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ABSTRACT 

 

DEVELOPING A STRUCTURAL OPTIMIZATION SOFTWARE  

FOR EFFICIENT AND PRACTICAL OPTIMUM DESIGN OF  

REAL-WORLD STEEL STRUCTURES 

 

 

 

Korucu, Aytaç 

Ph. D., Department of Civil Engineering 

Supervisor: Prof. Dr. Oğuzhan Hasançebi 

 

August 2022, 163 pages 

 

Structural engineers have to design not only safe and practical buildings in a 

reasonably short period but also guarantee that the design generated should be cost-

efficient. However, the design of real-world structures in a traditional way is an 

extremely laborious and time-consuming task, and final designs are often 

uneconomical. In this study, a computationally efficient, design-driven 

optimization technique (Guided Evolution Strategy Optimization, GES) is 

developed for the optimal design of real-world steel structures considering the 

strength, displacement, and geometric constraints in accordance with the 

conventional design codes. 

Structural design engineers demand practical, efficient, and robust software 

platforms that combine the potential of optimization techniques with design 

software capabilities. In other words, there is a need for a single master software 

platform that integrates the optimization software and the design software packages. 

This way, promising solutions for real-world structures can be obtained practically 

with reasonable computational power and time. This study also developed a 

reliable, efficient, flexible, and user-friendly software platform called Structural 

Optimization Platform Software (SOPS) with the abovementioned capabilities to 

present a robust infrastructure for designing real-world steel structures. The SOPS's 
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structural analysis and design part (design software component) is carried out 

externally via the Open Application Programming Interface (OAPI) of the 

SAP2000 structural analysis program. In addition to GES, various metaheuristic 

techniques are implemented into the SOPS program package to constitute its 

optimization software component. 

The numerical results demonstrate the computational efficiency of the proposed 

technique (GES) for the optimal design of real-world steel structures subjected to 

geometric, strength, and displacement constraints in terms of convergence rate and 

quality of the optimum solution. Moreover, the application of SOPS to the 

optimization of real-world steel structures demonstrates that SOPS successfully 

combines the potential of the optimization techniques and the design software 

capabilities (SAP2000). Furthermore, due to SOPS's real-time monitoring ability, 

the performance of the optimization techniques can be easily observed in real-time. 

Keywords: Structural Optimization, Optimization Software, Optimization 

Algorithms, Steel Frame Structure, SAP2000 OAPI 
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ÖZ 

 

GERÇEK ÇELİK YAPILARIN ETKİN VE PRATİK OPTİMUM 

TASARIMLARI İÇİN BİR YAPISAL OPTİMİZASYON  

YAZILIMININ GELİŞTİRİLMESİ 

 

 

 

Korucu, Aytaç 

Ph. D., Department of Civil Engineering 

Supervisor: Prof. Dr. Oğuzhan Hasançebi 

 

Ağustos 2022, 163 sayfa 

 

Yapı mühendisleri binaları kısa bir sürede güvenli ve pratik olarak tasarlamanın 

yanında, tasarımın maliyetinin de uygun olmasını sağlamalıdır. Bununla birlikte, 

yapıların geleneksel bir şekilde tasarımı son derece zahmetli ve zaman alıcı bir 

süreç olmakla birlikte elde edilen tasarımlar genellikle ekonomik olmamaktadır. Bu 

çalışmada, yapıların dayanım, deplasman kısıtlamalarının yanında, geometrik 

kısıtlamalarının da göz önünde bulundurulduğu optimal tasarımı için, verimli ve 

tasarım odaklı optimizasyon tekniği olan GES geliştirilmiştir. 

Yapısal tasarım mühendisleri, optimizasyon tekniklerinin potansiyelini tasarım 

yazılımı yetenekleriyle birleştiren pratik, verimli ve etkin yazılım platformlarına 

ihtiyaç duymaktadırlar. Başka bir deyişle, optimizasyon yazılımları ile tasarım 

yazılım paketlerini entegre ederek yapıların optimum tasarımlarının kısa sürede ve 

etkin kaynak kullanımı ile elde edilmesine olanak sağlayan bir yazılıma ihtiyaç 

vardır. Bu çalışmada, yapıların optimum tasarımı için, bu bahsedilen özelliklere 

sahip SOPS adında etkin, pratik ve kullanışlı bir yazılım paketi geliştirilmiştir. 

SOPS yazılımının, analiz ve tasarım bileşenleri, Açık Uygulama Programlama 

Arayüzü (OAPI) kullanılarak SAP2000 analiz programıyla entegre edilmiştir. Bu 

çalışmada geliştirilen GES optimizasyon tekniğinin yanısıra diğer öne çıkan bazı 
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optimizayon teknikleri de SOPS yazılım platformuna entegre edilerek GES 

tekniğinin performansı diğer tekniklerle kıyaslanmıştır. 

Sayısal sonuçlar, geliştirilen optimizasyon tekniğinin (GES), yapıların dayanım, 

deplasman ve geometrik kısıtlamalarını da göz önüne alan optimum tasarımlarını 

yakınsama hızı ve çözüm kalitesi açısından, etkin ve hesaplama verimliliği ile 

yapabildiğini ortaya çıkarmıştır. Sonuçlar aynı zamanda, SOPS'nin optimizasyon 

tekniklerinin potansiyeli ile tasarım yazılımının (SAP2000) yeteneklerini başarılı 

bir şekilde biraraya getirdiğini göstermektedir. Bunun yanında, SOPS'un gerçek 

zamanlı izleme yeteneği sayesinde, optimizasyon tekniklerinin performansı gerçek 

zamanlı olarak kolayca gözlemlenebilmektedir. 

 

Anahtar Kelimeler: Yapısal Optimizasyon, Optimizasyon Yazılımı, Optimizasyon 

Algoritmaları, Çelik Yapılar, SAP2000 OAPI 
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1. INTRODUCTION 

1.1 Structural Optimization 

Structural engineers have to design not only safe and practical buildings in a 

reasonably short period, but also guarantee that the design generated should be cost-

efficient. In this context, the traditional design approach generally results in 

overdesigned structures, i.e., excessive material usage. Even with the utilization of 

available engineering software, the design of real-world structures based on a 

traditional design procedure is usually a laborious and time-consuming task, and 

the final designs are often uneconomical. Therefore, the use of optimization 

techniques in structural design is necessary to generate economical designs that 

yield the minimum weight or cost for a given structure.  

On the other hand, the application of optimization tools and methods to the design 

of real-world structures requires substantial computational power since an 

optimization procedure requires an iterative process. Fortunately, during the last 

couple of decades, the power and speed of computers have increased nearly 

exponentially. This has created an opportunity to incorporate such tools and 

methods into a standard design process. 

Characteristically, an optimization problem has three essential elements: (1) 

objective function, (2) design variables, and (3) constraints. In structural 

optimization design problems, the objective function is usually chosen as the weight 

or cost of a structure. The primary goal of the design process is to minimize this 

function, i.e., the weight or cost of a structure. It should be noted that for some 

structural systems there may be a good correlation between the structural weight 
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and cost. However, this statement may not be always true for all kinds of structures. 

That is to say, a minimum weight design for a structure does not always correspond 

to a minimum cost design or vice versa. The objective function of an optimization 

problem is formulated and defined by a set of design variables that are optionally 

determined by the designer. In fact, design variables refer to a set of parameters that 

are not assigned to constant values initially, rather they are treated as varying 

parameters during an optimization process. In general, one can identify different 

types of design variables in structural optimization problems, such as sizing, shape, 

and topology design variables. During an optimization process, the design variables 

cannot be assigned to arbitrary values because the resulting designs must satisfy 

certain requirements and restrictions which are usually imposed by design codes. 

These requirements and restrictions are called constraints. In general, constraints 

can be of two types as behavior constraints and geometric (size) constraints. The 

behavior constraints are generally determined by a set of strength and serviceability 

limitations defined in design codes. On the other hand, geometric (size) constraints 

refer to problem-specific limitations due to construction practices or geometric 

restrictions that are included in a design process. 

Basically, structural optimization can be grouped into the following three categories 

depending on the type of design variables employed in an optimization process: (i) 

topology optimization, (ii) shape optimization, and (iii) size optimization. Topology 

optimization investigates the existence or non-existence of structural members for 

the best performance of a structure. During a topology optimization, redundant 

structural members are removed, and sometimes new member connectivities are 

defined between the nodes. Hence, each member connectivity is associated with a 

state variable that can assume two values “0” and “1” only during an optimization 

process. The state variable “1” indicates the existence of the related member, 

whereas the state variable “0” means its non-existence in the optimum topological 

design of a structure. In shape optimization, the nodal positions in a structure are 

considered and defined as design variables, and the aim is to find the best positions 

of them. Since a change in nodal positions results in modifications in the resulting 

shape of a structure, this optimization model is referred to as shape optimization. 
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Finally, in size optimization the cross-sectional areas of structural members are 

treated as design variables. Sizing design variables can further be classified as 

continuous and discrete. In continuous-sizing design variables, the cross-sectional 

areas of structural members can be assigned to any positive arbitrary real value 

between specified upper and lower bounds. In discrete-sizing design variables, 

however, cross-sectional areas of structural members can only be selected from a 

set of predefined values, i.e., sections.  

In practice, the topology and shape of structures are usually determined or finalized 

during an architectural design stage, and therefore are not expected to be modified 

afterward. Hence, a sizing optimization model is a more common problem type in 

structural steel design, as compared to the other two types. Moreover, the structural 

steel design is such that steel members must be assigned from commercially defined 

steel profile sets. As a result, a structural steel design problem often appears as a 

discrete sizing optimization problem.  

It should be noted that every engineering design has usually more than one 

acceptable solution. However, finding the best solution which optimizes a chosen 

objective amongst all these acceptable solutions is not an easy task. For relatively 

small-scale problems where there exists a limited number of design variables and 

profile sets, exhaustive search methods can be employed to find the optimum 

solution. These methods, in principle, search every possible point at a time. 

However, as the problem scale increases, exhaustive search methods become 

insufficient because this requires prohibitively long computational time and it is not 

probable to search the entire candidate design domain in a feasible time. In order to 

overcome this challenge, various optimization techniques have been proposed and 

adopted in structural optimization literature. These techniques intelligently search 

design space to reach the optimum design in an acceptable computational time. In 

the following sections, the utilization of these techniques in structural design is 

introduced briefly. 
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1.2 Gradient-Based Approaches and Heuristic Methods 

With the advent and development of computational tools and information 

technologies, structural optimization has become a popular research subject in the 

past few decades. The conventional methods used in structural optimization can be 

roughly categorized into two main divisions: (1) gradient-based methods, and (2) 

heuristic methods (Aldwaik & Adeli, 2014). The gradient-based approaches, which 

are used mainly in most of the mathematical programming methods, work on the 

basis of calculating the first and/or second-order derivatives of the objective 

function and constraints for determining an advantageous and feasible search 

direction in the design space. These approaches are also characterized as traditional 

methods and applied in the early studies in structural optimization. However, in 

spite of the extensive applications of gradient-based methods, some limitations have 

been encountered in previous studies.  

Firstly, gradient-based methods usually tend to converge to local optima instead of 

the global optimum. Since structural optimization problems usually have many 

local optima, the accuracy of the optimum solution located by a gradient-based 

technique is highly dependent on its starting point. In other words, the performance 

of the technique depends on how close the starting point is to the global optimum. 

These techniques can locate the nearest optimum in the neighborhood region of the 

starting point, and hence they are known as local search techniques. Accordingly, 

gradient-based methods have difficulties in reaching the global optimum especially 

for highly complex problems like structural optimization problems. Moreover, due 

to the requirement of gradient computations, the implementation of gradient-based 

methods becomes difficult and inefficient for discrete optimization problems in 

particular (Sigmund, 2011). Therefore, these techniques may not effectively deal 

with complex, highly nonlinear, and discrete optimization problems.  

To circumvent the shortcomings and weaknesses of gradient-based algorithms, 

heuristic methods, which are based on trial-and-error approaches, are proposed and 

implemented for structural optimization problems. Despite the fact that heuristic 
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methods offer rather simple and straightforward design methodologies with a high 

computation performance, they are problem-specific approaches and they also 

suffer from local optimum traps. Therefore, the ongoing studies in optimization 

literature have focused on developing generic and robust optimization techniques, 

which in turn has led to the development of the so-called metaheuristic search 

techniques. The metaheuristic search techniques have received increasing attention 

and applied to structural optimization design problems in the last few decades due 

to (i) their problem-independent nature, (ii) their ability to perform both local and 

global search, and (iii) their ability to deal with both discrete and continuous design 

variables, (Yang, 2010). 

1.3 Metaheuristic Search Techniques  

Structural optimization with metaheuristic search methods has become popular 

because the use of these methods makes it possible to deal with a variety of practical 

and complex optimization tasks encountered in the field that cannot be handled 

formerly by the traditional methods. 

Metaheuristics are high-level algorithms such that for a broad range of optimization 

problems they are capable of finding the optimal solution with limited computation 

capacity and knowledge about the problem. Besides, the fact that they are problem-

independent makes it possible to use them for a variety of problems, including the 

cases where the search space is large and complex. 

As compared to the traditional deterministic and stochastic optimization 

approaches, metaheuristic search techniques have four main advantages (Saka et 

al., 2016): (1) they can deal with both discrete and continuous design variables, 

which in fact makes them more suitable for combinatorial optimization problems 

as well as discrete structural design optimization problems, (2) they do not need the 

gradient information for search and implementation, (3) an explicit relation between 

constraints and the objective function is not needed in metaheuristic search 

techniques, and (4) they come up with an increased promise for locating the global 
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optimum. Moreover, coding of metaheuristic techniques is rather easy and 

straightforward compared to traditional structural optimization techniques, and this 

makes them practical and appropriate design tools for the optimization of structures. 

The performance of structural optimization algorithms is fundamentally evaluated 

according to how fast and how close they reach the optimum solution. The former 

is regarded as the convergence rate of the algorithm and it is mainly determined by 

the count of structural analyses implemented to reach the optimum solution. The 

latter is the accuracy (quality) of the obtained optimum solution and it is assessed 

by the proximity of the obtained solution to the global optimum. 

Despite their advantages stated above, the metaheuristic search algorithms may 

have some drawbacks due to their random search strategies. They usually 

investigate a search space randomly by using the strategies inspired by nature, 

social culture, biology, or laws of physics. Therefore, excessive objective function 

evaluations are usually required before reaching a global optimum solution. In 

structural optimization design problems, the evaluations of the objective function 

regarding the response computations of a structural system generally consume 

about 85-95% of an optimization task (Hasançebi et al., 2011). Therefore, the need 

for excessive structural analyses especially for large structures significantly 

increases the computational time and effort. In order to reduce the computational 

burden to a manageable size and thus to improve the efficiency of a metaheuristic 

search technique, mainly two different approaches are followed.  

In the first approach, the computational efficiency of a metaheuristic search 

technique is enhanced by utilizing powerful parallel computing environments. In 

this approach, the optimization task is distributed amongst several processors 

located in a computer farm and connected via network devices. This approach has 

been implemented for structural design optimization design problems in various 

studies in the literature (Hasançebi et al., 2011; Papadrakakis et al., 2003; Sarma & 

Adeli, 2001) and it has been reported that the overall computation time required by 

metaheuristic search algorithms can greatly be reduced by virtue of this approach. 
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However, extremely laborious and costly hardware environment configuration 

requirements make this approach somewhat impractical for real-world applications. 

The second approach focuses on improving the computational efficiency of a 

metaheuristic search algorithm by incorporating efficient and intelligent search 

strategies into the algorithm, resulting in a reduced number of structural analyses 

required to locate an optimum solution. In other words, the goal of this approach is 

to obtain a reasonable and acceptable design using fewer structural analyses. In this 

regard, the information gathered during the structural analysis of a previous design 

generated in the course of optimization process can be utilized as an effective 

strategy such that the search process can be guided to more promising and feasible 

regions of the design space using this information. As a result, an effective search 

is established through guidance by evaluating the existing solutions and obtaining 

better solutions in a relatively lesser number of structural analyses. The structural 

optimization techniques which have implemented this intelligent strategy in their 

algorithms are referred to as design-driven optimization techniques.  

The fully stressed design (FSD) is one of the early optimization methods where this 

strategy is implemented for structural optimization problems (Razani, 1965; 

Gallagher, 1973). This method has been successfully used for structural 

optimization problems where the problem constraints only consist of imposed stress 

limitations for the members. Accordingly, a search direction is determined by FSD 

based on the constraint (stress) ratios of the structural members. In case a constraint 

ratio (stress limit) for a member is well below a specified maximum value, a smaller 

cross-section is adopted for the member to enable a more effective use of material 

for sizing the member. If, however, a constraint ratio (stress limit) for a member is 

well above a specified maximum value, a larger cross-section is assigned to the 

member to eliminate constraint violation. In other words, when a new (trial) 

solution is generated, the design variables (cross-sectional area of the members) are 

assigned to new values regarding the structural analysis of the previous solution so 

that the demand-to-capacity ratio (DCR) approaches to unity for all the members. 

Although the FSD has proved to be a very effective method, it is limited to 
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optimization problems with stress or strength constraints only; that is to say, 

displacement constraints cannot be accounted for by the method. An improvement 

of the method known as Fully Utilized Design (FUD) has been proposed to handle 

the displacement constraints as well (Saka, 2003). Nevertheless, despite the fact 

that the FUD can reach a feasible design solution rapidly, it is shown that this 

solution in most cases corresponds to an overdesigned structure. Patnaik et al. 

(1998) proposed a modified (improved) version of the FUD technique, called 

modified fully utilized design (MFUD), to eliminate the problems associated with 

the displacement constraints. Therein, the integrated force method (IFM) of 

structural analysis was integrated into the FUD to identify the significance of a 

violated displacement constraint and how effectively it was remedied (Patnaik et 

al., 1991). However, the proposed technique is limited to truss structures only. 

In some studies in the literature, the concept of FSD has been combined with the 

global search abilities of metaheuristic search techniques to create effective hybrid 

algorithms. For instance, Ahrari & Atai (2013) and Ahrari et al. (2015) have 

proposed the Fully Stressed Design Evolution Strategy (FSD-ES) that combines the 

useful features of the FSD and ES optimization techniques to enhance the 

computational efficiency of the FSD. Later, Ahrari & Deb (2016) proposed an 

improved version of the FSD-ES, named FSD-ES-II, by introducing displacement 

constraints into the algorithm. A performance investigation of these hybrid methods 

(FSD-ES and FSD-ES-II) through some selected benchmark problems of structural 

optimization has indicated that they exhibit higher efficiencies compared to other 

techniques. However, it is worth mentioning that these approaches are also limited 

to truss structures only. 

There exist numerous researches that aim to develop an efficient and robust 

optimization technique for structural design optimization problems. However, up 

to date, neither of these techniques come up with a promise of finding the global 

optimum solution, especially for large-scale structures. Moreover, despite a large 

number of studies and papers that report successful applications of modern 

metaheuristic search techniques in structural design optimization problems, there is 



 9 

still a gap in the literature as far as the application of these methods to real-world 

structures is concerned.  One reason for this is that high computational time 

requirements of modern metaheuristic search techniques make practicing engineers 

reluctant to use them in real-world applications. Indeed, a literature review points 

out that the metaheuristic search techniques are usually applied to some truss and 

frame-type structures under a limited number of load combinations. Besides, the 

full requirements of the design procedure, such as geometric constraints between 

the members framed into the same joints, are fully or partially omitted in these 

applications to simplify the search process. Hence, the structural optimization 

literature entails the development of new and powerful optimization techniques 

with practical applications of them to real-world problems.  

