made in the parts for analyzing the modeling route 

were correct, and the analyzes were checked. At this point, the trustworthiness of the 

study was ensured with expert opinion taken from my thesis advisor with expertise 

in mathematical modeling. 
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CHAPTER 4  

4 RESULTS 

This chapter presents the findings of the characteristics of the groups’ mathematical 

models and modeling processes in terms of semiotic representations and their 

detailed modeling routes. Based on the research questions, the first part includes the 

findings of groups’ semiotic representations according to their actions in each 

specific modeling transition. In the second part of the results section, groups’ 

modeling routes are focused on finding an answer to the second research question. 

Here, the research questions of this study are given:  

1. What are the characteristics of pre-service mathematics teachers’ mathematical 

models and modeling processes in terms of the semiotic representations used in a 

technology-integrated model-eliciting activity? 

2. What are the features of pre-service mathematics teachers’ modeling routes in 

a technology-integrated model-eliciting activity? 

2.1 How do pre-service mathematics teachers’ modeling routes differ 

according to the semiotic characteristics of their mathematical models and 

modeling processes in a technology-integrated model-eliciting activity? 

4.1 Semiotic Representations Used by Pre-service Teachers to Develop 

Their Models 

The Tumor Surgery task includes two parts to create a model. Specifically, these are 

(i) resizing the x-ray to its actual size by establishing a ratio and (ii) determining the 

area and exact location of the irregular-shaped tumor. Considering each requirement 

in itself, the modeling processes of the groups were reported first while reporting 

semiotic representations to acquire a general impression about their actions. 
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Preservice teachers’ mathematical modeling process, including their answers for the 

task and the actions they presented in this process, were categorized according to 

modeling transitions progressing from understanding to validating. Within this 

scope, each new solution was represented in the new cycle. The analysis of data 

indicated that the groups demonstrated their actions and solutions in four different 

ways of representation. These were categorized as natural, numeric, algebraic, and 

geometric registers for each action. 

4.1.1 The actual size of the X-ray 

One of the main goals of the Tumor Surgery task is to resize the reduced chest x-ray. 

For this aim, the value of 2.5 cm, the difference between the lengths of the lungs, 

was given in the task. The groups were expected to use this value to establish a ratio 

between the image and the actual size of the x-ray at first. Then, they would 

determine the area and location of the irregular-shaped tumor. In line with these 

aims, the modeling processes of the groups were shown first here, and then their 

actions were classified according to the semiotic registers and modeling transitions. 

4.1.1.1 Mathematical Modeling Processes of the Groups  

After obtaining a general impression of the Tumor Surgery task, the classroom 

discussion was conducted to make sense of the real situation. During the discussion, 

the conditions for finding the size and exact location of the tumor were generally 

mentioned. As a next step, while some of the groups initially made assumptions 

about the shape of the tumor, some intensely questioned the given information about 

the difference between the lungs. 

At the beginning of their modeling process, Group A was one of the groups 

questioning why the difference between lungs was given. Since they could not find 

any solutions to use this information afterward, they continued their process by 

making assumptions about the shape of the irregular-shaped tumor. In carrying the 
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model to the technological world, this group began to create regular shapes that they 

assumed around the tumor without taking any action on proportioning for the actual 

size. Along with the instructor's guiding questions, Group A realized that the tumor 

size changed when the x-ray was enlarged on GeoGebra. This prompted the group 

to find a constant value to fix the size of the x-ray. Group members measured the 

length of the difference between lungs and the size of the x-ray by using grid paper. 

According to measured values for the difference between lungs, it was determined 

that 10 unit squares (1 cm) on the x-ray are equal to 2.5 cm in real. Using the 

measured values and the difference of 2.5 cm, a ratio between the image and actual 

size was established as 10:2.5. In the next step, they measured the height and width 

of the x-ray as 203203, then it was rounded to 200200. As a result of the 

calculations, the size of the x-ray was found as 5050 cm2 in real. The x-ray was 

transferred to the GeoGebra environment in its actual size. 

After the class discussion, Group B expressed that the given information was 

necessary to find the actual size at the very beginning of their modeling process. To 

find the constant value for the actual size, they used grid paper and measured the 

difference between lungs at first. According to the measured value, Group B 

determined that 14 unit squares (1.4 cm) on the x-ray are equal to 2.5 cm in real. 

Using the required values, a ratio between the image and actual size was established 

as 14:2.5. Then, the image size of the x-ray was measured as 193193, and the actual 

size was calculated as 34.6634.66 cm2 (but 34.46 was used mistakenly). The x-ray 

was transferred to the GeoGebra environment in its actual size. 

The modeling processes of Group C also dwelled upon how they use that value in 

their calculations. Similar to Group A, the members of this group transferred the x-

ray to the GeoGebra environment in its image size, then created regular shapes 

around the tumor. After realizing they were expected to find the actual size, they 

made the necessary measurements using the ruler. It was determined that the length 

between the lungs, which is 2.5 cm in real, corresponds to 1.3 cm on the image. Then, 

they found the image size of the x-ray as 20.2 cm, but they mistakenly used the value 
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of 20.02 in their calculations. As a result, the proportionality constant was found as 

1.3:2.5, and the actual size of the x-ray was calculated as 38.5 cm2. 

Group D also went through the same processes as Group A and C, except for 

transferring the x-ray to the technological world and questioning the given 

information intensely. While speaking about the tumor's location, the Group D 

members, who made all their measurements according to the given x-ray and 

determined the model they would create by using these measurements, realized these 

measurements were not the actual lengths. Using the ruler, Group D measured just 

the length of the difference between lungs, and its length was found as 1 cm on the 

image. A ratio between the image and actual size was established with the measured 

values and the difference of 2.5 cm. However, Group D did not use this ratio for the 

size of the x-ray. They used this ratio only for the operations they would do on the 

tumor. Since this group did not take any action regarding the actual size of the x-ray, 

they determined the tumor's location incorrectly according to the measurements in 

the image size. 

Lastly, Group E was the other group questioning why the difference between lungs 

was given. Although this difference put a question mark on their minds, the members 

of Group E continued their operations related to the tumor's shape. With the 

supportive questions of the instructor, they realized why they needed to use that 

difference and how they would determine the actual size of the x-ray. As a different 

solution approach, Group E preferred to perform this process on GeoGebra instead 

of determining any ratio. They created a line segment whose length is 2.5 cm on the 

GeoGebra and enlarged the x-ray until the difference between the lungs was equal 

to the length of that line segment. Ultimately, the actual size of the x-ray was 

determined as 34.534.5 cm2 on GeoGebra. 
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4.1.1.2 Actions of the Groups and their Classification 

Groups’ actions related to resizing the x-ray were classified according to the 

modeling transitions, and then semiotic registers of that actions were determined in 

the data analysis. At this point, it was observed that most of the groups progressed 

almost in the same way while deciding the actual size of the x-ray. Although the 

values they measured differed, their actions showed similarities in the specific 

modeling transitions. Therefore, the differences in actions were noted in this part. 

These actions for Group A, B, and C are shown in the following tables (see Appendix 

B for Group D and Group E). 
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Table 4.1 The modeling transitions/phases and semiotic actions of Group A 

Transitions/Phases 

Semiotic 

Actions 

 

Registers Explanations 

Understanding   Natural Understanding the situation 

Situational Model          

  Treatment 

Natural The difference of 2.5 cm between lungs is 

needed to reach the actual size of the x-ray. 

Simplification/Structuring                                  

Conversion 

Natural Simplifying and constructing relations 

Real Model         

 

 

             

Numeric For the actual size of the x-ray: 10 square 

units (10 mm) on the grid paper is equal to 

the difference of 2.5 cm between lungs and 

the image size of the x-ray is 200 square 

units (200 mm). 

Mathematizing  

 

 

 

          

                                                  

Treatment 

Numeric Establishing a proportion between the 

image and the actual size of the x-ray 

 

Working Mathematically  Numeric Finding the actual size of the x-ray by 

solving the proportion 

 

Mathematical Results  Numeric The result is 50. The size of the x-ray in 

real: 50x50 
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Table 4.2 The modeling transitions/phases and semiotic actions of Group B 

Transitions/Phases 

Semiotic 

Actions 

 

Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

Treatment 

Natural The difference of 2.5 cm between lungs is 

needed to reach the actual size of the x-ray. 

Simplification/Structuring        

Conversion 

Natural Simplifying and constructing relations 

Real Model         

 

 

             

Numeric For the actual size of the x-ray: 14 square 

units (14 mm) on the grid paper is equal to 

the difference of 2.5 cm between lungs and 

the image size of the x-ray is 193 square 

units (193 mm). 

Mathematizing  

                                          

Treatment 

Numeric Establish a ratio between image and real as 

14:2.5 

Establish a proportion for the size of the x-

ray whose length is 193x193 unit squares. 

Working Mathematically  Numeric Finding the actual size of the x-ray by 

solving the proportion 

▪ If 14 unit squares equal 2.5 cm, 

what is the actual length of 193 

unit squares? 

Mathematical Results  

Conversion 

Numeric The result is 34.46. The size of the x-ray in 

real: 34.66x34.66. 

Interpreting  Natural Interpreting to reality: It is not reasonable 

that the shape of our lungs is square. 
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Table 4.3 The modeling transitions/phases and semiotic actions of Group C 

Transitions/Phases 

Semiotic 

Actions 

 

Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

Treatment 

Natural The difference of 2.5 cm between lungs is 

needed to reach the actual size of the x-ray. 

Simplification/Structuring        

Conversion 

Natural Simplifying and constructing relations 

Real Model         

 

 

             

Numeric For the actual size of the x-ray: 1.3 cm is 

equal to the difference of 2.5 cm between 

lungs and the image size of the x-ray is 20.2 

cm. 

Mathematizing  

                                     

Treatment 

Numeric Establish a ratio between image and real as 

1.3:2.5 

Establish a proportion for the size of the x-

ray whose length is 20.2x20.2 unit squares. 

Working Mathematically  Numeric Finding the actual size of the x-ray by 

solving the proportion 

Mathematical Results  

Conversion 

Numeric The result is 38.5. 

Interpreting  

Conversion 

Natural Interpreting to reality: The x-ray may 

belong to a man, so it is big. 

Validating  Numeric Validate the result: There is a difference of 

2.5 cm between lungs transferring to 

GeoGebra environment in actual size.  

(From 7 units to 9.5 units) 

 

As seen in the tables above, all groups understood that they needed to use the given 

information to reach the actual size of the x-ray. After that, they started to simplify 

the situation by constructing relations between the values in the problem situation 

and the reality. In these modeling transitions and phases, groups used the natural 

register in their representations, and their semiotic actions were treatment. Unlike 

other groups, Group E did not take any action to construct relations mathematically 
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during the simplification process. Instead of establishing a ratio and doing any 

mathematical operation on paper, they tried to reach the actual size via technology. 

The solution of Group E is given in Figure 4.1 below. 

 

Figure 4.1 Solution way of Group E for the actual size of the x-ray 

 

Group E constructed two lines and a line segment of 2.5 cm length in their solution. 

Then, they enlarged the x-ray until they provided the real conditions. For this reason, 

Group E could not go beyond the simplification transition in creating this model 

related to resizing the x-ray. Unlike other groups, Group E continued their process 

with the technological world instead of the mathematical one, obtaining computer 

results. After reaching the actual size of the x-ray, Group E did not move to other 

transitions to interpret and validate their result. 

In the phases from real model to mathematical results, Groups A, B, and C reached 

the actual size of the x-ray by using the relationship they established. At this point, 

it was observed that their actions took place in the numeric register. While their 

semiotic action is conversion in the representation of the real model, semiotic action 

was treatment in the numeric representations they used one after the other. 

Group D was another group also establishing a ratio for the actual sizes. While Group 

A, B, and C used the proportionality constant for the actual size of the x-ray, Group 
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D determined just the proportionality constant and used it repeatedly in operations 

on the tumor size. Here, Group D's process up to the mathematizing transition was 

similar to the other groups in terms of both semiotic action and registers. 

Group A, D, and E ended their cycle related to resizing after finding a mathematical 

result. As seen in Tables 4.2 and 4.3, Group B and Group C continued their 

processes. Group B interpreted their result in terms of the shape of the lung. It did 

not make sense that the shape of the lung was square in reality. Then, they accepted 

the size of the liver according to the result they found. Group B's cycle ended with 

the interpreting transition. The representation in this transition was recorded as a 

natural register. This process is illustrated in the conversation below.  

Berna: How many centimeters does that equal now? 

Bahar: Hmm, I don't know. 

Berna:  You just proportioned it. 

Bahar: Hmm, as a thing. That ratio? Hmm, we need to calculate that, too 

Berna: There and the upper part. Aren’t they the same? 

Bahar: Square? 

Berna: But there is a bulge. I think this is the square. How long is that? 

Beliz: Check it out. Hmm, we cannot check it out. 

Bahar: Okay. That was 193. What came?  

Beliz: 34.66. 

Bahar: Exactly. 3, 4, 5, 6, 7, 8, ...., 18.18. Now…  

Beliz: I think it is 19. Let’s draw a line here. Where do we draw the line? Will 

you measure the height of it up to here? 

Bahar: Yes, at least up to here.  
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Beliz: I think it’s 19x19; it’s a square. 

Bahar: Ok then, 19.  

Berna: Let’s see if that’s it.  

Beliz: Although it doesn't make sense for our lungs to be square… 

Group C was the only group that completed the cycle related to resizing. After 

finding the actual size, they interpreted their results in terms of lung size. When they 

interpreted this result in context, they realized that they found a higher result than 

normal when they compared it. Later, they concluded that a lung of this size could 

belong to a man. In the validating transition, Group C confirmed their result on the 

x-ray that they transferred to GeoGebra. They controlled whether the difference 

between the two lungs was 2.5 cm. During the interpreting transition, the action of 

Group C was recorded as a natural register. On the other hand, they used a numeric 

register in the validating transition because they verified their result using the 

subtraction operation. This process is given in the conversation below. 

