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Mechanical Engineering, METU

Assist. Prof. Dr. Ali Karakuş
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Mechanical Engineering, TEDU

Assist. Prof. Dr. Hediye Atik
Aerospace Engineering, Atılım University

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Ulaş Canberk Ayan
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ABSTRACT

IMPLEMENTATION AND ASSESSMENT OF THE GENERALIZED
RIEMANN PROBLEM METHOD IN AN UNSTRUCTURED SOLVER

Ayan, Ulaş Canberk

M.S., Department of Mechanical Engineering

Supervisor: Assist. Prof. Dr. Özgür Uğraş Baran

Co-Supervisor: Prof. Dr. Mehmet Haluk Aksel

September 2022, 89 pages

High-order accuracy in the Computational Fluid Dynamics (CFD) solvers became an

important necessity with increasing computational resources and algorithms. Resolv-

ing discontinuities and regions where high gradients formed accurately is the main

topic for high-order schemes. The Generalized Riemann Problem (GRP) method

came to the fore with its ability to improve the accuracy in these regions and discon-

tinuities. With the GRP method, the second-order accuracy is not achieved by the

piece-wise linear reconstruction method only but also by time variation of flux and

resolved state. In this thesis, the GRP method is implemented in a finite volume,

open-source CFD solver. The generalized MINMOD limiter is implemented in the

solver and investigated since it is a key ingredient of the GRP method. The robustness

and accuracy of the implemented method are tested with five cases in one dimension

and compared with analytical solutions and reference solutions. The implemented

method is validated for the two-dimensional domain with well-known benchmark

tests such as; the inviscid Prandtl-Meyer expansion fan case for evaluating the two-

dimensional (2D) performance on rarefaction wave accuracy, inviscid Wedge case for
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investigating the 2D performance on shock wave accuracy, and RAE 2822 airfoil case

for examining the aerodynamic performance for viscous flows. A three-dimensional

study is conducted with ONERA M6 Wing. The results are in good agreement with

the experimental results and analytical solutions. Finally, an assessment and discus-

sion are presented for the limiter used in the GRP method.

Keywords: GRP, Riemann solver, Godunov method, CFD, high-resolution
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ÖZ

GENELLEŞTİRİLMİŞ RIEMANN PROBLEMİ YÖNTEMİNİN
YAPILANDIRILMAMIŞ BİR ÇÖZÜCÜDE UYGULANMASI VE

DEĞERLENDİRİLMESİ

Ayan, Ulaş Canberk

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Özgür Uğraş Baran

Ortak Tez Yöneticisi: Prof. Dr. Mehmet Haluk Aksel

Eylül 2022, 89 sayfa

Hesaplamalı akışkanlar dinamiği (HAD) çözücülerinde yüksek dereceli doğruluk, ar-

tan hesaplama kaynakları ve algoritmalar ile erişilebilir hale gelmiştir. Yüksek grad-

yanların oluştuğu bölgelerin ve süreksizliklerin doğru bir şekilde çözülmesi, yüksek

mertebeli şemalar için ana konudur. Genelleştirilmiş Riemann Problemi (GRP) yön-

temi, bu bölgelerde ve süreksizliklerde doğruluğu iyileştirme yeteneği ile ön plana

çıkmıştır. GRP yöntemi sayesinde, ikinci mertebeden doğruluk, sadece parçalı doğru-

sal yeniden kurma yöntemi ile değil, aynı zamanda akı ve çözülmüş durumun zamana

göre değişimi ile elde edilmektedir. Bu tezde, GRP yöntemi, sonlu hacim yöntemini

kullanan, açık kaynak kodlu bir HAD çözücüde uygulanmıştır. GRP yönteminin te-

mel bir bileşeni olan genelleştirilmiş MINMOD sınırlayıcısı da çözücüye uygulanmış

ve incelenmiştir. Uygulanan yöntemin gürbüzlüğü ve hassasiyeti tek boyutta beş de-

nektaşı ile test edilmiş ve analitik çözümler ve referans çözümler ile karşılaştırılmıştır.

Uygulanan bu yöntem, iyi bilinen denektaşı testleri ile iki boyutlu alan için doğrulan-

mıştır. Bu testlerden ağdasız Prandtl-Meyer genişleme fanı, uygulanan yöntemin iki
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boyutlu genişleme dalgası performansını değerlendirmek için; ağdasız kama testi, uy-

gulanan yöntemin iki boyutlu şok dalgası performansını araştırmak için; RAE 2822

kanat profili testi, uygulanan yöntemin ağdalı akışlarda aerodinamik performansını

incelemek adına çözülmüştür. ONERA M6 kanadı ile üç boyutlu bir çalışma yapıl-

mıştır. Sonuçlar, deneysel sonuçlar ve analitik çözümlerle iyi bir uyum içindedir. Son

olarak GRP yönteminde kullanılan sınırlayıcısı için bir değerlendirme ve tartışma su-

nulmuştur.

Anahtar Kelimeler: GRP, Riemann çözücüsü, Godunov metodu, HAD, yüksek çözü-

nürlük
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CHAPTER 1

INTRODUCTION

Over the past decades, thanks to increasing computational resources and efficient

algorithms, numerical modeling started to play an essential role in research, engi-

neering analysis, and design processes. Due to the high mesh numbers, increasingly

complex geometries, and physical conditions, Computational Fluid Dynamics (CFD)

has become an area that requires more computational resources. Thus, interest in

fast and robust CFD schemes increased day by day. Although experimental measure-

ments still play an important role, CFD has come to the fore with its advantageous

features such as cost, time, ease of use, easy adaptation to different conditions, re-

peatability, and useful outputs for needs. Despite new methods and achievements in

CFD, considering the diverse needs in today’s ever-changing requirements, there are

still many areas for improvement for CFD. One of these areas is the development of

high-order methods for the compressible flow regime. Although the first-order meth-

ods are robust, fast, and efficient, high-order methods improve the accuracy of the

solution without a finer mesh necessity which yields faster, more efficient, and more

accurate results.

1.1 Background

In gas and fluid dynamics problems, the flow equations for compressible fluid result

in hyperbolic partial differential equations (PDEs) if the flow is assumed as inviscid

and adiabatic [1]. There are three common numerical methods used in CFD for PDEs:

• Finite Difference Method (FDM)
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• Finite Element Method (FEM)

• Finite Volume Method (FVM)

Integral relations between control volumes and their bounds can be used to derive

Euler and Navier-Stokes equations. Discrete domains imply finite control volumes or

cells. Therefore, from a computational perspective, it is preferable to utilize integral

equations. Locally, the fundamental equations are applied to these control volumes

resulting in FVM.

Scalar equations like Burgers’ equation or systems of conservation equations like the

Euler equations solutions involve shocks and solution discontinuities. Any disconti-

nuity in the solution must be captured by numerical algorithms. Upwind methods are

used to capture discontinuities in flow variables rather than central numerical meth-

ods. Upwind methods are based on the direction of flow information. Flux Vector

Splitting (FVS) and Riemannian are the two most used methods for determining the

upwind direction. [2]

1.1.1 Flux Vector Splitting Methods

FVS methods only consider the wave propagation direction. In FVS methods like

Van Leer’s scheme [3], the convective flux vector is split into two parts with respect

to the upwind or downwind direction of specific characteristic variables. On the other

hand, there are brand-new FVS methods like Advection Upstream Splitting Method

(AUSM) introduced by Liou et al. [4, 5] or the Convective Upwind Split Pressure

(CUSP) introduced by Jameson [6, 7].

1.1.2 Riemannian Methods

The fluxes are calculated at the face of the control volume in the Riemannian methods.

Differently from the FVS methods, both wave propagation direction and waves them-

selves are treated in Riemannian methods. In order to calculate the flux, a right and

left state is defined at the discontinuity, which is the face of the control volume. Solv-

ing local Riemann problems exactly at the faces of cells in order to calculate inter-cell
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Figure 1.1: Sketch of Shock Tube [10]

fluxes is first introduced by Godunov [8], an extension of the CIR [9] upwind scheme.

1.1.2.1 The Riemann Solvers

The Riemann problem (RP) is defined as a specific initial value problem (IVP) char-

acterized by piece-wise constant initial states and discontinuity, as given in (1.1).

u
(
x, t0

)
=

uL if x < x0

uR if x > x0

(1.1)

The RP has an exact analytical solution for the Euler equations. Additionally, because

shocks and rarefaction waves may be properties of the solution, it is particularly help-

ful for understanding the Euler equations. In Euler equations, the shock tube problem

is a fundamental physical issue in gas dynamics. A sketch of the shock tube is given

in Figure 1.1.

The RP is represented physically by a gas-filled tube with two chambers in different

initial data isolated by a removable membrane at x = x0. The wave structure can be

one of the four given in Figure 1.2.
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Figure 1.2: Possible wave patterns of RP solution: (a) rarefaction wave, contact dis-

continuity, shock wave (b) shock wave, contact discontinuity, rarefaction wave(c)

rarefaction wave, contact discontinuity, rarefaction wave (d) shock wave, contact dis-

continuity, shock wave [1]
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The Godunov method and its high-order extensions utilize the local exact solution to

the RP. Following the Godunov method with exact Riemann solution, approximate

Riemann solvers were introduced by Harten, Lax, and van Leer (HLL)[11], Osher

et al. [12], Roe [13], HLLE[14], and HLLC (C for contact) [15] for decreasing the

computational effort and increasing the robustness.

When applying, assessing, and developing approximate Riemann solvers, a thorough

understanding of the exact solution is equally essential since shock and rarefaction

waves may appear as characteristics of the solution even if their speeds are estimated.

Considering a wave configuration with three constant states, which are separated by

two waves, HLL Riemann solvers calculate the inter-cell flux by applying the conser-

vation laws in the integral form. The HLL method ignores the middle wave, the con-

tact discontinuity. In order to calculate the speeds of waves used in the HLL solver,

Eindfelt[14] and Davis[16] introduced new methods. The HLL method with wave

speed estimate is known as the HLLE solver. However, the two-wave assumption is

not correct for Euler equations since this assumption may lead to the low resolution

of physical characteristics in the solution. In order to overcome this issue, in 1992,

Toro, Spruce, and Speares [15] introduced an extended method called HLLC. The

HLLC method involves all three waves, including contact discontinuity. The HLLC

method provides better results than HLL at the discontinuity regions while preserving

its efficiency. Also, in the last decade, further developments of the HLLC methods, as

well as extensive implementations, have been done. Batten et al. [17] introduced new

alternatives in order to calculate wave speeds, and Batten, Leschziner, and Goldberg

[18] made an implicit version of HLLC available.

1.1.2.2 Beyond the First-Order

Building high-order methods for simulating compressible fluid flow has a growing

interest. The first second-order Godunov-type schemes were introduced by Kolgan

[19] and van Leer [20]. Thanks to the work of van Leer, the second-order accuracy for

Godunov-type schemes were obtained by a piece-wise linear distribution in each cell

and named “Monotone Upwind Schemes for Scalar Conservation Laws” (MUSCL).