In addition, to accelerate the use of optimization concepts and methods in practical 

engineering applications, the development of software platforms is necessary where 

a standard steel design process can be integrated and supported with the potential 

of structural optimization algorithms. In other words, there is a need for both an 

efficient optimization technique and a single master software platform that integrate 

optimization computing software and the design software packages such that 

promising solutions for real-world structures can be obtained within a reasonable 

computational time. 

1.4 Aim and Scope of the Thesis 

The two main objectives of the present study can be outlined as follows: (i) to 

develop an efficient, fast, and robust design-driven structural optimization 

algorithm that can easily be used for the design of real-world steel structures in 

practice, (ii) to develop a reliable, flexible and user-friendly software platform that 

integrates the optimization techniques with the design software capabilities to 

present an infrastructure for the design of real-world steel structures.  

The chapters of the thesis are organized as follows. Chapter 2 provides a 

mathematical formulation for discrete sizing optimization of steel frame structures 
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under strength, displacement, and geometric constraints. In Chapter 3, the 

metaheuristic search algorithms that are implemented in this study are presented 

and their search algorithms are explained in detail. Besides, a newly developed 

design-driven hybrid optimization technique called the Guided Evolution Strategy 

(GES) technique is introduced and its fundamental working principles are explained 

in detail. In Chapter 4, the Structural Optimization Platform Software (SOPS) 

developed within the context of this thesis is introduced and its user interface is 

explained in depth. In Chapter 5, numerical experiments are conducted first to 

determine the optimum parameter settings of the GES algorithm. Then, several 

design instances of ordinary moment-resisting steel frames are studied using the 

GES as well as other metaheuristic search algorithms. This way, the performance 

of the proposed GES algorithm is identified and quantified in terms of the quality 

of the optimum solution obtained and the computational efficiency of the algorithm 

in comparison to those of the other metaheuristic search techniques. Finally, in 

Chapter 6, the conclusions are presented with a particular emphasis on important 

findings of the study, and recommendations for future works are articulated. 
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2 OPTIMUM DESIGN PROBLEM FORMULATION 

2.1 Introduction 

The size optimization of a steel frame can be defined as finding the minimum 

weight of the frame subject to strength and serviceability requirements imposed 

according to a chosen code of practice as well as geometric constraints between the 

members framing into each other at the same joints. It should be noted that in 

practical applications of steel frames, members must be selected from a set of 

commercially available steel sections only. Therefore, a section pool that consists 

of a selected number of available steel sections is prepared prior to the initialization 

of the optimization process. The steel sections are sorted in increasing order of a 

chosen sectional property; typically, the cross-sectional area. Each steel section in 

the pool is identified and referenced with a distinct sequence number that varies 

between 1 and the total number of sections in line with the sorted order of the 

sections in the pool. During the optimization process, the selection and sizing of 

member groups are carried out in connection with the sequence numbers. That is to 

say, when a selection is made for a member group, the cross-sectional properties 

for the selected section become available from the section pool through the 

sequence number. In the following section, the relevant formulations are presented 

in detail for discrete sizing optimization of the steel moment frames.  

2.2 Design Variables and Objective Function  

The first step in an optimization problem is to identify the design variables. In 

discrete sizing optimization problems of steel frames, the design variables refer to 

the cross-sectional areas of steel members. However, as explained in the previous 

section, the steel members must be selected from a predefined list of ready sections 
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available in the market, i.e., section pool. Hence, the selection and sizing of steel 

members are carried out in connection with the sequence numbers of the ready 

sections collected in the section pool. It follows that the design vector I in a discrete 

sizing optimization problem keeps the sequence numbers of the sections assigned 

to 𝑁𝑚 steel members (𝑁𝑚 is the total number of members) from the section pool 

and is formulated in Equation (2.1): 

𝐈 = [𝐼1, 𝐼2, … , 𝐼𝑁𝑚
]

𝑇
 (2.1) 

Once a selection is made for all members, the corresponding cross-sectional 

properties for the selected sections become available from the section pool through 

the sequence numbers. Therefore, the cross-sectional areas (𝐀) of the sections 

assigned to 𝑁𝑚 steel members are defined as formulated in Equation (2.2): 

𝐀 = [𝐴1, 𝐴2, … , 𝐴𝑚]𝑇 (2.2) 

The objective function is defined as minimizing the weight of the frame, which can 

be formulated as follows:  

𝑊 = ∑ 𝜌𝑖𝐴𝑖

𝑁𝑚

𝑖=1

𝐿𝑖 (2.3) 

where, 𝜌𝑖, 𝐴𝑖 ,  and 𝐿𝑖 are the unit weight of the steel, the cross-sectional area of the 

section assigned to the member 𝑖, and the length of the member i, respectively.  

Although Equation (2.3) is formulated in a way such that the steel members adopt 

sections independently, this is not the case in reality. In practice problems, due to 

architectural, fabrication or constructional requirements, some members of the 

structure are grouped to have the same section. This is also required to reduce the 

cost of the construction as the design and fabrication costs increase considerably as 

the number of different sections used in a structure increase. It should also be 

stressed that from an optimization point of view, a reduction in the number of design 

variables through a grouping of the members is advantageous since finding the 
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optimum design becomes an easier task when less number of design variables are 

considered for a steel frame. Considering the grouping of members in a steel frame, 

the objective function given in Equation (2.3) can be modified and reformulated as 

in Equation (2.4) 

𝑊 = ∑ 𝜌𝑖𝐴𝑖

𝑁𝑔

𝑖=1

∑ 𝐿𝑚

𝑁𝑒

𝑚=1

 (2.4) 

where 𝑁𝑔 is the total number of groups in a structure (i.e., the number of 

independent design variables), and 𝑁𝑒 is the number of structural members in a 

group.  

The steel structures must be designed according to a chosen code of practice. In this 

study, the steel frames are designed in accordance with the provisions of the LRFD-

AISC 360-10 (2010) specification, and thus the strength and displacement 

constraints are imposed accordingly, which are discussed in the following sections.   

2.3 Strength Constraints  

For steel members that are subjected to bending and/or axial compressive loads, the 

following strength requirements are imposed: 

(
𝑃𝑢

𝜙𝑎𝑃𝑛
)

𝑗
+  

8

9
(

𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥
+  

𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦
)

𝑗

− 1.0 ≤ 0   𝑓𝑜𝑟 (
𝑃𝑢

𝜙𝑎𝑃𝑛
)

𝑗
 ≥ 0.2               (2.5) 

(
𝑃𝑢

2𝜙𝑎𝑃𝑛
)

𝑗
+  (

𝑀𝑢𝑥

𝜙𝑏𝑀𝑛𝑥
+ 

𝑀𝑢𝑦

𝜙𝑏𝑀𝑛𝑦
)

𝑗

− 1.0 ≤ 0   𝑓𝑜𝑟 (
𝑃𝑟

𝜙𝑎𝑃𝑐
)

𝑗
 < 0.2                (2.6) 

For steel members that are subjected to shear, the following strength requirement is 

imposed:  

(
 𝑉𝑢

𝜙𝑣𝑉𝑛
)

𝑗
− 1  ≤ 0                                              (2.7) 
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In Equations (2.5-2.7), 𝑃𝑢, 𝑀𝑢, and  𝑉𝑢 are the required axial, flexural, and shear 

strengths calculated using the load combinations given in the ASCE/SEI 7-10 

(2010) design load specification, respectively; 𝑃𝑛, 𝑀𝑛, and  𝑉𝑛 are the nominal axial, 

flexural, and shear strengths calculated according to the formulations given in the 

LRFD-AISC 360-10 (2010) specification; 𝜙𝑎, 𝜙𝑏 and 𝜙𝑣 are the resistance 

factors for axial, flexural and shear strengths, respectively and they are all set 

to 0.9; the subscripts 𝑥 and 𝑦 represent the strong and the weak axis of bending for 

member 𝑗. 

2.4 Deflection and Inter-Story Drift Constraints  

In addition to the strength requirements, the deflection criteria are also considered 

in the design process. The traditional 1 360⁄  deflection limit in practice is adopted 

as a deflection design constraint for the beams subjected to reduced live loads, as 

formulated in Equation (2.8).  

𝛿𝑗  −
𝐿𝑗

360
    ≤     0 (2.8) 

where 𝛿𝑗 represents the calculated deflection of a beam member 𝑗 under reduced 

live loads and 𝐿𝑗 is the length of the beam member 𝑗. 

An inter-story drift (Δ) in a typical frame-type steel structure is defined as the 

relative translational displacement difference between two consecutive floors in the 

frame. According to ASCE/SEI 7-10 (2010) design load specification, inter-story 

drift constraint resulting from a seismic action is formulated in Equation (2.9). 

∆𝑗

∆𝑎
− 1 ≤ 0      𝑤ℎ𝑒𝑟𝑒       ∆𝑗=

𝐶𝑑𝛿𝑇

𝐼𝑒
 (2.9) 

In Equation (2.9), 𝐶𝑑, 𝐼𝑒, ∆𝑎, ℎ are the deflection amplification factor, the 

importance factor, the allowable story drift, and story height, respectively; 𝛿𝑇is the 

maximum value of the relative translational displacement of adjacent stories 
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determined by the results of an elastic analysis. The subscript 𝑗 = 1,2, … , 𝑁𝑠 

represents the 𝑗𝑡ℎ story, where 𝑁𝑠 is the total number of stories and ∆𝑗is the drift of 

the 𝑗𝑡ℎ story. 

2.5 Geometric Constraints 

Geometric constraints play an important role in the design of steel structures 

because any two steel sections cannot be selected arbitrarily and connected together 

even though they both satisfy strength and displacement constraints. Geometric 

constraints refer to a set of geometric requirements that must be satisfied by the 

members that frame into the same joint. Unless these requirements are satisfied, 

solid connections cannot be produced, leading to impractical and/or unreliable 

designs. Hence, it is important that geometric constraints are all satisfied from the 

point of view of the practicality of the optimum design produced. In the following 

sub-sections, the geometric constraints between various structural members in steel 

frames are mentioned and formulated. 

2.5.1 Girder-to-Column Connections  

Girders and columns connected together must satisfy certain geometric constraints 

depending on whether the girders are connected to the flange or web plate of the 

columns.  

 

Figure 2.1. Girder-to-Column connections 
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2.5.1.1 Girder-to-Column flange connections 

For a girder connected to the flange of a column member (Figure 2.1), it is required 

that the flange width of the girder does not exceed the flange width of the column. 

Accordingly, the associated geometric constraint is defined in Equation (2.10)  

𝑏𝑓
𝑔

𝑏𝑓
𝑐 − 1.0 ≤ 0 (2.10) 

where 𝑏𝑓
𝑔

 is the flange width of the girder, and 𝑏𝑓
𝑐 is the flange width of the column. 

2.5.1.2 Girder-to-Column web connections 

For a girder connected to the web of a column member (Figure 2.1), it is required 

that the flange width of the girder ideally does not exceed the clear web height of 

the column. Accordingly, the associated geometric constraint is defined in Equation 

(2.11)  

𝑏𝑓
𝑔

(𝑑𝑐 − 2𝑡𝑓
𝑐)

− 1.0 ≤ 0 (2.11) 

where 𝑏𝑓
𝑔

 is the flange width of the girder, 𝑑𝑐 is the total depth of the column, 𝑡𝑓
𝑐 is 

the flange thickness of the column, and 𝑑𝑐 − 2𝑡𝑓
𝑐 is the clear web height of the 

column. 

However, for a girder whose flange width is larger than the clear web height of the 

connected column, the girder might also be notched/coped by its edges to fit into 

the column flange at the expense of increased manufacturing cost. In such a case, it 

is still required that the flange width of the girder does not exceed the total depth of 

the column. Accordingly, the associated geometric constraint is defined in Equation 

(2.12)  
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𝑏𝑓
𝑔

𝑑𝑐
− 1.0 ≤ 0 (2.12) 

where 𝑏𝑓
𝑔

 is the flange width of the girder, and 𝑑𝑐 is the total depth of the column. 

2.5.2 Column-to-Column Connections  

The column members in multi-story steel frames can be connected together using 

steel-plated bolted connections called column splices, as depicted in Figure 2.2. For 

each splice connection, five geometric constraints can be defined as follows.  

 

Figure 2.2. Column-to-Column connection (splice connection) 

First, it is required that the depth of the upper column does not exceed the depth of 

the lower column. Accordingly, the associated geometric constraint is defined in 

Equation (2.13)  

𝑑𝑢𝑐

𝑑𝑙𝑐
− 1.0 ≤ 0 (2.13) 

where 𝑑𝑢𝑐 is the depth of the upper column and 𝑑𝑙𝑐 is the depth of the lower column. 
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Second, it is required that the flange thickness of the upper column does not exceed 

the flange thickness of the lower column. Accordingly, the associated geometric 

constraint is defined in Equation (2.14)  

𝑡𝑓
𝑢𝑐

𝑡𝑓
𝑙𝑐 − 1.0 ≤ 0 (2.14) 

where 𝑡𝑓
𝑢𝑐 is the flange thickness of the upper column,  𝑡𝑓

𝑙𝑐  is flange thickness of 

the lower column. 

Third, it is required that the web thickness of the upper column does not exceed the 

web thickness of the lower column. Accordingly, the associated geometric 

constraint is defined in Equation (2.15)  

𝑡𝑤
𝑢𝑐

𝑡𝑤
𝑙𝑐

− 1.0 ≤ 0 (2.15) 

where 𝑡𝑤
𝑢𝑐 is the web thickness of the upper column, 𝑡𝑤

𝑙𝑐 is the web thickness of the 

lower column. 

Fourth, it is required that the flange width of the upper column does not exceed the 

flange width of the lower column. Accordingly, the associated geometric constraint 

is defined in Equation (2.16)   

𝑏𝑓
𝑢𝑐

𝑏𝑓
𝑙𝑐 − 1.0 ≤ 0 (2.16) 

where 𝑏𝑓
𝑢𝑐 is the flange width of the upper column, 𝑏𝑓

𝑙𝑐 is the flange width of the 

lower column. 

Fifth, it is also required that the clear height of the upper column is not smaller than 

the clear height of the lower column. Accordingly, the associated geometric 

constraint is defined in Equation (2.17)  
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𝑑𝑙𝑐 − 2. 𝑡𝑓
𝑙𝑐

𝑑𝑢𝑐 − 2. 𝑡𝑓
𝑢𝑐 − 1.0 ≤ 0 (2.17) 

where 𝑡𝑓
𝑢𝑐 is the flange thickness of the upper column,  𝑡𝑓

𝑙𝑐  is the flange thickness 

of the lower column, 𝑑𝑙𝑐 is the depth of the lower column and 𝑑𝑢𝑐 is the depth of 

the upper column. It should be noted that this requirement together with Equations 

(2.13) and (2.16) ensures that the flange of the upper column rests on the flange of 

the lower column. 

Another way of connecting column members in multi-story steel frames is through 

the use of cap plate connections, in which the end plates welded to the columns are 

connected to each other by bolts, as depicted inFigure 2.3.  

 

Figure 2.3. Column-to-Column connection (cap plate connection) 

It is important to underline that for each cap plate connection, the constraints 

regarding Equations (2.13) and (2.16) are imposed only.  
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2.5.3 Beam-to-Girder Connections  

Beams connected to girders also need to satisfy certain geometric constraints. For 

a beam connected to the web of a girder (Figure 2.4), it is required that the depth of 

the beam does not exceed the clear web height of the girder. Accordingly, the 

associated geometric constraint is defined in Equation (2.18)  

 

Figure 2.4. Beam to Girder Connection 

𝑑𝑏

(𝑑𝑔 − 2𝑡𝑓
𝑔

)
− 1.0 ≤ 0 (2.18) 

where 𝑑𝑏 is the depth of the beam, 𝑑𝑔 is the depth of the girder and 𝑡𝑓
𝑔

  is the flange 

width of the girder. 

2.6 Constraint Handling with Penalty Function  

Metaheuristic search techniques are unconstrained optimization methods. Hence, 

during the past few decades, various strategies have been proposed for handling 

constraints with metaheuristic search techniques. One of the most common 

approaches implemented is to transform a constrained structural optimization 

problem into an unconstrained one so that unconstrained structural optimization 

techniques can be employed. Such a transformation is performed by introducing a 

penalty function and integrating it into the objective function. The penalty function 

penalizes solutions that violate problem constraints. For minimization problems, 
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the violated constraints lead to an increase in the objective function of that particular 

solution. The constraint integrated penalty function is referred to as penalized 

(constrained) objective function.  Equation (2.19) presents the constrained objective 

function used in this study: 

𝜙 = 𝑊 [1 + 𝛼𝑝(∑ 𝑐𝑖

𝑁𝑐

𝑖=1
)] (2.19) 

where 𝜙 is the penalized objective function, 𝑊 is the original objective function 

(i.e., the total weight of the structure), 𝑁𝑐 is the total number of constraints, 𝑐𝑖 is the 

value of violation for the 𝑖𝑡ℎ constraint (if any), and finally the parameter 𝛼𝑝 is the 

penalty coefficient used to to adjust the scale of penalization as a whole and is set 

to unity in this study. 
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3 OPTIMIZATION ALGORITHMS 

3.1 Introduction 

In this chapter, the metaheuristic search algorithms that are implemented in this 

study are presented and their search algorithms are explained in detail. These 

techniques refer to Big Bang-Big Crunch (BB-BC), Particle Swarm Optimization 

(PSO), and Evolution Strategies (ES) methods. Besides, a newly developed design-

driven hybrid optimization technique called the Guided Evolution Strategy (GES) 

technique is introduced and its fundamental working principles are explained in 

detail. 

3.2 Big Bang - Big Crunch Optimization Technique (BB-BC) 

Big Bang-Big Crunch (BB-BC) optimization method introduced by Erol and Eksin 

(2006) was inspired by the evolution of the universe theory, i.e., the big bang-big 

crunch theory. According to this theory, the origin of the universe is very rapidly 

spread out after a big bang, which is followed by shrinkage towards the center of 

mass of the particles, called big crunch. Similarly, in the BB-BC optimization 

method, an initial population is generated and spread through the design space 

randomly identical to the big bang theory, and the population is contracted to the 

center of mass following the big crunch theory, and this process continues during 

the optimization process. 

The BB-BC optimization method has been successfully applied in various 

disciplines of optimization, including structural optimization design problems. One 

of the first applications of the BB-BC method in the area of structural optimization 
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was presented by Camp (2007). Therein the original BB-BC algorithm proposed by 

Erol and Eksin (2006) was somewhat modified by adding a controlling parameter 

to adjust the search direction from the center of mass to the position of the global 

best particle in the population. Using this variant of the BB-BC algorithm, Kaveh 

and Sabzi (2011) and Kaveh and Abbasgholiha (2011) tested and demonstrated the 

effectiveness of the method for the optimum design of reinforced concrete 

structures and planar steel frames, respectively. On the other hand, the original form 

of the method was used by Kazemzadeh Azad et al. (2011) for solving some 

benchmark engineering optimization problems and it was demonstrated that the 

BB-BC was an effective algorithm for complex structural design problems. 