Ceren: For example, let's do something like this. 2.5 corresponds to 1.3 on the 

ruler, for example. If we just measure its actual size with a ruler and then 

calculate its actual size with math calculation, is it possible? Proportional… 

For example, we said that 2.5 corresponds to 1.3 on the ruler. Let me measure 

this actual size with a ruler. I’ll write. Then I’ll find this proportionally, and 

find its actual size. I'm going to measure that length with a ruler. 

Canan: Will we measure the full lung here? 

Ceren: I guess so. Because we're going to transfer the full size of it, we’ll place 

the coordinates accordingly. 

Canan: It's 15. Up to the bottom. 

Ceren: 20.2?  
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Canan: Yes, 20.2. I guess that’s a square. Exactly, it came out to be the same 

again. 

Ceren: Good. Okay, it’s a square.  

Canan: 22, 23. Let’s say 23. 

Ceren: 23 or 20.2? 

Canan: Don’t say 23. Let’s say 21.  

Ceren: I say 21? But we took this as one point above. Eventually, a side of it… 

Okay, let's calculate these things after that. Multiply…1.3… 

Canan: Oh, how long is that? 

Ceren: 2.5. I divided 20.2 by 1.3. [Group used 20.02 in the calculation instead 

of  20.2.] 

Canan: 30. 

Ceren: It’s equivalent here; one side of it was 38.5. So, do you understand? 

For example, we measured 20 here with a ruler. Its actual size is 38.5. 

Canan: Hmm, that was it! 

Ceren: Yes. Maybe, this belongs to a man.  

Canan: Maybe, but 15-15 

Ceren: So, it could be.  

The groups’ semiotic registers are given in Table 4.4 below. All the groups used just 

the natural and numeric register to reach the actual size of the x-ray. The distribution 

of the registers according to the modeling transitions and phases is presented in Table 

4.4. Capital letters from A to E in Table 4.4 represent the names of the groups. 
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Table 4.4 Groups’ Semiotic Registers in each Modeling Transitions/Phases for 

Resizing the X-ray 

Transitions/Phases Natural Register 

 

Numeric Register 

Understanding A, B, C, D, E - 

Situational Model A, B, C, D, E - 

Simplification/Structuring A, B, C, D, E - 

Real Model - A, B, C, D 

Mathematizing - A, B, C, D 

Mathematical Model - - 

Working Mathematically - A, B, C 

Mathematical Results - A, B, C, E 

Interpreting B, C - 

Real Results - - 

Validating - C 

4.1.2 Shape of the Tumor 

Another aim of the “Tumor Surgery” task is to determine the size and location of the 

irregular-shaped tumor. To achieve this aim, groups were expected to identify the 

tumor's shape and decide which regular shape it resembles. Then, they would 

calculate the size of the irregular-shaped tumor with the area formula of regular 

shape and determine the location with the equation of that shape. Ultimately, they 

were expected to meet the conditions of removing the entire tumor and taking the 

least healthy tissue with a determined shape. To generalize their solution, they would 

also prepare a practical guide for future tumor surgeries. In the direction of these 

aims, the modeling processes of the groups were shown firstly in this part; then, their 

actions were classified according to the semiotic registers and modeling transitions. 



 

 

64 

4.1.2.1 Mathematical Modeling Processes of the Groups 

After reading the problem and the class discussion, all groups understood that the 

irregularly shaped tumor should be taken as a two-dimensional disc. In this way, 

their process started by making assumptions about the tumor's shape to determine its 

area and location. Groups focused mainly on the three regular shapes, circle, ellipse, 

and pentagon. 

At the beginning of the model development, one of the members of Group A 

concentrated on the circle for the irregularly shaped tumor. In light of the first 

assumption they made, Group A detailed their solution. While discussing possible 

solutions, they initially considered placing the chest into a coordinate system to 

determine the tumor's location and area. During their modeling process, Group A 

mostly dwelled on how they would determine the components of the circle 

accurately, whether the circle they will determine in the paper-pencil environment 

will really determine a circle, and how they can reduce the size of the tissue to be 

taken for the minimum healthy tissue. For these aims, they initially considered 

creating a circle inside a square, rectangle, or any quadrilateral. In the process, they 

put forward different ideas for determining this circle and its components. They 

transferred the x-ray to the technological environment and placed it into the 

coordinate system of GeoGebra. Then, they tried each of these ideas on GeoGebra. 

In each case, they could not meet the condition that covering the tumor with 

minimum healthy tissue, they tried to create the circle with a different method. 

Besides trying new ways to draw a circle, Group A also made assumptions about 

different shapes to improve their solution. For example, initially, they considered 

creating a rectangle to remove the tumor, but they decided that the rectangle was an 

inappropriate shape for different tumors. They also considered the possibility of 

using a polygon shape to remove the tumor because of its pentagon-like shape. They 

eliminated this idea as it would not be a practical way to develop a generalizable 

solution if there was a polygon with many sides. Lastly, they assumed that the tumor 

could be removed by creating an ellipse. Group A preferred to draw an ellipse instead 
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of a circle around the tumor as a final model. According to them, an ellipse was more 

suitable than a circle for different tumor shapes. The final solution of Group A is 

given in Figure 4.2. 

 

Figure 4.2 Final Model of Group A 

 

Group B was another group that tried various shapes for the tumor. This group 

initially found a proportionality constant to be able to work on actual sizes. The 

determined constant was used again to find the actual lengths of the values in the 

area formula of the different shapes to be drawn around the tumor. Their assumption 
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for the shape of the tumor was a circle at first. To determine the smallest circle around 

the tumor, they measured the distance between the farthest points of the tumor 

horizontally and vertically. At this point, one of the group’s members (Berna) 

transferred the x-ray to the GeoGebra and placed it into the coordinate system of 

GeoGebra by putting the left bottom vertex of the x-ray in the origin. Then, she 

enlarged the x-ray in the determined proportion. In the next step, using the 

determined actual radius length, they created a static circle on GeoGebra. The 

purpose of Group B in using the technology at this point was to visually see and test 

whether the circle they had identified on paper covered the tumor. After verifying 

that they could obtain a circle covering the tumor, the group members used the center 

coordinates of the created circle to identify the equation of it. The area of this circle 

was calculated using the area formula of the circle in a paper-pencil environment, 

GeoGebra's area tool was not used for area measurement.  

In the modeling process, Group B focused on the different shapes that could be 

drawn around the tumor. They considered square, regular pentagon, and ellipse, 

respectively. They eliminated the options of a square and a regular pentagon because 

they found that when they used these shapes, the area that needed to be cleared of 

tumor became larger than the area for a circle. Group B used the area formula of the 

mentioned shapes and reached the areas of these shapes in a paper-pencil 

environment. Finally, Group B created an ellipse to cover the whole tumor by using 

the input command in GeoGebra. They calculated the elliptical area in the paper-

pencil environment instead of using the area tool of GeoGebra. Although they found 

the area of the ellipse was smaller than the circle, they chose the circle as the latest 

model. One of the reasons for this preference was that they could not calculate the 

area of the ellipse exactly on GeoGebra and could not determine its location because 

the created shape indicated a curve on GeoGebra. More specifically, the ellipse 

created with the input command did not indicate a region on GeoGebra, that was just 

a curve. Therefore, the area tool of the GeoGebra did not calculate the area of the 

ellipse. The final model of Group B is given in Figure 4.3. 
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Figure 4.3 Final Model of Group B 

 

Group C was a group that made only one assumption for the shape of the tumor and 

developed their solutions based on that shape. Like the other groups, Group C also 

considered drawing a circle around the tumor. After transferring the x-ray to 

GeoGebra in its actual size, they initially used one of the GeoGebra tools to draw a 

circle. Although they created a circle covering the whole tumor, they felt the need to 

draw this circle with more precision. To do this, they entered a command to the input 

on GeoGebra. Using the equation of the circle and sliders, they constructed a circle 

whose size and position can be dynamically changed to find a more precise area. The 

final model of Group C is given in Figure 4.4. 
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Figure 4.4 Final Model of Group C 

 

Group D's assumption for the tumor's shape was a circle. They thought of creating a 

circle inside a square that would be drawn around the tumor. Unlike other groups, 

this group continued their solutions on paper rather than using technology. Initially, 

they found the midpoint of the x-ray for the reference point and accepted it as an 

origin. As a next step, they measured the distance between the farthest points of the 

tumor horizontally and vertically. Among these distances, they chose the larger one 

and formed a square according to that length. Thus, Group D created an incircle 

tangent to the sides of the square. They used the circle model in their solution, but 

they also gave place to the ellipse in the generalization part of the problem for the 

different tumor shapes. The final model of Group D is shown in Figure 4.5. 
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Figure 4.5 Drawings of Group D 

 

Group E was the only group to use technology from beginning to end of their 

modeling processes. After determining the actual size of the x-ray on GeoGebra, 

Group E members made assumptions about the shape of the tumor. As a first 

assumption, they considered drawing a circle around the tumor. To draw this circle, 

they identified the estimated farthest points of the tumor. They determined different 

pairs of points right across each other and created different circles by using 

GeoGebra's circle drawing tool. Then, Group E compared those circles according to 

their area and whether they covered the entire tumor. After choosing the most 

suitable circle, that covers the entire tumor and has the smallest area than the other 

ones, they continued their process with a different model. Considering drawing a 

pentagon as a second model, Group E identified five different points around the 

tumor and constructed a polygon. Although they found that the area of the pentagon 

was smaller than the circle, they preferred the circle as a final model because they 

thought it was more practical and appropriate for different tumor shapes. Models of 

Group E are given in Figure 4.6. 
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Figure 4.6 Models of Group E 

4.1.2.2 Actions of the Groups and their Classification 

Groups’ actions related to finding the area and location of the irregular-shaped tumor 

were classified according to the modeling transitions. Then semiotic registers of 

these actions were determined in the data analysis. The actions of the groups 

regarding a specific model and different solutions for that model were presented as 

a new cycle each time in the findings section. As mentioned in the previous part, the 

modeling processes of the groups were quite different in terms of assumed shapes 

for the tumor, preference for using technology, and the results at the end of their 

process. Therefore, the actions of the groups and their categorization were given in 

detail in the following parts. 

Group A 

The actions of Group A took form around three different assumptions about the 

tumor’s shape. These were circle, rectangle, and ellipse models. Group A's data on 

the tumor’s shape were categorized with a total of eight cycles. These cycles included 

three different models and different solution methods to create these models. 

Because there were many cycles to categorize Group A’s actions, not all of these 
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cycles were given in this section as a table in detail. The following table shows the 

registers that Group A used in each transition/phase and modeling cycle (see 

Appendix C for the detailed table including modeling transitions and semiotic 

actions of Group A).  

Table 4.5 Group A’s Semiotic Registers Specific to Transitions/Phases and 

Modeling Cycles 

Transitions/Phases Modeling Cycles 

 1st 2nd 3rd  4th  5th  6th  7th  8th  

Understanding NaR        

Situational Model NaR        

Simplification/Structuring NaR NaR NaR NaR NaR NaR NaR NaR 

Real Model NaR NaR NaR NaR NaR NaR NaR NaR 

Mathematizing GR GR GR GR GR GR GR GR 

Mathematical Model GR GR GR GR GR GR GR GR 

Working Mathematically         

Mathematical Results   NuR   NuR  NuR & AR 

Interpreting NaR NaR NaR NaR NaR NaR NaR NaR 

Real Results         

Validating  NaR    NaR   

Note. NaR: Natural Register; NuR: Numeric Register; AR: Algebraic Register;      

GR: Geometric Register 

After understanding the task, they simplified the problem by making assumptions. 

In the first cycle, a circle model was created inside a quadrilateral. To represent this 

model, Group A created a mathematical model using the necessary tools on 

GeoGebra. Then, they interpreted the model in the problem context. Within the scope 

of this model, the members of Group A observed that created circle could not cover 

the whole tumor, and it covered much more healthy tissue. Therefore, they looked 

for a different solution and made new assumptions in the next cycle. During the first 

cycle, Group A’s actions from understanding to the real model were determined as a 

natural register. In addition to these transitions/stages, the group also used a natural 
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register in the interpreting transition. Another representation used in the first cycle 

was the geometric register. Actions in the mathematizing transition and 

mathematical model phase were recorded as a geometric register. Similarly, the 

registers in the first cycle were also observed in the other two cycles (2nd and 5th 

cycle) of the group that included the circle model.  

As a different method to create a circle, Group A drew various circles passing 

through different points by using the GeoGebra tool called “Circle through three 

points” in the second and fifth cycles. The phases and transitions of the second cycle, 

in which the natural register was used, were simplification, real model, interpreting, 

and validating. On the other hand, the group used the geometric register for their 

representation in mathematizing transition and mathematical model stage of this 

cycle. The registers used in the fifth cycle were exactly the same as in the first cycle 

in terms of their type and the transition/stage in which they were observed. 

Another assumption the group made was removing the tumor as a rectangle. In the 

third cycle, the actions of the group about the rectangle were included. The natural 

register was used in the simplification process and in determining the real model, 

mostly including group’s discussion on the assumptions regarding the tumor’s shape. 

As a next step, the rectangle model was created on GeoGebra, and its area was 

calculated with the area tool. While Group A used the geometric register in the 

representation of the rectangle, their semiotic register was numeric when they 

determined its area in the mathematical results phase. The last action of the third 

cycle was observed in the interpreting transition. Group A considered that the 

rectangle was not appropriate for different tumor shapes, and it was not practical 

because drawing a rectangle and expressing the location of that rectangle with 

coordinates were more difficult than drawing a circle and expressing the location of 

that circle with the equation of it. This interpretation was also recorded as the natural 

register. 

In the remaining cycles, actions on the ellipse model took place with different 

solutions to create it. After simplifying the problem by making an assumption about 
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the ellipse, Group A tried to create it on GeoGebra. First, they used the “ellipse” tool 

on GeoGebra and drew an ellipse covering the whole tumor. However, they observed 

that the enclosed area with an ellipse was greater than a circle, and it covered much 

more healthy tissue because they used the farthest points of the tumor as focus points. 