Van Leer pioneered a whole class of reconstruction-evolution methods called MUSCL
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Figure 1.3: Piece-wise Linear Cell Distribution

interpolation. A variety of variations were invented after his original work, and all of

these derivatives are commonly referred to as MUSCL interpolations. The sketch of

piece-wise linear cell distribution is given in Figure 1.3 and shown by red lines. If

the accuracy is first-order, the cell distribution is constant and shown by green lines.

Although cell distribution is piece-wise linear, the inputs (left and right states) of the

Riemann solver are still taken as constant at the cell boundary and shown by blue

dashed lines.

Monotone methods, such as the first-order Godunov scheme, do not produce spuri-

ous oscillations. Godunov [8] stated that “monotone methods are at most first-order

accurate.” Nonphysical oscillations may occur where sharp gradients or disconti-

nuities show up in the high-order linear methods. These oscillations are a numerical

issue that should be addressed. Constructing high-order methods without nonphysical

oscillations is possible with non-linear methods named Total Variation Diminishing

(TVD), which are the most widely used ones. According to TVD, the difference be-

tween adjacent points must decrease or remain the same. As a result, TVD schemes

start with the maximum amount of variation. The principal conditions for a TVD

scheme are:

• The maxima must not increase.
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Figure 1.4: Range of Some TVD Schemes [21]

• The minima must not decrease.

• There can be no more local extrema formed.

Limiters are commonly used to resolve the nonphysical oscillations issue and pro-

vide TVD property. The forward and backward gradient terms of the aforementioned

MUSCL reconstruction are limited by gradient limiters, forcing the scheme to have

the TVD feature in a strong shock or discontinuity zone. The range of some possible

TVD limiters which are second-order accurate is given in Figure 1.4.

The details of some widely used TVD limiters, such as Van Leer [22], SUPERBEE

[23], MINBEE (MINMOD) [23], and Van Albada [24] limiters, can be found in the

literature. However, for a variety of reasons, these limiters cannot be directly extended

to unstructured grids in the same way as they apply to structured grids [25].

A limiter was developed specifically for unstructured grids by Barth and Jespersen[26].

This limiter, however, has effects comparable to the TVD condition, which decreases

accuracy on smooth extrema. As a result, Venkatakrishnan [27] suggested an en-

hancement by using a differentiable function analogous to the limiter of van Albada,

which is built on structured grids.
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Figure 1.5: A Sketch of Godunov Scheme and Cell Distribution [28]

1.1.2.3 The Generalized Riemann Problem

The associated RP, where constant states are divided by discontinuities, is the Cauchy

problem. Although the order of Godunov schemes can be increased by different

discretizations, up to this point, the left and right states of the discontinuity remain

monotone. The schematic of the values of cells and an example of the application of

the RP at each cell face can be seen in Figure 1.5.

For Riemann solvers to produce a time-centered, high-order flux at a specified bound-

ary, it is necessary to assess the state as well as the flux over time. This constitutes

the essence of the GRP. It is appropriate to think of the GRP solver as a utility that

collects right and left states as well as their gradients at the cell interfaces, which is

shown in Figure 1.3 by red lines. The difference between wave configurations of GRP

and associated RP is given in Figure 1.6.

An arbitrary but smooth vector field away from the interface can be defined by govern-

ing hyperbolic equations, incorporating source terms, to generalize classical, piece-

wise constant data. This approach was first introduced on Euler equations by Ben-

Artzi and Falcovitz[30], named as Generalized Riemann Problem (GRP), which is a

second-order accurate scheme that inspired many works.

With the studies of Ben-Artzi and Falcovitz [30], [31], and Ben-Artzi [32], the de-

velopment of second-order accurate GRP solvers accelerated. It was LeFloch and

Raviart [33] and Bourgeade et al. [34] who generalized their formula to any gen-
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Figure 1.6: (a) Wave Patterns for the GRP (b) Wave Patterns for the Associated RP

[29]

eral hyperbolic system with self-similar variables. However, LeFloch and Raviart’s

work was more thoroughly systematization of the GRP approach. The Ben-Artzi and

Falcovitz textbook [35] contributed to the acceptance of GRP solvers.

The GRP development continued by Ben-Artzi, Li, and Warnecke [36] for the Eu-

ler system. Also, Ben-Artzi and Li [37] contributed to the development of the GRP

method for general systems. In most cases, the direct Eulerian scheme is effective

and reliable at capturing shocks and contact discontinuities. Li and Chen have devel-

oped a GRP solver for shallow water equations [38]. A GRP solver for third-order

accuracy was also developed by Qian, Li, and Wang [28] and for the Euler system by

Wu, Yang, and Tang [39]. It has proven to be a challenging task to obtain the exact

GRP for the Euler system with an accuracy of more than third order. In the study

of Pan et al. [40], the robustness of the GRP method is shown for Navier-Stokes

equations. A two-stage fourth-order scheme based on the approximation of GRP and

discretization of the fourth-order “Weighted Essentially Non-Oscillatory” (WENO)

method was introduced by Li et al. [41, 42], which also demonstrates the robustness

of the GRP method in the application of Navier-Stokes equations. Moreover, Du and

Li [43] extended the fourth-order accuracy to the fifth-order thanks to the Hermite

WENO construction method applied earlier. Yang and Tang [44], as well as Wu and

Tang [45], applied the GRP solver to relativistic fluid dynamics. Because thermody-

namical influences are properly incorporated into the solver’s design, as demonstrated

in Li and Wang [46], the analytical and non-linear extraction of the GRP solver can

handle very challenging problems like high temperature and high-density flows. For
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high-order approximations of the linear advection equation, a GRP-type scheme is

developed by Berthon, Sarazin, and Turpault [47], with adding another polynomial

approximation in order to increase the compactness of the scheme.

PDE evolution and mesh redistribution are two distinct components of the adaptive

GRP system presented by Han, Li, and Tang [48]. Zhang and Shang [49] offer an

extension of the Random Choice Method (RCM) derived by Toro by using a ran-

dom sampling technique to select states assigned to the subsequent time level and

providing a local solution to the GRP. ADER techniques were developed by Toro et

al. [50], Titarev and Toro [51, 52], Montecinos and Toro [53], and Castro and Toro

[54] to attempt approximate solutions to the GRP. Taube et al. [55] have developed

an ADER scheme for the Magnetohydrodynamic (MHD) problem. Additionally, a

GRP method that was based on the LeFloch and Raviart approach was presented by

Goetz and Iske [56] and Goetz and Dumbser [57]. According to Ben-Artzi and Fal-

covitz [35], Ben-Artzi, Li, and Warnecke [36], Ben-Artzi and Li [37], and Han et

al. [48], the second-order ADER method can be described as the acoustic variant of

GRP. However, the second-order ADER method fails when resolving strong discon-

tinuities.

1.2 Present Study

In the field of CFD, high-order methods can provide considerably more accurate so-

lutions than low-order methods, which is desirable for simulating flows with complex

solution structures. This study’s objective is to implement a high-order GRP solver

into the in-house, open-source finite volume CFD solver, validate and assess its per-

formance under various flow conditions and regimes with various geometries.

In this study, the upwind flux computation with the GRP method [36] is implemented

in the open-source solver. Also, new limiter functionalities for unstructured meshes

are added to the code base to match the original work. This particular limiter is also

assessed in the thesis. In addition to one-dimensional and two-dimensional domains,

an assessment on the three-dimensional domain is done, which is missing in the orig-

inal work.
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The results of exact solutions, theoretical solutions, and previously proven perfor-

mance prediction codes serve as the basis for validating the developed solver that is

the subject of this thesis.

1.3 Thesis Layout

The governing equations of the flow are explained in Chapter 2.

In Chapter 3, the numerical methods used in this thesis are presented. Firstly, the

exact Riemann solution is explained since it is the heart of both Godunov and the

GRP schemes. Then, the Godunov method is introduced with its wave configurations.

Finally, the GRP scheme is studied, which is the main scope of this thesis.

In Chapter 4, test cases and results of the solver are presented and discussed. Firstly,

the sharp rarefaction and shock wave and contact discontinuity solution accuracy of

the GRP implemented solver is validated by comparing with the exact solution and

Godunov scheme in different orders with five one-dimensional test cases. Secondly,

two-dimensional validation of the GRP solver is done by inviscid wedge, Prandtl-

Meyer Expansion, and RAE 2822 airfoil test cases. RAE 2822 Airfoil test case is

also validation for the viscous solving capability of the solver and the accuracy of

the aerodynamic performance. Finally, a three-dimensional case is solved in order to

prove the 3D capability of code and accuracy in different flow regimes with complex

geometry.

Finally, the conclusion and future works are presented in Chapter 5.
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CHAPTER 2

GOVERNING EQUATIONS

2.1 Euler Equations

The one-dimensional conservative formulation of the differential form of the Euler

equations is given by Equation (2.1).

Ut + F (U)x = 0 (2.1)

Vectors of conservative variables and fluxes, U and F (U), are given in Equation

(2.2).

U =


ρ

ρu

E

 , F =


ρu

ρu2 + p

u (E + p)

 (2.2)

Here, ρ is density, u is velocity, p is pressure, andE is the total energy per unit volume

defined in Equations (2.3) and (2.4).

E = ρ

(
1

2
u2 + e

)
(2.3)

e = e (ρ, p) (2.4)

where e is the specific internal energy obtained from Equation of State (EOS). The

conservation laws (2.1)-(2.2) can also be written in the quasi-linear form:
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Ut + A (U)Ux = 0 (2.5)

The coefficient matrix, i.e., the Jacobian matrix, is defined as in Equation (2.6).

A (U) =
∂F

∂U
=


∂f1/∂u1 ∂f1/∂u2 ∂f1/∂u3

∂f2/∂u1 ∂f2/∂u2 ∂f2/∂u3

∂f3/∂u1 ∂f3/∂u2 ∂f3/∂u3

 (2.6)

For the Euler equations, the Jacobian matrix is calculated as in Equation (2.7).

A (U) =


0 1 0

−1
2

(γ − 3)
(
u2
u1

)2

(3− γ)
(
u2
u1

)
(γ − 1)

−γu2u3
u21

+ (γ − 1)
(
u2
u1

)3

−γu3
u1
− 3

2
(γ − 1)

(
u2
u1

)2

γ
(
u2
u1

)
 (2.7)

The Jacobian matrix is simplified as in Equation (2.8).

A (U) =


0 1 0

−1
2

(γ − 3)u2 (3− γ)u (γ − 1)

(γ − 1)u3 − γuE/ρ γE/ρ− 3
2

(γ − 1)u2 γu

 (2.8)

In this equation γ is defined as the ratio of specific heats and found by γ = cp/cv. With

the ideal-gas EOS, Euler equations satisfy the homogeneity property as in Equation

(2.9).