Kaveh and Talatahari (2009a) attempted to enhance the performance of the BB-BC 

method by combining it with Particle Swarm Optimization (PSO) algorithm, 

resulting in a hybrid method called the HBB-BC method. In the HBB-BC method, 

the search direction is not only determined by the center of mass but also by the 

best position of each particle and the global best particle. Kaveh and Talatahari 

(2010a, 2010b) also applied this hybrid method to structural optimization problems 

with discrete design variables and achieved satisfactory results. 

It should be noted that the original BB-BC algorithm uses a normal distribution for 

generating new particles (candidate solutions) around the center of mass during the 

big bang phase. In Hasançebi and Kazemzadeh Azad (2012, 2014) the effect of the 

implemented statistical distribution on the performance of the BB-BC algorithm 

was investigated. In their studies, firstly, a normal distribution was followed in line 

with the original formulation of the BB-BC algorithm; yet, the third power of a 

normally distributed random number was taken in the relevant formulation, instead 

of the first power. This new variant of the BB-BC method was named the modified 

big bang – big crunch method (MBB-BC) method, and they demonstrated that the 

MBB-BC outperformed the original BB-BC to a large extent in sizing optimum 

design problems of steel trusses. Secondly, the normal distribution was replaced 

with an exponential distribution, yet again the third power of the random number 

sampled according to an exponential distribution was considered in the relevant 
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formulation. This version of the BB-BC method was referred to as exponential big 

bang – big crunch (EBB-BC), and the numerical experiments performed in the 

optimum design of steel frames indicated that the EBB-BC outperforms both the 

original BB-BC method and its variant MBB-BC method.  

Kazemzadeh Azad et al. (2013) proposed an Upper Bound Strategy (UBS) which 

aims to reduce the number of structural analyses required during an optimization 

process. The principle of UBS lies in the idea of eliminating unnecessary structural 

analyses for candidate designs that have no chance to improve the best (elite) 

design. The UBS is very suitable for the BB-BC algorithm and any of its variants 

because the algorithm implements an elitism rule for design transition, in which the 

best design is only replaced by an improving candidate solution. This strategy is 

implemented such that whenever a candidate solution is generated, the structural 

weight of the resulting design is calculated first. The structural analysis of the 

candidate design is implemented only if its structural weight is lower than the 

objective function (penalized weight, ) of the best design; otherwise, the candidate 

design is automatically eliminated without performing any structural analysis as it 

has no chance to improve the best design anyway. 

In this study, the EBB-BC variant of the method, which was proposed by Hasançebi 

and Kazemzadeh Azad (2012), is utilized with the UBS approach. In the following 

sub-sections, a description and related formulations of both the standard BB-BC 

and EBB-BC algorithms are given briefly.  

3.2.1 Formulation BB-BC Optimization Algorithm 

The Big Bang-Big Crunch optimization algorithm consists of two successive stages 

called the big bang and big crunch phases. In the Big Bang phase, the particles are 

scattered to the search space from a single point called the center of mass. In the 

Big Crunch phase, the particles shrank to a new center of mass point determined 

according to the positions of the particles scattered during the big bang phase. The 

particles represent the candidate solutions while the design variables in a candidate 
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solution correspond to coordinates in the search space. In other words, the position 

of a particle represents a candidate solution. Similarly, the mass of a particle can be 

considered as the fitness value of the candidate solution. The main implementation 

steps of the algorithm can be outlined as follows. 

Generate Initial Population: An initial population is generated by randomly 

spreading (initial Big Bang) the particles (candidate solutions) through the design 

search space uniformly. 

Evaluate the particles: The feasible candidate solutions, which satisfy all the 

problem constraints without any constraint violations, are evaluated such that their 

objective function values are directly calculated using Equation (2.4). On the other 

hand, infeasible candidate solutions, which violate at least one of the problem 

constraints, are penalized by using a penalty function and their objective function 

values are determined in accordance with Equation (3.19). In the following the 

symbol 𝑊𝑝 will commonly be used to represent the objective function of a feasible 

particle and the penalized objective function value of an infeasible particle. Since 

structural size optimization is a minimization problem, the mass (i.e., fitness value) 

of a particle is inversely related to its objective function value, and therefore it can 

be defined using Equation (3.1).  

𝑚𝑎𝑠𝑠(𝑚) =
1

𝑊𝑝
                                                     (3.1) 

Determine “Center of Mass”: This part is called the big crunch phase where the 

center of mass is calculated by using the weighted mean of the coordinates (design 

variables) and their corresponding mass values using Equation (3.2) 

𝑋𝑖
𝑐 =

∑
1

𝑊𝑝
.𝑋𝑖

𝑗𝑁𝑝
𝑗=1

∑
1

𝑊𝑝

𝑁𝑝
𝑗=1

                                                      (3.2) 

where 𝑋𝑖
𝑐is the i-th component of the center of mass, 𝑋𝑖

𝑗
is the i-th component 

(design variable) of the j-th particle, and 𝑁𝑝 is the population size, which is the total 

number of particles in the population. 
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Generate new solutions: Big Bang is implemented next where new solutions are 

generated around the center of mass (𝐗𝒄) using a normal distribution in all 

components of a particle using Equation (3.3) 

𝑋𝑖
𝑛𝑒𝑤 = 𝑋𝑖

𝑐 + 𝛼𝑐 ∙ 𝑟𝑖

(𝑋𝑖
𝑚𝑎𝑥− 𝑋𝑖

𝑚𝑖𝑛)

𝑘
                                    (3.3) 

where  𝑋𝑖
𝑚𝑎𝑥 and 𝑋𝑖

𝑚𝑖𝑛 are the specified upper and lower values for the i-th 

component (design variable) of a particle, respectively, 𝛼𝑐 is a constant, 𝑘 is the 

iteration number, and 𝑟𝑖 is a random number generated according to a standard 

normal distribution 𝑁(0,1) with a mean (µ) = 0 and standard deviation (σ) =1. 

It should be noted that Equation (3.3) is originally developed and used for 

continuous variable optimization problems, as it returns a real value. A discrete 

adaptation of this function is given in Equation (3.4) 

𝐼𝑖
𝑛𝑒𝑤 = 𝐼𝑖

𝑐 + 𝑟𝑜𝑢𝑛𝑑 [𝛼𝑐 ∙ 𝑟𝑖

(𝐼𝑖
𝑚𝑎𝑥− 𝐼𝑖

𝑚𝑖𝑛)

𝑘
]                           (3.4) 

where 𝐼𝑖
𝑐 is the i-th the center of mass for a discrete problem, 𝐼𝑖

𝑚𝑎𝑥 and 𝐼𝑖
𝑚𝑖𝑛 are the 

specified upper and lower values for the i-th discrete component (design variable) 

of a particle, respectively. 𝛼𝑐 is a constant, 𝑘 is the iteration number, 𝑟𝑖 is a random 

number generated according to a standard normal distribution 𝑁(0,1) with a mean 

(µ) = 0 and standard deviation (σ) =1, and round is a function that returns a real 

number to the nearest integer value. 

It should be noted that Equations (3.3) and (3.4) correspond to the formulations of 

the big bang phase in the original BB-BC algorithm, as developed by Erol and Eksin 

(2006). In Hasançebi and Kazemzadeh Azad (2012, 2014), certain drawbacks of 

these formulations are pointed out in the context of discrete sizing optimization of 

steel trusses and frames, and their reformulations are proposed to improve the 

efficiency of the algorithm to great extent. 

Amongst the two reformulations raised by the related researchers, the exponential 

big bang – big crunch (EBB-BC) variant proposed by Hasançebi and Kazemzadeh 
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Azad (2012) is adopted and employed in the present study. In this reformulation, 

Equation (3.4) is modified such that the use of an exponential distribution is 

favoured in conjunction with the third power of random number as formulated in 

Equation (3.5):  

𝐼𝑖
𝑛𝑒𝑤 = 𝐼𝑖

𝑐 ± 𝑟𝑜𝑢𝑛𝑑 [𝛼𝑐 ∙ 𝑒𝑖
3 (𝐼𝑖

𝑚𝑎𝑥− 𝐼𝑖
𝑚𝑖𝑛)

𝑘
]                            (3.5) 

where 𝑒𝑖 is a random number generated according to an exponential distribution.  

An exponential distribution has the probability density function, which is given in 

Equation (3.6) 

𝑓(𝑥) = {𝜆𝑐 ∙ 𝑒−𝜆𝑐𝑥 𝑥 ≥ 0
0             𝑥 < 0

                                        (3.6) 

where 𝜆𝑐 is a real, positive constant. The mean and variance of the exponential 

distribution are equal to 1/𝜆𝑐 and 1/𝜆𝑐
2
, respectively. For various values of 𝜆𝑐, the 

shape of an exponential distribution is plotted in Figure 3.1 In the present study, a 

standard exponential distribution is used by setting 𝜆𝑐  to one. It is important to note 

that unlike a normal distribution that samples both positive and negative real 

numbers, an exponential distribution only generates positive numbers. Hence, the 

rounded term on the right-hand side of Equation (3.5) should be added to or 

subtracted from 𝐼𝑖
𝑐 under equal probability to allow for both increase and decrease 

in the value of a design variable. 
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Figure 3.1. Exponential distribution for various values of 𝜆𝑐  (Hasançebi and 

Kazemzadeh Azad, 2012) 

3.3 Particle Swarm Optimization Technique (PSO) 

The particle swarm optimization (PSO) algorithm, which was introduced by 

Eberhart and Kennedy (1995) and Kennedy and Eberhart (1995), is a stochastic 

optimization technique based on the simulation of collective behavior of species 

like swarm, herd, and flock. These species (i.e., swarms) act collectively to search 

the food source and share knowledge and experiences among individuals (i.e., 

particles). This social behavior of swarms is the main inspiration source for the PSO 

algorithm. The accumulation and sharing of past experiences provide an 

evolutionary advance in the search pattern of the swarm. 

Since the implementation of the method is simple and straightforward and does not 

involve any problem-specific data to handle the constraints, the PSO algorithm has 

been applied to various optimization problems, including structural optimization 

problems. The first applications of the PSO algorithm in the field of structural 

optimization were carried out by Fourie & Groenwold (2000, 2002) for shape 
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optimization and by Fourie & Groenwold (2001) for topology optimization, and 

encouraging results were reported.  

In Schutte and Groenwold (2003), the original PSO algorithm was modified and 

used for achieving an optimum sizing design of truss-type structures design. In 

Camp et al. (2004) the PSO algorithm was implemented in a multi-phase approach 

such that at the end of each phase the design search space is reduced somewhat and 

a new search was initiated in a reduced design space located around the global best 

solution obtained in the previous phase. Bochenek and Forys (2006) introduced a 

new term to the particle velocity update equation in the algorithm and analyzed the 

post-buckling behavior of members using the PSO method.  

In Perez and Behdinan (2007), the influence of the parameters as well as the 

functionality of the PSO algorithm was investigated in conjunction with three 

benchmark problems of structural optimization. Li et al. (2007, 2009) developed 

modified variants of the technique named heuristic PSO algorithms, which were 

implemented to optimize truss structures with discrete design. A discrete sizing 

optimization of truss structures using the PSO algorithm was also studied in Kaveh 

and Talatahari (2009b), where a hybrid version of the algorithm was introduced by 

integrating it with other optimization algorithms; namely ant colony optimization 

(ACO) and harmony search method (HS), to improve its local search and 

constrained handling performance. Later, in Kaveh and Talatahari (2009c) these 

hybrid variants of the algorithm were applied to the minimum weight problems of 

steel frames with discrete design variables. 

In Seyedpoor et al. (2010), simultaneous perturbation stochastic approximation 

(SPSA) and particle swarm optimization (PSO)” methods were hybridized to create 

an effective algorithm. In this algorithm, the SPSA was utilized only in the first 

phase, and the outcomes of this phase were used to form an initial swarm for the 

PSO in the next phase. This way, they reduced the number of structural analyses 

required and increased the possibility of achieving better solutions. 
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Dimou and Koumousis (2009) applied PSO to the reliability-based design of truss 

structures. Gomes (2011) utilized the PSO algorithm in structural size and shape 

optimization of truss structures under frequency constraints, and they quantified the 

efficiency of the method using four benchmark structural optimization problems. 

Plevris and Papadrakakis (2011) combined the PSO algorithm with a gradient-

based quasi-Newton sequential quadratic programming method, in which the latter 

was utilized to accelerate the local search capability of PSO toward the global 

optimum. 

3.3.1 Formulation of PSO Algorithm 

Every particle in the swarm has a location (position) in a search space and is 

represented by 𝑋(𝑖) = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝐷. The current location of each particle in the 

swarm is updated with the help of the velocity vector. The velocity of a particle is 

given as 𝑉(𝑖) = 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝐷 . 

Therefore, the location-position x of a particle i at iteration k+1 is updated using 

Equation (3.7) 

𝑥𝑘+1
𝑖 = 𝑥𝑘

𝑖 + 𝑣𝑘+1
𝑖 Δ𝑡 (3.7) 

where 𝑣𝑘+1
𝑖  is the updated velocity vector of particle i at iteration k+1, and ∆t is the 

time step value usually taken as unity (Shi and Eberhart, 1998a). The velocity vector 

is updated by using the experience-memory of each particle and entire swarm’s past 

experiences (Eberhart and Kennedy, 1995). The velocity vector of each particle is 

formulated as: 

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑟1

(𝑝𝑘
𝑖 − 𝑥𝑘

𝑖 )

Δ𝑡
+  𝑐2𝑟2

(𝑝𝑘
𝑔

− 𝑥𝑘
𝑖 )

Δ𝑡
 (3.8) 

where 𝑣𝑘
𝑖  is the velocity vector of particle i at iteration k, 𝑝𝑘

𝑖  is the best position of 

particle i obtained so far, the 𝑝𝑘
𝑔

 is the global best position of the whole swarm up 
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to current iteration k, and 𝑟1 and 𝑟2 are random numbers sampled anew according 

to a uniform distribution in the interval [0,1]   

The terms c1 and c2 in Equation (3.8) are positive constants which are used to adjust 

the contribution of the cognitive (the best design solution found by each particle 

individually) and social (the best design solution found by the whole swarm) 

components, respectively.  

The term w in Equation (3.8) is referred to as the inertia weight, which is introduced 

to control the exploration capabilities of the swarm. Inertia weight adjusts the 

current velocity value as well as the updated velocity vector. High values of the w 

parameter result in higher velocity updates, providing the algorithm an opportunity 

to explore the design search space globally. On the other hand, low values of this 

parameter lead to localized search in a near neighborhood within the design space.   

The PSO algorithm employs an iterative process, the implementation steps of which 

can be outlined as follows: 

1. Form the initial particle positions 𝑥0
𝑖   and velocities 𝑣0

𝑖  by distributing them 

randomly all over the design space.  

2. Calculate the objective function values 𝑓(𝑥𝑘
𝑖 ) using the design search space 

locations-positions 𝑥𝑘
𝑖  for each particle in the swarm. 

3. Keep the fittest particle position (which is optimum) 𝑝𝑘
𝑖  at current iteration 

k and also keep the elitist particle obtained so far as a global optimum 

particle location/position 𝑝𝑔
𝑖 . 

4. Modify the location/position of each particle using its previous location-

position and updated velocity vector as specified in Equation (3.7) and 

Equation (3.8). 

5. Repeat steps 2-4 until a stopping criterion (generally taken as a number of 

iterations reached) is accomplished. 

The PSO algorithm investigates the search space by updating the velocity term. For 

each particle, a search direction is determined in consideration of the three factors: 
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(1) previous iteration velocity, (2) the positions of the individual’s previous best 

location/position, and (3) the best location/position ever found globally by any 

particle in the swarm. On the other hand, to what extent each of these factors will 

be effective in the selection of a search direction is established based on the choice 

of the respective parameters; namely inertia weight parameter (w) for the previous 

iteration velocity, cognitive factor parameter (𝑐1) for individual’s previous best 

position, and social factor parameter (𝑐2) for the best position ever found globally.  

It has been shown that the PSO algorithm is quite sensitive to its parameters, and 

therefore extensive research has been conducted in the literature related to the 

improvement as well as dynamic adaptation of these parameters during the search 

process. The adaptive approaches have mainly concentrated on the inertia weight 

adaptation since a balance between the exploration and exploitation capabilities of 

the algorithm can easily be established through the adjustment of this parameter. 

Exploration is the capability to explore distinct regions of the design space, while 

exploitation is to improve the current solution by making a more exhaustive search 

relatively in a small neighborhood of the current solution. The most efficient search 

process is achieved when two features are combined effectively in an optimization 

algorithm. In this regard, the inertia weight parameter generally is utilized to 

balance a search direction between global and local search such that high values of 

this parameter tend to steer the search towards distinct regions while the small 

values confine the search to nearby districts. 

Generally speaking, at the beginning of the search process, a high value of inertia 

weight parameter is quite useful and preferable because it allows for a thorough 

search of the design space. At later optimization stages, when the most promising 

regions of the design search space are found, the inertia weight should be reduced 

to decrease the momentum of particles and thereby to focus the search on the most 

promising regions of the design space. Various approaches have been proposed to 

achieve this objective. In the following, the time-varying inertia approaches which 

are adopted and employed in this study are introduced briefly.  
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In a time-varying strategy, the inertia weight is defined as a function of iteration 

number or time. Shi and Eberhart (1998, 1999) proposed an approach where inertia 

weight (w) is reduced from a predefined high value of 𝑤𝑚𝑎𝑥 to a low of 𝑤𝑚𝑖𝑛 

linearly over iterations or time. It was recommended that the values of 𝑤𝑚𝑎𝑥 and 

𝑤𝑚𝑖𝑛 were set to 0.9 and 0.4, respectively. Accordingly, the linearly decreasing 

inertia weight can be formulated as (Naka et al., 2001): 

𝑤𝑡+1 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)
𝑡

𝑡𝑚𝑎𝑥
 (3.9) 

where 𝑡𝑚𝑎𝑥 is the number of iterations, t is the current iteration, and 𝑤𝑡+1 is the 

value of the inertia weight in the t+1 iteration. Accordingly, an initial inertia value 

𝑤𝑚𝑎𝑥 at t = 0 is linearly reduced towards 𝑤𝑚𝑖𝑛  throughout  𝑡𝑚𝑎𝑥 iterations. 

Another time-varying strategy for the inertia weight is to reduce this parameter in a 

non-linear fashion from an initially assigned high value. Yang et al. (2015) stated 

that a nonlinear time-varying inertia weight exhibited higher performance over a 

linearly decreasing variant and thus they proposed the following nonlinear time-

varying inertia weight: 

𝑤𝑡+1 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)(
𝑡

𝑡𝑚𝑎𝑥
)𝛽 (3.10) 

where 𝛽 is a user-defined constant value. The empirical studies indicated that the 

related parameters of Equation (3.10) could be set to the following values for a 

satisfactory performance of the algorithm: 𝛽 = 1 𝜋2⁄  , 𝑤𝑚𝑖𝑛 = 0.4, and 𝑤𝑚𝑎𝑥 = 0.9. 