As seen in Table 4.5, in the fourth cycle, the group used natural registers while 

assuming and interpreting their model in context. On the other hand, their actions 

related to creating their ellipse model were included in the geometric register.  

After returning to the circle model in the fifth cycle, Group A decided to draw the 

ellipse again in the sixth cycle. To create it, they identified the focus points of the 

ellipse by finding the midpoints of the farthest ends of the tumor. With this method, 

they were able to create an ellipse covering the entire tumor. When they compared 

the area of the ellipse with the circle they constructed in the previous cycle; they saw 

that the area of the circle was larger. In light of this comparison, Group A decided 

that the ellipse was a more reasonable model for different tumors at their validation 

transition because they thought that if the major axis and minor axis of the ellipse 

were equal, it would indicate a circle. Table 4.5 shows which registers were used in 

the sixth cycle. The group used the numeric register in the mathematical results phase 

and the natural register for the validation. Table 4.6 shows the fifth and sixth cycle 

of Group A in detail and illustrates the actions mentioned above. 
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Table 4.6 The modeling transitions and semiotic actions of Group A in the fifth and 

sixth cycle 

5th Cycle 

Transitions Semiotic Actions Registers Explanations 

Simplification/ 

Structuring 

     

      Treatment 

Natural Return to situation for the circle model 

Simplifying and making assumptions 

Real Model  

            

    Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created by using “Circle through three 

points” tool 

Mathematizing  

 
 

 

         Treatment 

Geometric Drawing a circle via “Circle through three 

points” tool on GeoGebra by using 

identified points 

Mathematical Model          

   

   Conversion 

Geometric Different circles (E, F, D points, E, F, H 

points and E, F, C points) passing through 

the identified points around the tumor 

Interpreting  

 

 

                                           

Natural Interpreting to Reality: Created circles (E, 

F, D points and E, F, H points) could not 

cover the whole tumor. Created circle (E, F, 

C points) could cover the whole tumor 

6th Cycle 

Simplification/ 

Structuring  

 

 

       Treatment 

Natural Return to situation for the ellipse model  

Simplifying and making assumptions 

Real Model  

 

 

        

 

            

    Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created according to the farthest points 

around the tumor 

Determining focus points of ellipse 

according to the midpoints of the midpoint 

of the farthest points around the tumor 
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Table 4.6 (continued) 

Mathematizing  

 

 

     

Treatment 

Geometric Identifying focus points by using the 

farthest two point  

Drawing an ellipse via “Ellipse” tool on 

GeoGebra 

Mathematical Model  

   Conversion 

Geometric Ellipse created by using the different focus 

points 

Mathematical Results  

    

     Conversion 

Numeric Area of the circle passing through E, F, C 

points: 103.33  

Area of the ellipse: 103.76 

Interpreting  

       

     Treatment 

Natural Interpreting to Reality: Created ellipse 

could cover the whole tumor, but it has a bit 

more tissue than the circle. . 

Validating  Natural Generalization: Ellipse model is more 

appropriate than the circle for the different 

tumor shapes. Also, ellipse model is more 

reasonable because ellipse approaches to 

the circle when its diameters are equal. 

Validating the models by checking them on 

the tumor having different shape. 

 

In the seventh cycle, Group A tried to create an ellipse by using the input command 

of GeoGebra. The input command was FitImplicit({F, G, C, J, E, I, D, H}, 2). This 

command was accepted as a geometric register in the mathematizing transition as 

different from the other cycles. After entering the command, they obtained an ellipse 

that they could change its endpoints. Because the constructed ellipse indicated a 

curve, Group A could not reach its area via the area tool. Therefore, they tried another 

way to create an ellipse in the last cycle. Using the GeoGebra tool named “Conic 

through five points,” the group could draw an ellipse covering the whole tumor and 

having a smaller area. In the mathematical results phase, while the area of the ellipse 

was represented in a numeric register, the equation for expressing the tumor's 

location was represented in an algebraic register. 
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Group B 

Four different assumptions were made for the shape of the tumor by Group B. These 

were circle, square, regular pentagon, and ellipse models. Similar to Group A, the 

actions of this group also were presented in seven cycles. Because there were many 

cycles to categorize Group B’s actions, not all of these cycles were given in this 

section as a table in detail. Table 4.7 shows the registers that Group B used in each 

transition/phase and modeling cycle (see Appendix D for the detailed table including 

modeling transitions and semiotic actions of Group B). 

Table 4.7 Group B’s Semiotic Registers Specific to Transitions/Phases and Modeling 

Cycles 

Transitions/Phases Modeling Cycles 

 1st 2nd 3rd  4th  5th  6th  7th  

Understanding NaR       

Situational Model NaR       

Simplification/Structuring NaR   NaR NaR NaR NaR 

Real Model NaR   NaR NaR NaR NaR 

Mathematizing NuR GR     GR 

Mathematical Model  GR AR AR AR AR GR 

Working Mathematically NuR NuR NuR NuR NuR NuR  

Mathematical Results NuR AR NuR NuR NuR NuR AR 

Interpreting    NaR NaR NaR NaR 

Real Results       NuR & AR 

Validating   NaR   NaR NaR 

 

To begin with, the group understood the problem situation and made assumptions 

about the tumor's shape. As mentioned in the previous part, Group B used the 

determined proportionality constant in most cycles. The necessary lengths to 

determine the area of the assumed shapes were found by calculating their actual 

lengths at every turn. Table 4.8 shows the first cycle of Group B in detail and 

illustrates the actions mentioned above. From understanding to the real model phase, 
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the representations of the actions were included in the natural register. In the 

modeling process, the length of the diameter of the circle was determined, and its 

actual length was calculated. The register of these actions was recorded as numeric.  

In their second cycle, Group B created a static circle whose diameter was determined 

in the previous cycle on GeoGebra. These actions were recorded as geometric 

registers and included in the mathematizing and mathematical model. As a next step, 

the group used the coordinates of the center point and the length of the radius to 

determine the equation of a created circle in the working mathematically transition. 

Here, they submitted the determined values in the circle equation for the location of 

the tumor. This substituting action was included in the numeric register. At the end 

of this action, the mathematical result in which they found the location of the tumor 

was represented as the algebraic register. 

Table 4.8 The modeling transitions and semiotic actions of Group B in the first 

cycle 

1st  Cycle 

Transitions Semiotic Actions Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

                      

       Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/ 

Structuring 

 

  

Natural Simplifying and making assumptions 

Real Model         

 

 

 

           

   Conversion 

 

         

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created according to the farthest two points 

around the tumor horizontally and 

vertically. 

For the location of the tumor: The chest x-

ray can be put on a coordinate system and 

the equation of the circle can be used. 
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Table 4.8 (continued) 

Mathematizing  

                                           

Numeric Establish a proportion for the diameters 

whose lengths are 42 (vertical) and 43 

(horizontal) unit squares. 

Working 

Mathematically 

 

 

 

        Treatment 

Numeric Finding the actual length of the diameters 

by solving the proportion: 

▪ If 14 unit squares equal to 2.5 cm, what 

is the actual length of 42 unit squares? 

Then, half of it is radius. 

▪ If 14 unit squares equal to 2.5 cm, what 

is the actual length of 43 unit squares? 

Then, half of it is radius. 

Mathematical Results  

        

Numeric The length of the vertical diameter is 7.5 

cm, and the radius is 3.75 cm. 

The length of the horizontal diameter is 

7.68 cm, and the radius is 3.84 cm. 

 

The third cycle includes the process of the calculations on the circle area. While 

determining the area of the circle, Group B preferred to find it with the area formula 

of the circle instead of the area tool on GeoGebra. To do this, they used the formula 

of “𝜋𝑟2” as a mathematical model and substituted relevant values into this formula 

to find the area. They obtained the area of the circle as 46.30. As seen in Table 4.8, 

the register of the mathematical model is algebraic. On the other hand, their actions 

of substituting the values and finding a result are represented in numeric registers. 

To validate their result, Group B also considered checking other shapes that would 

be constructed around the tumor.  

Group B worked on the square, regular pentagon, and ellipse models in the 

subsequent three cycles. They first made their assumptions for these models to 

simplify the problem situation. Then, they used the area formula of the determined 

shape as a mathematical model. In the mathematical working transition, they both 

calculated the actual lengths of the values they will use for the formula and 

determined the area of the shapes. They then obtained a mathematical result for each 
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shape and compared it with the areas of other shapes in context. In these three cycles 

(4th, 5th, and 6th), the natural register was used in the simplification process, real 

model phase, and interpreting transition. On the other hand, while the mathematical 

model was represented through an algebraic register, the register in the working 

mathematically, and the mathematical result was numeric.  

In the seventh cycle, the group considered creating the ellipse whose area was 

smaller than the circle on GeoGebra. Using the same method as Group A, this group 

also used the input command to draw an ellipse passing through determined points 

around the tumor. While the actions in the simplification process were represented 

in a natural register in this cycle, the group’s mathematizing process and 

mathematical model were in a geometric register. In the next step, Group B obtained 

the equation of the ellipse but could not find the area of it because the created shape 

did not indicate a region on GeoGebra. The created shape/curve was just a curve that 

the area tool of GeoGebra did not work when group members clicked on that 

shape/curve. Therefore, their mathematical result was included in the algebraic 

register. Group B preferred to use the circle as a final model because they thought 

that the shape of the tumor was too close to a circle. Their representations in 

interpreting and validating transitions were included in the natural register. In the 

real model phase, the size and location of the circle were represented in a numeric 

register and an algebraic register, respectively.  

Group C 

Group C was a group that made an assumption on a single model and developed their 

solutions to build that model. The actions of the group choosing the circle model for 

the shape of the tumor were presented in two cycles. These cycles are shown in Table 

4.9 below.  

In their first cycle, the group initially understood the problem situation, then 

simplified it by assuming the shape of the tumor as a circle. To create that circle, 

they transferred the x-ray to GeoGebra in actual size and identified three points 

around the tumor. Then, the “circle through three points” tool in GeoGebra was used 
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to draw a circle. Within the scope of the context, the group observed and interpreted 

whether the constructed circle covered the whole tumor to identify the appropriate 

circle. In the next process, the size of the tumor was determined, and the 

generalization was made within the mentioned solution. From understanding to real 

model transitions/stages, the group used the natural register in this cycle. In addition 

to these transitions/stages, a natural register was also used in the interpreting and 

validating processes. While their actions on drawing a circle on GeoGebra were 

presented in a geometric register, the real result was represented in a numeric 

register.  

In the next cycle, aiming to draw a circle more precisely, Group C used the sliders 

and input command. Initially, three sliders were created at the estimated intervals 

and named a, b, and r to represent the x-y coordinates of the center and radius of the 

circle, respectively. The equation of the circle was entered into the input in the next 

step, and the circle was created as a mathematical model. Dragging the sliders, they 

determined the almost perfect circle around the tumor. Their actions in the process 

of simplification, interpretation, and validation were involved in the natural register. 

While their real results were represented in algebraic and numeric representations, 

the group used the algebraic and geometric representations in the mathematizing and 

mathematical model phases, respectively.  
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Table 4.9 The modeling transitions/phases and semiotic actions of Group C 

1st  Cycle 

Transitions/Phases Semiotic Actions Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

       Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/ 

Structuring 

 

  

Natural Simplifying and making assumptions 

Real Model         

 

 

            

   Conversion 

 

         

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created by using the “Circle through three 

points” tool 

For the location of the tumor: The chest x-

ray can be put on a coordinate system. 

Mathematizing  

                       

 

        Treatment                     

Geometric Identifying several points around the tumor 

on GeoGebra.  

Drawing a circle via “Circle through three 

points” tool on GeoGebra by using 

identified points 

Mathematical Model  

Conversion 

Geometric Circle passing through the identified points 

around the tumor (K, L, M points) 

Interpreting  

       Conversion 

Natural Interpreting to reality: Created circle could 

cover the whole tumor. 

Real Results  Numeric The size of the tumor is 53.5 cm2. 

Validating    Conversion Natural Generalization: To identifying the location 

and area of the tumor, x-ray is needed to be 

switched in coordinate system in actual 

size, then the circle is drawn around the 

tumor by looking the farthest points of it. 
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Table 4.9 (continued) 

2nd Cycle 

Transitions Semiotic Actions Registers Explanations 

Simplification/ 

Structuring 

    

 

        Treatment 

Natural Return to the situation to look for a more 

precise circle 

Simplifying and making assumptions 

Real Model 

       

 

    Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created by input command on GeoGebra. 

For the location of the tumor: The chest x-

ray can be put on a coordinate system, and 

the equation of the circle can be used. 

Mathematizing  

  

 

 

     Conversion 

Algebraic Creating three sliders (a, b, and r) 

representing center coordinates and the 

length of the radius of the circle 

Entering a circle equation depending on 

sliders to input on GeoGebra to draw a 

circle around the tumor 

Input Command: (x-a)2 + (y-b)2 = r2 

Mathematical Model   

    Conversion 

Geometric Circle with the center of (8.8, 18.7) and the 

radius of 4.2 

Interpreting  

       Conversion 

Natural Interpreting to Reality: Created circle could 

cover the whole tumor. 

Real Results 

     Conversion 

Numeric The size of the tumor: 55.42 cm2 

    

       Conversion 

Algebraic The location of the tumor:  

c: (x - 8.8)² + (y - 18.7)² = 17.64 

Validating  Natural Generalization: Firstly, it is needed to find 

the actual size of the x-ray and it is switched 

to a coordinate system in actual size. Then, 

the smallest circle covering the whole 

tumor is found by entering the circle 

equation to input on GeoGebra. The 

location of the tumor is also determined by 

using the equation of the created circle. 
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Group D 

Group D was another group that assumed just a circle model for the irregular-shaped 

tumor. As mentioned before, Group D used the proportionality constant for the 

operations related to the tumor's shape instead of for the actual size of the x-ray 

because they did not prefer to use technology and transfer the x-ray in actual size to 

GeoGebra. The detailed actions of Group D are shown in Table 4.10 below.  