F (U) = A (U)U (2.9)

The system’s eigenvalues are given in Equation (2.10):

λ1 = u− c , λ2 = u , λ3 = u+ c (2.10)

Note that c is the speed of sound. The characteristic polynomial is defined in Equation

(2.11).
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|A− λI| = 0 (2.11)

Right eigenvectors with vector K = [k1, k2, k3]T , are calculated by solving Equation

(2.12).

AK = λK (2.12)

The solution of Equation (2.12) leads to the three eigenvectors given in Equation

(2.13).

K(1) =


1

u− c
H − uc

 , K(2) =


1

u

1
2
u2

 , K(3) =


1

u+ c

H + uc

 (2.13)

Note that H is the total enthalpy.
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CHAPTER 3

NUMERICAL METHODS

Understanding the Riemann problem (RP) and its solution has a key role in solving a

system of conservation laws, which are hyperbolic. In this chapter, the exact solution

of the RP, the Godunov scheme, which uses the exact Riemann solution at the cell

faces, and the GRP solution are investigated.

3.1 The Riemann Problem

The Initial Value Problem (IVP) for the conservation laws is the RP for the 1D Euler

equations;

Ut + F (U)x = 0 ,

U =


ρ

ρu

E

 , F =


ρu

ρu2 + p

u (E + p)

 ,


(3.1)

The initial values for Equation (3.1) are given in Equation (3.2).

U (x, 0) = U (0)(x) =

UL if x < 0

UR if x > 0
(3.2)

As introduced in Chapter 1, the RP has an exact analytical solution for the Euler

equations; the shock tube problem, a fundamental physical issue in gas dynamics, is

a part of the RP in the context of the Euler equations. The RP is represented physically

by a gas-filled tube with two chambers separated by a removable membrane at x =
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Figure 3.1: Solution Structure of the RP [1]

x0, as shown in Figure 1.1. When solving the RP, the primitive variable form is

employed by the vector of W= (ρ, u, p)T instead of vector U of conserved variables.

The Riemann problem’s solution structure is given in Figure 3.1.

Three waves separate four states after the sudden rupture of the diaphragm, which

are WL, W∗L, W∗R, WR. Subscripts R and L stand for right and left states in the

wave structure. The unknown region between two waves is named as star region, and

the contact discontinuity divides this region into two sub-regions. The right and left

waves could be shock wave or rarefaction wave, while contact discontinuity is always

in the middle. Particle velocity, u∗, and pressure, p∗, are constant throughout the star

region, based on the Euler equations’ eigenstructure, but two constant quantities exist

for density, ρ∗L and ρ∗R. In the next part, a solution procedure is presented in order

to find unknown variables ρ∗L, ρ∗R, u∗, p∗.

3.1.1 The Exact Solution Procedure For The Riemann Problem

By solving for the root of the algebraic equation given in (3.3) with the ideal gas EOS,

pressure p∗ can be found.

fL (p, WL) + fR (p, WR) + uR − uL = 0 (3.3)
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The non-linear wave function fL is given as in Equation (3.4).

fL (p, WL) =


(p− pL)

[
AL
p+BL

] 1
2

if p > pL (shock)

2cL
(γ−1)

[(
p
pL

) γ−1
2γ − 1

]
if p ≤ pL (rarefaction)

(3.4)

The non-linear wave function fR is given as in Equation (3.5).

fR (p, WR) =


(p− pR)

[
AR
p+BR

] 1
2

if p > pR (shock)

2cR
(γ−1)

[(
p
pR

) γ−1
2γ − 1

]
if p ≤ pR (rarefaction)

(3.5)

The constants are given in Equation (3.6).

AL = 2
(γ+1)ρL

, BL = (γ−1)
(γ+1)

pL

AR = 2
(γ+1)ρR

, BR = (γ−1)
(γ+1)

pR

 (3.6)

Finally, particle velocity can be obtained from Equation (3.7).

u∗ =
1

2
(uL + uR) +

1

2
[fR (p∗)− fL (p∗)] (3.7)

The non-linear wave function fL determines the relationships between the known

state WL on the left side and the undetermined particle speed u∗. The relationships

depend on the wave’s type (rarefaction or shock). The right data state WR and the

unknown u∗ are connected by the function fR, which determines relations across the

right non-linear wave.

ρ∗R and ρ∗L can be obtained utilizing Equations (3.8) and (3.9). These equations are

the relationships between the ratios of pressure and density across the shock waves

depending on the direction after u∗ and p∗ have been calculated.

ρ∗L = ρL


(
γ−1
γ+1

)
+
(
p∗
pL

)
(
γ−1
γ+1

)(
p∗
pL

)
+ 1

 (3.8)
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ρ∗R = ρR


(
γ−1
γ+1

)
+
(
p∗
pR

)
(
γ−1
γ+1

)(
p∗
pR

)
+ 1

 (3.9)

Similarly, if the type of the waves is rarefaction, Equations (3.10) and (3.11) are used

for calculating the ρ∗L and ρ∗R.

ρ∗L = ρL

(
p∗
pL

) 1
γ

(3.10)

ρ∗R = ρR

(
p∗
pR

) 1
γ

(3.11)

The speed of shock waves (SL , SR) for left and right directions can be found by

Equations (3.12) and (3.13).

SL = uL − cL
[

(γ + 1)

2γ

p∗
pL

+
γ − 1

2γ

] 1
2

(3.12)

SR = uR + cR

[
(γ + 1)

2γ

p∗
pR

+
γ − 1

2γ

] 1
2

(3.13)

Note that cR and cL are the sound speed of the right and left states. Additionally, the

speed of sound upstream of the rarefaction wave is calculated from Equations (3.14)

and (3.15).

c∗L = cL

(
p∗
pL

) γ−1
2γ

(3.14)

c∗R = cR

(
p∗
pR

) γ−1
2γ

(3.15)

The calculation of c∗ allows for the calculation of the head and the tail speeds of a

rarefaction wave by Equations (3.16) and (3.17).

SHL = uL − cL , STL = u∗ − c∗L (3.16)
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SHR = uR + cR , STR = u∗ + c∗R (3.17)

Finally, the solution for the left fan and right fan inside a rarefaction wave is found in

Equations (3.18) and (3.19).

WLfan =


ρ = ρL

[
2

(γ+1)
+ (γ−1)

(γ+1)cL

(
uL − x

t

)] 2
γ−1

u = 2
(γ+1)

[
cL + (γ−1)

2
uL + x

t

]
p = pL

[
2

(γ+1)
+ (γ−1)

(γ+1)cL

(
uL − x

t

)] 2γ
γ−1

(3.18)

WRfan =


ρ = ρR

[
2

(γ+1)
− (γ−1)

(γ+1)cR

(
uR − x

t

)] 2
γ−1

u = 2
(γ+1)

[
−cR + (γ−1)

2
uR + x

t

]
p = pR

[
2

(γ+1)
− (γ−1)

(γ+1)cR

(
uR − x

t

)] 2γ
γ−1

(3.19)

3.1.2 The Godunov Scheme

Godunov [8] developed a conservative application of the first-order upwind technique

to non-linear systems of hyperbolic conservation laws. Within each cell boundary, the

RP must be resolved, whether it can be an exact solution or a proper approximation,

in order for Godunov’s method to work. By assuming that there is a local RP at

the cell interfaces, the Godunov method assumes that the solution is constant over

a cell at a given time t, even though the accuracy is second-order (see Figure 1.3),

and evaluates the flow field variables at the following time step. In Figure 3.2, this

averaging procedure is illustrated.

In the first version of Godunov’s method, new average values, Un+1
i , are defined at

time tn+1 = tn +∆t by Equation (3.20).

Un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Ũ
(
x, tn+1

)
dx (3.20)

This calculation is applied within each cell Ii =
[
xi− 1

2
, xi+ 1

2

]
.
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Figure 3.2: The Average Values of Cells for U [1]

Godunov suggests solving the two RPs at the upstream boundary of the cell,RP
(
Un
i−1, U

n
i

)
,

and downstream boundary of the cell, RP
(
Un
i , U

n
i+1

)
, to obtain the solution, which

yields the local solutions for Un
i− 1

2

and Un
i+ 1

2

. The Un+1
i is then calculated by the

integral average of the solutions, Un
i− 1

2

and Un
i+ 1

2

, as shown by Equation (3.21).

Un+1
i =

1

∆x

∫ 1
2
∆x

0

Ui− 1
2

( x

∆t

)
dx+

1

∆x

∫ 0

− 1
2
∆x

Ui+ 1
2

( x

∆t

)
dx (3.21)

One critical point in this method is that one must select∆t such that characteristics of

the inter-cell boundaries do not interact; otherwise, incorrect solutions will be found.

Due to the drawbacks of this method, a more attractive second edition of Godunov’s

technique is given by Equation (3.22).

Un+1
i = Un

i +
∆t

∆x

[
Fi− 1

2
− Fi+ 1

2

]
(3.22)

The inter-cell numerical flux can be calculated by Equation(3.24) if the condition is

met by the time step ∆t, which is given in Equation (3.23).

∆t ≤ ∆x

Snmax
(3.23)

Fi+ 1
2

= F
(
Ui+ 1

2
(0)
)

(3.24)
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Figure 3.3: Ten Possible Wave Configurations of Godunov Scheme [1]

Inter-cell fluxes Fi− 1
2

and Fi+ 1
2

must be calculated in order to march the solution to

the next time step using the conservative formula (3.22). The Godunov flux Fi+ 1
2

for

an ordinary cell interface xi+ 1
2

is calculated using (3.24). The solution Ui+ 1
2

(x/t)

of the Riemann problem RP
(
Un
i , U

n
i+1

)
calculated at the point S = x/t = 0 is

therefore required. Figure 3.3 shows Euler equation solutions of ten possible wave

configurations.

Five sub-cases (a) arise when the sampling point is located at the contact discontinu-

ity’s left, and similarly, the remaining five sub-cases (b) arise when the sampling point

is located at the contact discontinuity’s right. In Figure 3.3, the shock wave is shown

by a thick line, the rarefaction wave is shown by a fan, and the contact discontinuity

is shown by a dashed line. If 0 ≤ u∗, in the star region, the particle speed is positive

(case a), and the particle speed in the star region is negative (case b) if u∗ ≥ 0.
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Table 3.1: Ten Possible Sampling Values for Calculating Godunov Flux

Case (a): particle speed is positive (b): particle speed is negative

1 WL WR

2 W∗L W∗R

3 WL WR

4 W∗L W∗R

5 WLfan WRfan

In order to calculate Godunov flux, one must compute the value along the t-axis

(x = 0). For case (a) of Figure 3.3, case (a1) is a right shock wave, and the sampling

point lies behind the shock wave as the left state, case (a2) is a left shock wave where

the sampling point is between two waves, case (a3) is a right rarefaction wave, and

sampling point lies behind the rarefaction wave as left state, case (a4) is a left rar-

efaction wave where sampling point is between two waves finally case (a5) is a sonic

rarefaction wave where the sampling point is inside the wave.