Chen et al. (2006) studied exponentially decreasing inertia weight using the 

exponential function and offered two different strategies. The first one is defined 

as: 

𝑤𝑡+1 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)𝑒
−

10𝑡
𝑡𝑚𝑎𝑥  (3.11) 

And the second one is defined as: 
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𝑤𝑡+1 = 𝑤𝑚𝑖𝑛 + (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)𝑒
−(

4𝑡
𝑡𝑚𝑎𝑥

)2

 (3.12) 

 

The empirical studies indicated that the related parameters of Equations (3.11) and 

(3.12) could be set to the following values for a satisfactory performance of the 

algorithm: 𝑤𝑚𝑖𝑛 = 0.4, and 𝑤𝑚𝑎𝑥 = 0.9. 

The logarithmically decreasing inertia weight was integrated into the PSO 

algorithm by Gao et al. (2008). They formulated a logarithmically decreasing inertia 

weight as follows: 

𝑤𝑡+1 = 𝑤𝑚𝑎𝑥 − (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) log10 (𝑎 +
10𝑡

𝑡𝑚𝑎𝑥
) (3.13) 

where a is a constant value controlling the evolutionary velocity. The authors 

empirically suggested the following values for the parameters of Equation (3.13):  

𝑤𝑚𝑖𝑛 = 0.4, 𝑤𝑚𝑎𝑥 = 0.9 and a = 1. 

It should be noted that in the original PSO algorithm, the velocity of a particle may 

frequently rise to an extremely high value, which unfavorably affects the 

performance of the PSO algorithm. Therefore, the velocity of the particles was 

limited by defining an upper bound called maximum velocity, 𝑉𝑚𝑎𝑥. Accordingly, 

If the velocity of a particle exceeds  𝑉𝑚𝑎𝑥  during the update of the velocities by 

Equation (3.8), it is automatically assigned to 𝑉𝑚𝑎𝑥, which is a user-defined 

parameter.  

3.4 Evolution Strategies (ESs) 

The evolution strategies (ESs) technique is conceived as one of the three 

mainstreams of evolution algorithms (EAs). In fact, the term “evolutionary 

algorithms (EAs)” is used to refer to a group of techniques that employ a crude 

simulation of natural evolution to evolve a population of individuals (designs) 

toward the optimum over successive generations. As in any evolutionary algorithm 
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(EA), evolution strategies (ESs) also require a stochastic and iterative procedure, 

which endeavours to evolve a population of individuals over a selected number of 

generations. 

The fundamentals of evolution strategies (ESs) were originally laid in the 

pioneering studies of Rechenberg (1965, 1973) and Schwefel (1965) at the 

Technical University of Berlin. They developed the first (simplest) variant of ESs, 

which implements on the basis of two designs; a parent and an offspring individual. 

Today, the modern variants of the ESs are accepted as (μ + λ) − ES and (μ, λ) − ES, 

which were again developed by Schwefel (1977, 1981). Both variants employ 

design populations consisting of μ parent and λ offspring individuals, and are 

intended to carry out a self-adaptive search in continuous design spaces. The 

extensions of these variants to solve discrete optimization problems were put 

forward in the following studies in the literature: Cai and Thierauf (1993), Bäck and 

Schütz (1995), Rudolph (1994), and Hasançebi (2007).  

In this study, in order to address discrete sizing optimization of steel frames the 

discrete variant of (μ + λ) − ES and (μ, λ) − ES evolution strategies developed in 

Hasançebi (2007) are adopted and employed. In fact, the performance assessment 

of various metaheuristic search algorithms in the optimum design of skeletal 

systems indicated that these discrete variants of the ESs were the most successful 

ones amongst a total of seven metaheuristic algorithms considered for the related 

studies (Hasançebi et al. 2009, 2010). 

Therefore, in the following first the discrete variants (μ + λ) − ES and (μ, λ) − ES of 

the evolution strategies developed in Hasançebi (2007) are explained in detail first. 

Next, the fundamentals of the (1+ 1) − ES are mentioned very briefly because it 

forms a basis for the development of the guided evolution strategy proposed in this 

study.  
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3.4.1 The (μ,λ)- and (μ+λ)-Evolution Strategy  

The modern variants of the ESs, i.e., (μ + λ) − ES and (μ, λ) − ES, employ an 

optimization procedure featuring a generation-based iteration of the technique for 

a population of individuals (potential solutions). Accordingly, the first step in this 

procedure is to establish an initial population consisting of μ number of parent 

individuals. Typically, this is performed through a random initialization. Next, the 

initial population is measured (evaluated), and each parent individual is given a 

fitness score. The fitness score of an individual quantifies the merit of its solution, 

and is distributed according to how well the individual satisfies the objective 

function and constraints. Once the initial population is evaluated, it goes through 

recombination and mutation evolutionary operators to yield the offspring 

population. Recombination is applied first, facilitating a trade of design information 

between the μ parents to generate λ new (offspring) individuals. A variety of 

different recombination operators exist to carry out this task and their relative 

effectiveness is an ongoing research subject (Bäck, 1996). Mutation is applied to 

each offspring individual thereafter, resulting in a new set of design components 

for the individual. Evaluation of the offspring population is then fulfilled in the 

same way as the parents. Next, selection operator is implemented to determine the 

surviving individuals out of parent and offspring populations. The manner the 

selection is carried out identifies the only difference between the (μ + λ) and (μ, λ) 

variants of ESs. In the (μ, λ) variant, the parents are all left to die out, and the best 

μ individuals are chosen deterministically out of λ offspring in reference to their 

fitness scores. In the (μ + λ) variant, however, the parents are also involved in this 

mechanism, and the best μ individuals are chosen from μ parents and λ offspring. 

The selected (surviving) individuals make up the parent population of the next 

generation. The aforementioned process is iterated in the same way over a certain 

number of generations, producing a new offspring population from the parent one 

at each generation. Extensive formulations and computational details of the ES 

algorithm are given in the following subsections.  
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3.4.1.1 Initial population  

The initial population contains  parent solutions (individuals). An individual J 

consists of a vector of sizing design variables I and two sets of strategy parameters 

(𝑝,), as formulated in Equation (3.14). The strategy parameters are all self-

adaptive, which means that they are adjusted to the best suitable values dynamically 

and automatically by the algorithm to achieve an effective search of the design 

space during an optimization process. 

      𝐉 = 𝐉(𝐈, 𝑝,)                                        (3.14) 

In Equation (3.14), 𝑝 refers to the mutation probability parameter employed for the 

sizing design variables. It should be noted that this parameter determines the 

percentages of sizing design variables that will be mutated probabilistically when 

generating a new (offspring) individual. As explained in the following, in these 

discrete variants of the ES algorithm, sizing design variables are mutated using 

geometric distributions. A geometric distribution is a discrete probability 

distribution with a monotonously decreasing probability curve for a random 

variable. In general, the flatness of this distribution is controlled by a geometric 

distribution parameter (). The higher the  parameter is, the flatter the distribution 

becomes, enabling large moves (step sizes) for an effective explorative search. 

Similarly, the low values of  parameter encourage small moves and thus a more 

exploitative search. For each sizing variable a particular geometric distribution is 

generated and used by changing its corresponding  parameter adaptively during 

the search for a successful mutation of the variable. Therefore, a different geometric 

distribution parameter 
𝑖
 is used and associated with each sizing variable 𝐼𝑖 and the 

vector  in Equation (3.14) represents the whole set of geometric distribution 

parameters employed, i.e. (
𝑖

= 1, . . , 𝑁𝑔). The initial population is formed such 

that the design vectors are initialized at random, and the strategy parameters are set 

to suitable initial values (𝑝(0),(0)) that are determined through numerical 

experiments.  
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3.4.1.2 Evaluation of parent population  

The initial population, which is assigned as the parent population at generation zero, 

is evaluated such that a structural analysis is implemented for each individual in the 

population to obtain a structural response for the corresponding design. If a solution 

produced by an individual is feasible, its objective function value is directly 

calculated from Equation (2.4). Otherwise, the infeasible solution is evaluated using 

the external penalty function approach, and its objection function is calculated using 

Equation (2.19). 

3.4.1.3 Recombination  

After the individuals are evaluated, recombination is implemented next where  

offspring (new) individuals are generated by implementing an exchange of design 

information between the  parent individuals. Recombination is performed such 

that not only the design vector I but also the strategy parameters (𝑝,) are 

recombined between the randomly selected individuals to create an offspring 

individual. Generally speaking, recombination can be implemented in different 

schemes based on the type of design variables.  In the present study, sizing design 

variables are recombined according to a global discrete recombination scheme, 

whereas an intermediate recombination scheme is adopted for the strategy 

parameters. Assuming that 𝐬{𝐈, 𝑝,} represents an arbitrary component of an 

individual, the recombined 𝐬′ can be expressed as follows:         

              {
𝑠𝑖

𝑎 𝑜𝑟 𝑠𝑖
𝑏𝑗

𝑠𝑖
𝑎 +

𝑠𝑖
𝑏−𝑠𝑖

𝑎

2

    ∶ 𝑔 𝑙𝑜𝑏𝑎𝑙 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒
: 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 

                                   (3.15) 

In Equation (3.15), 𝐬𝑎 and 𝐬𝑏  represent any components of two parent individuals 

a and b, and 𝑠𝑖
𝑎 and 𝑠𝑖

𝑏 are typical elements in these components, respectively. In a 

global discrete recombination of a component s, the first parent is chosen and kept 

fixed, whereas the second parent is chosen all over again for each different element 
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of the component. The recombination is performed by selecting the corresponding 

element 𝑠𝑖
′  from that of the first parent 𝑠𝑖

𝑎 or the second parent 𝑠𝑖
𝑏𝑗

 under equal 

probability. In an intermediate recombination scheme, both parents are chosen and 

held unchanged for all the elements. The recombination is then performed by 

calculating the arithmetic mean of the elements 𝑠𝑖
𝑎  and 𝑠𝑖

𝑏. 

3.4.1.4 Mutation  

It is essential to emphasize that mutation is conceived of as the main operator of 

ESs owing to its dominating role in an effective search of the design space. Every 

offspring individual is subjected to mutation, which arises a new set of design 

variables (𝐈′) and strategy parameters (𝑝′,′ ) for the individual.  

Prior to the mutation of sizing variables, the sizing mutation probability parameter 

𝑝 is mutated first. A logistic normal distribution is used for mutation of the 

parameter in the range of (0,1), as formulated in Equation (3.16). 

𝑝′ = (1 +
1−𝑝

𝑝
∙ 𝑒−𝛾∙𝑁(0,1))

−1

                                     (3.16) 

In Equation (3.16), 𝑝′ is the mutated value of the 𝑝 parameter; 𝑁(0,1) is a random 

number generated from a normal distribution with a mean of 0 and a standard 

deviation of 1 and it is sampled anew for each individual; and  =  1 √2√𝑁𝑔⁄  is a 

learning rate constant for the 𝑝 parameter, where 𝑁𝑔 stands for the number of sizing 

design variables (number of member groups). It is important to mention that upper 

and lower bounds are also defined for the mutation probability parameter obtained 

from Equation (3.16), as follows: 

𝑝𝑚𝑖𝑛 ≤ 𝑝′ ≤ 𝑝𝑚𝑎𝑥                                       (3.17) 

where the minimum mutation probability parameter 𝑝𝑚𝑖𝑛 is imposed to ensure the 

mutability of the individual. In this study, this paramere is set to a value of 𝑝𝑚𝑖𝑛 =
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1/𝑁𝑔 to facilitate mutation of at one design variable probabilistically. Similarly, the 

maximum mutation probability parameter 𝑝𝑚𝑎𝑥 is enforced to eliminate excessive 

mutation of the individual, In this study, 𝑝𝑚𝑎𝑥 is not set to a static value; instead, it 

is decreased linearly from its initial value of 𝑝𝑚𝑎𝑥
0  at iteration (generation) zero to 

its final value 𝑝𝑚𝑎𝑥
𝑡𝑚𝑎𝑥 at the last iteration in order to promote a more exploitative 

search towards later stages of optimization (Equation 3.18) 

𝑝𝑚𝑎𝑥
𝑡+1 = 𝑝𝑚𝑎𝑥

0 − (𝑝𝑚𝑎𝑥
0 − 𝑝𝑚𝑎𝑥

𝑡𝑚𝑎𝑥  )
𝑡

𝑡𝑚𝑎𝑥
                           (3.18) 

where 𝑡𝑚𝑎𝑥 is the maximum number of iterations to be performed during an 

optimization process, t is the current iteration number, and 𝑝𝑚𝑎𝑥
𝑡+1  is the maximum 

value of the mutation probability parameter at iteration (𝑡 + 1). In this study, 𝑝𝑚𝑎𝑥
0  

and 𝑝𝑚𝑎𝑥
𝑡𝑚𝑎𝑥  are set to the following values: 𝑝𝑚𝑎𝑥

0 = 0.25 and 𝑝𝑚𝑎𝑥
𝑡𝑚𝑎𝑥 = 1 𝑁𝑔⁄  . 

For each sizing variable 𝐼𝑖, a uniform random number 𝑟 is then sampled in the range 

[0,1]. If the random number 𝑟 is smaller than or equal to 𝑝′, mutation of the sizing 

variable is performed; otherwise, the variable is not mutated. Before mutating the 

sizing variable, however, its associated geometric distribution parameter 
𝑖
 must 

be mutated first using a lognormal distribution given in Equation (3.19).   


𝑖
′ = 

𝑖
𝑒𝜏𝑁𝑖(0,1) ≥ 1.0 𝑖𝑓 𝑟 ≤  𝑝′  ∈ [0,1]                       (3.19) 

In Equation (3.19), 
𝑖
′ is the mutated value of the 

𝑖
 parameter;   is a learning rate 

constant for the 
𝑖
 parameter and it can be set to 𝜏 = 1 √𝑁𝑔⁄ ; and a normally 

distributed random number 𝑁𝑖(0,1) is sampled anew for each sizing variable.  

It is important to note that Equation (3.19) may occasionally yield a too small or 

too big geometric distribution parameter due to mis-adapted strategy parameters, 

which adversely affect the search performance of the algorithm. Hence, an upper 

bound 
𝑚𝑎𝑥

 and  a lower bound 𝜓𝑚𝑖𝑛 are also defined for this parameter to 

facilitate an efficient search, as formulated in Equation (3.20). 
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𝜓𝑚𝑖𝑛 ≤ 
𝑖
′ ≤ 𝜓𝑚𝑎𝑥                                       (3.20) 

Accordingly, if the mutated value of a geometric distribution parameter exceeds 

𝜓𝑚𝑎𝑥, it is set to  
𝑖
′ = 𝜓𝑚𝑎𝑥; likewise if it falls below 𝜓𝑚𝑖𝑛, it is set to 

𝑖
′ = 𝜓𝑚𝑖𝑛. 

In this study, 𝜓𝑚𝑖𝑛 and 𝜓𝑚𝑎𝑥 are set to the following values: 𝜓𝑚𝑖𝑛 = 2√𝑁𝑠𝑒𝑐 5⁄  

and 𝜓𝑚𝑎𝑥 = 5√𝑁𝑠𝑒𝑐/2, where 𝑁𝑠𝑒𝑐 is the number of sections (values) in the 

discrete set used. 

Finally, to mutate a sizing variable, two integer random numbers (𝑧𝑖,1, 𝑧𝑖,2) are 

sampled according to a geometric distribution with the parameter 𝛹𝑖
′, and 𝐼𝑖 is 

mutated using Equation (3.21), where 𝐼𝑖
′ indicates the mutated value of the sizing 

variable.  

𝐼𝑖
′ = 𝐼𝑖 + 𝑧𝑖,1(𝛹𝑖

′) − 𝑧𝑖,2(𝛹𝑖
′)     (3.21) 

3.4.1.5 Evaluation of offspring population  

The offspring population is evaluated next where structural analysis is implemented 

for each individual in the offspring population to obtain its force and deformation 

responses and its objective function value is assigned as per Equation (2.4) or 

(2.19). 

3.4.1.6 Selection 

Selection is carried out to determine the surviving individuals. As discussed 

formerly, the way the selection is carried out identifies the only difference between 

the (μ + λ) and (μ, λ) variants of ESs. In the (μ, λ) variant, the parents are all left to 

die out, and the best μ individuals are chosen deterministically out of λ offspring in 

reference to their fitness scores. In the (μ + λ) variant, however, the parents are also 

involved in this mechanism, and the best μ individuals are chosen from μ parents 

plus λ offspring. It follows that the lifespan of an individual in (μ, λ) – ES is strictly 

defined as one generation, whereas the individual is permitted to remain alive until 



 43 

it is overwhelmed by subsequent individuals in the (μ + λ) variant. At a first glance, 

(μ + λ) − ES seems to be superior in the sense that it increases the selection pressure 

and comes up with a promise of guaranteed evolution (Bäck, 1996). However, 

according to Schwefel (1981), this opinion may be deceptive. He hypothesized that 

the (μ + λ) variant is less likely to escape from mis-adapted strategy parameters and 

local optima, as compared to the (μ, λ) − ES. The selected (surviving) individuals 

make up the parent population of the next generation. 

3.4.1.7 Termination 

The procedures described in Sections 3.4.1.3 through 3.4.1.6 are implemented over 

a predetermined number (𝑁𝑔𝑒𝑛) of generations.  

3.4.2 The (1+1)-Evolution Strategy  

Two member ES, or shortly (1+1)-ES is the initial version of the ESs and includes 

only two individuals; one parent and one offspring. Therefore, it operates on only 

two individuals per iteration.  

In a (1+1)-ES algorithm, an individual J consists of a continuous design variable 

vector X and a single standard deviation , as formulated in Equation (3.22) 

        𝐉 = 𝐉(𝐗,)                                          (3.22) 

At each generation (iteration) of the algorithm, an offspring individual is generated 

from the parent one by mutation only. To do this, the standard deviation parameter 

 is first updated according to a so-called 1/5 success rule in which it is adapted 

deterministically according to the measured success frequency of mutations 

(Equation 3.23) 

′ = {

/ √𝑐
𝑛

𝑖𝑓 𝑝 > 1/5

√𝑐
𝑛

𝑖𝑓 𝑝 < 1/5
 𝑖𝑓 𝑝 = 1/5

                                   (3.23) 
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where ′ refers to the adapted (mutated) value of the standard deviation and p is the 

measured success frequency of mutations. It has been theoretically proven on a 

sphere model that the parameter c is set to 0.817 for the best performance of the 

algorithm. 

Next, mutation of the design variable vector X is carried out where each design 

variable is added a random number sampled according to a normal distribution with 

mean 0 and standard deviation ′  

𝑋𝑖
′ = 𝑋𝑖 + 𝑁(0,′)𝑖          i=1,…, 𝑁𝑔                    (3.24) 

where 𝑋𝑖 and 𝑋𝑖
′ are the values of the i-th design variable in the parent and offspring 

individuals, respectively, and 𝑁(0,′) is a random number sampled according to a 

normal distribution with a mean 0 and standard deviation ′. 