To begin with, Group D understood the problem situation and simplified it by 

assuming the tumor could be represented with a circle. Their actions showed 

similarities to Group A and B in some ways to determine that circle. While these 

actions were similar to Group A with the idea of drawing a circle inside a square, 

they were also similar to Group B in measuring the farthest points of the tumor 

horizontally and vertically to determine the diameter of the circle. These actions from 

understanding to the real model were determined as a natural register, as seen in 

Table 4.10. In the next process, the group visualized their circle model on paper using 

the necessary materials. Their visual representations in mathematizing transition and 

mathematical model phase were included in the geometric register. 

On the other hand, Group D also determined the area formula of the circle as a 

mathematical model. In the working mathematically transition, they initially 

calculated the actual length of the radius. They then substituted the identified values 

in the area formula and reached the size of the tumor. While they used an algebraic 

register to represent a mathematical model of the area of the tumor, their actions in 

calculating the operations and reaching the mathematical results were represented in 

a numeric register. For the location of the tumor, Group D identified the coordinates 

of the center of the circle by measuring the x-ray in image size. Still, these 

coordinates were wrong because they had not calculated the actual size of the x-ray. 

Then, they used these coordinates and the length of the radius for the equation of the 

circle to express the location of the tumor. As the last action, the group made a 

generalization for future surgeries and completed their process. Specifically, the 
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group used the algebraic register for representing the location and the natural register 

to generalize their results. 

Table 4.10 The modeling transitions/phases and semiotic actions of Group D 

1st  Cycle 

Transitions/Phases Semiotic Actions Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/ 

Structuring 

 

  

Natural Simplifying and making assumptions 

Real Model         

 

 

 

           

   Conversion 

 

         

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created inside a square.  

The diameter of the circle is also one of the 

side of the square that will be determined 

according to the long distance horizontally 

or vertically 

For the location of the tumor: The chest x-

ray can be put on a coordinate system. 

Mathematizing  

                    

 

    Treatment                        

Geometric Drawing a square having the side of 4 cm 

(image length) around the tumor and 

creating a circle (with the diameter of 4 cm) 

in that square to cover the whole tumor in 

minimum size. 

Mathematical Model  

 

 

Conversion 

Geometric Circle with a radius of 2 cm (image 

length) inside the square created in 

paper-pencil environment. 
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Table 4.10 (continued) 

                      

Conversion 

Algebraic The area formula of a circle for the size 

of the tumor is πr2 

Working 

Mathematically 

 

 

 

  Treatment    

Numeric Image length of the radius of 2 cm is equal 

to the actual length of the radius is 5 cm 

where the ratio is 1:2.5.   

Substituting the value of r=5 and π=3.14 in 

the formula of πr2 

Mathematical Results  

     Conversion   

Numeric The area of the tumor is 78.5. 

 

       

 Conversion 

Algebraic The location of the tumor is  

(x-11.5)2 + (y+0.5)2=25 

Validating  Natural Generalization: Firstly, the tumor is 

resembled to geometrical shape. Then, the 

distance is measured both vertically and 

horizontally. If this distance is equal, then 

the tumor is circular area. If not, it is elliptic 

area. For the location, x-ray is placed in 

coordinate system and the ratio between the 

image and actual size is found. According to 

this ratio, the coordinate of the center is 

identified, then the equation of the shape is 

determined. Lastly, the size of the tumor is 

found by using the area formula of 

determined shape. 

 

Group E 

In developing their mathematical model for the task, Group E concentrated on two 

different shapes for the irregular-shaped tumor, a circle, and a pentagon. The 

following table shows the registers that Group E used in each transition/phase and 

modeling cycle. 
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In the first cycle, Group E initially understood the task and made an assumption 

about the shape of the tumor. As a first solution, they considered creating a circle on 

GeoGebra according to the farthest points on the tumor's boundaries. After 

identifying the estimated most distant points across each other and their midpoint, 

they created different circles via GeoGebra's “Circle with center through point” tool. 

Then, they chose the almost perfect circle covering the whole tumor. Group E used 

the natural register in their understanding, simplification, and interpretation process 

in the first cycle, as seen in Table 4.11 (see Appendix E for the detailed table 

including modeling transitions and semiotic actions of Group E). On the other hand, 

they used the geometric register to create their circle model. Lastly, the size and 

location of the tumor were determined as a real result by using the information 

obtained from the GeoGebra. Their registers were numeric and algebraic, 

respectively. 

The group’s other assumption was to remove the tumor as a pentagon because the 

shape of the tumor was quite like a pentagonal. The actions related to the pentagon 

were presented in the second cycle. When the members of Group E made 

assumptions in the simplification process, they used the natural register like in the 

first cycle. As a next step, five points were identified at the edges of the tumor. Then, 

the polygon tool was used to draw a pentagon around the tumor. They found that the 

constructed pentagon covered the entire tumor and had less area than the circle. As 

the last action, they made a generalization on their findings and concluded that the 

circle model was more appropriate than the pentagon for different tumor shapes and 

more practical to determine it. In forming the pentagon, the group used the geometric 

register, and their interpretations of the pentagon in the context were recorded as a 

natural register. In addition to these registers, the mathematical result on the area of 

the pentagon was numeric, and the group’s generalization was a natural register in 

the last cycle.  
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Table 4.11 Group E’s Semiotic Registers Specific to Transitions/Phases and 

Modeling Cycles 

Transitions/Phases Modeling Cycles 

 1st 2nd 

Understanding NaR  

Situational Model NaR  

Simplification/Structuring NaR NaR 

Real Model NaR NaR 

Mathematizing GR GR 

Mathematical Model GR GR 

Working Mathematically   

Mathematical Results   

Interpreting NaR NaR 

Real Results NuR & AR NuR 

Validating  NaR 

 

4.1.3 Summary of the Semiotic Representations 

In this section, the semiotic registers that the groups used in their modeling process 

are presented to examine their characteristics holistically. Table 4.12 displays which 

register is used in which part of the “Tumor Surgery” task by the group.  

As seen in Table 4.12, each group used both natural and numeric registers to 

determine the actual size of the x-ray. Similarly, semiotic representations that groups 

used also show similarity in terms of their types in the determination of the location 

of the tumor. Here, natural and algebraic registers were used in the process of each 

group.  
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Table 4.12 Characteristics of the Groups in terms of the Semiotic Registers 

 
Registers Actual Size 

of the X-Ray 

Shape of the 

Tumor 

Area of the 

Tumor 

Location of the 

Tumor 

 

Group A 

Natural + + + + 

Numeric +  +  

Geometric  +   

Algebraic    + 

 

Group B 

Natural + + + + 

Numeric +  +  

Geometric  +   

Algebraic   + + 

 

Group C 

Natural + + + + 

Numeric +  +  

Geometric  +   

Algebraic  +  + 

 

Group D 

Natural + + + + 

Numeric +  +  

Geometric  +   

Algebraic   + + 

 

Group E 

Natural + + + + 

Numeric +  +  

Geometric  +   

Algebraic    + 

 

Differences in the groups’ semiotic registers were seen in the parts related to the 

shape and area of the tumor. Actions of Group A for the shape of the tumor were 

included in both natural and geometric registers. In addition to Group A, the semiotic 

registers of the other groups for the shape of the tumor were also involved in the 

natural and geometric registers. At this point, it is seen that Group C also used the 

algebraic register for the shape of the tumor, unlike the other groups. For the area of 

the tumor, the same semiotic registers were used in the representations of Group A, 

C, and E. Their actions were included in both natural and numeric register for this 
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part of the problem. On the other hand, Group B and D also used the algebraic 

register in addition to the natural and numeric register for the area of the tumor. 

As the last finding, the natural register is the only register that all groups used in each 

part of the problem. 

4.2 Modeling Routes of Groups 

This section includes the five parts presenting groups’ modeling routes in the “Tumor 

Surgery” modeling task. Their modeling processes are shown in a graphical 

representation named Modeling Transitions Diagram (MTD). 

4.2.1 Group A: Ahsen, Asya and Aylin 

Preservice teachers in Group A worked on various models and explored different 

solution methods for these models during their process. Group A’s MTD showing 

their detailed modeling routes is shown in Figure 4.7 below.  

 

Figure 4.7 Modeling Transition Diagram of Group A and their Modeling Route 

 

The MTD of Group A indicated that the modeling process of the group was too 

complex from the beginning to the end. Here, Group A had too many entries, 
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especially in the simplification/structuring compared to the other transitions. In 

addition to a large number of entries, their simplification process continued almost 

to the end, just like in mathematizing, validating, using technology, and reporting 

stages. On the other hand, the frequencies of incidences in understanding, working 

mathematically, and interpreting transitions were visibly less, and they ended earlier 

compared to the other ones.  

In Group A's MTD, it was difficult to follow the entries and determine the different 

cycles. In Figure 4.7, the green box on the left specifically included the entries related 

to the actions of Group A in resizing the x-ray and mainly their assumptions on tumor 

shapes. Here, Group A focused on the different parts of the modeling task. The green 

box on the left did not represent a cycle for a particular model or solution, but it 

included different cycles related to the mentioned parts of the modeling task. On the 

other hand, the green box on the right also had different cycles starting with 

simplification/structuring transition and ending with validating transition. More 

specifically, in the green box on the right, the mentioned cycles included the actions 

related to different models such as circle and ellipse, and the different solution 

methods for these models. Here, in the first of the boxes mentioned above, it seemed 

that the cycles did not proceed on a regular path. When the entries in this box were 

examined, it was observed that the group frequently moved forward and backward 

between transitions. On the other hand, when the cycles in the green box on the right 

were examined, it could be observed that these cycles had more sequential 

progression from the simplification to the validating transition. 

Another important detail that needs to be mentioned is that the transitions in which 

the group was involved did not progress regularly. As seen in the MTD, the group 

was not always moving forward; they often had backward actions in terms of 

modeling transitions. To mention this regular progress in the modeling route from 

another perspective, it could be said that the group continued their process by 

jumping some transitions at many moments. Explaining this event with an example 

may make the situation more understandable. Specifically, the group initially 

acquired the general impression of the task and simplified it right after. At this point, 
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the group jumped to the validating from the simplification/structuring transition at 

the very beginning of their process. One of Group A’s members, Ahsen, had used 

the implicit statement about the reasonableness of her assumption on the shape of 

the tumor. This statement is given in the following dialogue. 

Teacher: Let's not think of the liver as a volume right now; you can just think 

of it as a surface area. 

Ahsen: For example, when we think of it as a circle… 

Teacher: So, think of it in two dimensions. Imagine you remove it in the form 

of a two-dimensional disk. The area of the disk… 

Ahsen: Okay, it’s a circle. 

In the above episode, it was seen that Ahsen likened the tumor to a circle. At that 

moment in the classroom conversation, the statements confirming the model 

produced by Ahsen on the teacher’s explanations about the task moved the group 

from the simplification/structuring to the validating transition. It can be observed 

that such jumps and going backward in transitions were widespread in the modeling 

route of Group A. 

According to the markings in the MTD, the group is repeatedly involved in the same 

transition in some moments. In other words, they show a horizontal progression. For 

example, while they took place in the understanding level for about 250 seconds at 

the beginning of their processes, it was observed that they displayed this horizontal 

progress at the reporting level towards the end of their modeling processes. When 

the progress of the group was examined second to second, it was noticed that the 

only transition where there was no horizontal progression was the interpreting 

transition. 

Some markings of different transitions in the MTD coincided with the same second. 

Especially, it was seen that the dots in the using technology stage were marked 

simultaneously with both the simplification/structuring and mathematizing 

transitions. This situation was also observed when any statement in the unit of 
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analysis was assigned to more than one indicator belonging to the different 

transitions. The episode below illustrates the mentioned situation. 

Ahsen: For example, how did we fix this right now? 

Aylin: We placed the bottom on the x-axis; we accepted the middle of it as 

(0,0).  

Asya: These 10 small squares are equal to 2.5 cm. We know that. We have this. 

Aylin: We have now determined the coordinate system according to our way. 

Ahsen: No. The teacher said, for example, that when we enlarged this shape, 

it changed. How do I make sure it doesn't change? 

Aylin: Now, we have ensured that it does not change in this way. According to 

this measure, our 10 square units is 2.5… 

Asya: Do you know how it happened! For example, you enlarged this. If this 

is equal to 2 units, then a hundred percent, that is, the whole, will be equal to 

4 units. 

Ahsen: But we will have defined it in the coordinate system.  

Asya: After that, this will also enlarge. 2 units equal 2.5, 4 units become 5 

again.  

Aylin: Yes, exactly.                                                                                                             

Ahsen: Okay. I got it. 

In the dialogue above, the group members discussed fixing the x-ray on GeoGebra 

by finding its actual size. At the beginning of the dialogue, Ahsen's question on 

understanding the solution and what they were doing was included in the 

understanding transition. In contrast, the other group members attempted to justify 

their solutions and convince Ahsen were included in the validating step. 
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4.2.2 Group B: Bahar, Beliz and Berna 

Group B was also another group working on various models during their process. 

Their MTD is displayed in Figure 4.8 below. 

 

Figure 4.8 Modeling Transition Diagram of Group B and their Modeling Route 

 

Similar to Group A, the modeling process of the group was also too complex from 

the beginning to the end according to their MTD. While the number of entries in the 

understanding and interpreting was less than the number of entries in the other 

transitions, the transition with the most entries was the simplification/structuring as 

in Group A. Furthermore, it was seen that the entries in the understanding and 

interpreting transition of the group ended earlier than the others. Another visible 

detail regarding the frequencies of the entries was that Group B, whose process was 

as complex as Group A, had much fewer entries at the using technology stage than 

Group A. 