For case (b) of the figure, case (b1) is a left shock wave, and the sampling point

lies behind the shock wave as the right state, case (b2) is a right shock wave where

the sampling point is between two waves, case (b3) is a left rarefaction wave, and

sampling point lies behind the rarefaction wave as right state, case (b4) is a right

rarefaction wave where sampling point is between two waves finally case (b5) is a

sonic rarefaction wave where the sampling point is inside the wave.

A summary of sampled values needed for calculating Godunov flux for ten possible

wave configurations is given in Table 3.1.

3.1.2.1 Time Step Size

Up to here, inter-cell flux calculation (3.24) to be used in the conservation formula is

presented. With the selection of desired discretization length ∆x, the size of the time

step ∆t must be determined in order to solve Equation (3.22). The Ccfl condition is

used to determine the time step by Equation (3.25).
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∆t =
Ccfl∆x

Snmax
(3.25)

Note that the range of Ccfl is given in Equation (3.26).

0 < Ccfl < 1 (3.26)

A reliable option for the Euler equations is given in Equation (3.27).

Snmax = max
i
{|uni |+ cni } (3.27)

3.2 The Generalized Riemann Problem Scheme

The GRP scheme is an analytic extension of the second-order Godunov scheme,

which takes the form given in Equation (3.28).

Un+1
i = Un

i −
∆t

∆x

(
F
(
U
n+ 1

2

i+ 1
2

)
− F

(
U
n+ 1

2

i− 1
2

))
(3.28)

In this equation, U
n+ 1

1

i+ 1
2

and U
n+ 1

1

i− 1
2

are the value of U at the cell interface x = xi+ 1
2

and

x = xi− 1
2

respectively, averaged over time interval [tn, tn+1]. The GRP method then

proceeds to determine the value U
n+ 1

1

i+ 1
2

by solving the GRP with second-order accu-

racy at each point
(
xi+ 1

2
, tn

)
. More specifically, the equations used for calculating

the midpoint value U
n+ 1

1

i+ 1
2

are:

U
n+ 1

2

i+ 1
2

= Un
i+ 1

2
+
∆t

2

(
∂U

∂t

)n
i+ 1

2

, Un
i+ 1

2
= RA

(
0;Un

i+ 1
2
,−, U

n
i+ 1

2
,+

)
(3.29)

In Equation (3.29),RA
((
x− xi+ 1

2

)
/ (t− tn) ;Un

i+ 1
2
,−, U

n
i+ 1

2
,+

)
is the solution to the

associated RP for Equation (3.1) centered at
(
xi+ 1

2
, tn

)
. Where Un

i+ 1
2
,−, and Un

i+ 1
2
,+

are the limiting values of the initial data on both sides. It is clear that only time
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derivative
(
∂U
∂t

)n
i+ 1

2

must be defined for the GRP method when the classical Riemann

solution Un
i+ 1

2

or the Godunov scheme is considered.

The analytical integration of the conservation laws throughout time is the primary

component of GRP. In the sections that follow, the direct derivation of the GRP for

compressible flows is provided by using Riemann invariants to eliminate the singu-

larity at the discontinuity.

Similar to the Godunov scheme, there are ten possible wave configurations which

are given in Figure 3.4. The shock wave, rarefaction wave, and contact discontinuity

are illustrated by a thick line, a combination of lines, and a dashed line, respectively.

Differently from the Godunov scheme, in the GRP method, the two waves are con-

sidered independently from the flow direction when sampling on the t-axis, which is

the vertical axis.

For better understanding, wave configuration for the GRP (a) and associated RP (b)

in Figure 3.5 can be considered. Differently from the case (b), the waves are not

linear in case (a) since variable distribution in cells is not taken as constant when

compared with all other second-order schemes. When calculating the flux at the cell

boundary, the piece-wise linear reconstruction in the cell and the gradients are taken

into account in the GRP method, as given in Figure 1.3 with red lines. A shock wave

moves in the right direction, a centered rarefaction wave moves towards the left, and a

contact discontinuity separates two waves in the star region. According to the contact

discontinuity’s location, the left and right intermediate region is indicated by U1 and

U2, respectively, where velocity u, and pressure p are continuous and density ρ have

a jump. U∗ is the limiting state.

3.2.1 The Preliminaries

For smooth flows, Euler equations (3.1) become

Dρ

Dt
+ ρ

∂u

∂x
= 0, ρ

Du

Dt
+
∂p

∂x
= 0,

DS

Dt
= 0 (3.30)

In this equation, S is the entropy, and D/Dt = ∂/∂t+ u∂/∂x is the material deriva-

26



Figure 3.4: Ten Possible Wave Structures of GRP Scheme: (a) u∗ > 0 (b) u∗ < 0
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Figure 3.5: Typical Wave Configuration: (a) GRP Solution (b) Associated RP Solu-

tion [36]
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tive. The energy change can be found in Equation (3.31) by using Temperature T.

de = TdS +
p

ρ2
dρ (3.31)

The local speed of sound can be calculated by Equation (3.32).

c2 =
∂p (ρ, S)

∂ρ
(3.32)

The entropy is constant along a streamline. The Riemann invariants, φ and ψ, which

are an important part of this scheme, are defined in Equation (3.33).

φ = u−
∫ ρ c (ω, S)

ω
dω, ψ = u+

∫ ρ c (ω, S)

ω
dω (3.33)

If all thermodynamic components are treated as functions of density and entropy,

which is also a Riemann invariant linked to u−c and u+c characteristics, the Equation

(3.33) becomes:

φ = u− 2c

γ − 1
, ψ = u+

2c

γ − 1
(3.34)

Note that c2 = γp/ρ for an ideal gas. Using Equation (3.34),

dφ = du− γ

(γ − 1) ρc
dp+

c

(γ − 1) ρ
dρ, dψ = du+

γ

(γ − 1) ρc
dp− c

(γ − 1) ρ
dρ

(3.35)

Also,

TdS =
dp

(γ − 1) ρ
− c2

(γ − 1) ρ
dρ (3.36)

In the GRP scheme, the flow variables are assumed to be piece-wise linear. The initial

data can be shown as:
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U (x, 0) =

 UL + xU ′L,

UR + xU ′R,

x < 0

x > 0
(3.37)

Note that vectors UL, U ′L UR U
′
R are constant. The associated Riemann solution de-

termines the solution’s initial structure up to this point.

3.2.2 The Resolution of Centered Rarefaction Waves

The resolution of centered rarefaction waves (CRWs) is the key component of the

GRP scheme. The Riemann invariants remain unchanged along an isentropic rar-

efaction wave which can be seen in the associated RP. They are still regular within

the non-isentropic rarefaction wave, which can be seen in the GRP. The variables

ρ, u, and p become singular in terms of the rate of change at the initial discontinuity.

Knowing that the entropy is constant along a streamline, the entropy equation can be

solved first when separated from the continuity and momentum equations. The prim-

itive variables pressure and velocity are continuous across the contact discontinuity

between two waves. Therefore, firstly, the directional derivatives of pressure and ve-

locity are treated, and secondly, the directional derivatives of density are calculated

without concerning particle velocity at the star region.

When treating the sonic case, i.e., the sampling point is inside a rarefaction wave,

the fact that one of the characteristic curves is tangent to the t-axis, the information

obtained from the rarefaction wave can be used to determine how each flow variable

changes over time.

At the singularity, (0, 0), we can calculate the time derivatives of the flow variables

based on the rarefaction wave associated with the u − c characteristic family. The

states ahead or behind the rarefaction wave are indicated by U− (x, t) (respectively,

U1 (x, t)), see Figure 3.5, where U− (x, t) corresponds to the left initial data UL+U ′Lx.

In the rarefaction wave, characteristic curves are denoted by β and α, βL = uL − cL,

β∗ = u∗−c∗. Note that β represents the initial value of slope u−c characteristic at the

origin and α is the intersection of transversal characteristic curves with the leading

β-curve. These characteristic curves are integrals of Equation (3.38), respectively.
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dx

dt
= u− c, dx

dt
= u+ c (3.38)

The limiting values (Du/Dt) and (Dp/Dt) meet the linear relation given in Equation

(3.39).

aL
Du

Dt
(0, β) + bL

Dp

Dt
(0, β) = dL (β) (3.39)

Note that aL and bLcan be found in Equation (3.40).

(aL, bL) =

(
1,

1

ρ1∗c1∗

)
(3.40)

The function dL (β) only depends on the associated Riemann solution and the initial

states, which can be calculated by Equation (3.41).

dL =

[
1 + µ2

1 + 2µ2

(
c1∗

cL

)1/(2µ2)
+

µ2

1 + 2µ2

(
c1∗

cL

)(1+µ2)/µ2
]
TLS

′
L−cL

(
c1∗

cL

)1/(2µ2)
ψ′L

(3.41)

Similarly, the coefficients where rarefaction wave linked with u + c characteristic

family can be found from Equations (3.42) and (3.43).

(aR, bR) =

(
1,− 1

ρ2∗c2∗

)
(3.42)

dR =

[
1 + µ2

1 + 2µ2

(
c2∗

cR

)1/(2µ2)
+

µ2

1 + 2µ2

(
c2∗

cR

)(1+µ2)/µ2
]
TRS

′
R+cR

(
c2∗

cR

)1/(2µ2)
φ′R

(3.43)

Note that µ2 = γ−1
γ+1

.
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3.2.3 The Resolution of Shock Waves

The resolution of shock waves is treated with the idea of van Leer [20]. The instanta-

neous values of temporal derivatives are obtained by resolving a pair of two equations

in terms of material derivatives of velocity and pressure. Along the shock wave, which

belongs u + c family of characteristics, assuming the propagation speed is positive

and to the right direction, the Rankine-Hugoniot condition can be expressed in the

form given in Equation (3.44).

u = u+ Φ (p; p, ρ) (3.44)

the (ρ, p)-Rankine-Hugoniot condition is defined in Equation (3.45).

ρ = H (p; p, ρ) (3.45)

The speed of the shock wave can be found from Equation (3.46).

σ =
ρu− ρu
ρ− ρ

(3.46)

In the pre-shock region, the time derivatives of U can be replaced by the x-derivatives

of U , and similarly, in the post-shock region, the x-derivatives of U can be replaced

by the time derivatives. The variables p and u are continuous over the contact discon-

tinuity, and therefore the total derivatives Dp/Dt and Du/Dt are also continuous in

between two waves. By taking the limit t → 0+, total derivatives can be calculated

from Equation (3.47).