The better of the two (parent and offspring individuals) is selected deterministically 

depending on whichever has the lower objective function value or higher fitness, 

and the selected individual becomes the parent of the next generation, while the 

other one is discarded. Accordingly, the selection mechanism in (1+1)-ES can 

mathematically be expressed as follows: 

𝐉(𝑡 + 1)   = {
𝐉(𝑡), 𝑖𝑓  (𝐉(𝑡)) ≤ (𝐉′(𝑡))

𝐉′(𝑡), 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                     
 (3.25) 

where 𝐉(𝑡 + 1) represents the parent individual selected for the next generation, and 

𝐉(𝑡) and 𝐉′(𝑡) are the parent and offspring individuals, respectively, and the fitness 

function is denoted by . 

 



 45 

3.5 The Proposed Guided Evolution Strategy Technique 

In this section, a design-driven guided evolution strategy optimization (GES) 

technique developed for a time-efficient optimum design of steel skeletal structures 

is introduced.   

A common strategy employed by almost all metaheuristic search algorithms is that 

they explore the design space stochastically by making random moves based on 

some search natural, biological or physical principles. These algorithms primarily 

differ in how a search direction is decided in the design space without using or 

relying on gradient information. Indeed, a gradient-free search is advantageous in 

the sense that it prevents an algorithm to stagnate in a local optimum, On the other 

hand, random search strategies employed by these algorithms cause them to 

converge towards an optimum solution only after performing a large number of 

function evaluations. For optimization problems whose objective functions are 

expressed mathematically as an explicit function of some variables, this is not of 

much significance because the optimization time will change from a few seconds 

to a few minutes even for the cases in which millions of function evaluations are 

necessary. On the other hand, an analysis of a structural system is a computational 

expansive task since a single analysis may take up to minutes for large-scale 

problems subjected to many load conditions. Therefore, a time-efficient 

optimization of large-scale structures may not be always achieved with standard 

metaheuristic search methods. Therefore, it is crucial to establish intelligent 

strategies to guide the search direction towards more promising parts of the design 

space, while implementing metaheuristic search techniques for structural 

optimization problems  

The rationale behind the guided evolution strategy (GES) technique is to improve 

the convergence characteristics of an evolution strategy by utilizing the information 

gathered during the structural analysis and design stages. This way, it is aimed to 

create a time-efficient optimization algorithm having accelerated search abilities.  
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The GES algorithm has some similarities and differences with (1+1) and (μ, λ) or 

(μ + λ) variants of the technique. Similar to the (1+1)-ES, it works on the basis of 

two individuals; i.e, a parent and an offspring per generation. The selection scheme 

in the GES is also implemented in the same way as in the (1+1)-ES. That is to say, 

if the offspring is better than the parent, it becomes the parent of the next generation; 

otherwise, the parent survives. On the other hand, the mutation of a parent 

individual in the GES algorithm is performed along the same line as the (μ, λ) or (μ 

+ λ) discrete variants of ES. However, in addition to this mutation operator, the data 

collected during the evaluation stage of the optimization process (structural analysis 

and design) are also utilized during mutation to handle strength constraints more 

efficaciously for guiding the search process. The fundamental implementation steps 

of the GES algorithm are described in the following sub-sections. 

3.5.1 Initialization of the Algorithm 

The GES optimization algorithm starts with a random generation of an initial 

(parent) individual. Similar to (μ, λ) or (μ + λ) discrete variants,  an individual J 

consists of a vector of sizing design variables I and two sets of strategy parameters 

(𝑝,), as formulated in Equation (3.14). The descriptions for these strategy 

parameters will not be given here to avoid repetition. 

3.5.2 Evaluation of the parent individual 

The parent individual is evaluated where structural analysis is carried out for the 

individual to obtain its force and deformation responses and its objective function 

is calculated using Equation (2.4) or (2.19), depending on the feasibility of the 

resulting solution. 



 47 

3.5.3 Mutation 

The (μ, λ) or (μ + λ) discrete variants of the ES method employ a stochastic mutation 

as formulated in Equations (3.16) through (3.21). Indeed, a stochastic mutation is 

useful since it accommodates an extensive exploration of the design space, 

preventing entrapment of the algorithm in a local optimum. Therefore, a stochastic 

mutation is also maintained in the GES algorithm. However, in order to accelerate 

the convergence speed of the algorithm, a so-called guided mutation is introduced 

as a supplementary tool to guide the search process using the information obtained 

during the evaluation stage of the parent individual. In order for the algorithm to 

take advantage of these two search features together during an optimization process, 

both mutation schemes are incorporated into the GES algorithm. Accordingly, a 

stochastic mutation is still followed when generating an offspring individual from 

the parent one, yet occasionally this conventional mutation scheme is replaced by 

the guided mutation scheme according to a predefined possibility called guided 

mutation ratio (GMR) in this study. Whether an offspring is generated based on a 

stochastic or guided mutation is decided using Equation (3.26). 

𝑀𝑡𝑦𝑝𝑒 = {
𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐, 𝑖𝑓  𝑟 > 𝐺𝑀𝑅 ∈ [0,1]

𝐺𝑢𝑖𝑑𝑒𝑑      , 𝑖𝑓  𝑟 ≤ 𝐺𝑀𝑅 ∈ [0,1]
 (3.26) 

Equation (3.22) is implemented such that when a new offspring individual is 

generated, a uniform random number (𝑟) is sampled anew in the range of [0,1]. If 

𝑟 ≤ 𝐺𝑀𝑅, the offspring individual is produced using the guided mutation scheme; 

otherwise (𝑟 > 𝐺𝑀𝑅) the conventional stochastic mutation is applied. In Chapter 

5, the optimal values of the GMR parameter are investigated by implementing 

numerical examples from the optimum design of steel frames. In the following, 

these two mutation schemes are explained in detail. 
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3.5.3.1 Stochastic Mutation 

As mentioned previously, the stochastic mutation scheme is implemented along the 

same line as (μ, λ) or (μ + λ) discrete variants of the method, as formulated in 

Equations (3.16) through (3.21).  

3.5.3.2 Guided Mutation 

During the evaluation stage, a parent individual design is analyzed under all design 

load combinations, and the maximum demand-to-capacity ratio (DCR) is 

established for each sizing variable concerning the strength constraints. For a sizing 

design variable, a DCR value below one indicates that related strength constraints 

are satisfied with the current section selected for the corresponding member or 

member group, and a smaller (lighter) section might be used to provide economy 

(i.e., the current section is overdesign). Similarly, On the other hand, for a sizing 

design variable a DCR value above one implies that related strength constraints are 

not satisfied; the current section is not adequate (underdesigned) and a stronger 

section must be used to eliminate the constraint violation.  

In guided mutation scheme, search directions are determined for design variables 

in accordance with their associated DCR values in the parent individual. 

Accordingly, for design variables with DCR values larger than one, the type of 

search direction is labeled as 𝑆𝐷𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, implying that an increase in cross-section 

(i.e., stronger section) is necessary to remedy the related constraint violations 

associated with these variables. Conversely, for design variables with DCR values 

smaller than one, the type of search direction is labeled as 𝑆𝐷𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒, indicating 

that a decrease in cross-section (i.e., lighter section) might be useful in terms of 

more effective use of material, as formulated in Equation (3.27)      

𝑆𝐷𝑡𝑦𝑝𝑒 = {
𝑆𝐷𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑖𝑓  𝐷𝐶𝑅 > 1.0

 𝑆𝐷𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 , 𝑖𝑓  𝐷𝐶𝑅 ≤ 1.0
 (3.27) 
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In fact, at times when no global displacement constraint is imposed, ideally, DCRs 

for all member groups should be adjusted to values around 1.0 to ensure the most 

effective use of the material in a structure. However, the presence of global 

displacement constraints might overwrite this rule to some extent because some 

global displacement quantities might be quite sensitive to the cross-sectional 

properties of some members, and the selection of larger sections for those members 

might be necessary to reduce the global displacements to the desired levels at the 

expense of having low DCR values for those particular members.  

Therefore, not all design variables are mutated at a time while generating an 

offspring individual. Besides, excessive mutation of an individual causes quite a 

different set of force distributions within the structural members, reducing the 

exploitative search characteristics of the algorithm. Therefore, the mutation is 

implemented only on a selected number of design variables and whether a design 

variable is mutated or not during the guided mutation scheme is decided upon using 

Equation (3.28)   

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = {

𝑌𝑒𝑠, 𝑆𝐷𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑓 𝐷𝐶𝑅 > 1.0
𝑌𝑒𝑠; 𝑆𝐷𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑓 𝐷𝐶𝑅 < 1.0 

𝑁𝑜 𝑖𝑓 𝐷𝐶𝑅 < 1.0 
 and 𝑟 < (1 − 𝐷𝐶𝑅)2 ∈ [0,1]

and 𝑟 ≥ (1 − 𝐷𝐶𝑅)2 ∈ [0,1]
 (3.28) 

According to Equation (3.28), the design variables with DCR values above one are 

strictly mutated in an increased search direction 𝑆𝐷𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 to have a stronger 

section and thereby to remedy the related constraint violation. On the other hand, 

design variables with DCR values below one are mutated probabilistically, where  

(1 − 𝐷𝐶𝑅)2 represents the mutation probability of the design variable. A uniform 

random r is generated anew in the range of [0,1] and compared to the mutation 

probability of the design variable. If 𝑟 < (1 − 𝐷𝐶𝑅)2, the design variable is 

mutated in a decreased search direction 𝑆𝐷𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 to have a lighter section; 

otherwise no mutation is applied to the design variable. It should also be noted in 

Equation (3.28) that the design variables with lower DCR values are more likely to 

be mutated as the mutation probability parameter (1 − 𝐷𝐶𝑅)2 approaches to one.  
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One point deserves particular attention. It is important to emphasize that in discrete 

structural optimization the sections that will be used to size member groups in a 

structure are sorted in ascending order of cross-sectional areas in a section pool 

(discrete set). An increase in cross-section in this list results in a heavier section, 

but not necessarily a stronger section. That is to say, the next section is heavier in 

cross-section but it may have a smaller moment of inertia about the strong or weak 

axis or both. On the other hand, in frame-type structures, multiple failure modes are 

usually available for structural members under the combined effect of axial force 

and bending moment. For example, one member may fail under shear; another 

member may fail under bending about the strong axis or weak axis, or local 

buckling mechanisms may be observed, etc. Therefore, an increase in member size 

in the discrete set may lead to a heavier yet weaker section; likewise, a decrease in 

member size in the discrete set might lead to both a lighter and stronger section.  

In this study, an increased or a decreased search direction for a design variable is 

implemented by preparing a so-called “Increase Direction List (IDL)” in the former 

and “Decrease Direction List (DDL)” in the latter. In this regard, an IDL consists 

of a predefined number of sections that have sectional properties larger than those 

of the section selected currently for the design variable, not only in terms of cross-

sectional area but also the moments of inertias about strong and weak axes. Hence, 

to prepare a IDL sections very next to the currently assigned value of the variable 

in the list are scanned in the increasing direction of the sequence number, and only 

those larger (heavier) sections which also have larger moment of inertias about both 

axes are included in the list. On the other hand, a DDL consists of a predefined 

number of sections that are lighter than the section selected currently for the design 

variable. As discussed above, sometimes a decrease in member size in the discrete 

set might lead to a lighter yet stronger section, which is in fact in favour of the 

design variable. Accordingly, a DDL is prepared such that a predefined number of 

sections very next to the currently assigned value of the variable in the decreasing 

direction of the sequence number are included in the list without enforcing any 

requirement that they will also have smaller moment of inertias. The preparation of 
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IDL and DDL for a design variable is illustrated in Figure 3.1, where the IDL and 

DDL lists are marked by blue and orange colors, respectively. Once an IDL or DDL 

is prepared for a design variable as described above, the mutation of the design 

variable is performed by stochastically switching to any of these sections in the 

corresponding list under equal probability.   

 

(a)           (b) 

Figure 3.1 An illustration for the preparation of IDL and DDL lists for a design 

variable, (a) For IDL (b) For DDL 

The number of sections included in an IDL or DDL is referred to as “Guided 

Mutation Limit (GML)” in this study. Indeed, the GML is identical to the term “step 

size” in a traditional optimization algorithm. The larger this parameter is; the more 

explorative search can be achieved at the expense of decreased exploitative search 

capabilities of the algorithm. Indeed, at the beginning of the optimization process, 

a large step size is generally beneficial since it allows for an extensive exploration 

of the design space. However, the exploitation of potentially better solutions in 

favorable regions requires a smaller step size, especially towards the later stages of 

the optimization process. Therefore, in Chapter 5 numerical experiments are carried 

out to test and examine various strategies for determining the suitable values for the 

GML parameter.  
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3.5.4 Evaluation of the offspring individual 

Upon the generation of the offspring individual, it undergoes an evaluation stage 

where structural analysis is carried out to obtain its force and deformation responses 

and its objective function is calculated using Equation (2.4) or (2.19), depending on 

the feasibility of the resulting solution. 

3.5.5 Selection  

The selection process is then implemented between the parent and offspring 

individuals such that whichever is better (having a lower objective function value) 

among the two survives and the other one dies out. It should be clear that the GES 

algorithm employs a strict elitism rule (except during a stagnation escape period to 

be discussed in the following section) such that the offspring individual is only 

allowed to replace the parent individual if it is better than the latter. This feature of 

the GES algorithm is very suitable for the application of a so-called upper bound 

strategy (UBS) proposed by Kazemzadeh Azad et al. (2013) to significantly reduce 

the number of structural analyses required during an optimization process. In fact, 

the principle of UBS lies in the idea of eliminating unnecessary structural analysis 

for an offspring individual that has no chance to defeat the parent individual. This 

strategy is implemented such that whenever an offspring individual is generated, 

the structural weight of the resulting design is calculated first. The structural 

analysis of the offspring individual is implemented only if its structural weight is 

lower than the objective function (penalized weight, ) of the parent individual; 

otherwise, the offspring is automatically eliminated without performing any 

structural analysis as it has no chance to defeat the parent individual anyway. 

3.5.6 Stagnation Control Strategy 

The GES algorithm utilizes a basic stagnation control strategy based on an uphill 

move to avoid entrapment at a local optimum. According to this strategy, if the 
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parent individual is not improved over a predetermined number of generations 

(𝑁𝑠𝑡𝑎𝑔) a stagnation escape period (SEP) is initiated by the algorithm in the next 

generation. Before the SEP, the algorithm only allows for a transition to a better 

solution, and thus the parent individual (also called elite design) represents the best 

solution obtained thus far in an optimization process. With the start of the SEP, the 

elitism rule is suspended temporarily, and a transition to a non-improving offspring 

individual (uphill move) is allowed only once provided that it has an objective 

function value not more than a predefined ratio (𝑆𝐸𝑃) of the objective function of 

the elite design. This offspring solution, which substitutes the elite design, is 

designated as the first temporary elite design within the SEP. Once the first 

temporary elite design is established, the elitism rule is re-activated and it is 

replaced and updated by only an improving offspring individual. On the other hand, 

when the SEP proceeds, if an offspring individual better than the elite design is 

produced, the SEP is terminated immediately and it becomes the elite design of the 

optimization process. If no improvement is achieved within the SEP, another SEP 

loop is initiated but this time uphill move is performed with reference to the last 

temporary elite design of the previous SEP. 

3.5.7 Termination 

The procedures described in Sections 3.5.3 through 3.5.6 are implemented until 

over a predetermined number (𝑁𝑔𝑒𝑛) of generations is completed.  

 

The optimization methods introduced in this chapter are programmed and 

computerized in a software platform called SOPS (Structural Optimization Platform 

Software) developed in this study. This software platform is introduced and 

explained in detail in the following chapter. 
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4 STRUCTURAL OPTIMIZATION PLATFORM SOFTWARE (SOPS) 

4.1 Introduction 

In structural optimization, selecting a suitable software package to manage and 

execute the optimization process is crucial since software performance directly 

impacts the efficiency of optimization. Regarding structural optimization, software 

packages can be categorized as (1) computing software and (2) design software. 

Computing software covers the optimization routines and codes while the latter 

performs the structural analysis and design part of the optimization process. In the 

computing software, an optimization algorithm is executed iteratively. After each 

iteration, new candidate solutions are generated by assigning a modified set of 

values (sections from predefined profile lists) to design variables (structural 

members’ cross-sectional areas). This newly developed candidate solution is passed 

to the analysis and design software to evaluate the candidate solution, i.e., to 

determine the fitness value of the generated design. The analysis and design results 

are transferred back into the computing software. Since this optimization cycle is 

repeated numerous times before reaching the convergence or optimum solution, 

there is a great demand for developing a software platform where these optimization 

and design cycles are automated. Therefore, various design optimization software 

has implemented design software into their codes. In other words, the design 

software part of the optimization software package is merged into the computing 

software part. In the early studies, the primary motivation for combining computing 

software and the design software instead of executing them side-by-side was the 

absence or inefficient communications with the design software via their 

Application Programming Interface (API). However, the design optimization 

software, developed using this approach and hence capable of performing structural 

analysis, supports generally limited design code specifications and structure types. 
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On the other hand, in practice, structural analysis and design are generally 

performed using commercial analysis and design software. SAP2000 is a well-

known and extensively used analysis program for structural engineers. It has a 

complex, detailed, and well-documented API library. Through the API, the 

package’s qualifications and potentials, such as modeling, analysis, and design, are 

entirely available for the external programs, which is the foremost reason for 

deciding SAP2000 as a design software component of SOPS. Therefore, instead of 

merging analysis-design codes into the optimization module, both computing 

software and design software are executed side-by-side interactively by transferring 

the related input-output data to each other. As a result, there is a great demand for 

a software platform that integrates optimization computing software and 

commercial design software packages to automate the optimization and design 

procedures. The practical, efficient and robust infrastructure that combines the 

optimization techniques’ potentials with the design software capabilities together 

in one single master software platform is developed in this study (Structural 

Optimization Platform Software, SOPS). 

To develop the optimization module of the SOPS framework, some of the well-

known metaheuristic optimization algorithms are implemented into SOPS, such as 

big bang big crunch (BB-BC), particle swarm optimization (PSO), and Evolution 

Strategies (ES). Moreover, a design-driven guided evolution strategy (GES) 

optimization technique for the optimal design of real-world steel structures, which 

is also developed in this study and described in the previous chapter, is also 

integrated into the optimization module of the SOPS. The SOPS framework and its 

main components are explained in the following sections. 

4.2 Integration of SOPS with SAP2000 API 

The SAP2000 API (Application Programming Interface) is an in-between software 

that provides an interface for two applications to communicate with each other. It 

provides runtime access to the analysis and design modules of the SAP2000 for 

third-party applications, as shown in Figure 4.1, where the orange-colored part 
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represents the external third-party applications like SOPS and the blue-colored part 

means the SAP2000 program. 

 

Figure 4.1 Interaction of external application (SOPS) with the SAP2000 API. 

The SAP2000 API contains a library through which the program can be utilized and 

controlled remotely to operate like the classical point-and-click procedure. No 

additional pre-request of programs is needed to connect to the SAP2000 program 

through its API except the SAP2000 installation itself. In other words, all the 

components required for SAP2000 API are automatically installed with the main 

program setup. Programming language’s integrated development environments 

(IDEs) contain various options for connecting the programming project with the 

API. The main steps regarding the SAP2000 analysis and design procedures of a 

structure through its API are very similar to the corresponding point-and-click 

processes required by the standard SAP2000 program. 