In Group B's MTD, it was also too difficult to follow the entries and determine the 

different cycles. In Figure 4.8, the red box on the left specifically included the entries 

related to the actions of Group B in resizing the x-ray. When this cycle was 

examined, it was observed that the group frequently moved forward and backward 

between transitions in their modeling process. In the next red box just after the 2000th 

second, there was a cycle starting with mathematizing transition and ending with 
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validating transition. Here, it was also observed that the group did not have 

sequential progression within the cycle because they frequently moved forward and 

backward between transitions in their modeling process. On the other hand, the green 

box in Group B’s MTD included entries resulting by the actions of Group B in the 

various models, such as square and regular pentagon. Specifically, Group B made an 

assumption on mentioned models for the tumor’s shape and calculations on the area 

of the determined shapes in a paper-pencil environment at that moment. Lastly, it 

was also determined one more cycle in Group B’s MTD. In the red box on the right, 

the mentioned cycle included the actions related to the ellipse model. When the 

entries in this box were examined, it was observed that the group frequently moved 

forward and backward between transitions similar to other cycles.  

Like other groups, Group B's process was also not progressing on a steady path. 

Although it was observed that the entries moved forward between the transitions, 

there were also backward entries at some moments. In addition to this irregular 

progress, it could be observed that the group progressed in their modeling process 

by jumping some transitions. 

In each transition except interpreting, Group B's entries were repeated to be included 

in the same transition. To illustrate this, their first two entries were marked in the 

understanding, while the entries in the reporting stage towards the end of their 

process were marked in a row. On the other hand, the fact that the horizontal 

progression was not observed in the interpreting transition was similar to the MTD 

of Group A. 

The MTD of Group B showed that there were also some markings belonging to 

different transitions coinciding at the same second. Some of them were seen 

simultaneously in the using technology stage and the simplification/structuring or 

mathematizing transitions. The episode below illustrates one of the simultaneous 

markings other than entries at the using technology stage. 
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Beliz: There is something like that, isn't there? For example, let's say this is a 

circle; the longest chord has to be the diameter. But here, the longest chord is 

not the diameter. 

Bahar: How? 

Berna: How not? 

Beliz: For example, this one. This is 43, and this is also 43. But, this is not the 

diameter because it does not pass through the center

Bahar: This is 42. 

Berna: No, Think about it in this way. 

Beliz: For example, something like this remains, do you understand? It does 

not pass from here. Here is 43… 

Berna: No. We have a tumor like this, right? For example, we’re thinking 

about how much this will be covered in minimum as a circle. If we think it 

covers this as a minimum circle, this will be our center, which you drew here. 

We don't look at it as a thing. We don't say that part of the fluctuations; for 

example, we don’t say this is the widest. We perceive that tumor as a circle 

now. I mean, that’s the least tissue we could remove, other than that because 

we cannot remove it like that.   

Bahar: We’ll remove it, too. There will be no tumor left. We’ll create the 

smallest circle inside it. 

Berna: Exactly.  

In the dialogue above, the group members discussed the diameters of the circle model 

in horizontal (43 unit squares) and vertical (42 unit squares). According to their 

solution, they would use the longer diameter to draw a circle covering the whole 

tumor. At the beginning of the conversation, Beliz argued that the longest chord, that 

was, the diameter of the circle to be drawn, would not pass through the center when 
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she considered the intersection point of the diameters both in horizontal and vertical. 

Here, while the group was involved in the simplification/structuring transition by 

mentioning the components of the circle, they also moved to the mathematical 

working transition with Beliz’s mathematical inference that the longest chord of the 

circle must be the diameter. In addition to these transitions, the group was also 

involved in the validating transition while Beliz was questioning whether the model 

was reasonable, and the other group members were attempting to justify their 

solutions and convince Beliz. 

4.2.3 Group C: Canan and Ceren 

Preservice teachers in Group C worked on just one model and improved their model 

with the different solution methods during their process. Group C’s MTD is 

displayed in Figure 4.9 below. 

Compared to Group A and B's MTD, Group C's MTD had a simpler appearance in 

terms of the number of entries. While their statements fell intensely into the 

simplification/structuring and using technology stages, there were just two entries in 

the working mathematically transition during their modeling process. It was evident 

that the number of entries in the remaining transitions was less than ten. On the other 

hand, the entries in the understanding transition ended at the beginning of their 

process. Their mathematizing and working mathematically processes were also 

ended earlier than other transitions although those processes continued towards the 

end of the modeling process. 
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Figure 4.9 Modeling Transition Diagram of Group C and their Modeling Route 

 

In the previous two MTDs, it was too difficult to follow the entries in regular paths. 

When we examined Group C’s MTD, we could determine the different cycles. These 

cycles were represented on MTD in Figure 4.9. Based on mathematical modeling 

transitions, it could be said that the group had more actions on simplifying the 

problem or establishing the systemic structure until the 2000th second. As an anomaly 

in this section, the fact that the group did not attempt working mathematically and 

interpreting, but proceeded to the validating transition directly, could be given as an 

example. Just after the 2000th second, there was a cycle where the group completed 

all the modeling transitions. The group worked on the actual size of the x-ray at that 

moment. Also, two different cycles were not progressing in regular paths after the 

3000th and 4000th seconds. In the first of the aforementioned cycles, the group 

returned to the simplification transition several times and completed the cycle by 

jumping to the mathematical working transition. In the next cycle, the group again 

returned to the simplification stage several times, as in the previous cycle, and then 

completed the cycle with no jumping any of the modeling transitions. As mentioned 

before, the group had two different solution methods for the circle model. These 

cycles represented specifically these methods. 
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According to MTD, there were four transitions in which the entries of Group C were 

involved in the same transition in a row. Unlike the previous two groups, these 

transitions observed the horizontal progress were understanding, 

simplification/structuring, validating and reporting. The MTD of Group C also 

showed that there were some markings belonging to different transitions that 

coincided at the same second. The dots in the same second were because the group 

is also included in either the simplification or mathematizing transition while using 

technology. 

4.2.4 Group D: Deniz and Doğa 

Preservice teachers in Group D worked on just one model during their process, like 

Group C. The MTD of Group D is given in the Figure 4.10 below.  

While the statements of Group D fell intensely into the simplification/structuring like 

the other groups, there was no entry in the using technology stage. In the other 

transitions, the number of entries ranged from 4 to 13. From another perspective, the 

entries in the understanding transition continued almost until the end of their 

modeling process, unlike the aforementioned groups.  

Similar to Group C, following the entries in Group D’s MTD as a cycle was easier 

than the first two groups. After acquiring the general information on the task, Group 

D had continued their process by making assumptions on the shape of the tumor. At 

the same time, the reasonableness of their model was discussed, and the model was 

interpreted in the group. These processes could be seen as entries at the beginning of 

their MTD. Here, there was an anomaly that was jumping to the interpreting and 

validating transitions without passing through the mathematizing and working 

mathematically transitions. After the 1500th second, there was a cycle that included 

all modeling transitions but did not proceed in the regular path. Another completed 

cycle in which there was no jumping in any of the transitions was seen after 3500th 

seconds. 
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Figure 4.10 Modeling Transition Diagram of Group D and their Modeling Route 

 

According to MTD, there were four transitions in which the entries of Group D were 

involved in the same transition in a row. Unlike the first two groups, horizontal 

progress was observed in the understanding, simplification/structuring, validating, 

and reporting transitions, similar to Group C.  

The MTD of Group D showed that there were two markings belonging to different 

transitions that coincided at the same second. This coincidence was seen at about the 

3100th second in the transitions of mathematizing and reporting. Here, the group 

members wrote a report and drew mathematical representations related to their circle 

model. To illustrate, Group D initially determined the length of the diameter after 

the necessary measurements were made on the x-ray, and they wrote this process to 

the report. To visualize their model, they drew a square and a circle inside that square 

by using a ruler and compass as seen in Figure 4.11. Therefore, their actions were 

included in both reporting and mathematizing. 
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Figure 4.11 Drawings of Group D on their model and their reporting process 

 

There was also a coincidence at about the 3700th second in the transitions of 

simplification/structuring and mathematizing. Specifically, the group discussed on 

the area of the tumor and mentioned the area formula of a circle and the values in 

that formula. The following dialogue illustrates the mentioned situation. In the 

middle of the dialogue, Doğa mentioned the formula of πr2 and the value of "𝜋" 

number. Here, the group's discussion of the πr2 formula was included in the 

mathematizing transition, while their discussion of the values to use for π and r was 

included in the simplification/structuring. 

Deniz: Okay, Now let’s calculate the area. 

Doğa: Was that being asked? 

Deniz: Size.  

Doğa: What does size mean? 

Deniz: That’s the size.  

Doğa: Is size related to the area? Shall we remove it as an area? 

Deniz: The tumor we’re going to remove… 

Doğa: It’s area. Is it called it’s area? 

Deniz: It’s the amount. 
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Doğa: It’s amount… Do we find the amount of the circle from the area of the 

circle? 

Deniz: We’ll find. That is… 

Doğa: πr2? We take π as 3.14.  

Deniz: The square of 5 cm… 

Doğa: I’m calculating now.  

Deniz: Let's talk about an ellipse in generalization. 

Doğa: So, if it was a square, I would remove it as a square. If it was a 

rectangle, I would remove it as a rectangle… Multiply 2.5… 

Deniz: What is 2.5? Multiply 2.5 by 3.14. 

Doğa: 78.5. So, do we remove 78.5 gram?  

Deniz: cm2 

Doğa: But, tumor is not expressed as cm2. Isn't a tumor something like weight? 

Deniz: We think it in two dimensions. 

4.2.5 Group E: Ece, Elçin and Eylül 

Group E worked on two different models during their process, and they used 

technology at every stage of the modeling process. The MTD of Group E is given in 

the Figure 4.12 below.  

As also seen in the aforementioned groups, the simplification/structuring was the 

only transition having the most entries, unlike the other transitions according to the 

MTD of Group E. On the other hand, surprisingly, there was no entry in the working 

mathematically transition of this group. As seen in Figure 4.12, while the left side of 

the MTD had many entries involved in the different transitions, the right side was 

formed intensely by the entries in the reporting stage. In other words, this might be 
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considered as evidence that Group E spent more time in reporting their findings from 

about the 4000th second. From another perspective, the group’s simplification and 

interpretation processes ended much earlier while the entries still continued to be 

seen towards the end of the process. 

 

Figure 4.12 Modeling Transition Diagram of Group E and their Modeling Route 

 

When the MTD of Group E was examined, it was clearly seen that there was a cycle 

at the beginning of their process. According to MTD, after the reading and 

understanding, Group E was placed in the simplification process for a while. Then, 

the group constructed a model based on their assumptions, as understood by the 

entries included in the using technology and mathematizing transitions marked at the 

same second. After that, they were involved in the interpreting and validating 

transitions while evaluating the model in the context and verifying it. Between 1000th 

and 1500th seconds, the second cycle occurred. Specifically, this realized when the 

group understood that they needed to find the actual size of the x-ray. Here, the group 

was intensely involved in the simplification/structuring and using technology stages. 

In the next process, there were also two cycles that the group worked on, the circle 

model and the pentagon model. These cycles did not progress in a regular path 

because there was no entry in the working mathematically process. Also, it was 

evident that the group returned backward sometimes instead of moving forward. 
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Based on the mentioned cycles and the modeling transitions, there was also an 

uncompleted cycle at about the 1500th second. 

According to MTD, there were three transitions in which the entries of Group E were 

involved in the same transition in a row. These transitions observed in the horizontal 

progress were understanding, simplification/structuring, and reporting. Unlike 

Group C and D, there was no horizontal progression in the validating transition of 

this group. 

It can be seen there were also some markings belonging to different transitions 

coinciding at the same seconds when the MTD of Group E was examined. While 

using the technology, the actions of the groups were involved in either the 

simplification or mathematizing phase in some cases. For this reason, entries marked 

at the exact second appeared in the MTD of Group E. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

104 

 



 

 

105 

 

CHAPTER 5  

5 DISCUSSION AND CONCLUSION 

This study aimed to investigate the semiotic representations of groups’ mathematical 

modeling processes and groups’ changing modeling routes regarding the semiotic 

characteristics via technology-integrated modeling activity. In this chapter, the 

findings of this study within the scope of the mentioned aim were initially discussed. 

Then, recommendations for further research, educational implications and 

limitations of the study were explained in the following parts.  

5.1 Characteristics of Groups in terms of Semiotic Representations 

It is obvious that each individual in the world is unique, and therefore individuals’ 

mathematical understandings differ from each other. Thus, the mathematical 

thinking processes of individuals and their tendency to use different representations 

may develop by their mathematical knowledge and understanding. It is possible to 

consider that individuals’ semiotic representations in different forms and 

transformation between these representations forms can promote individuals’ 

conceptual understanding (Özcan et al., 2022). In connection with this, Borromeo 

Ferri and Lesh (2013, p. 58) mentioned that model development can occur with 

different dimensions, specifically “concrete-abstract, particular-general, situated-

decontextualized, simple-complex, intuitive-formal.” This model development is 

handled as an algebraic and numeric model, which can be considered a more specific 

dimension, in the study of Shahbari and Tabach (2020). Shahbari and Tabach (2020), 

put forward another dimension (algebraic and numeric model) based on Duval's 

(2006) Theory of Registers of Semiotic Representations (TRSR) framework. In this 

study, using Duval’s (2006) framework by extending the study of Shahbari and 
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Tabach (2020), we attempted to determine the semiotic characteristics of pre-service 

teachers working as a group.  

The findings obtained in the current study revealed that the characteristics of the 

groups varied according to the purpose of their actions in the “Tumor Surgery” task. 

The task consisted of different parts that needed to be dealt with to reach the solution. 

These parts were related to the actual size of the x-ray, shape, area, and location of 

the tumor, respectively (see Table 4.12). During the analysis process of this study’s 

data, it was seen that the actions of the groups were constantly moving between these 

parts. 