Du

Dt
→
(
Du

Dt

)
∗
,

Dp

Dt
→
(
Dp

Dt

)
∗
,

∂U

∂x
→ U ′R (3.47)

Moreover,

(ρ, u, p)→ (ρ2∗, u∗, p∗) , (ρ, u, p)→ (ρR, uR, pR) (3.48)
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The limiting values (Du/Dt)∗ and (Dp/Dt)∗ can be found from Equation (3.49).

aR

(
Du

Dt

)
∗

+ bR

(
Dp

Dt

)
∗

= dR (3.49)

The constants aR, bR, dR depend only on the associated RP and initial states, de-

scribed in Equation (3.50).

aR = 1 + ρ2∗. (σR − u∗) .Φ1

bR = −
[

1
ρ2∗.c22∗

. (σR − u∗) + Φ1

]
dR = LRp .p

′
R + LRu .u

′
R + LRρ .ρ

′
R

(3.50)

The constants in Equation (3.50) can be calculated from Equations (3.51) and (3.52).

LRp = − 1
ρR

+ (σR − uR) .Φ2

LRu = σR − uR − ρR.c2
R.Φ2 − ρR.Φ3

LRρ = (σR − uR) .Φ3

(3.51)

Φ1 =
∂Φ

∂p
(p∗; pR, ρR) , Φ2 =

∂Φ

∂p
(p∗; pR, ρR) , Φ3 =

∂Φ

∂ρ
(p∗; pR, ρR)

(3.52)

The coefficients that correspond to the u− c characteristic family for the shock wave

can be found similarly from Equation (3.53).

aL = 1− ρ1∗. (σL − u∗) .Φ1

bL = − 1
ρ1∗.c21∗

. (σL − u∗) + Φ1

dL = LLp .p
′
R + LLu .u

′
R + LLρ .ρ

′
R

(3.53)

The constants in Equation (3.53) can be calculated from Equations (3.54) and (3.55).

LLp = − 1
ρL
− (σL − uL) .Φ2

LLu = σL − uL + ρL.c
2
L.Φ2 + ρL.Φ3

LLρ = − (σL − uL) .Φ3

(3.54)
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Φ1 =
∂Φ

∂p
(p∗; pL, ρL) , Φ2 =

∂Φ

∂p
(p∗; pL, ρL) , Φ3 =

∂Φ

∂ρ
(p∗; pL, ρL)

(3.55)

3.2.4 Solutions for Time Derivative

As mentioned earlier in Part 3.2, the time derivative
(
∂U
∂t

)
∗ must be determined for

the GRP scheme. Assuming the shock wave proceeds to the right and CRW to the

left direction, as shown in Figure 3.5, the primitive variables u and p, total derivatives

Dp/Dt, and Du/Dt, and therefore, the limiting values (Dp/Dt)∗ and (Du/Dt)∗ are

constant across the contact discontinuity. From this information, calculating first the

limiting values (Dp/Dt)∗ and (Du/Dt)∗, then time derivatives
(
∂u
∂t

)
∗ and

(
∂p
∂t

)
∗will

yield
(
∂ρ
∂t

)
∗.

The Nonsonic Case For the nonsonic case, i.e., when the sampling point (t-axis) is

not inside a rarefaction wave, the limiting values can be obtained from the solution of

the pair of linear algebraic Equation (3.56).

aL
(
Du
Dt

)
∗ + bL

(
Dp
Dt

)
∗ = dL

aR
(
Du
Dt

)
∗ + bR

(
Dp
Dt

)
∗ = dR

(3.56)

The limiting values of the time derivatives can be obtained from Equation (3.57).

(
∂u
∂t

)
∗ =

(
Du
Dt

)
∗ + u∗

ρ∗c2∗

(
Dp
Dt

)
∗(

∂p
∂t

)
∗ =

(
Dp
Dt

)
∗ + ρ∗u∗

(
Du
Dt

)
∗

(3.57)

The Sonic Case For the sonic case, i.e., when the sampling point (t-axis) is inside

a rarefaction wave, the limiting values can be obtained from the Equations (3.58) and

(3.59).

(
∂u
∂t

)
∗ = dL (0)(

∂p
∂t

)
∗ = ρ∗u∗dL (0)

 if left rarefaction (3.58)
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(
∂u
∂t

)
∗ = dR (0)(

∂p
∂t

)
∗ = ρ∗u∗dR (0)

 if right rarefaction (3.59)

Depending on the propagation direction of contact discontinuity and wave type, (∂ρ/∂t)∗

can be calculated by Equation (3.60) if u∗ > 0.

(
∂ρ

∂t

)
∗

=


1
c2∗

((
∂p
∂t

)
∗ + (γ − 1) ρ∗u∗

(
c∗
cL

)(1+µ2)/µ2
TLS

′
L

)
(left rarefaction) ,(

u∗.fL − gLp
(
∂p
∂t

)
∗ − g

L
u

(
∂u
∂t

)
∗

)
/gLρ (left shock) ,

(3.60)

If u∗ < 0, (∂ρ/∂t)∗ can be calculated by the Equation (3.61).

(
∂ρ

∂t

)
∗

=


1
c2∗

((
∂p
∂t

)
∗ + (γ − 1) ρ∗u∗

(
c∗
cR

)(1+µ2)/µ2
TRS

′
R

)
(right rarefaction) ,(

u∗.fR − gRp
(
∂p
∂t

)
∗ − g

R
u

(
∂u
∂t

)
∗

)
/gRρ (right shock) ,

(3.61)

The constants can be calculated from Equation (3.62).

gLρ = u∗ − σL, gLp = σL
c21∗
− u∗H1, gLu = u∗.ρ1∗ (σL − u∗) .H1

gRρ = u∗ − σR, gRp = σR
c22∗
− u∗H1, gRu = u∗.ρ2∗ (σR − u∗) .H1

(3.62)

3.2.5 Algorithm of GRP Scheme

The algorithm of the GRP scheme [36] is given by the following four steps:

Step 1. Solve the RP at inter-cell to define the Riemann solution using Equation

(3.63).

Un
i+ 1

2
= RA

(
0;Un

i +
∆x

2
σni , U

n
i+1 −

∆x

2
σni+1

)
(3.63)

which results in the Godunov scheme if σni ≡ 0.
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Step 2. Compute time derivative
(
∂U
∂t

)
∗ according to the formulae given above sec-

tions and determine the numerical flux using Equation (3.64).

U
n+ 1

2

i+ 1
2

= Un
i+ 1

2
+

∆t

2

(
∂U

∂t

)n
i+ 1

2

(3.64)

Step 3. By using Equation (3.65), determine the new cell averages Un+1
i .

Un+1
i = Un

i −
∆t

∆x

(
F
(
U
n+ 1

2

i+ 1
2

)
− F

(
U
n+ 1

2

i− 1
2

))
(3.65)

Step 4. Calculate the new slope using a slope limiter and Equations (3.66) and

(3.67).

Un+1,−
i+ 1

2

= Un
i+ 1

2

+ ∆t
(
∂U
∂t

)n
i+ 1

2

σn+1,−
i = 1

∆x

(
Un+1,−
i+ 1

2

− Un+1,−
i− 1

2

) (3.66)

σn+1
i = minmod

(
ασ
Un+1
i − Un+1

i−1

∆x
, σn+1,−

i , ασ
Un+1
i+1 − Un+1

i

∆x

)
(3.67)

This slope calculation procedure is an essential ingredient of the GRP scheme since it

is not affected by the new cell averages, which distinguishes this scheme from other

second-order high-resolution techniques, where ασ is between (0, 2].

This slope limiter used in the GRP method is a modified version of the general-

ized MINMOD limiter of van Leer[20]. Since the time variation of variables (∂U
∂t

)

is taken into account in the GRP method, the application of the limiter is specific

to this scheme. Van Leer’s generalized MINMOD limiter has a high impact on the

solution resolution and will be discussed in the next chapter.

36



CHAPTER 4

RESULTS AND DISCUSSION

The upwind flux computation with the GRP method is implemented in the open-

source, FVM-based solver. The implemented solver, FLOWPSI, was developed by

Luke et al. [58]. The flow solver is built on a rule-based programming framework

named LoCi. This flow solver can resolve the three-dimensional steady-state or un-

steady problems of the Euler and Navier-Stokes equations. The solver can work

with both structured and unstructured grids, in addition. The solver employs third-

order explicit Runge-Kutta method and implicit methods for the integration in time.

Moreover, second-order exact and approximate (HLLC) Riemannian convective flux

schemes are included in the solver. The gradients in cells are calculated by the least

squares method, and they are limited by Barth-Jaspersen and Venkatakrishnan lim-

iters for spatial discretization accuracy.

Firstly, the implemented GRP algorithm is tested in the 1D domain with available

limiters. However, obtained results are not close to the reference results. In order

to assess this issue in a detailed way, a structured, 1D prototype solver is developed

in MATLAB with generalized MINMOD limiter used as in the original work [36].

In addition, thanks to this prototype solver, the solver differences, such as time inte-

gration and gradient calculation between original work and unstructured solver, are

minimized.

After validating the implemented method in the prototype solver, the generalized

MINMOD limiter is also implemented in our solver, FLOWPSI, since it improves

the accuracy of results and the obtained results fit well with the reference results.

It is observed that the limiter is the driving component of the GRP method. This

observation is discussed briefly at the end of this chapter.

37



Table 4.1: Test Plan

Test Step Step Name Aim

1 GRP MATLAB Implementation verification and limiter assessment

2 GRP FLOWPSI Production code verification and implementation

3 P-M Expansion Rarefaction wave performance in 2D

4 Inviscid Wedge Shock wave performance in 2D

5 RAE 2822 Airfoil Aerodynamic performance for viscous flows

6 ONERA M6 Wing Performance in 3D

In this chapter, one-dimensional shock tube test cases are analyzed in different as-

pects. Secondly, two-dimensional problems such as inviscid wedge flow, inviscid

Prandtl-Meyer expansion fan, and RAE 2822 transonic airfoil are studied. Finally,

the three-dimensional ONERA M6 wing is tested. The test plan is given in Table 4.1.

4.1 One-Dimensional Results

Five 1D shock tube problems are investigated in order to assess the performance of

the GRP method for the Euler equations with the developed solver in MATLAB and

FLOWPSI. Also, the numerical results of the first-order and second-order Godunov

schemes, the exact solutions, and reference results [36] are used for comparison. The

left and right constant states of the tests are given in Table 4.2. The tests are taken

from [1] and [36]. In section 4.1.1, the results from prototype MATLAB implemen-

tation for the GRP method and first-order Godunov scheme are presented with the

reference results. Results of FLOWPSI and comparison with reference results [36]

are given in section 4.1.2.