4.3 SOPS Architecture 

Structural Optimization Platform Software (SOPS) is designed and arranged in 

modules according to the functions that are intended to perform. SOPS modules can 

be classified as (i) Input Modules, (ii) Constraints Module, (iii) Analysis-Design 
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Modules, and (iv) Optimization Modules. These modules are introduced in the 

following sections. The flow of the program through these modules is managed via 

an interactive graphical user interface (GUI), which contains the main window that 

encloses all the modules and components necessary to solve the structural 

optimization problems. The analysis and design parts, however, are executed 

entirely inside a separate module that binds the SOPS program with the SAP2000 

software through SAP2000 API (Figure 4.2).  

 

Figure 4.2 Structural Optimization Platform Software (SOPS) architecture 

The users are expected to interact SOPS program entirely via the graphical user 

interface (GUI) provided, while analysis and design parts of the optimization 

program run silently in the background of the operating system (Figure 4.3). 

However, if needed, the user can also bring the SAP2000 user interface to the 

foreground (by selecting the “Show SAP Instance” option as shown in Figure 4.3) 

and make explicit modifications to the parameters of the SAP2000 program itself. 

Therefore, the users have complete control over the procedure. 

The requests related to the modifications of the SAP2000 model file (assigning new 

sections to the design variables etc.) are transferred via the API to the SAP2000 
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program. Similarly, the response (i.e., analysis and design results of individual 

solutions) are received back again through the SAP2000 API.  

 

Figure 4.3 Interaction with SAP2000 via GUI of SOPS 

The following sections explain each SOPS module's function in a complete 

optimization process cycle. 

4.3.1 SOPS Input/output Module 

SOPS platform receives the data required in the optimization process through the 

interactive GUI and predefined input files. Since SOPS mainly consists of two 

parts, i.e., optimization and analysis, two types of input data should be provided. 

Creation of SAP2000 model file, analysis parameters not modified through 
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optimization, etc., are considered pure analysis-related input data. Similarly, other 

inputs such as parameters of algorithms, analysis parameters that are modified in 

the optimization process (i.e., member sections), etc., are categorized as 

optimization process input data. To minimize the dependency of the SOPS platform 

to the SAP2000 version updates, pure analysis-related input data are supplied via 

the SAP2000 program GUI. Other inputs are entered into the SOPS via its 

interactive GUI and predefined input files. As mentioned, the structural 

optimization problem model created using the SAP2000 program can be linked to 

the SOPS platform via SAP2000 API. Therefore, the optimization problem’s 

SAP2000 model can be parsed and transferred to the related optimization module 

variables such as material property, structural element, frame member groups, and 

their elements (Figure 4.4). 

 

Figure 4.4 Extracting SAP2000 model parameters into SOPS. 

In structural sizing optimization, design variables which are the structural members' 

cross-sectional areas, are usually picked from a set of predefined profile sections. 

Therefore, these predefined section lists should be provided to the optimization 

module of SOPS. There is a form-based input interface where predefined profile 

lists of SAP2000 can be imported, arranged, and organized as section lists (Figure 

4.5). These section lists can also be exported to a file and imported if needed for 
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later runs. In SOPS, each design variable can have its section list, or all design 

variables can be assigned from a single section list depending on the structure's 

functional or geometric requirements. SOPS platform presents a flexible 

infrastructure for section list definitions. 

 

Figure 4.5 Section List Form GUI of SOPS 

4.3.2 SOPS Constraints Module 

The constraints subjected to the structural optimization problem should be defined 

and handled in the optimization process. Therefore, constraints identified in chapter 

2 are integrated into the SOPS’s constraints module (Figure 4.6). Input data related 

to the constraints of the optimization problem can be inserted into the SOPS via 

provided interactive GUI and predefined input files. For regular frame structures, 

member connection details such as how members are connected to each other and 

the type of connection (column-to-column, girder-to-column, etc.) can be extracted 

from the SAP2000 model and presented in a tabular form in the constraints module 

of the SOPS. This list can be exported to a file for later usage or customizations and 

imported back into the SOPS. 
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Figure 4.6 Constraints Form GUI of SOPS 

In the constraints module, the connection details of members can be examined by 

selecting the related member and loading the information into the connection details 

part of the form, as shown in Figure 4.7. In this form, every member’s end-

connected member can be seen. As shown in the figure, the direction of the 

connected member (X, Y, Z), assigned section name, and type (column, girder, 

diagonal, etc.) can also be determined. Moreover, the selected member with its 

connected end points’ neighbors can be directly highlighted in the SAP2000 model 

using SOPS GUI. The request is transferred to the SAP2000 program via API 

(Figure 4.8). 
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Figure 4.7 Each End of the Member’s Connection Details  

        

Figure 4.8 Highlighted Member Connection Details  

After connections of the frame's structural elements are parsed and transferred into 

the SOPS program as mentioned above, geometric constraints described in chapter 

2 can be enforced using the "Connection Constraints" part of the SOPS module 

(Figure 4.9). 

 

Figure 4.9 Enforcing Geometric Constraints  
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Similarly, inter-story drift constraint is defined in the “Drift Constraints” part of the 

SOPS. The parameters specified in related design codes, described in chapter 2, can 

be assigned through the input form GUI of SOPS (Figure 4.10). 

 

Figure 4.10 Enforcing Inter-story Drift Constraints  

4.3.3 SOPS Analysis and Design Module 

International design codes that were implemented in SAP2000 software products 

are automatically integrated into SOPS via the SAP2000 API (Figure 4.11). Some 

of the currently available international design codes for steel frames integrated into 

the SAP2000 is: AISC 360-05, AISC 360-10, AISC 360-16, AISC ASD 89, AISC 

LRFD 93, API RP-2A LRFD 1997, API RP-2A WSD 2000, API RP2A-WSD 2014, 

AS 4100-1998, ASCE 10-97, BS 5950-2000, Chinese 2010, Chinese 2018, CSA 

S16-09, CSA S16-14, Eurocode 3-2005, IS 800:2007, KBC 2009, KBC 2016, 

Norsok N-004 2013, NTC 2008, NTC 2018, NZS 3404-1997, SP 16.13330.2011, 

SP 16.13330.2017. Through the SAP2000 API, these design specifications (and 

also the ones that will be integrated in the future to SAP2000) are completely 

available to external programs like SOPS. Therefore, SOPS requires no updates or 

modifications to implement newly announced design specifications into its 

package.   

  

Figure 4.11 International design codes implemented in SOPS 
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4.3.4 SOPS Optimization Modules  

Structural Optimization Platform Software (SOPS) consists of optimization 

modules isolated from each other through the modular architecture of SOPS. 

Therefore, any modifications applied to one optimization technique do not affect 

the others. SOPS currently contains the optimization techniques such as Evolution 

Strategies (µ,λ), Evolution Strategies (µ+λ), Particle Swarm Optimization (PSO), 

Big Bang Big Crunch Optimization (BB-BC), and Guided Evolution Strategy 

(GES) (Figure 4.12). 

 

Figure 4.12 SOPS - Optimization Modules. 

The optimization module of SOPS is divided into three main parts regarding their 

functions in the optimization process, as shown in Figure 4.12. In part one, located 

at the top bar of the form and demonstrated in blue color, parameters of optimization 

techniques are set through the input fields. Moreover, control of the optimization 

process, such as start-stop-pause, can also be managed via this part. Default values 

of the optimization techniques' parameters are provided in the input fields. Hence, 

3 2 1 
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unless any custom or problem-specific parameters are necessary, the optimization 

process can be initiated directly with the start optimization command button.  

The real-time monitoring of the optimization process is presented in the second part, 

located in the middle of the form and demonstrated in red color. The monitoring 

form of each optimization technique is slightly differentiated from each other due 

to the techniques' specific demands. However, the best designs of the structural 

optimization problem obtained at each iteration are presented in the monitoring 

form for all optimization techniques. Performance of the optimization techniques 

such as convergence rate and stagnation durations can be easily observed in real-

time while the optimization process continues in the background. 

Finally, the procedures related to the outcomes of the optimization process are 

handled in part three, located on the right side of the form and demonstrated in green 

color. In this part, design variables of the best design found in the optimization 

process so far can be examined. Optimization interim outcomes generated so far 

can also be exported to the file without waiting until the end of the optimization 

process. 
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5 NUMERICAL EXAMPLES 

In this chapter, numerical examples are presented related to the optimum design of 

steel frames using the optimization methods discussed in Chapter 3. In fact, the 

chapter consists of three parts. In the first part, numerical examples are conducted 

using two test frames for determining the optimal parameter settings of the Guided 

Evolution Strategy (GES) technique proposed in this study. In the second part, 

several design instances of ordinary moment-resisting steel frames are studied using 

the proposed GES technique as well as other metaheuristic search algorithms; such 

as particle swarm optimization (PSO), exponential big bang big crunch (EBB-BC), 

(μ,λ)-evolution strategy (ES) and (μ+λ)-evolutionary strategy (ES). This way, the 

performance of the GES algorithm is compared to those of the other metaheuristic 

search techniques in terms of the quality of the optimum solution as well as the 

speed of convergence to an optimum solution (i.e. convergence rate). It is important 

to emphasize that amongst thousands of different metaheuristics, these techniques 

are deliberately selected and used for comparison based on their successful 

applications reported formerly in the literature related to the problems of interest. 

In the last part, some real-world steel structures that have been formerly designed 

by practicing engineers using a traditional design procedure are optimized and 

redesigned by the GES algorithm and metaheuristic search techniques. This way 

the practical applicability of optimization techniques for real-world problems is 

illustrated. Besides, the amount of material savings that could be achieved through 

a design optimization procedure is identified with respect to a traditional design 

procedure implemented by a practicing engineer. 
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5.1 Sensitivity Analysis of GES Parameters  

The numerical studies for parameter sensitivity analysis of the GES technique are 

carried out in conjunction with two test frames; namely, a 4-story, 160-member 

steel frame shown in Figure 5.1 and an 8-story, 584-member steel frame shown in 

Figure 5.2. Since strength constraints are mainly handled by the GES for guiding 

the search process, first of all, the 4-story steel frame (the first test frame) is 

subjected to strength constraints only; that is, no displacement constraints are 

imposed. Next, the same fame is studied under the case for which both strength and 

inter-story drift constraints are imposed together. Finally, the numerical 

experiments are performed with the 8-story steel frame (the second test frame) to 

determine optimal parameter values of the technique under the increased effect 

(dominance) of the inter-story drift constraints. 

The two critical parameters, which significantly affect the performance of the GES 

algorithm, are Guided Mutation Limit (GML) and Guided Mutation Ratio (GMR).  

In the following, the effect of GML parameter is examined first, and then the GMR 

parameter is studied afterward. 

5.1.1 Problems Used in Sensitivity Analysis of GES Parameters 

The 4-story, 160-member steel frame shown in Figure 5.1 and the 8-story, 584-

member steel frame shown in Figure 5.2 are used as the test examples for 

identifying the numerical performance of the algorithm under different values of 

the Guided Mutation Limit (GML) and Guided Mutation Ratio (GMR) parameters.  

The 4-story, 160-member steel frame consists of 96 beams and 64 columns and has 

a 3.5 m story height. The stability of the frame in both directions is provided through 

using moment-resisting connections. For practical fabrication requirements, the 160 

members of the frame are collected under 12 member groups. The columns are 

grouped into four different sizing variables in a plan level as the corner, inner, side 

plane x-z, and side plane y-z columns. The columns are also grouped every two 
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stories along the height of the frame such that the column groups over the first two 

(story 1-2) and last two (story 3-4) stories are required to have the same cross-

section, resulting in a total of eight column member groups for the frame. Similarly, 

the beams are grouped into two distinct sizing variables in a plan level as inner and 

outer beams. The beams are also grouped every two stories along the height of the 

frame, yielding a total of four different beam member groups. 

The 8-story steel frame shown in Figure 5.2 is composed of 584 structural members 

collected under 24 member groups and has a 3.5 m story height. The member 

grouping is applied in both plan and elevation levels. At elevation level, the 

structural members are grouped every two stories along the height of the frame. At 

the plan level, the columns are collected under 4 different groups, as highlighted in 

Figure 5.3, and the beams are collected under two groups as inner and outer beams, 

as demonstrated in Figure 5.4. Therefore, a total of 16 column groups and eight 

beam groups (24 sizing design variables) are defined for the 584-member steel 

frame example. 

Load combinations used in both 4 Story, 160-member steel frame and 8-story, 584-

member steel frame in this study are specified as in Section 2.3 in ASCE 7-10 

specification, and they are listed below: 

(1) 1.4D  

(2) 1.2D + 1.6L  

(3) 1.2D + 1.0L ± 1.0E  

(4) 0.9D ± 1.0E  

where D, L, and E represent the dead, live, and earthquake loads, respectively. 

The design gravity loads considered for these two steel frames are given in Table 

5.1. The earthquake loads are calculated using the seismic coefficients listed in 

Table 5.2 and applied to the steel frames in accordance with the equivalent lateral 

load procedure in ASCE 7-10. The amplified inter-story drift is restricted to 2% of 

story height. The structural elements are sized under the provisions of AISC 360-
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10 design specifications. Moreover, the design constraints are enforced as defined 

in detail in Chapter 2. 

  

 

(a) (b) 

 

  

(c) (d) 

Figure 5.1 160-member steel frame (the first test example): (a) 3-D view, (b) plan 

view, (c) side view in x-z plane (d) side view in y-z plane 
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(a) (b) 

 

  

(c) (d) 

Figure 5.2 584-member steel frame (the second test example): (a) 3-D view, (b) 

plan view, (c) side view in x-z plane, (d) side view in y-z plane 
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(a) (b) 

 

  

(c) (d) 

Figure 5.3 The column member groups in the first two stories of the 584-member 

steel frame: (a) corner columns, (b) outer y-side columns, (c) outer x-side columns, 

(d) inner columns. 

 



 73 

 

  

(a) (b) 

Figure 5.4 Beam member groups in the first two stories of the 584-member steel 

frame: (a) inner beams, (b) outer beams. 

Table 5.1 Gravity design loads for both 160-member steel frame and  584-member 

steel frame 

Load Type 
Uniformly Distributed Load 

Interior Beams (kN/m) Exterior Beams (kN/m) 

Dead Load (D) 24 12 

Lİve Load (L) 12 6 

 

Table 5.2 Earthquake seismic coefficients for both 160-member steel frame and  

584-member steel frame 

Seismic Coefficients 

0.2 Sec Spectral Accel, Ss 2.29 

0.1 Sec Spectral Accel, S1 0.869 

Long-Period Transition Period 8 

Site Class  D 

Site Coefficient, Fa 1 

Site Coefficient, Fv 1.5 

SDS=(2/3) Fa Ss 1.5267 

SD1=(2/3) Fv S1 0.869 
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5.1.2 Sensitivity Analysis for Guided Mutation Limit (GML) Parameter 

The effect of GML parameter is examined under the availability or dominance of 

various types of constraints. In the following, the 4-story frame, 160-member frame 

is optimized first under strength constraints using different values of GML 

parameter (Case-A). Next, the same frame is studied for the case in which both the 

displacement and strength constraints are imposed together (Case-B). Finally, in 

order to investigate the variation in the performance of the algorithm for problems 

under the dominance of displacement constraints, the 8-story, 584-member frame 

is sized for the minimum weight using different values of the GML parameter 

(Case-C). 

5.1.2.1 Case-A: 4-Story Frame without Story-Drift Constraint 

In Case-A, the optimum design of the 4-story, 160-member frame is studied using 

different values of GML parameter, while the GMR parameter is fixed at a value of 

0.50 (50 %). Initially, the constant values of GML parameters are analyzed with six 

different values of GML, as shown in Table 5.3. Next, dynamic values of the GML 

are studied where the parameter is decreased by using a timely decreasing function 

as the iterations proceed. It is important to note that as the GML parameter 

decreases, exploitative search characteristics of the algorithm are enhanced, while 

its explorative search potentials are somewhat reduced. The effects of transition rate 

from explorative to exploitative search are investigated using two different timely 

decreasing functions; namely linearly decreasing and exponentially decreasing 

functions. In a linearly decreasing case, there is a smooth transition from 

explorative to exploitative search. On the other hand, the change is rather sharp and 

rapid for the exponentially decreasing case. Both linearly decreasing and 

exponentially decreasing values of the GML parameter are analyzed with 16 cases 

each, as shown in Table 5.4 and Table 5.5, respectively. 
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5.1.2.1.1 Constant Guided Mutation Limit 

Initially, constant values of the GML parameter are examined. Due to the stochastic 

nature of the GES technique, a total of ten independent runs are performed with the 

algorithm for each value of the GML to capture statistically meaningful data. In the 

optimum design problem, the discrete set used to size the design variables consist 

of 297 AISC standard wide-flange ready steel sections, and thus  𝑁𝑠 = 297. 

Accordingly, the GML values tested here are 20 (7% of 𝑁𝑠), 30 (10% of 𝑁𝑠), 50 

(17% of 𝑁𝑠), 100 (34% of 𝑁𝑠), 150 (50% of 𝑁𝑠) and 297 (100% of 𝑁𝑠, i.e., no 

mutation limit) as shown in Table 5.3. The optimization histories (convergence 

curves), which show the variation of the best feasible design obtained so far in the 

optimization process versus the number of structural analyses performed are plotted 

in Figure 5.5 for the mentioned values of the GML parameter. It is important to 

mention that each curve in Figure 5.5 is obtained by averaging the results of ten 

independent runs performed with a particular value of the GML parameter. 

In general, Figure 5.5 indicates that at the initial stages of the optimization process, 

the fastest convergence is exhibited by the guided mutation limit values of 50 (17% 

of 𝑁𝑠) and 100 (34% of 𝑁𝑠), whereas toward the later stages of the optimization 

process, mutation limit value of 30 (10% of 𝑁𝑠) demonstrates better performance 

and yields a better solution. Therefore, it can be deduced that at the initial stages of 

the optimization process, sufficiently high values of the GML parameter are more 

successful in terms of a rapid and broader exploration of favorable design regions, 

which in fact leads to an earlier discovery of the better solutions. On the other hand, 

low values of the GML parameter – despite their slow rate of convergence - seem 

to benefit more from the advantages of an exploitative search towards the later 

stages of the process. Indeed, these results rationalize and form a basis for the use 

of a timely varying GML parameter, instead of operating the parameter at a constant 

value the whole time. Therefore, in the following various options are tested for 

timely varying use of the GML parameter in which the GML parameter is decreased 

progressively from a large value at the beginning towards a smaller value at the end. 

For the generality of the results obtained, both, the initial and final values of the 
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GML parameter are expressed as a certain percentage (ratio) of the 𝑁𝑠, which refers 

to the number of sections in the discrete set.  

Table 5.3 Constant values of the GML parameter considered for the sensitivity 

analysis. 