In the first part of the problem, groups had been expected to resize the x-ray to its 

actual size by proportioning the relevant values. As presented detailed in the results 

section, all groups except Group E had determined proportionality constant to resize 

the x-ray to its actual size. Group E, on the other hand, preferred to do this resizing 

on GeoGebra without establishing a proportion. Here, the actions of each group were 

similar in the specific modeling phases and transitions, and their semiotic 

representations were involved in just the natural and numeric registers. Therefore, 

the findings showed that there is no difference in terms of the semiotic characteristics 

of the groups in the actions related to resizing the x-ray to its actual size.  

In the second part of the problem, all groups compared the irregular-shaped tumor to 

a regular shape. Here, the characteristics of the developed mathematical models can 

be evaluated in two different dimensions. Specifically, the first one is related to the 

developed mathematical models varying from specific regular shape to general one, 

and the other one is the algebraic and geometric models of groups. To illustrate, 

while one of the groups had created an ellipse as a final model, others had decided 

to remove the tumor as a circle. Regardless of the semiotic representations used, 

Group A preferred to use the ellipse model as a more general shape than a circle for 

both the given tumor tissue and different shapes of tumors; that may be because they 

considered that circle is a special case of an ellipse. Among the other groups, Group 

D is another group that generalized the ellipse model for future surgeries, although 
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they preferred to use the circle model for the specific situation. However, when 

semiotic representations come into play, it is seen that the most general model 

belongs to Group C and the characteristic of their model differs from other groups. 

Group C generated a model in the algebraic register, while the other groups generated 

models in the natural and geometric registers. This is consistent with the findings of 

the study conducted by Shahbari and Tabach (2020). In parallel with our study, they 

found that the groups with algebraic models used natural and numeric and algebraic 

registers, while the groups with numeric models used just numeric and natural 

registers. As a more general model, Group C created their final model by using the 

equation of the circle whose variables could be changed with sliders; then they chose 

the best possible circle covering perfectly the whole tumor with minimum healthy 

tissue. The final models of the other groups, using natural and geometric registers, 

differed according to the method they used to draw a regular shape. Group A created 

a conic passing through five points, and they tried to reach the perfect ellipse by 

arranging the locations of the determined points. 

On the other hand, Group E attempted to create a circle according to the possible two 

farthest points around the tumor as a less general solution and tried to find the 

smallest circle covering the whole tumor. Group B and Group D determined a circle 

according to the longest horizontal or vertical distance of the tumor as a more specific 

model. In brief, considering all these situations, our study supports that the groups 

whose semiotic characteristic was determined as an algebraic model, as mentioned 

in the findings of Shahbari and Tabach's (2020) study, is a more comprehensive 

model than the other models having different semiotic characteristic because the 

groups determined as algebraic model used the other two registers (natural and 

geometric) in their modeling processes while groups determined as geometric model 

used just geometric and natural register in the current study. According to the 

findings of our study, groups were included in algebraic, geometric and natural 

register in their modeling processes related to the determination of tumor’s shape. 

On the other hand, in Shahbari & Tabach’s (2020) study, groups were included in 

algebraic, numeric and natural registers. This shows that the two studies differ in 
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terms of the registers that groups used. Additionally, regardless of semiotic 

characteristics, final models of groups for the shape of the tumor can be given as an 

example of the particular-general dimension mentioned in the study of Borromeo 

Ferri & Lesh (2013). 

In the third part of the task, the groups were expected to determine the size of the 

tumor. Here, the actions of the groups varied according to the registers that they were 

involved in to reach the area of the determined shape. While Group B and Group D 

additionally used the algebraic register for this part of the task, other groups 

generated only natural and numeric registers similar to the situation mentioned for 

the second part of the task. According to the presented results, the characteristics of 

the groups varied according to the preference of using technology and the aim of 

using it. Groups A, C, and E used the technology to create different and more precise 

models and interpret them in the context of the problem. The area of the determined 

model was found via the area tool of GeoGebra, and a numeric result was obtained 

by these groups. However, the aim of Group B in using technology was just to test 

whether their model covered the whole tumor. To determine the area of the circle, 

Group B used the area formula of the determined shape. This was quite surprising 

because Group B used the area formula of the circle to find the area of the tumor, 

although some of the members had sufficient knowledge of the use of GeoGebra and 

were aware of the area tool. The same action related to finding an area was also 

observed in Group D. Because they did not prefer to use the technology in any part 

of their process, they also used the area formula of the determined shape. This is why 

these groups used the algebraic register in actions related to the area of the tumor. 

The findings related to this part of our study were exactly similar to the findings of 

Shahbari and Tabach (2020), and the semiotic characteristics of the groups could be 

determined as algebraic and numeric. 

In the fourth part of the problem, the groups were expected to determine the location 

of the tumor. Here, the acts of each group were the same, and their semiotic 

representations were involved in the natural and algebraic register. Therefore, the 
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findings showed no difference in actions related to the tumor's location, like in acts 

related to resizing the x-ray. 

To summarize, the characteristics of the mathematical models that the preservice 

teachers used in terms of semiotic registers varied in the parts related to the shape 

and area of the tumor. Regarding semiotic registers, the most general model belonged 

to Group C, and their semiotic characteristic was determined as the algebraic model. 

In contrast, the others were the geometric model in the parts related to the tumor’s 

shape. For the area of the tumor, the semiotic characteristic of Group B and Group 

D using the area formula of the circle was determined as an algebraic model. In 

contrast, the semiotic characteristic of other groups using the area tool in GeoGebra 

was determined as numeric, like in the study of Shahbari and Tabach (2020). As an 

important detail regarding the algebraic and numeric model in the process of finding 

the area of the tumor, the semiotic characteristics of the groups showed an alteration 

according to their preference for using technology and their purpose to use 

technology. 

Contrary to the study of Shahbari and Tabach (2020), in which students’ final models 

were categorized under two registers, algebraic and numeric, in this study, no 

specific semiotic register was determined to categorize the characteristics of the 

groups’ models within each modeling cycle or their whole modeling process. In this 

study, it was observed that four types of semiotic representations were used by each 

group, but they showed alterations in each part of the modeling task. Considering the 

semiotic representations in each modeling cycle or groups’ whole modeling process, 

the fact that the groups were not included in a certain semiotic characteristic can be 

explained by the nature of the modeling task. By its nature, the solution to the Tumor 

Surgery task was provided by four types of semiotic registers determined in this 

study. For example, pre-service teachers were expected to determine the equation of 

the created shape in determining the location of the tumor in the lung. This situation 

pushed the pre-service teachers to make a representation with algebraic notations in 

this process. This and similar situations may have resulted in all groups using all 

types of the registers in their representations in different parts of the task.   
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The nature of the modeling task may have affected groups in using certain registers 

in their whole modeling process. In the current study, the groups did not have a 

particular semiotic characteristic in their entire modeling process. Still, Shahbari and 

Tabach (2020) were able to assign groups to a particular semiotic characteristic. In 

the modeling task used by Shahbari and Tabach (2020), no numerical values were 

given. Pre-service teachers were expected to make assumptions about both the three-

dimensional shape and the length of its dimensions in order to find a volume that 

could vary according to the assumptions. Then they were expected to compare the 

volumes in the old and new situations. On the contrary, in our modeling task, pre-

service teachers were given a length and expected to determine the area of a shape 

with a certain size and find its location based on this length. In this way, two different 

modeling tasks with different expectations (comparing volumes by determining 

ratios and determining an area/location of irregular shape with a certain size) may 

have affected the pre-service teachers' preferences for using particular semiotic 

registers or various semiotic registers in their whole modeling processes. To 

illustrate, in Shahbari and Tabach’s (2020) study, since the ratio between two 

different numerical values can be established, numeric models may have been chosen 

to use random numerical values in comparing the volumes in their whole process. 

Similarly, since the necessary results can be obtained for comparison of volumes 

when a ratio was made between the formulas, including algebraic notations, the 

semiotic registers of the algebraic models may have mainly changed as algebraic 

registers. However, in the current study, pre-service teachers' assumptions were 

related to the tumor's shapes, and this enabled pre-service teachers to create different 

regular shapes with various methods open to using different semiotic registers. This 

may have resulted in the use of more registers in our study and the emergence of 

variation of these registers in different parts of the modeling task.  
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5.2 Modeling Routes of Groups 

In the process of mathematical modeling, there is an intense interaction between 

mathematics and the real world. In this regard, Borromeo Ferri (2007) has revealed 

a structure between these interactions, which she called “the individual modeling 

route,” in which individuals’ cognitive procedures were examined in the modeling 

process. The representation of modeling routes was displayed in the modeling cycle 

of Blum and Leiß (2007) by Borromeo Ferri (2007). Shahbari and Tabach (2020) 

used the same representation format, which shed light on this study. Still, the 

complexity of the modeling processes of groups in the current study prompted us to 

look for a different structure for the representation of modeling routes. As mentioned 

in detail in the methodology chapter (see section 3.5.1.1), the graphical 

representation of modeling routes was preferred in this study like in the studies of 

Ärlebäck (2009), Czocher (2016), and Albarracin et al. (2019). 

In the presentation of the findings of the study, modeling routes of the groups were 

handled in terms of the complexity of the MTD, the frequency of being in modeling 

transitions, sequential progression of the transitions, completed cycles, horizontal 

progression in a particular transition, and overlapping of transitions. To begin with, 

the MTD of Group A and Group B had a more complex appearance than others. This 

may be due to the fact that these groups produced much more solutions than the other 

groups and therefore had more modeling cycles. Specifically, Group A had so many 

answers because they wanted to create a more general model with the smallest area 

and was more appropriate for possible tumor shapes. In this way, Group A had more 

modeling cycles reflecting their modeling processes as they produced both different 

shapes and different solution strategies in creating these shapes to make the 

necessary revisions during the validation process. On the other hand, Group B had 

also many modeling cycles that they worked on various shapes, from circle to 

pentagon, to verify that a model they had created was the best one having the least 

area. It was quite challenging to follow the modeling routes of groups having 
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complex MTDs and to determine a certain cycle. On the other hand, noticeable 

cycles could be detected in MTDs having a simpler appearance (Group C, D and E). 

In her study, Czocher (2013) stated that students were more involved in the 

simplification/structuring transition in the MTD belonging to “The Cell Problem” 

task, and it was observed that there were more entries in the mentioned transition in 

almost all MTDs belonging to other tasks. Similarly, in the current study, it was also 

observed that this step was represented much more in all MTDs regardless of the 

group. Obviously, there are too many indicators in the simplification/structuring 

transition in the rubric (see Table 3.2) used to determine the modeling transitions, 

and this made us think of the reason why there were more input in the simplification 

process. The fact that Czocher (2013) observed this situation in the MTDs of Fermi 

problems, which she determined as a validating activity, was consistent with our 

findings. More specifically, even in validating activity that requires more modeling 

competencies such as justifying and verifying, the reason why students were more 

involved in the simplification transition may be that there are more indicators in the 

simplification transition in rubric. 

On the contrary, Czocher (2016) also reported that there were anomalies in MTDs 

of students because there is no students’ actions in some transitions throughout their 

modeling process. A similar case was also observed in the current study. To 

illustrate, Group D had no action in using the technology stage because they did not 

prefer to use technology. Moreover, Group E had no action in working 

mathematically transition because they used the technology in each action. Their 

actions could not involve working mathematically transition while assigning 

indicators in the rubric. Regarding the frequency of entries in different transitions, 

another striking detail was that the transitions with fewer inputs ended earlier than 

the other transitions in almost all MTDs in this study.  

The regular progression of the transitions in MTD was determined in the current 

study, as that groups moved forward from understanding transition to validating 

transition in their modeling routes. This was also visualized in the idealized MTD of 
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Czocher (2016). In this regard, there were some differences in the MTDs of groups. 

To illustrate, it was observed that all groups moved both forward and backward in 

their actions within any cycle. At this point, Group A, B, C, and D were the groups 

that did not have regular progression in their MTDs. On the other hand, a completed 

cycle was observed with no jumping of the particular transition in MTDs of these 

groups. The completed cycles (Shahbari & Tabach, 2020) having no regular 

progression presented in this study were similar to the studies in the literature 

(Ärlebäck, 2009; Czocher, 2016). Another remarkable detail regarding MTDs is that 

some of the groups (Group A, B, and C) jumped to the validating transition from the 

simplification/structuring at the beginning of their modeling processes. Pre-service 

teachers tended to justify their assumptions reasonably in this study. Specifically, the 

explicit statement of one of Group A's members can be given as an example of this 

situation. Ahsen, assuming that a circle could be drawn around the tumor, thought 

that circle was a reasonable model based on the teacher’s statements during the 

classroom discussion at the beginning of their modeling process. Here, this thought 

was involved in the validating transition and it was assigned to the indicator of 

“implicit or explicit statements about the reasonableness of the answer/model.” This 

and similar situations may have caused the early occurrence of validation transition 

in the MTDs of the groups. Similarly, Czocher (2016) also reported that validating 

transition occurred although students had no mathematical results to validate. This 

case was also realized for the interpreting transition. Czocher (2013) revealed with 

the data she obtained that students interpreted their models within the context of the 

real problem situation without taking any action towards working mathematically. 

Unlike the theoretical framework, the current study supported the findings of 

Czocher regarding the early occurrence of interpreting and validating transitions in 

MTDs. 
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5.3 The Relation Between Semiotic Characteristics and Modeling Routes of 

the Groups 

One of the aims of this study was to examine how the modeling routes changed 

according to the semiotic characteristics of the groups. In the context of the 

mathematical model produced to find the size of the tumor, the semiotic 

characteristics of Groups B and D were determined as algebraic, while other groups 

were determined as a numeric model. On the other hand, in the context of the 

mathematical model produced for the shape of the tumor, the semiotic characteristic 

of Group C was determined as algebraic, and others were determined as a geometric 

model. When the MTDs of groups with the same and different characteristics were 

examined in detail, no pattern related to this semiotic characteristic was found in 

MTDs. Similarly, Shahbari and Tabach (2020) divided the groups into two groups 

as algebraic and numeric models and examined the modeling routes of these groups. 