4.1.1 Results of Prototype Solver

In all cases, the computational domain is divided into N = 100 cells, where domain

length L is taken as 1. The ratio of specific heats is selected as γ = 1.4. The Ccfl is

taken as 0.1. A discontinuity separates two constant states, which are given in Table

4.2. For the exact solution, the open-source code developed and distributed by Toro
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Table 4.2: Left and Right States for Five Test Problems

Test ρL uL pL ρR uR pR

1 1.0 0.0 1.0 0.125 0.0 0.1

2 1.0 -2.0 0.4 1.0 2.0 0.4

3 1.0 0.0 1000.0 1.0 0.0 0.01

4 5.99924 19.5975 460.894 5.99242 -6.19633 46.0950

5 1.0 -19.59745 1000.0 1.0 -19.59745 0.01

[59] is used. In the results, velocity, pressure, density, and internal energy variables

are presented where exact results are shown by the black line; gray triangles indicate

reference results, blue circles demonstrate first-order Godunov scheme results, and

red crosses indicate solutions of the GRP method with generalized MINMOD limiter

from MATLAB.

4.1.1.1 Test Case 1

This test case, which is named as Sod problem [60], consists of a right shock wave,

a left rarefaction wave, and contact discontinuity moving in the right direction. The

purpose of this test case is to evaluate the accuracy of numerical methods. The gas is

initially at rest. Initial discontinuity position has chosen as x0 = 0.5. The results at

T = 0.15 seconds are shown in Figure 4.1.

The rarefaction wave (which can be seen between x ≈ 0.3 and x ≈ 0.5) is well ap-

proximated by the GRP method; differently than the Godunov scheme, the accuracy

near the head and tail is better.

The shock wave (can be seen at x ≈ 0.75) is approximated over four computing

cells in the first-order method and three computing cells in the GRP scheme without

nonphysical oscillations, which shows the shock wave resolution of the GRP method.

It is more challenging to resolve contact discontinuities (which can be seen at x ≈
0.65) accurately than resolving the shock waves due to their linear characteristic. It

is seen that the GRP method has better resolution than the Godunov scheme when

compared.
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Figure 4.1: Results of Test Case 1

In all figures, the results are in near-perfect fit with the reference study.

4.1.1.2 Test Case 2

This test case, commonly known as the "123 problem", is appropriate for evaluating

the effectiveness of numerical techniques flows near a vacuum [61]. A contact dis-

continuity at x0 = 0.5 with zero speed separates the two symmetric rarefaction waves

where the star region is close to the vacuum. The results at T = 0.1 seconds are

shown in Figure 4.2.

Although the first-order Godunov method shows satisfactory results when ρ, u, p,

and E are considered, the GRP method is better near the head of the rarefaction

waves. When specific internal energy, e, is considered, the Godunov scheme can be

considered unsatisfactory where density and pressure get closer to zero, which results

in growing errors in internal energy. It is widely acknowledged that internal energy

plots can disclose a lot about the quality of the numerical solution. Moreover, the low-

density problems cause numerical schemes to diverge or fail; thus, they also show the
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Figure 4.2: Results of Test Case 2

robustness of the methods. The internal energy results are shown in Figure 4.3, where

the GRP method proves its superiority. In addition, the solution of the GRP method

is in good agreement with the reference solution.

The contact discontinuity stays at x = 0.5 since the left and right rarefaction waves

are characteristically equal.

4.1.1.3 Test Case 3

The purpose of this test case is to evaluate the accuracy and robustness of numerical

methods in the presence of very strong shock waves, rarefaction waves, and contact

discontinuities. This problem is left half of the Woodward and Colella [62] problem,

and the location of initial discontinuity is at x0 = 0.5. The results at T = 0.012

seconds are shown in Figure 4.4.

The GRP method performs well both in the head and tail of the rarefaction wave

(which can be seen between x ≈ 0.1 and x ≈ 0.3) only with a slight overshoot

in the velocity plot. This oscillation is typically close to strong discontinuities for
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Figure 4.3: Internal Energy Results of Test Case 2

Figure 4.4: Results of Test Case 3

42



Figure 4.5: Results of Test Case 4

high-order schemes since variables change suddenly.

When compared with the Godunov scheme, the resolution of the shock wave is better

in the GRP method, where the approximation took three cells. The shock wave is

approximated over five cells with the first-order Godunov method.

Similar to Test Case 1, the performance at contact discontinuity is worse than shock

wave, which results in less accurate post-shock values for the Godunov scheme,

where it can be seen in the density or energy plot. Again, the GRP method has better

results when the magnitude of the results is considered.

4.1.1.4 Test Case 4

In this test case, the accuracy and robustness of the numerical schemes are measured

with three strong discontinuities. The initial discontinuity is located at x0 = 0.5 in

this case. This problem is obtained by the result of the collision of two strong shock

waves moving in reverse directions. The results at T = 0.035 seconds are shown in

Figure 4.5.
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Figure 4.6: Results of Test Case 5

This problem involves two strong shock waves; one of them goes to the right, and

the other one goes to the left direction with a very low shock speed. The right shock

wave is approximated over five cells in the first-order Godunov scheme and two cells

in the GRP method. The left, slow shock wave is sharply resolved in one cell by all

of the schemes, but the internal energy plot shows that there are some low-frequency

oscillations. The shock wave, which moves slowly, resolved successfully.

The contact discontinuity moves to the right in this problem, and the GRP method

solves it better than the Godunov scheme, which can be seen from internal energy

and density plots.

4.1.1.5 Test Case 5

The aim of this challenging test case is to evaluate the ability to solve slowly moving

or stationary contact discontinuities in addition to evaluating the stability of numerical

schemes. Location of initial discontinuity is at x0 = 0.8. The results at T = 0.012

seconds are shown in Figure 4.6.
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Test case 5 consists of a stationary contact discontinuity at x = 0.8, a left rarefaction

wave (can be seen between x ≈ 0.1 and x ≈ 0.4), and a shock wave (can be seen at

x ≈ 0.85) that propagates to the right. The rarefaction wave is better resolved by the

GRP scheme when results at the head and tail of the wave are considered.

The shock wave is approximated over one cell by all methods.

Since the contact discontinuity is stationary, it is resolved sharply by all methods, but

an oscillatory behavior is observed in the energy plot behind this discontinuity.

4.1.2 Validation of Flow Solver Implementation

Two 1D shock tube problems are investigated in order to validate the implementation

of the GRP method for the Euler equations in FLOWPSI. Also, the numerical results

of the reference are used for comparison. In all cases, the computational domain is

divided into N = 100 cells, where domain length L is taken as 1, and the ratio of

specific heats is selected as γ = 1.4. In the figures, velocity, pressure, density, and

internal energy variables are presented where exact results are shown by the black

line; gray triangles indicate reference results, and blue crosses demonstrate solutions

of the GRP method with generalized MINMOD limiter from FLOWPSI.

4.1.2.1 Test Case 1

This test case consists of a right shock wave, a left rarefaction wave, and contact

discontinuity moving in the right direction. The gas is initially at rest. Initial discon-

tinuity position has chosen as x0 = 0.5 . The results at T = 0.15 seconds are shown

in Figure 4.7.

In all figures, the results are in near-perfect fit with the reference study. The resolution

of the shock wave is captured by three cells.

It is challenging to resolve contact discontinuities; however, when compared, both of

the solvers captured the discontinuity accordingly with reference. There is a small

oscillatory behavior after contact discontinuity which is a result of the selected ασ
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Figure 4.7: Results of Test Case 1

value of 1.9 of the limiter.

The rarefaction wave is resolved similarly in each solver and in good agreement with

the reference solution.

4.1.2.2 Test Case 2

In this test case, a contact discontinuity at x0 = 0.5 with zero speed separates the two

symmetric rarefaction waves where the star region is close to the vacuum. The results

at T = 0.1 seconds are shown in Figure 4.8.

The FLOWPSI results are in good agreement with the reference solution and exact

results for ρ, u, p, and E. Since internal energy, e, charts disclose a lot about the

quality of the numerical solution, when specific internal energy is examined, the result

of FLOWPSI can be considered satisfactory. Density and pressure values get closer

to zero towards L = 0.5, which results in growing differences in internal energy. The

internal energy results are shown in Figure 4.9. The overshoots and undershoots in

the solutions are observed near the head of both rarefaction waves, and this may be
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Figure 4.8: Results of Test Case 2

due to the ασ value of 1.9 in the limiter.

4.2 Two-Dimensional Results

Four 2D cases are investigated to validate and show the performance of implemented

GRP method in the two-dimensional domain. Moreover, results of second-order

HLLC and Godunov schemes are also used for comparison. Barth-Jespersen lim-

iter is used in all solutions to allow comparisons between different flux functions.

The cases are selected from National Program for Applications-Oriented Research in

CFD (NPARC) Alliance CFD Validation and Verification archive [63].

4.2.1 Inviscid Prandtl-Meyer Expansion

This inviscid, steady expansion-fan test case is selected to validate the two-dimensional

expansion solution of the implemented algorithm and compare the results with Go-

dunov and HLLC flux schemes. This test case is an isolated test to assess the model
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Figure 4.9: Internal Energy Results of Test Case 2

Table 4.3: The Inflow Boundary Conditions of the Solution Domain

Mach Number Pressure (Pa) Temperature (K)

Inflow 2.5 82737.1 305.56

performance on an expansion fan. The domain and boundary types are given in Figure

4.10. The inflow boundary conditions of the problem can be found in Table 4.3.

In order to improve the resolution at the origin of expansion, a grid refinement study

is conducted for this case. In this refinement study, the grid refinement factor r =

hcoarse/hfine is selected as greater than 1.3, as advised in [64]. Three different grids

are used, which are shown in Figure 4.11. The grid consists of unstructured tetrahe-

dral cells. Around the expansion fan region, a denser grid is created.

The face and node counts of the grid are given in Table 4.4.

Table 4.4: Grid Information of the Prandtl-Meyer Expansion Case

Node Number Face Number r

Coarse Grid (a) 1548 2939 -

Middle Grid (b) 3509 6786 1.52

Fine Grid (c) 5651 11410 1.3
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Figure 4.10: The Solution Domain and Boundary Types of Prandtl-Meyer Expansion

Case

Table 4.5: Comparison of Prandtl-Meyer Expansion Case Results with Different

Grids and Exact Solution

Var. Unit Exact GRP-C % Err. GRP-M % Err. GRP-F % Err.

M2 - 3.2368 3.205 0.982 3.2269 0.306 3.2386 -0.056

P2 Pa 27088 27082 0.022 27083 0.018 27092 -0.015

ρ2 kg/m3 0.425 0.419 1.412 0.423 0.471 0.426 -0.235

T2 K 222.11 224.96 -1.283 222.85 -0.333 222.45 -0.153

The results of the grid refinement study done for the GRP method are presented in this

section. As the grid becomes finer, the resolution at the origin of the expansion fan

increases. Also, from the fine to the coarse grid, the increased diffusive characteristic

of the fan can be observed. Different variables are presented in Figures 4.12 and 4.13;

the Mach number contour of the solutions is given in Figures 4.14, 4.15, and 4.16. In

all different grid solutions, the fan angle ν was found close to the theoretical value,

17°; however, it becomes closer as the grid becomes finer. In Table 4.5, the results of

the different grids in the region after expansion (denoted with subscript 2) are given.