GML Initial GML Final GML Function GMR Run 

GML_20 20 (7% of Ns) 20 (7% of Ns) Constant 50% 10 

GML_30 30 (10% of Ns) 30 (10% of Ns) Constant 50% 10 

GML_50 50 (17% of Ns) 50 (17% of Ns) Constant 50% 10 

GML_100 100 (34% of Ns) 100 (34% of Ns) Constant 50% 10 

GML_150 150 (50% of Ns) 150 (50% of Ns) Constant 50% 10 

GML_297 297 (100% of Ns) 297 (100% of Ns) Constant 50% 10 

 

 

(a) (b) 

Figure 5.5 Optimization histories for the 160-member steel frame under different 

constant values of the guided mutation limit (GML) parameter, (a) full-scale view 

(b) zoomed view 

5.1.2.1.2 Linearly Decreasing Guided Mutation Limit 

In this section, a dynamic use of the GML based on a linearly decreasing value of 

the parameter will be investigated. Again, the numerical experiments are conducted 

with the 160-member steel frame subjected to strength constraints, where the 
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optimum designs of the frame are sought using sixteen different combinations of 

the GML parameter, listed in Table 5.4 and plotted in Figure 5.6. Similarly, the 

discrete set used to size the design variables consist of 297 AISC standard wide-

flange ready steel sections, and thus  𝑁𝑠 = 297.  In the study the initial values of 

the GML parameter are set to  100% of 𝑁𝑠, 75% of 𝑁𝑠, 50% of 𝑁𝑠, 25% of 𝑁𝑠, 15% 

of 𝑁𝑠 and 10% of 𝑁𝑠, whereas the final values are assigned to 10%, 5, and 3% of 

𝑁𝑠. Various combinations of initial and final values of the GML parameter are 

tested. For example, the so-called GML_50-10-LNR scheme in Table 5.4 represents 

a combination in which the initial value of GML is set to 149 (50% of 297 sections), 

and the parameter is decreased to its final value of 30 (10% of 297 sections) linearly 

at each iteration. As stated before, the second parameter of GES is set constant for 

all GML cases and taken as 0.5 (i.e., %50), which means that half of the offspring 

individuals are mutated according to the guided mutation scheme, while the other 

half are mutated by stochastic mutation scheme. The GES algorithm is executed ten 

times independently for each combination considered, and the optimization 

histories corresponding to each case are plotted in Figure 5.7, after averaging the 

results of ten independent runs pertaining to that case. 

The results shown in Figure 5.7 demonstrates that the GML 15-5-LNR scheme (the 

GML parameter linearly decreasing from 15% of 𝑁𝑠 to 5% of 𝑁𝑠) has the fastest 

convergence rate through the first 2000 analyses, while the GML_10-3-LNR 

scheme (the GML parameter linearly decreasing from 10% of 𝑁𝑠 to 3% of 𝑁𝑠) 

yields a better solution than all others after 5000 analyses. Since larger design 

transitions are allowed in the GML_15-5-LNR scheme at the early stages of the 

optimization process, its explorative search potential results in faster convergence, 

compared to the GML_10-3-LNR. However, an exploitation-based search, which 

aims to improve the already obtained designs for reaching better solutions, becomes 

more essential at later stages, and thereby the GML_10-3-LNR scheme yields better 

solutions. 
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Table 5.4 Various combinations of the linearly decreasing GML parameter 

considered for the sensitivity analysis  

GML Initial GML Final GML Function GMR Run 

GML_100-10-LNR 100% of Ns 10% of Ns Linear 50% 10 

GML_75-10-LNR 75% of Ns 10% of Ns Linear 50% 10 

GML_50-10-LNR 50% of Ns 10% of Ns Linear 50% 10 

GML_25-10-LNR 25% of Ns 10% of Ns Linear 50% 10 

GML_100-5-LNR 100% of Ns 5% of Ns Linear 50% 10 

GML_75-5-LNR 75% of Ns 5% of Ns Linear 50% 10 

GML_50-5-LNR 50% of Ns 5% of Ns Linear 50% 10 

GML_25-5-LNR 25% of Ns 5% of Ns Linear 50% 10 

GML_15-5-LNR 15% of Ns 5% of Ns Linear 50% 10 

GML_10-5-LNR 10% of Ns 5% of Ns Linear 50% 10 

GML_100-3-LNR 100% of Ns 3% of Ns Linear 50% 10 

GML_75-3-LNR 75% of Ns 3% of Ns Linear 50% 10 

GML_50-3-LNR 50% of Ns 3% of Ns Linear 50% 10 

GML_25-3-LNR 25% of Ns 3% of Ns Linear 50% 10 

GML_15-3-LNR 15% of Ns 3% of Ns Linear 50% 10 

GML_10-3-LNR 10% of Ns 3% of Ns Linear 50% 10 

 

 

Figure 5.6 The variations in the linearly decreasing GML parameters for 16 

different combinations considered. 
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(a) (b) 

Figure 5.7 Optimization histories for the 160-member steel frame under different 

linearly varying guided mutation limit (GML) schemes: (a) for 2000 analyses, (b) 

for 5000 analyses 

5.1.2.1.3 Exponentially Decreasing Guided Mutation Limit 

In this section, a dynamic use of the GML based on exponentially decreasing value 

of the parameter will be evaluated. The 160-member steel frame (shown in Figure 

5.1) that is used for constant and linearly decreasing GML cases is also studied here 

in the same line. The initial values of the GML parameter are set to  100% of 𝑁𝑠, 

75% of 𝑁𝑠, 50% of 𝑁𝑠, 25% of 𝑁𝑠, 15% of 𝑁𝑠 and 10% of 𝑁𝑠, whereas the final 

values are assigned to 10%, 5, and 3% of 𝑁𝑠. For the sake of comparison, the same 

16 combinations that are used for a linearly decreasing GML parameter are also 

tested here under exponentially decreasing value of the parameter. These 

combinations are listed in Table 5.5 and also plotted in Figure 5.8. The GES 

algorithm is executed ten times independently for each combination considered, 

and the optimization histories corresponding to each case are plotted in Figure 5.7, 

after averaging the results of ten independent runs pertaining to that case. 
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The results shown in Figure 5.9 demonstrates that the GML_15-5-EXP scheme (the 

GML parameter exponentially decreasing from 15% of 𝑁𝑠 to 5% of 𝑁𝑠) has the 

fastest convergence rate through the first 1000 analyses, while the GML_75-3-EXP 

scheme (the GML exponentially decreasing from 75% of 𝑁𝑠 to 3% of 𝑁𝑠) yields a 

better solution than all others after 5000 analyses. 

The numerical studies performed so far indicate that the GML parameter has a very 

strong effect on establishing a tradeoff between the exploration and exploitation 

capabilities of the GES algorithm. Therefore, a proper selection of this parameter 

value enables an optimization process that benefits from these search features at the 

maximum rate for reaching a good optimum in the design space. In the following 

section, the designs obtained for the 160-member steel frame with various schemes 

of the GML parameter are compared to determine the most effective value/scheme 

of the parameter. 

Table 5.5 Various combinations of the exponentially decreasing GML parameter 

considered for the sensitivity analysis 

GML Initial GML Final GML Function GMR Run 

GML_100-10-EXP 100% of Ns 10% of Ns Exponential 50% 10 

GML_75-10-EXP 75% of Ns 10% of Ns Exponential 50% 10 

GML_50-10-EXP 50% of Ns 10% of Ns Exponential 50% 10 

GML_25-10-EXP 25% of Ns 10% of Ns Exponential 50% 10 

GML_100-5-EXP 100% of Ns 5% of Ns Exponential 50% 10 

GML_75-5-EXP 75% of Ns 5% of Ns Exponential 50% 10 

GML_50-5-EXP 50% of Ns 5% of Ns Exponential 50% 10 

GML_25-5-EXP 25% of Ns 5% of Ns Exponential 50% 10 

GML_15-5-EXP 15% of Ns 5% of Ns Exponential 50% 10 

GML_10-5-EXP 10% of Ns 5% of Ns Exponential 50% 10 

GML_100-3-EXP 100% of Ns 3% of Ns Exponential 50% 10 

GML_75-3-EXP 75% of Ns 3% of Ns Exponential 50% 10 

GML_50-3-EXP 50% of Ns 3% of Ns Exponential 50% 10 

GML_25-3-EXP 25% of Ns 3% of Ns Exponential 50% 10 

GML_15-3-EXP 15% of Ns 3% of Ns Exponential 50% 10 

GML_10-3-EXP 10% of Ns 3% of Ns Exponential 50% 10 
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Figure 5.8 The variations in the exponentially decreasing GML parameters for 16 

different combinations considered. 

 

 

(a) (b) 

Figure 5.9 Optimization histories for the 160-member steel frame under different 

exponentially varying guided mutation limit (GML) schemes: (a) for 1000 analyses 

(b) for 5000 analyses 
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5.1.2.1.4 Evaluation of Constant, Linear, and Exponential Guided Mutation 

Limit Results with Random Initial Population 

In the previous sections, the use of the Guided Mutation Limit (GML) parameter is 

tested and experimented based on a static and dynamic manipulation of the 

parameter. The results obtained under three different manipulations of the GML 

parameter are combined in Figure 5.10 for the two most successful performances 

of the algorithm in each case (referred to as constant, linearly decreasing, and 

exponentially decreasing cases) and their optimization histories are presented. 

The results shown in Figure 5.10 reveals that the GML_15-5-EXP scheme (the 

GML parameter exponentially decreasing from 15% of 𝑁𝑠 to 5% of 𝑁𝑠) has the 

fastest convergence rate up to 2000 analyses, while the GML_75-3-EXP scheme 

(the GML parameter exponentially decreasing from 75% of 𝑁𝑠 to 3% of 𝑁𝑠) yields 

a better solution than all others after 5000 analyses. The results also indicate that an 

exponentially decreasing GML parameter is superior to both constant and linearly 

decreasing GML. 

A satisfactory balance between exploration and exploitation search features cannot 

be established effectively, in case the GML parameter is set to a constant value 

through the optimization process. High constant values of the GML parameter take 

advantage of extensive exploration of the design space at the early stages of the 

optimization process, yet they suffer from an insufficient exploitative search at later 

stages. Similarly, low constant values of the GML parameter are not able to explore 

the global search domain sufficiently and experience the local optima traps. On the 

other hand, it has been observed that both exploration and exploitation search 

potentials are better utilized by the algorithm when a timely varying use of the 

parameter is enabled. Favorable design regions and promising solutions discovered 

by means of explorative search potentials possessed at the early stages of the 

optimization process are benefited later for reaching even better solutions at later 

states through exploitative search abilities. The results also reveal that the rate of 

transition from explorative to exploitative search affects the quality of optimum 
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solution attained by the algorithm. Rather sharp and rapid transition as in the 

exponentially decreasing GML parameter results in a faster convergence rate than 

smooth transition like linearly decreasing GML parameter. Therefore, the 

exponentially decreasing value of the GML will be used and further investigated in 

the following studies. 

  

(a) (b) 

Figure 5.10 Optimization histories for the 160-member steel frame corresponding 

to the best two performances of the algorithm under three different manipulations 

of the GML parameter: (a) for 2000 analyses, (b) for 5000 analyses 

5.1.2.1.5 Exponentially Decreasing GML with Maximum Section Initial 

Population 

In the previous sections, the effect of the Guided Mutation Limit (GML) parameter 

is examined using an initial parent individual that is generated at random. Instead 

of initializing the first parent individual randomly, if all the design variables 

(member groups) are initially assigned to the largest possible section in the discrete 

set, then all the strength constraints can be satisfied by the first parent individual. 

In this section, this strategy is followed and its effect is investigated in conjunction 

with the exponentially decreasing value of the GML parameter. The 160-member 

steel frame (shown in Figure 5.1) that is used for an initial parent individual that is 
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generated randomly is also studied here in the same line. The initial values of the 

GML parameter are set to  100% of 𝑁𝑠, 75% of 𝑁𝑠, 50% of 𝑁𝑠, 25% of 𝑁𝑠, 15% of 

𝑁𝑠 and 10% of 𝑁𝑠, whereas the final values are assigned to 10%, 5, and 3% of 𝑁𝑠. 

For the sake of comparison, the same 16 exponentially decreasing value of the GML 

combinations that are used for a randomly generated initial parent individual are 

also tested here. These combinations are listed in Table 5.5 and also plotted in 

Figure 5.8. The GES algorithm is executed ten times independently for each 

combination considered, and the optimization histories corresponding to each case 

are plotted in Figure 5.11, after averaging the results of ten independent runs 

pertaining to that case. 

The results shown in Figure 5.11 demonstrates that the GML_10-3-EXP-MaxSec 

scheme (the GML parameter exponentially decreasing from 10% of 𝑁𝑠 to 3% of 𝑁𝑠 

with maximum section initialization) has the fastest convergence rate through the 

first 2500 analyses, while the GML_10-5-EXP-MaxSec scheme (the GML 

exponentially decreasing from 10% of 𝑁𝑠 to 5% of 𝑁𝑠 with maximum section 

initialization) yields a better solution than all others after 5000 analyses. Unlike the 

random initialization, the maximum section initialization case generally starts the 

optimization process with a solution satisfying the strength constraints. Therefore, 

balanced exploration and exploitation potential in the early stages demonstrates a 

faster convergence rate in the maximum section initialization situation than high 

exploration power. 

In the following section, the designs obtained for the 160-member steel frame with 

various schemes of the GML parameter with two initial parent individual generation 

types (randomly and maximum-section) are compared to determine the most 

effective value/scheme of the parameter. 
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(a) (b) 

Figure 5.11 Optimization histories for the 160-member steel frame under different 

exponentially varying guided mutation limit (GML) schemes and initial parent 

individual generated by using the maximum section: (a) for 2500 analyses (b) for 

5000 analyses 

5.1.2.1.6 Comparison of Guided Mutation Limit Results  

In the previous sections, the use of the Guided Mutation Limit (GML) parameter is 

tested and experimented based on a static and dynamic manipulation of the 

parameter. The results obtained under three different manipulations of the GML 

parameter and randomly generated initial parent individual are combined in Figure 

5.10 for the two most successful performances of the algorithm in each case 

(referred to as constant, linearly decreasing, and exponentially decreasing cases) 

and their optimization histories are presented. This section compares these results 

with results obtained under the different initial parent individual (generated by 

using maximum sections) condition. The results are combined in Figure 5.12 for 

the two most successful performances of the algorithm in each case. 

The results shown in Figure 5.12 demonstrate that GML under a randomly 

generated initial individual condition has a faster convergence rate than GML under 

a largest possible section initialized parent individual case. Since the optimization 
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process has the same initial starting point in the initial parent individual condition 

that is generated with maximum sections, seeking the entire global search domain 

takes more time and suffers more from local optima traps. Therefore, compared to 

random initialization case, it has a slower convergence rate, especially at the early 

stages of the optimization process. Although, due to the power of exploitation, the 

difference gets lesser at the final stages of the optimization process after excessive 

structural analysis, still randomly initialized case yields better optimum solutions. 

  

(a) (b) 

Figure 5.12 Optimization histories for the 160-member steel frame corresponding 

to the best two performances of the algorithm under three different manipulations 

of the GML parameter and initial parent individual that is generated randomly and 

generated by assigning the largest possible section: (a) for 2000 analyses, (b) for 

5000 analyses 

5.1.2.2 Case-B: 4-Story Frame with Story-Drift constraint 

In the last part, The Guided Mutation Limit (GML) parameter of GES is examined 

by studying the steel frame subjected to strength constraints only; that is, no 

displacement constraints are imposed. In this section, the same frame shown in 

Figure 5.1 is studied under the case for which both strength and inter-story drift 

constraints are imposed together. 
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In Case-B, a dynamic use of the GML based on exponentially decreasing value of 

the parameter will be evaluated, while the GMR parameter is fixed at a value of 

0.50 (50%) as in the Case-A. The initial values of the GML parameter are set to  

100% of 𝑁𝑠, 75% of 𝑁𝑠, 50% of 𝑁𝑠, 25% of 𝑁𝑠, 15% of 𝑁𝑠 and 10% of 𝑁𝑠, whereas 

the final values are assigned to 10%, 5, and 3% of 𝑁𝑠. For the sake of comparison, 

the same 16 combinations that are used for Case-A are also tested here under 

exponentially decreasing value of the parameter. These combinations are listed in 

Table 5.5 and also plotted in Figure 5.8. The GES algorithm is executed ten times 

independently for each combination considered, and the optimization histories 

corresponding to each case are plotted in Figure 5.13, after averaging the results of 

ten independent runs pertaining to that case. 

Similar to Case-A, both a randomly generated initial individual condition and a 

largest possible section initialized parent individual condition are investigated. 

Firstly, a randomly generated initial individual condition is examined in the 

following section. 

The results shown in Figure 5.13 demonstrates that GML_75-3-EXP (the GML 

parameter exponentially decreasing from 75% of 𝑁𝑠 to 3% of 𝑁𝑠) has the fastest 

convergence rate and yields a better solution than the other ones through all stages 

of the optimization process. In case-A, at the early stages of the optimization 

process, the GES technique benefits from intensive guidance, resulting in faster 

convergence. However, introducing displacement constraints (inter-story drift 

constraints) to the design problem reduce the guidance efficiency. Since the GES 

guidance is mainly based on the strength values of the members (DCR of members), 

it is natural to utilize guidance more effectively in optimization problems where the 

design is governed mainly by the strength of its members. However, the GES 

technique uses more exploration potential to overcome the handicap due to the 

presence of displacement constraints. Therefore, at the initial stages of the 

optimization process, the high value of GML (GML_75-3-EXP, i.e., % 75 of profile 

list) allows the GES algorithm to mutate design variables sufficiently large to 

reduce the displacement constraints interference. 
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(a) (b) 

Figure 5.13 Case-B: Optimization histories for the 160-member steel frame under 

different exponentially varying guided mutation limit (GML) schemes under a 

randomly generated initial individual condition: (a) for 1000 analyses (b) for 5000 

analyses 

In the previous section, the effect of the Guided Mutation Limit (GML) parameter 

is examined using an initial parent individual that is generated at random. In this 

part, it is investigated under a largest possible section initialized parent individual 

condition in conjunction with the exponentially decreasing pattern. The 160-

member steel frame (shown in Figure 5.1) that is used previously is also studied 

here in the same line. The initial values of the GML parameter are set to  100% of 

𝑁𝑠, 75% of 𝑁𝑠, 50% of 𝑁𝑠, 25% of 𝑁𝑠, 15% of 𝑁𝑠 and 10% of 𝑁𝑠, whereas the final 

values are assigned to 10%, 5%, and 3% of 𝑁𝑠. For the sake of comparison, the 

same 16 combinations that are used for the case of randomly generated initial parent 

individual are also tested here. These combinations are listed in Table 5.5 and also 

plotted in Figure 5.8. The GES algorithm is executed ten times independently for 

each combination considered, and the optimization histories corresponding to each 

case are plotted in Figure 5.14, after averaging the results of ten independent runs 

pertaining to that case. 
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The results shown in Figure 5.14 demonstrates that GML_25-3-EXP-MaxSec (the 

GML parameter exponentially decreasing from 25% of 𝑁𝑠 to 3% of 𝑁𝑠 with 

maximum section initialization) has the fastest convergence rate at the initial stage 

of the optimization process, while GML_10-3-EXP-MaxSec yields better solution 

and faster convergence rates towards the final stage. 

  

(a) (b) 

Figure 5.14 Optimization histories for the 160-member steel frame under different 

exponentially varying guided mutation limit (GML) schemes and initial parent 

individual generated by using the maximum section: (a) for 2000 analyses (b) for 

5000 analyses 

In the following section, the designs obtained for the 160-member steel frame with 

various schemes of the GML parameter with two initial parent individual generation 

types (randomly and maximum-section) are compared to determine the most 

effective value/scheme of the parameter. 