According to their findings, they reported that the groups with algebraic models did 

not complete their first cycle, while the groups with numeric models completed it 

without jumping any transition. However, this study could not reach such a 

distinction between the MTDs of groups having different characteristics.  

In regard to regular paths in modeling routes, the current study revealed different 

findings from the study of Shahbari and Tabach (2020). According to the presented 

modeling routes in their study, groups always moved forward in any modeling cycle. 

On the contrary, several empirical studies (Albarracin et al., 2019; Ärlebäck, 2009; 

Borromeo Ferri, 2007; Czocher, 2016) reported that the modeling routes may not 

always move forward. The findings of this study are consisted with this literature 

and they justify Ärlebäck (2009, p.353), who stated that “the view presented on 

modelling as a cyclic process is highly idealised, artificial and simplified” by 

presenting produced Modeling Activity Diagram (MAD) as evidence. 

Regardless of the semiotic characteristics of the groups, there are some cases worth 

mentioning. Although we could not reveal any pattern in MTDs in terms of semiotic 

characteristics, we observed that the preferences and purposes of the groups to use 
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technology have changed their modeling processes. As mentioned before, Group D 

did not prefer using technology while solving a modeling activity. On the other hand, 

Group A, B, and C made their solutions in both paper-pencil and dynamic geometry 

environments. The findings of the current study revealed that MTDs of the groups 

had completed but not regular progressing cycles. On the contrary of these groups, 

Group E used the technology in each action during their modeling process. Due to 

this, the group did not use working mathematically transition because the group's 

mathematical working processes were realized by GeoGebra. As a result of this, 

neither a regular path nor a completed cycle was observed in the MTD of Group E. 

Moreover, while an early validity transition was observed in the MTDs of the groups 

(Group A, B, and C) that used technology and a paper-pencil environment for almost 

equal periods of time, such a situation was not observed in the MTDs of the other 

two groups. They either used technology for each action or never used it. These cases 

can be associated with the group dynamics shaping modeling processes, such as 

groups’ discussions, opinions, or preferences in a modeling activity (Ärlebäck, 

2009). 

5.4 The Place of Technology in the Modeling Processes of Groups in terms 

of their Semiotic Representation and Modeling Routes 

The findings of the study revealed that the modeling processes of groups were 

significantly influenced and shaped by technology. When the modeling processes of 

the groups were examined, it was seen that the technology had various functions, 

such as developing solution strategies, testing and evaluating the model, and 

comparing the created models easily. Some of these functions of technology 

observed in the current study were also evident in studies focusing on the roles of 

technology in the mathematical modeling process (e.g., Aydoğan Yenmez, 2017; 

Saka & Çelik, 2018). Moreover, the strategies of pre-service teachers who used 

GeoGebra Software as a technology in their modeling processes were also 
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significantly affected by this software because it had various tools for creating 

models and provided a dynamic working environment. 

GeoGebra has interactive mathematics tools used to construct various geometric 

shapes and measure length, area, and volume. In addition, it has GeoGebra CAS 

(Computer Algebra System), which allows multiple representations with its inputs 

containing algebraic notations. Considering these functions of GeoGebra, it was 

observed that the semiotic representations of the groups were affected by the use of 

technology within the scope of the purpose of this study. Regarding finding the 

tumor’s area, some groups (Group A, C, and E) preferred to use GeoGebra's area 

measuring tool. Moreover,  one of the groups (Group B) created their models on 

GeoGebra, although they used the area formula in finding their solution. While this 

situation included the groups using GeoGebra in the numeric register in the area 

measurement part, it pushed the groups that did not prefer GeoGebra to use the 

algebraic register in this part. Here, GeoGebra, providing numeric data automatically 

in area measurement, affected the algebraic register usage of the groups and resulted 

in different semiotic characteristics between the groups using and not using 

technology. On the other hand, when creating the assumed tumor shapes, GeoGebra's 

CAS allowed one of the groups to transform algebraic representation into geometric 

representation. Group C created a circle, entering the circle equation as input to the 

GeoGebra’s CAS for their models. However, in creating regular shapes for the 

tumor, the semiotic characteristics of the groups using ready-made tools of 

GeoGebra instead of its CAS were determined as geometric. The property of 

GeoGebra that makes such transformations with its CAS has affected the usage of 

algebraic registers. 

Using technology also significantly shaped the modeling routes of the groups. For 

instance, GeoGebra supported the groups in working mathematically transition. 

GeoGebra provided numeric data to the groups that used the relevant tool for area 

measurement and allowed them to obtain a mathematical result. The clearest 

example of this situation can be observed in Group E's modeling route. As mentioned 

earlier, Group E was the only group to use technology in all their actions from the 
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beginning to the end of their modeling processes. When the MTD of Group E was 

examined, it was observed that this group was never included in the working 

mathematically stage. The most frequently observed actions in involving groups in 

the working mathematically transition were in parts related to measuring the area of 

the created shape and resizing the x-ray. The fact that Group E, which performed 

these actions on the GeoGebra Software, was not included in the working 

mathematically transition might be due to technology usage preferences. 

The parts where the groups used technology the most in their modeling processes 

were related to creating a regular shape around the tumor, interpreting the created 

shape in the context of the modeling task, and comparing the created models except 

for measuring the area. When the MTDs of the groups were examined, it was 

observed that mathematizing, interpreting, and validating transitions, which 

generally included the mentioned parts, coincided with the using technology stage 

separately. When the parts that did not coincide with the using technology stage were 

examined, it was remarkable that the instances where these transitions were observed 

usually came just after using technology. Therefore, this was an important detail that 

shaped the modeling processes of the groups. 

5.5 Suggestions for Future Studies and Educational Implications 

Considering the results of this study regarding preservice mathematics teachers’ 

semiotic representations and the changing features of their modeling routes 

according to their semiotic characteristics, the following recommendations can be 

made for future research. 

To begin with, this study could not identify any semiotic characteristics for groups 

when their whole modeling processes were examined. This may be caused by the 

context of the modeling activity implemented in this study. The “Tumor Surgery” 

task had distinct parts (multipart task), such as resizing the image, determining the 

shape of the tumor, and the size and location of the tumor, and it pushed groups to 
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use mostly geometric representations during their modeling processes. Future studies 

may use modeling tasks not having distinct parts (single-part tasks) to be able to 

identify particular semiotic characteristics of the groups and examine how their 

modeling routes differ according to these characteristics.  

Although the findings of the study revealed that there was no pattern in MTDs of the 

groups having the same or distinct characteristics, it was seen that group dynamics 

made the MTDs of the groups have a particular feature. Ärlebäck (2009) stated that 

group dynamics comprises preferences, sharing opinions, and discussions within the 

group, and these may be effective in shaping the modeling processes of groups. 

Within the scope of this study, pre-service teachers worked as a group, and they were 

free to use technology in their modeling process. In this study, there were groups that 

used technology for different purposes and a group that never used technology. For 

example, one group used technology to validate their models in the context of the 

modeling activity, while others used the technology to build mathematical models 

based on the various assumptions they made. We could not identify any pattern in 

all MTDs in terms of semiotic characteristics, but we found a pattern in the MTDs 

of the pre-service teachers in line with the aforementioned preferences related to 

technology. Based on these, we thought that pre-service teachers' preferences for 

technology could be included in Ärlebäck's (2009) group dynamics. In this regard, 

future studies can focus on group dynamics and, more specifically, preferences to 

use technology and purposes of using technology while determining the features of 

the modeling routes or MTDs. 

Finally, Czocher (2013) developed a rubric containing students' modeling 

competencies based on the problems she implemented in her study. This rubric 

includes indicators for different modeling transitions. In this study, this rubric was 

both extended by adding new indicators specific to the implemented modeling task 

and tested. Future studies can also try this extended rubric with modeling tasks in 

different contexts and improve the it by making necessary revisions. 
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There are also several implications based on the findings obtained in the current 

study. One of these implications is related to the teaching of area measurement 

concepts. As mentioned before, the literature shows that traditional teaching of this 

concept may cause misconceptions and difficulties. Therefore, in teaching this 

concept, several tools and educational methods can be integrated to enrich the course 

content. Within the scope of the current study, a modeling task for area measurement 

was developed, and the modeling process of the participants was supported by 

technology. The modeling task used in this study can be seen as an exemplary 

activity that teachers can use while teaching the area measurement concept. This 

modeling task may allow students to establish the relationship between mathematics 

and real life and to produce more creative solutions to real-life problems by acquiring 

problem-solving skills. 

Another implication is related to pre-service teachers' involvement in mathematical 

modeling courses. According to the literature, mathematical modeling tasks are 

rarely included in mathematics classes (Borromeo Ferri & Blum, 2013). Integrating 

modeling tasks can contribute to students' learning of mathematical concepts in a 

meaningful way and help them see the issues related to mathematical modeling. 

Moreover, the variety in semiotic characteristics of pre-service teachers and their 

complex modeling routes found in this study suggest diversifying the intervention 

strategies in developing pre-service teachers’ modeling competencies.  

5.6 Limitations 

There are various limitations in the current study. These limitations are related to 

data collection and class environment. Audio and video recordings are some of 

indispensable recording methods for qualitative research since it provides 

opportunity to observe and listen all the actions of the participants over and over 

again. These methods are too important for the current study as the transcribed 

dialogues affect data analysis procedures. As it mentioned in data analysis part, 

almost each word spoken by participants is quite critical because expressions in their 
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dialogues are examined in depth in order to assign them to the relevant modeling 

transitions. Previously, it is mentioned that one of the groups (Group F) was removed 

from the data analysis because of data loss. Group F was not videotaped during 

MEA, there was just an audio recording of this group to analyze their process. 

Conversations within Group F were not either heard or understood by the researcher 

since two members of the group were away from the audio recorder. This situation 

negatively affected the data richness of this study. In addition to Group F, the 

modeling processes of Group B and Group C were recorded only with an audio 

recorder. Although the conversations of these groups were clearly heard, in some 

instances, it was difficult to make sense of what they were doing exactly. This may 

have caused to assign the modeling transitions incorrectly. On the other hand, Group 

A was one of the groups whose modeling process was both audiotaped and 

videotaped. However, the videotape showed the group members instead of showing 

the computer screen of this group that created many different models. This situation 

caused that could not monitor exactly how they create these models, and this may be 

cause us not to be able to report these models properly.  

The second limitation is related to the class environment. When MEAs are 

implemented in a classroom environment, they may contribute to the classroom 

discourse that participants interpret the various models they created. However, it can 

also affect the actions of groups in some instances. Moreover, as illustrated in Figure 

3.2, the groups were quite close to each other. Although the participants were 

involved in the conversation within the group, they also interacted with other groups 

from time to time. This may cause that interactions between groups affect groups’ 

modeling routes. In order to prevent this type of interactions, data may be collected 

separately for each group at different times. 
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APPENDICES 

A. Elementary Mathematics Education Program 

1st Year-Fall MATH111 Fundamentals of Mathematics 

MATH115 Analytic Geometry 

MATH117 Calculus-I 

EDS200 Introduction to Education 

ENG101 English for Academic Purposes I 

IS100 Introduction to Information Technologies and Applications 

1st Year-Spring MATH112 Discrete Mathematics 

MATH116 Basic Algebraic Structures 

MATH118 Calculus-II 

CEIT100 Computer Applications in Education 

ENG102 English for Academic Purposes II 

2nd Year-Fall PHYS181 Basic Physics I 

MATH219 Introduction to Differential Equations 

STAT201 Introduction to Probability & Stat I 

ELE221 Instructional Principles and Methods 

EDS220 Educational Psychology 

HIST2201 Principles of Kemal  Atatürk I 

2nd Year-Spring PHYS182 Basic Physics II 

MATH201 Elementary Geometry 

STAT202 Introduction to Probability & Stat II 

ELE 225 Measurement and Assessment 

ENG211 Academic Oral Presentation Skills 

HIST2206 Principles of Kemal Atatürk II 

3rd Year-Fall MATH260 Basic Linear Algebra 

 ELE341 Methods of Teaching Mathematics I 

 ELE310 Community Service 

 TURK305 Oral Communication 

  Elective Course 

3rd Year-Spring ELE329 Instructional Technology and Material Development 

 ELE342 Methods of Teaching Mathematics II 
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 EDS304 Classroom Management 

 TURK306 Written Expression 

  Restricted Elective 

  Elective 

4th Year-Fall ELE301 Research Methods 

 ELE419 School Experience 

 ELE465 Nature of Mathematical Knowledge for Teaching 

  Restricted Elective 

  Elective 

4th Year-Spring ELE420 Practice Teaching in Elementary Education 

 EDS416 Turkish Educational System and School Management 

 EDS424 Guidance 

  Elective 
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B. Group D’s and E’s Modeling Cycles Related to Actual Size of X-Ray 

Group D 

Transitions 

Semiotic 

Actions 

 

Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

Treatment 

Natural The difference of 2.5 cm between lungs is 

needed to reach the actual size of the x-ray. 

Simplification/Structuring        

Conversion 

Natural Simplifying and constructing relations 

Real Model    

                

Treatment 

             

Numeric For the actual size of the x-ray: 1 cm is 

equal to the difference of 2.5 cm between 

lungs 

Mathematizing                             Numeric Establish a ratio between image and real as 

1:2.5 

 

Group E 

Transitions 

Semiotic 

Actions 

 

Registers Explanations 

Understanding     Natural Understanding the situation 

Situational Model 

Treatment 

Natural The difference of 2.5 cm between lungs is 

needed to reach the actual size of the x-ray. 

Simplification/Structuring        

Conversion 

Natural Structuring with GeoGebra Tools 

Mathematical Results  Numeric The length of one side of the x-ray is 34.5 

cm. 
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C. The modeling transitions/phases and semiotic actions of Group A 

Transitions/Phases 

Semiotic 

Actions 

 

Registers Explanations 

1st Cycle 

Understanding     Natural Understanding the situation 

Situational Model 

                             

Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/Structuring  Natural Simplifying and making assumptions 

Real Model  

 

              

Conversion     

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created inside a square/rectangle/ 

quadrilateral.   