In addition to results obtained on the lower surface, the results at section A-A, which

passes across the expansion fan, are also investigated and shown in Figure 4.17. The
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(a) Coarse Grid (b) Middle Grid

(c) Fine Grid

Figure 4.11: Grids Used in Prandtl-Meyer Expansion Case
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Figure 4.12: Density, Pressure, Mach Number, and Temperature Values of Prandtl-

Meyer Expansion Case at Lower Wall of the Domain with Different Grids

Figure 4.13: Density, Pressure, Mach Number, and Temperature Values of Prandtl-

Meyer Expansion Case Near Discontinuity with Different Grids
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Figure 4.14: Mach Number Contour of Prandtl-Meyer Expansion Case with Coarse

Grid

Figure 4.15: Mach Number Contour of Prandtl-Meyer Expansion Case with Middle

Grid
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Figure 4.16: Mach Number Contour of Prandtl-Meyer Expansion Case with Fine

Grid

Table 4.6: Comparison of Prandtl-Meyer Case Results with Different Flux Schemes

and Exact Solution

Var. Unit Exact GRP % Err. God. % Err. HLLC % Err.

M2 - 3.2368 3.2386 -0.056 3.2302 0.204 3.2286 0.253

P2 Pa 27088 27092 -0.015 27084 0.015 27094 -0.022

ρ2 kg/m3 0.425 0.426 -0.235 0.424 0.235 0.423 0.471

T2 K 222.11 222.45 -0.153 222.70 -0.266 222.84 -0.329

location of this section is given in Figure 4.16. The expansion fan resolved better as

grid became denser.

The results obtained with different convective flux schemes, such as the second-order

Godunov method, HLLC scheme, and the implemented method, GRP, for the “fine

grid” are given in Figures 4.18 and 4.19. The GRP method shows better resolution

near the discontinuity, and values obtained from the GRP method are closer to the

exact solution. The results of the HLLC and the Godunov schemes are close to each

other, but with the Godunov scheme, better approximations are obtained near the

discontinuity. The results of the post-shock region (denoted with subscript 2) are

given in Table 4.6.

The results at section A-A, which is perpendicular to the expansion fan, are also
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Figure 4.17: Density, Pressure, Mach Number, and Temperature Values of Prandtl-

Meyer Expansion Case at Section A-A with Different Grids

Figure 4.18: Density, Pressure, Mach Number, and Temperature Values of Prandtl-

Meyer Expansion Case at Lower Wall of the Domain with Different Flux Schemes
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Figure 4.19: Density, Pressure, Mach Number, and Temperature Values of Prandtl-

Meyer Expansion Case Near Discontinuity with Different Flux Schemes

investigated for different flux schemes and shown in Figure 4.20. The GRP method

has better resolution across the expansion fan when compared with the HLLC and

second-order Godunov schemes. The accuracy of the HLLC and Godunov methods

is nearly the same.

4.2.2 The Inviscid Supersonic Wedge

This inviscid, steady case is selected in order to validate the two-dimensional shock-

capturing ability of the GRP scheme and compare the results with Godunov and

HLLC flux schemes. The domain and boundary types are given in Figure 4.21. An

oblique shock wave forms as a result of a 10° wedge deflecting the flow. The inflow

boundary conditions of the problem can be found in Table 4.7.

In order to obtain the theoretical shock angle and compare the solution with different

types of grids, structured and unstructured (obtained from [65]) grids are investigated.

To increase the resolution of the oblique shock wave and capture this in a smaller
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Figure 4.20: Density, Pressure, Mach Number, and Temperature Values of Prandtl-

Meyer Expansion Case at Section A-A with Different Flux Schemes

Figure 4.21: The Solution Domain and Boundary Types of Supersonic Inviscid

Wedge Case
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Table 4.7: The Inflow Boundary Conditions of the Solution Domain of Inviscid

Wedge Case

Mach Number Pressure (Pa) Temperature (K)

Freestream 2.0 101325 300

(a) Coarse Grid (b) Middle Grid

(c) Fine Grid (d) Structured Grid

Figure 4.22: Grids Used in Inviscid Wedge Case

width, a grid refinement study is done for this case with a refinement factor greater

than 1.3. Four different grids are used, which are shown in Figure 4.22.

The face and node numbers of the grid are given in Table 4.8.

A grid refinement study for the GRP method is done. As the grid becomes finer,

the oblique shock is captured thinner. Also, from the fine to the coarse grid, the

increased diffusive characteristic of the shock wave can be observed. In addition,

the solution with a structured grid showed better resolution close to the discontinuity

than the “middle grid” case, although the cell number of this case is higher. The

values of different variables are given in Figures 4.23 and 4.24, Mach number contour
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Table 4.8: Grid Information of Inviscid Wedge Case

Node Number Face Number r

Coarse Grid (a) 847 1584 -

Middle Grid (b) 2662 5128 1.8

Fine Grid (c) 16113 31740 2.5

Structured Grid (d) 3750 3626 -

Table 4.9: Comparison of Inviscid Wedge Case Results with Different Unstructured

Grids and Exact Solution

Var. Unit Exact GRP-C % Err. GRP-M % Err. GRP-F % Err.

M2 - 1.641 1.640 0.061 1.640 0.061 1.640 0.061

P2 Pa 172919 173055 -0.078 173033 -0.066 172999 -0.046

ρ2 kg/m3 1.716 1.717 -0.058 1.717 -0.058 1.716 0.000

T2 K 351.05 351.11 -0.017 351.01 -0.011 351.06 -0.003

of the solutions is given in Figures 4.25, 4.26, 4.27, and 4.28. In all different grid

solutions, the shock angle was found close to the theoretical value, 39°, and shown in

the pressure contour Figure 4.29.

In Tables 4.9 and 4.10, the results of the different grids in the post-shock region

(denoted with subscript 2) are given.

The results obtained with different convective flux schemes, such as the second-order

Godunov method, HLLC scheme, and the implemented method, GRP, for “fine grid”

Table 4.10: Comparison of Inviscid Wedge Case Results with Structured Grid and

Exact Solution

Var. Unit Exact GRP-S % Err.

M2 - 1.641 1.640 0.061

P2 Pa 172919 173027 -0.062

ρ2 kg/m3 1.716 1.717 -0.058

T2 K 351.05 351.07 -0.006
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Figure 4.23: Density, Pressure, Mach Number, and Temperature Values of Inviscid

Wedge Case at y = 0.4 with Different Grids

Figure 4.24: Density, Pressure, Mach Number, and Temperature Values of Inviscid

Wedge Case Near Discontinuity with Different Grids
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Figure 4.25: Mach Number Contour of Inviscid Wedge Case with Coarse Grid

Figure 4.26: Mach Number Contour of Inviscid Wedge with Middle Grid
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Figure 4.27: Mach Number Contour of Inviscid Wedge with Fine Grid

Figure 4.28: Mach Number Contour of Inviscid Wedge with Structured Grid
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Figure 4.29: Oblique Shock Angle and Pressure Contour of Inviscid Wedge

Table 4.11: Comparison of Inviscid Wedge Case Results with Different Flux Schemes

and Exact Solution

Var. Unit Exact GRP % Err. God. % Err. HLLC % Err.

M2 - 1.641 1.640 0.061 1.640 0.061 1.640 0.061

P2 Pa 172919 172999 -0.046 172930 -0.006 172896 0.013

ρ2 kg/m3 1.716 1.716 0 1.715 0.058 1.715 0.058

T2 K 351.05 351.06 -0.003 351.10 -0.014 351.02 0.009

are given in Figures 4.30 and 4.31. The GRP method shows slightly better resolution

near the discontinuity, and values obtained from the GRP method are closer to the

exact solution. The results of the HLLC and Godunov schemes are very close to each

other. The results of the post-shock region (denoted with subscript 2) are given in

Table 4.11.

4.2.3 RAE 2822 Transonic Airfoil Case

In this case, a transonic flow around a non-symmetric airfoil, RAE 2822, is solved

with the k− ω SST turbulence model to study the performance of implemented GRP

method in viscous flows and in the transonic flow regime. The grid, which consists of

38492 cells, and 25 layers of boundary mesh with the first height of 3.048×10−6m (to
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Figure 4.30: Density, Pressure, Mach Number, and Temperature Values of Inviscid

Wedge at y = 0.4 with Different Flux Schemes

Figure 4.31: Density, Pressure, Mach Number, and Temperature Values of Inviscid

Wedge Near Discontinuity with Different Flux Schemes
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Figure 4.32: The Solution Domain of RAE 2822 Airfoil

Table 4.12: The Freestream Conditions of the Solution Domain of RAE 2822 Airfoil

Mach Number AoA (Degree) Reynolds Number

Freestream 0.729 2.31 6.5× 106

ensure that y+was smaller than 1), is given in Figures 4.32 and 4.33. The geometry of

the airfoil is taken from [66]. The Freestream conditions of the problem can be found

in Table 4.12.

The results obtained from the CFD solution were compared with experimental data

[67] and results from the NPARC code [68]. The simulation with NPARC was per-

formed with a structured C-grid and using the HLLC scheme and SST turbulence

model. Note that the grid utilized in NPARC code is significantly higher quality than

our grid. The comparison of Cp distribution of RAE 2822 transonic airfoil along the

chord is given in Figure 4.34.

The results of the NPARC code and the GRP method are close to each other on the

pressure side and suction side of the airfoil. There is a small difference at the peaks

of suction in the leading edge between the two numerical results. The GRP method

captured the shock wave sharply and the shock location closer to the experimental
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(a) Closer View of the Grid Near RAE 2822 Airfoil

(b) Grid with Boundary Layer Mesh Closer to the Leading Edge of RAE 2822 Airfoil

Figure 4.33: The Grid Used in RAE 2822 Airfoil
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Figure 4.34: Pressure Coefficient Distribution of the RAE 2822 Airfoil

data when compared with the NPARC code. As can be seen from Figure 4.34, for the

GRP method, the peaks of suction in the leading edge are well predicted. Except for

the shock wave region, the pressure coefficient distribution is in very good agreement

with the experimental data. The pressure distribution at the upper surface is underes-

timated close to the shock region, and although it is captured sharply, the location of

the shock wave is not exactly found. The possible reasons for that are:

• the fact that the CAD geometry was not completely similar to the geometry

used in the experiment,

• the selected turbulence model.

Computed lift and drag coefficients from the GRP method and experimental data are

given in Table 4.13. The percent error of the results is below 7%. The pressure and

Mach number contours from the solution from the GRP method are given in Figures

4.35 and 4.36.
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Table 4.13: Lift and Drag Coefficient Comparison of RAE 2822 Airfoil

Variable Exp. GRP %Error

Cl 0.7430 0.6911 6.989

Cd 0.0127 0.0129 -1.482

Figure 4.35: Pressure Contour of RAE 2822 Airfoil
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Figure 4.36: Mach Number Contour of RAE 2822 Airfoil

Table 4.14: The Freestream Conditions of the Solution Domain of ONERA M6 Wing

Case

Mach Number AoA (Degree) Reynolds Number

Freestream 0.84 3.06 14.6× 106

4.3 Three-Dimensional Results

4.3.1 ONERA M6 Transonic Wing Case

The ONERA M6 wing is selected in order to show the performance of the imple-

mented method in the three-dimensional domain and in a challenging aerodynamic

condition. This wing was designed in 1972 at ONERA to serve as experimental

support in studies of CFD validations. An inviscid investigation of the problem is

conducted with the following Freestream conditions given in Table 4.14. The CAD

geometry of the wing is obtained from [69], and experimental results are taken from

[70].

The layout of the ONERA M6 wing planform is given in Figure 4.37. The rows of
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Figure 4.37: The Layout of the ONERA M6 Wing [70]

pressure taps that are located at the experiments are numbered from 1 to 7, which also

can be seen in the figure.

The grid, which consists of ≈ 1.2 million tetrahedral cells, the upper surface grid of

the wing, and the grid of the symmetry plane are given in Figure 4.38.

Before proceeding to the pressure coefficient results of the wing surface, it is more

convenient to introduce the Mach number and pressure contours of the upper surface

of the wing in order to understand the flow characteristics on the wing better. A

lambda-type shock wave on the upper surface of the wing is formed from two shock

waves that merge each other close to the tip of the wing and can be seen in Figure

4.39. In order to capture shock waves sharply, a grid adaption near the shock contours

will provide better shock resolution.

With the implemented GRP method, the Cp distributions along the pressure and suc-
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(a) Surface Grid of the Onera M6 Wing

(b) Grids of the Symmetry Plane of ONERA M6 Wing

Figure 4.38: Grids of the ONERA M6 Wing Case at Different Surfaces
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(a) Upper Surface Pressure Contour of ONERA M6 Wing

(b) Upper Surface Mach Number Contour of ONERA M6 Wing

Figure 4.39: Pressure and Mach Number Contour of Upper Surface of the ONERA

M6 Wing
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Figure 4.40: Cp Distribution at Section 1 of ONERA M6 Wing

tion sides of the wing in different sections are obtained. The results are compared with

the experimental data. In Figure 4.40, the pressure coefficient distribution at section

1 is investigated, where there are two shock waves along this section. The suction

peaks close to the leading edge are well predicted. The first shock wave is captured

sharply. Although the second wave is captured sharply, it is predicted stronger than

the experimental shock wave. As is typical for the inviscid methods for this case,

the location of the second shock wave is predicted a little downstream of the loca-

tion of the experimental shock wave [71]. The suction side pressure coefficients were

predicted precisely.

In Figure 4.41, the Cp distribution at section 3 is examined where the two shock loca-

tions began to combine. The first shock wave is not captured as sharp as the second

one. The reason may be the coarse mesh around the center of the wing. Similar

to the results of section 2, the suction peaks close to the leading edge are predicted

accurately. The suction side pressure coefficients fit well with the experimental data.

In Figure 4.42, the Cp distribution at section 5 is investigated where the two shock
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Figure 4.41: Cp Distribution at Section 3 of ONERA M6 Wing

waves are merged, which results in a relatively stronger shock wave. The shock wave

was captured sharply. Similar to the results of section 1 and section 3, the suction

peaks nearly to the leading edge are well predicted; furthermore, the suction side

pressure coefficients are in good agreement with experimental results.

4.4 Critical Assessment of Second-order Schemes

After the assessment of two-dimensional and three-dimensional cases for the GRP

method, the results obtained did not show a noticeable difference from other second-

order schemes, contrary to our expectations. In order to assess this issue in detail,

1D cases are solved again with a limiter modification. Since a modified generalized

MINMOD limiter is used in the GRP method, similarly, the generalized MINMOD

limiter of van Leer [20] is implemented accordingly for the second-order Godunov

method with removing the time derivative solution of the GRP method,
(
∂U
∂t

)
, from

the limiter. It is observed that the effect of ∆t
(
∂U
∂t

)n
i+ 1

2

component in the GRP method

is less than 0.1%. Equation (4.1) demonstrates the modified generalized MINMOD
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Figure 4.42: Cp Distribution at Section 5 of ONERA M6 Wing

limiter used in the GRP method. Equation (4.2) demonstrates the generalized MIN-

MOD limiter used in the second-order Godunov method.
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Five 1D shock tube problems are investigated in order to compare high-order algo-

rithms. The numerical results are obtained with the generalized MINMOD limiter

where the ασ coefficient is taken as 1.9 in all solutions. In all cases, the computa-

tional domain is divided into N = 100 cells, where domain length L is taken as 1, the

ratio of specific heats is selected as γ = 1.4, Ccfl is taken as 0.1. In the plots, velocity,
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Figure 4.43: Results of Test Case 1

pressure, density, and internal energy variables are presented where exact results are

shown by the black line; gray triangles indicate reference results, blue circles demon-

strate second-order Godunov scheme results, and red crosses indicate solutions of the

GRP method.

4.4.1 Test Case 1

This test case consists of a right shock wave, a left rarefaction wave, and contact

discontinuity moving in the right direction where the gas is initially at rest. Initial

discontinuity position has chosen as x0 = 0.5. The results at T = 0.15 seconds are

shown in Figure 4.43.

The rarefaction wave is well approximated by both of the methods, and the results are

very close to each other. The shock wave is approximated over three computing cells

in both methods without nonphysical oscillations. An overshoot near the contact

discontinuity can be seen in both the GRP method and the second-order Godunov

scheme with a close magnitude. The solutions are similar in each method and in good
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Figure 4.44: Results of Test Case 2

agreement with the reference solution.

4.4.2 Test Case 2

In this test case, a contact discontinuity at x0 = 0.5 with zero speed separates the two

symmetric rarefaction waves where the star region is close to the vacuum. The results

at T = 0.1 seconds are shown in Figure 4.44.

Although both methods show satisfactory results when ρ, u, p, and E are consid-

ered, the GRP method has better resolution near the head of the rarefaction waves.

Moreover, the GRP method has a lower undershoot and overshoot near the contact

discontinuity location, which can be observed from the velocity plot. The results of

each scheme are in good agreement with the reference solution. The internal energy,

e, results are very similar for the GRP method and second-order Godunov method;

the plot is given in figure 4.45.
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Figure 4.45: Internal Energy Results of Test Case 2

4.4.3 Test Case 3

The results at T = 0.012 seconds, where an initial discontinuity is located at x0 = 0.5,

are shown in Figure 4.46.

The accuracy of solutions for different variables is the same in the rarefaction wave

region.

When the results of the GRP method are compared with the second-order Godunov

scheme, the resolution of the shock wave is similar in each method, and the approxi-

mation took three cells.

Similar to Test Case 1, the performance at contact discontinuity is worse than the

shock wave, which can be seen in the density or energy plot. The GRP method has

slightly better results when the magnitude of the density result is considered.

4.4.4 Test Case 4

This problem is obtained by the result of the collision of two severe shock waves

moving in reverse directions. The results at T = 0.035 seconds are shown in Figure

4.47.
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Figure 4.46: Results of Test Case 3

Figure 4.47: Results of Test Case 4
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Figure 4.48: Results of Test Case 5

The accuracy of solutions for different variables is the same in the post-shock region.

However, in the area between shock wave and contact discontinuity, the two meth-

ods have different but close results. The density calculation obtained from the GRP

method is closer to the exact solution than the second-order Godunov scheme. More-

over, the magnitude of oscillations in the same area is lower in the results obtained by

the GRP method.

4.4.5 Test Case 5

The results of the second-order Godunov scheme and GRP method at T = 0.012

seconds are shown in Figure 4.48.

The left-moving rarefaction, the shock wave going to the right, and the contact dis-

continuity are captured with nearly the same accuracy in both methods except the tail

of the rarefaction wave. The magnitude of oscillations before the contact discontinu-

ity is the same for the GRP method and the second-order Godunov scheme.
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4.4.6 Discussion on Second-Order Schemes

For one-dimensional results, the accuracy of the GRP method and the second-order

Godunov scheme is very close to each other when the same generalized MINMOD

limiter is used. It was observed that, in 1D, the effect of the GRP method without lim-

iter contribution was relatively small when compared to the second-order Godunov

scheme. The time derivative component, which is the main component that distin-

guishes the GRP from the second-order Godunov scheme, has an effect less than

0.1%. If the same limiter is used in the solver, a very slight improvement in the ac-

curacy of rarefaction and contact discontinuity is obtained in the GRP method. The

effect of the limiter is higher than the time variation of flux for the solution accuracy.
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CHAPTER 5

CONCLUSION

In this thesis, a high-order GRP algorithm for the solution of Euler equations is devel-

oped and implemented into the in-house, open-source finite volume CFD solver. The

implemented code is tested on structured and unstructured meshes, inviscid, viscous,

steady, and unsteady flows. This method is also tested for different spatial dimensions

with well-known benchmark test cases.

By implementing the GRP method to an open-source CFD solver, second-order spa-

tial accuracy for the convective fluxes is obtained. On the other hand, other methods

are used for computing convective fluxes, such as the Godunov method and the HLLC

method. Thanks to the GRP method, the second-order accuracy is not achieved by the

piece-wise linear reconstruction method only but also by time variation of flux and

resolved state. At the cell boundaries, the GRP solution accepts right and left states

along with their second-order gradients, which defines the idea of the GRP method.

For gradient calculation, the least squares method is used with selectable limiters such

as Barth-Jespersen and generalized MINMOD.

With different test cases, the solver is validated for;

• strong rarefaction and strong shock waves,

• near-vacuum problems

• zero-speed contact discontinuities,

• oblique shock waves,

• Prandtl-Meyer expansion fans in multi-dimensions,
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• viscous flows,

• complex flow regimes in a three-dimensional domain.

In all these cases, the results of the GRP method are in good agreement with exper-

imental data or analytical results. In addition, it is observed that the improvement

of the solution accuracy when the GRP method is used comes from the modified

generalized MINMOD limiter.

For future work, to make the solution cheaper, approximate Riemann solvers can be

added in the Riemann solution part of the GRP method, where the user can decide

depending on the accuracy needs and computational resources. Moreover, a suitable

limiter for both the GRP method and the unstructured solver can be developed in

order to increase accuracy without oscillations. Finally, an on-off mechanism can be

built for the solver when computing convective fluxes where gradients are low; the

GRP method could be bypassed.
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