For the location of the tumor: The chest x-

ray can be put on a coordinate system. 

Mathematizing  

 

 

 

 

 

Treatment 

Geometric 

 

Drawing a square/rectangle/quadrilateral 

around the tumor and creating a circle in 

that square/rectangle/quadrilateral to cover 

the tumor in minimum size. 
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 Geometric 

 

Identifying the intersection point of 

diagonals of quadrilateral as center of the 

circle. 

 

 Geometric 

 

Drawing a quadrilateral around the tumor 

by using segments and points, then identify 

the intersection point of diagonals of it on 

GeoGebra.  

Drawing a circle via “Circle with center 

through point” tool on GeoGebra 

Mathematical Model         

Conversion 

Geometric Circle inside the quadrilateral created on 

GeoGebra 

Interpreting  Natural Interpreting to Reality: Created circle 

could not cover the whole tumor, and it 

covers much more healthy tissue. 

2nd Cycle 

Simplification/Structuring        

                 

Treatment 

Natural Return to situation to look for the new 

model 

Simplifying and making assumptions 

Real Model 

 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created by using “Circle through three 

points” tool 

Mathematizing  

 

 

Treatment 

Geometric Identifying several points around the 

tumor on GeoGebra.  

Drawing a circle via “Circle through three 

points” tool on GeoGebra by using 

identified points 
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Mathematical Model  

Conversion 

Geometric Circle passing through the identified points 

around the tumor 

Interpreting  

 

Treatment 

Natural Interpreting to Reality: Created circle 

could cover the whole tumor. 

Validating  Natural Generalization: To operate the tumor, it is 

needed to look extreme points of the 

tumor. 

3rd Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model having smaller size. 

Simplifying and making assumptions 

Real Model 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a rectangle. 

Mathematizing  

Treatment 

Geometric Drawing a rectangle around the tumor by 

using segments and points.  

Mathematical Model  

Conversion 

Geometric The rectangle passing through the 

identified points around the tumor. 

Mathematical Results  Numeric Area of the rectangle: 78.17 

Interpreting Conversion Natural Interpreting to Reality: The rectangle is not 

an appropriate for different tumor shapes 

and it is not practical. 

4th Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model. 

Simplifying and making assumptions 
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Real Model 

 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created inside a rectangle. 

Determining focus points of ellipse 

according to the farthest points around the 

tumor 

Mathematizing  

 

Treatment 

Geometric Identifying focus points by using the 

farthest two point 

Drawing an ellipse via “Ellipse” tool on 

GeoGebra 

Mathematical Model  

Conversion 

Geometric Different ellipses created by using 

different focus points 

Interpreting  Natural Interpreting to Reality: Created ellipse 

have too much tissue, and it covers much 

more healthy tissue. 

5th Cycle 

Simplification/Structuring  

Treatment 

Natural Return to situation for the circle model 

Simplifying and making assumptions 

Real Model 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created by using “Circle through three 

points” tool 

Mathematizing 

 

 

Treatment 

Geometric Drawing a circle via “Circle through three 

points” tool on GeoGebra by using 

identified points 

Mathematical Model  

 

Conversion 

Geometric 

 

Different circles (E, F, D points, E, F, H 

points and E, F, C points) passing through 

the identified points around the tumor 
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Interpreting  Natural Interpreting to Reality: Created circles (E, 

F, D points and E, F, H points) could not 

cover the whole tumor. Created circle (E, 

F, C points) could cover the whole tumor 

6th Cycle 

Simplification/Structuring  

Treatment 

Natural Return to situation for the ellipse model 

Simplifying and making assumptions 

Real Model 

 

 

 

 

Conversion 

 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created according to the farthest points 

around the tumor 

Determining focus points of ellipse 

according to the midpoints of the midpoint 

of the farthest points around the tumor 

Mathematizing  

 

Treatment 

Geometric Identifying focus points by using the 

farthest two point 

Drawing an ellipse via “Ellipse” tool on 

GeoGebra 

Mathematical Model  

Conversion 

Geometric 

 

Ellipse created by using the different focus 

points 

Mathematical Results  

 

Conversion 

Numeric Area of the circle passing through E, F, C 

points: 103.33 

Area of the ellipse: 103.76 

Interpreting  

 

Treatment 

Natural Interpreting to Reality: Created ellipse 

could cover the whole tumor, but it has a 

bit more tissue than the circle. . 
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Validating  Natural Generalization: Ellipse model is more 

appropriate than the circle for the different 

tumor shapes. Also, ellipse model is more 

reasonable because ellipse approaches to 

the circle when its diameters are equal. 

Validating the models by checking them 

on the tumor having different shape. 

7th Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model: 

Simplifying and making assumptions 

Real Model 

 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created by input command including the 

identified points around the tumor on 

GeoGebra.  

Mathematizing 

 

 

 

Treatment 

Geometric Drawing an ellipse via the conic command 

entering the input on GeoGebra.  

FitImplicit({F, G, C, J, E, I, D, H}, 2) 

Mathematical Model  

Conversion 

Geometric Ellipse covering the whole tumor 

Interpreting  Natural Interpreting to Reality: Created ellipse 

could cover the whole tumor, but it does 

not indicate an area. 

8th Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model: 

Simplifying and making assumptions 
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Real Model 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created by using “Conic through five 

points” tool 

Mathematizing  

 

Treatment 

Geometric Identifying several points around the 

tumor on GeoGebra.  

Drawing an ellipse via “Conic through five 

points” tool on GeoGebra by using 

identified points 

Mathematical Model  

Conversion 

Geometric Ellipse passing through the identified 

points around the tumor 

Mathematical Result  

Conversion 

Numeric The area of the ellipse: 84 

  

 

Conversion 

Algebraic 

 

The equation of the ellipse: d: -13.22x² + 

0.56xy – 11.98y² + 939.91x + 571.13y = 

23655.84 

Interpreting  Natural Interpreting to Reality: Created ellipse 

could cover the whole tumor, and it has the 

smallest size. 
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D. The modeling transitions/phases and semiotic actions of Group B 

Transitions/Phases 

Semiotic 

Actions 

 

Registers Explanations 

1st Cycle 

Understanding     Natural Understanding the situation 

Situational Model 

Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/Structuring  Natural Simplifying and making assumptions 

Real Model  

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created according to the farthest two points 

around the tumor horizontally and 

vertically. 

For the location of the tumor: The chest x-

ray can be put on a coordinate system and 

the equation of the circle can be used.  

Mathematizing  Numeric  Establish a proportion for the diameters 

whose lengths are 42 (vertical) and 43 

(horizontal) unit squares. 

Working Mathematically  

 

Treatment 

Numeric Finding the actual length of the diameters 

by solving the proportion: 

▪ If 14 unit squares equal to 2.5 cm, 

what is the actual length of 42 unit 

squares? Then, half of it is radius. 

▪ If 14 unit squares equal to 2.5 cm, 

what is the actual length of 43 unit 

squares? Then, half of it is radius. 

Mathematical Results  Numeric The length of the vertical diameter is 7.5 

cm, and the radius is 3.75 cm. 

The length of the horizontal diameter is 

7.68 cm, and the radius is 3.84 cm. 
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2nd Cycle 

Mathematizing  

Treatment 

Geometric Drawing a circle via “Circle: Center & 

Radius” tool on GeoGebra 

Mathematical Model  

Conversion 

Geometric Circle with a radius of 3.84 cm and a center 

of (25.32,17) 

Working Mathematically  

Conversion 

Numeric Substituting the values of r=3.84, a=25.32, 

and b=17 in the circle equation 

Mathematical Results  Algebraic The equation of the circle: 

(x-25,32)2+(y-17)2 = (3.84)2 

3rd Cycle 

Mathematical Model 

 

 

Conversion 

Algebraic The area formula of a circle for the size of 

the tumor is 𝜋𝑟2 

Working Mathematically  

Treatment 

Numeric Substituting the value of r=3.84 and 

π=3.14 in the formula of 𝜋𝑟2 

Mathematical Result  

Conversion 

Numeric The size of the circle is 46.30. 

Validating  Natural For validating the result by checking other 

geometrical shapes in order to take smaller 

area to cover minimum healthy tissue with 

the whole tumor. 

4th Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model having smaller size. 

Simplifying and making assumptions 

Real Model 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a square, and  the square can 

be created the farthest two points around 

the tumor horizontally and vertically 
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Mathematical Model  

Conversion 

Algebraic The area formula of a square for the size of 

the tumor is 𝑎2 

Working Mathematically  

Treatment 

Numeric Substituting the value of a=7.68 in the 

formula of 𝑎2 

Mathematical Results   Numeric Area of the square: 58.98 

Interpreting Conversion

  

Natural Interpreting to Reality: The area of the 

square is bigger than the circle. 

5th Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model having smaller size. 

Simplifying and making assumptions 

Real Model 

 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a regular pentagon, and the 

regular pentagon can be created according 

to the farthest two points around the tumor 

so that it is a side of the pentagon. 

Mathematical Model  

Conversion 

Algebraic The area formula of a regular polygon for 

the size of the tumor is 
5𝑎𝑟

2
 

Working Mathematically  

Treatment 

Numeric Substituting the value of a=5 and r=3.84 in 

the formula of 
5𝑎𝑟

2
 

Mathematical Results  

 

Conversion 

Numeric Area of the regular polygon: 48 

Interpreting  Natural Interpreting to Reality: The area of the 

regular polygon is bigger than the circle. 
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6th Cycle 

Simplification/Structuring  

 

Treatment 

Natural Return to situation to look for the new 

model having smaller size. 

Simplifying and making assumptions 

Real Model 

 

 

 

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created according to the farthest two 

points around the tumor horizontally and 

vertically for the short and long diameter 

of an ellipse. 

Mathematical Model 

 

 

 

Conversion 

Algebraic The area formula of an ellipse for the size 

of the tumor is 
𝜋.𝑎.𝑏

4
 

 

Working Mathematically  

Treatment 

Numeric  Substituting the value of a=3.75, b=3.84, 

π=3.14  in the formula of  
𝜋.𝑎.𝑏

4
 

Mathematical Results                 

Conversion 

Numeric Area of the ellipse: 45.26 

Interpreting  

Treatment 

Natural Interpreting to Reality: The area of the 

ellipse is smaller than the circle. 

Validating  Natural Using GeoGebra to validate the model by 

creating an ellipse covering the whole 

tumor. 
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7th Cycle 

Simplification/Structuring  Natural Simplifying and making assumptions 

Real Model 

 

Treatment 

 

              

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as an ellipse, and the ellipse can 

be created by input command including the 

identified points around the tumor on 

GeoGebra. 

Mathematizing  

 

Treatment 

Geometric Drawing an ellipse via the conic command 

entering the input on the GeoGebra.  

FitImplicit({H, I, K, L, M, J}, 2) 

Mathematical Model  

Conversion 

Geometric 

 

Ellipse covering the whole tumor 

Mathematical Results  

Conversion 

Algebraic The equation of the ellipse: b: -0.00113x² 

+ 0.0572x - 0.00098y² + 0.0335y = 0.9978 

Interpreting  

 

Conversion 

Natural Interpreting to Reality: Created ellipse 

could cover the whole tumor, but it does 

not indicate an area. Therefore, the circle 

model is selected finally. 

Real Results  

Conversion 

Numeric The size of the tumor: 46.30 cm2. 

  

Conversion 

Algebraic The location of the tumor:  

(x-25,32)2+(y17)2=(3.84)2 

Validating  Natural If the tumor is disc-shape, a circle can be 

drawn around the tumor. 
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E. The modeling transitions/phases and semiotic actions of Group E 

Transitions/Phases 

Semiotic 

Actions 

 

Registers Explanations 

1st Cycle 

Understanding     Natural Understanding the situation 

Situational Model 

 

Treatment 

Natural Location and area are strategic entities to 

determine where the tumor is and how 

much tumor will be operated. 

Simplification/Structuring  Natural Simplifying and making assumptions 

Real Model  

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a circle, and the circle can be 

created according to the farthest two points 

around the tumor. 

For the location of the tumor: The chest x-

ray can be put on a coordinate system and 

the equation of the circle can be used. 

Mathematizing  

 

 

Treatment 

Geometric Identifying various points that will be the 

farthest points around the tumor and the 

midpoints of them. 

Drawing a circle via “Circle with center 

through point” tool on GeoGebra by using 

identified points and midpoints 

 

Mathematical Model  Geometric Circles created on GeoGebra according to 

the farthest points of the tumor. 
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Conversion 

 

 

 

Interpreting  

Conversion  

Natural Interpreting to Reality: Created circle 

could cover the whole tumor. 

Real Results   

Conversion 

Numeric The area of the tumor: 59.22 cm2 

  Algebraic The location of the tumor: c: (x - 28.13)² + 

(y - 18.78)² = 18.85 

2nd Cycle 

Simplification/Structuring  

                

Treatment 

Natural Return to situation to look for the new 

model: 

Simplifying and making assumptions 

Real Model  

 

Conversion 

Natural For the size (area) of the tumor: The shape 

of the tumor that will be operated is 

considered as a pentagon, and the pentagon 

can be created according to the boundaries 

of the tumor. 
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Mathematizing  

 

Treatment 

Geometric Identifying several points around the 

tumor on GeoGebra.  

Drawing a pentagon via “Polygon” tool on 

GeoGebra by using identified points 

Mathematical Model  

 

 

 

Conversion 

Geometric Pentagon passing through the identified 

points around the tumor 

 

Interpreting  

Conversion 

Natural Interpreting to Reality: Created pentagon 

could cover the whole tumor. 

Real Results   Numeric The area of the tumor: 52.97 cm2 

Validating Conversion

  

Natural Generalization: Although the pentagon 

could cover the whole tumor and its area is 

smaller than the circle, circle model is 

more appropriate for different tumor 

shapes and more practical to determine it. 

To operate the tumor, it is needed to look 

extreme points of the tumor and identify 

the diameter of the circle. Then, the circle 

can be created so that it is cover the whole 

tumor. 
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