The results obtained under these two initial parent individual generation case are 

combined in Figure 5.15 for the most successful performances of the algorithm in 

each case (GML_75-3-EXP, GML_25-3-EXP-MaxSec, ML_10-3-EXP-MaxSec) 

and their optimization histories are presented. It is worth to mention that the Guided 

Mutation Parameter designated as GML_75-3-EXP is under the randomly 

generated initial parent individual conditions while the other two GML parameters 
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(GML_25-3-EXP-MaxSec, ML_10-3-EXP-MaxSec) are under the initial parent 

individual generated by using largest possible sections in the profile list. 

The results shown in Figure 5.15 demonstrate that GML_75-3-EXP (the GML 

parameter exponentially decreasing from 75% of 𝑁𝑠 to 3% of 𝑁𝑠) under a randomly 

generated initial parent individual condition has the faster convergence rate up to 

1500 analyses compared to the initial parent individual generated by using largest 

possible sections (GML_25-3-EXP-MaxSec, GML_10-3-EXP-MaxSec). On the 

other hand, after excessive analysis, both initial parent individual generation types 

(randomly and maximum-section) can reach a comparable quality of solutions. 

To summarize, GML_75-3-EXP (the GML parameter exponentially decreasing 

from 75% of 𝑁𝑠 to 3% of 𝑁𝑠) under a randomly generated initial parent individual 

condition has the faster convergence rate and yields better solutions than GML 

values/schemes under the initial parent individual generated by using largest 

possible sections condition. 

   

(a) (b) 

Figure 5.15 Optimization histories for the 160-member steel frame corresponding 

to the best performances of the algorithm under two initial parent individual 

conditions (generated randomly and generated by assigning the largest possible 

section): (a) for 1500 analyses, (b) for 3000 analyses 
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5.1.2.3 Case-C: 8-Story Frame with Story-Drift constraint  

In the previous sections, Guided Mutation Limit (GML) parameter is examined 

firstly by studying the 4-story steel frame subjected to strength constraints only; 

that is, no displacement constraints are imposed (Case-A). Next, the same fame is 

studied under the case for which both strength and inter-story drift constraints are 

imposed together (Case-B). In this section, the numerical experiments are 

performed with the 8-story steel frame (shown in Figure 5.2)  to determine optimal 

parameter values of the technique under the increased effect (dominance) of the 

inter-story drift constraints (Case-C). 

In Case-C, a dynamic use of the GML based on exponentially decreasing value of 

the parameter will be evaluated, while the GMR parameter is fixed at a value of 

0.50 (50 %) as in the Case-A and Case-B. The initial values of the GML parameter 

are set to  100% of 𝑁𝑠, 75% of 𝑁𝑠, 50% of 𝑁𝑠, 25% of 𝑁𝑠, 15% of 𝑁𝑠 and 10% of 

𝑁𝑠, whereas the final values are assigned to 10%, 5%, and 3% of 𝑁𝑠. For the sake 

of comparison, the same 16 combinations that are used for other two cases are also 

tested here under exponentially decreasing value of the parameter. These 

combinations are listed in Table 5.5 and also plotted in Figure 5.8. The GES 

algorithm is executed ten times independently for each combination considered, 

and the optimization histories corresponding to each case are plotted in Figure 5.16, 

after averaging the results of ten independent runs pertaining to that case. 

The results shown in Figure 5.16 demonstrates that GML_75-3-EXP (the GML 

parameter exponentially decreasing from 75% of 𝑁𝑠 to 3% of 𝑁𝑠) has the fastest 

convergence rate and yields a better solution than the other ones through all stages 

of the optimization process. This is the same GML pattern (GML_75-3-EXP) 

obtained for the Case-B. Therefore, introducing more displacement dominance to 

the optimization problem can still be better handled with the GML_75-3-EXP 

mutation limit pattern. 
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(a) (b) 

Figure 5.16 Optimization histories for the 584-member steel frame subjected to 

inter-story drift constraint under different exponentially varying guided mutation 

limit (GML) schemes: (a) for 2000 analyses (b) for 5000 analyses 

5.1.3 Sensitivity Analysis of Guided Mutation Ratio (GMR) Parameter 

The Guided Mutation Limit (GML) parameter of GES is examined in the previous 

parts. Another parameter of the GES, called Guided Mutation Ratio (GMR), is 

studied in this section. GMR is evaluated using the same steel frames (shown in 

Figure 5.1 and Figure 5.2) employed in assessing the GML parameter. In previous 

sections, while the evaluation of GML parameter, GMR parameter is taken as 50% 

for all runs. This section will examine the most effective values/schemes of the 

GML parameter obtained previously with the different GMR values such as 0%, 

25%, 75%, and 100%. As stated before, GMR is the ratio of guided offspring, and 

hence, for example, 25% means that one-quarter of the offspring individuals are 

mutated according to the guided mutation scheme while the others are mutated by 

stochastic mutation scheme. 
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5.1.3.1 Sensitivity Analysis of GMR Parameter without Story-Drift 

Constraint 

In the previous sections, the use of the Guided Mutation Limit (GML) parameter is 

tested and experimented based on a static and dynamic manipulation of the 

parameter. The results obtained under three different manipulations of the GML 

parameter (referred to as constant, linearly decreasing, and exponentially 

decreasing cases) demonstrate that GML_15-5-EXP scheme (the GML parameter 

exponentially decreasing from 15% of 𝑁𝑠 to 5% of 𝑁𝑠) has the fastest convergence 

rate at the early stages of the optimization process, while the GML_75-3-EXP 

scheme (the GML parameter exponentially decreasing from 75% of 𝑁𝑠 to 3% of 

𝑁𝑠) yields a better solution than all others. Therefore, GMR values other than 50% 

are tested for these two prominent GML values in this section. 

The Guided Mutation Ratio (GMR) parameter is examined by studying the steel 

frame subjected to strength constraints only; that is, no displacement constraints are 

imposed. The 160-member steel frame (shown in Figure 5.1) that is used for the 

Guided Mutation Limit (GML) parameter is also studied here in the same line. 

Guided Mutation Ratio (GMR) values tested here are 0% (no GMR, i.e., all of the 

offspring individuals are mutated by stochastic mutation scheme), 25%, 50%, 75%, 

and 100% (all of the offspring individuals are mutated according to the guided 

mutation scheme). The GES algorithm is executed ten times independently for 

GML_15-5-EXP and GML_75-3-EXP, and the optimization histories are plotted in 

Figure 5.17 and Figure 5.18 respectively, after averaging the results of ten 

independent runs pertaining to corresponding case. 

The results presented in Figure 5.17 and Figure 5.18 demonstrate that the GMR 

value of 50% has the fastest convergence rate and yields a better solution than all 

others. Therefore, this GMR value is recommended in GES to design optimization 

problems without displacement constraints dominance. In the following section, the 

effects of displacement constraints on the performance of the GMR parameter are 

investigated by introducing inter-story drift constraints. 
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(a) (b) 

Figure 5.17 Optimization histories for the 160-member steel frame under 

exponentially varying (GML_15-5-EXP) guided mutation limit (GML) schemes 

and five different Guided Mutation Ratio (GMR) values: (a) for 1000 analyses (b) 

for 5000 analyses 

  

(a) (b) 

Figure 5.18 Optimization histories for the 160-member steel frame under 

exponentially varying (GML_75-3-EXP) guided mutation limit (GML) schemes 

and four different Guided Mutation Ratio (GMR) values: (a) for 1000 analyses (b) 

for 5000 analyses 
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5.1.3.2 Sensitivity Analysis of GMR Parameter with Story-Drift 

Constraint 

In the last part, The Guided Mutation Ratio (GMR) parameter is examined by 

studying the steel frame subjected to strength constraints only; that is, no 

displacement constraints are imposed. In this section, first the same frame shown 

in Figure 5.1 is studied under the case for which both strength and inter-story drift 

constraints are imposed together. Next, the numerical experiments are performed 

with the 8-story steel frame (shown in Figure 5.2) to determine optimal GMR 

parameter values under the increased effect (dominance) of the inter-story drift 

constraints. 

In the previous sections, the use of the Guided Mutation Limit (GML) parameter is 

tested and experimented based on a static and dynamic manipulation of the 

parameter under the case for which both strength and inter-story drift constraints 

are imposed together and the constant value of GMR parameter (%50). The results 

obtained under three different manipulations of the GML parameter (referred to as 

constant, linearly decreasing, and exponentially decreasing cases) demonstrate that 

GML_75-3-EXP scheme (the GML parameter exponentially decreasing from 75% 

of 𝑁𝑠 to 3% of 𝑁𝑠) has the fastest convergence rate and yields a better solution than 

all others. In this section, GMR values other than 50% are tested for this most 

effective value/scheme of this GML parameter. 

Guided Mutation Ratio (GMR) values tested here are 0% (no GMR, i.e., all of the 

offspring individuals are mutated by stochastic mutation scheme), 25%, 50% and 

75%. First, the GES algorithm is executed ten times independently under the 

constant GML_75-3-EXP parameter for each GMR combination using 160-

member steel frame shown in Figure 5.1. Next the same runs are repeated for the 

584-member steel frame  shown in Figure 5.2 and the optimization histories are 

plotted in Figure 5.19 and Figure 5.20 respectively, after averaging the results of 

ten independent runs pertaining to corresponding case. 
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The results presented in Figure 5.19 and Figure 5.20 demonstrate that the GMR 

value of 50% has the fastest convergence rate and yields a better solution than all 

others. Therefore, this GMR value (50%) is recommended for the solution of the 

optimization problems. 

  

(a) (b) 

Figure 5.19 Optimization histories for the 160-member steel frame under 

exponentially varying (GML_75-3-EXP) guided mutation limit (GML) schemes 

and four different Guided Mutation Ratio (GMR) values: (a) for 1000 analyses (b) 

for 5000 analyses 
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(a) (b) 

Figure 5.20 Optimization histories for the 584-member steel frame under 

exponentially varying (GML_75-3-EXP) guided mutation limit (GML) schemes 

and four different Guided Mutation Ratio (GMR) values: (a) for 1000 analyses (b) 

for 5000 analyses 

5.1.4 Discussion of Parameter Sensitivity Analysis Results 

In the previous parts, the numerical studies for parameter sensitivity analysis of the 

GES technique are carried out in conjunction with two test frames. The parameters 

of the GES, namely Guided Mutation Limit (GML) and Guided Mutation Ratio 

(GMR), are examined for their most efficient values before applying the GES 

algorithm to the optimization problems. The results show that the GES algorithm is 

quite sensitive to its parameters. GML parameter regulates the exploration and 

exploitation balance of the algorithm. Exploration is the capability to explore 

distinct regions of the design search space for discovering an acceptable optimum 

solution, while exploitation is the capability to focus the search nearby a searching 

region for refining a better solution. Therefore, these two prominent characteristics 

should be balanced in an optimization algorithm to get a more suitable solution. 

Guided Mutation Limit parameter can be utilized to balance search direction 

between global/local search, and higher mutation limit forces algorithm towards to 

global direction while the smaller value entails local search direction. 
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At the initial stages of the optimization process, sufficiently high values of the GML 

parameter are more successful in terms of a rapid and broader exploration of 

favorable design regions, which in fact leads to an earlier discovery of the better 

solutions. On the other hand, low values of the GML parameter – despite their slow 

rate of convergence - seem to benefit more from the advantages of an exploitative 

search towards the later stages of the process. Therefore, timely varying use of the 

GML parameter in which the GML parameter is decreased progressively from a 

large value at the beginning towards a smaller value at the end outcomes a more 

suitable solution. 

Although the relative rate of local/global convergence performance is supplied by 

GML, the intensity of the GES technique’s guidance is determined by the Guided 

Mutation Ratio (GMR) parameter. To keep the exploration potential and also to 

avoid the local optima traps, not all offspring are mutated according to the guided 

mutation scheme. To benefit from guidance potential of the algorithm, guidance 

intensity should be controlled by adjusting the GMR parameter. The high value of 

GMR results in reduced exploration potential and local optima traps, while low 

values of GMR cannot benefit from guidance sufficiently. Therefore, the GMR 

parameter should be regulated in the GES technique to get a more suitable solution. 

The outcomes of the sensitivity analysis of the GES parameters indicate that for the 

frame, whose design is governed mainly by the strength constraints, GML_15-5-

EXP scheme (the GML parameter exponentially decreasing from 15% of 𝑁𝑠 to 5% 

of 𝑁𝑠) has the fastest convergence. However, for the design of frames, which are 

not only governed by the strength constraints but also displacement limitations, 

GML_75-3-EXP scheme (the GML parameter exponentially decreasing from 75% 

of 𝑁𝑠 to 3% of 𝑁𝑠) has the fastest convergence rate and yields a better solution. The 

sensitivity analysis results for the GMR parameter of GES also demonstrate that 

GMR value of %50 (i.e., guiding half of the offspring) has the fastest convergence 

rate and yields a more qualified solution. Moreover, the results also demonstrate 

that GES under a randomly generated initial individual condition has a faster 
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convergence rate and yields more qualified solutions than a largest possible section 

initialized parent individual case. 

5.2 Performance Comparison of the GES Algorithm 

In the previous section, the optimal parameter settings of the GES algorithm are 

examined in the context of structural optimization design problems. In this section, 

the optimum design problems used for the sensitivity analysis of the GES technique 

are also solved using some robust metaheuristic algorithms, namely, particle swarm 

optimization (PSO), exponential big bang big crunch (EBB-BC; enhanced version 

of the big-bang big crunch algorithm), and the two multi-membered variants of the 

Evolution Strategies, namely (μ,λ)-ES and (μ+λ)-ES. The solutions previously 

obtained to these problems using the GES technique are compared with those of the 

aforementioned metaheuristic algorithms. 

The metaheuristic algorithms are implemented with their recommended parameter 

settings given in Hasançebi et al. (2009). However, it is worth mentioning that the 

performance of the metaheuristic search techniques might be quite sensitive to their 

parameter settings and implementation details, and unfortunately, it is not feasible 

or practical to tune each algorithm to reach its best performance for all the optimum 

design problems considered in this study. The parameters of the metaheuristic 

algorithms used to solve optimization design problems in this study are listed in 

Table 5.6. For each metaheuristic technique, ten independent runs are executed 

using these parameters over a predefined number of analyses. 

In all optimization design examples, the material properties of the steel are taken as 

follows:  yield strength (𝐹𝑦) = 50 ksi (~ 345 MPa), modulus of elasticity (E) = 29000 

ksi (~ 200 GPa) and unit weight (𝜌) = 490 𝑙𝑏 𝑓𝑡3⁄  (~ 76.97 𝑘𝑁 𝑚3⁄  ). The design 

loads (gravity and earthquake) and load combinations are presented in the previous 

section, and thus will not be repeated here. 
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Table 5.6 Parameter setting of the metaheuristic algorithms (EBB-BC, PSO, ES) 

used in this study. 

Optimization Methods Parameter Values 

EBB-BC μ = 50, λ = 1.0, α=0.25 

PSO μ = 50, Δt = 1.0, c1=1.5, c2=1.5, w=0.5 

(µ,λ)-ES μ = 10, λ = 50, 𝑝(0) = 0.25, 𝜓(0) = 10 

(µ+λ)-ES μ = 50, λ = 50, 𝑝(0) = 0.25, 𝜓(0) = 10 

5.2.1 Optimization Problem 1-A: 160-Member Steel Frame under 

Strength Constraints 

The 160-member steel frame (shown in Figure 5.1) under strength constraints refers 

to the first design example which is used to make a performance comparison 

between the GES algorithm and the metaheuristic search techniques. In the previous 

section, this problem has been studied extensively for sensitivity analysis of the 

GES algorithm by testing a large set of parameter values. The best solutions to the 

problem are produced when an exponentially decreasing value of the GML 

parameter is implemented with the GML_15-5-EXP scheme and also the guided 

mutation ratio parameter is set as 0.5 (i.e., %50), which implies that half of the 

offspring are probabilistically mutated according to the guided mutation scheme 

whereas the other half are mutated according to the stochastic mutation scheme. 

Since metaheuristic search techniques have a stochastic nature, each run may end 

up with a different solution, especially for large and complex structural 

optimization design problems. Therefore, the problem is solved by executing ten 

independent runs with each metaheuristic search technique to get statistically 

meaningful data for performance evaluation. In Table 5.7, the minimum weight 

designs (best feasible solutions) achieved for the frame are presented in terms of 

the best, worst, and average (mean) solution attained with each optimization 

technique up to some selected stages of the optimization process; namely 500, 1000, 

2000, 3000 number of structural analyses. Moreover, to assess the reliability of a 

single run with any technique, the standard deviation (STD) and coefficient of 
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variation (CV) values are also calculated and presented in the related table. In 

general, a low standard deviation is interpreted as increased reliability of the 

technique for independent runs, whereas a large standard deviation indicates 

scarcity and inconsistency of solutions obtained in different runs with the same 

technique. 

As seen in Table 5.7, the GES algorithm demonstrates a superior performance than 

the metaheuristic search techniques for all stages of the optimization process. In 

Figure 5.21, the (average) variation of the best design weight against the number of 

analyses (i.e., average convergence curve) is plotted for each optimization 

technique, after averaging the results of all runs performed with a particular method. 

Similarly, in Figure 5.22, convergence curves are plotted considering only the best 

performance of the methods for the problem of interest. The best performance of a 

method is referred to as a single run in which the method produces the least design 

weight for the problem. Rapid convergence characteristics of the GES algorithm 

can also be clearly observed from these two figures, with respect to the 

metaheuristics search techniques.      

A comparison of the minimum weight designs  (the best feasible designs) obtained 

using each optimization method is carried out in Table 5.8, where the section 

designations assigned to all member groups are indicated along with the weight of 

the resulting design. Among the results obtained with various optimization 

algorithms shown in this table, the GES yields the least design weight for the 160-

member steel frame, which is 805.16 kN. The design weights that the other 

algorithms obtained are 843.86 kN by (µ+λ)-ES, 887.96 kN by (µ,λ)-ES, 837.18 kN 

by EBB-BC, and 861.14 kN by PSO. 

It is also worth mentioning that amongst the two multi-membered variants of 

Evolution Strategies, Upper Bound Strategy (UBS) is implemented more efficiently 

with the (µ+λ)-ES variant (Kazemzadeh Azad et al. 2013a, b) since the elitism rule 

is strictly applied in this variant, the design population at any iteration consists of µ 

individuals that represent the best solutions captured from the beginning of the 

optimization process, whereas in (µ,λ)-ES variant, the design population is 
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regenerated at every iteration from the best µ solutions out of λ individuals. 

Accordingly, an iteration-based implementation of the elitism rule in (µ,λ)-ES 

requires more individuals to be analyzed during the evaluation stage, resulting in a 

reduced convergence rate of the algorithm. Hence, this variant of the algorithm is 

not used for the solution of other design examples. 

Table 5.9 presents the DCR (demand-to-capacity ratio) values for member groups 

in the optimum designs of the 160-member steel frame produced with the 

aforementioned optimization methods. Since only the strength design constraints 

are applied in this design problem (i.e., no inter-story drift constrained is enforced), 

the design variables (cross-sections of the member groups) are controlled by DCRs. 

Accordingly, DCR values in Table 5.9 mostly appear to be very close to their 

maximum value of 1.0. However, it is also worth mentioning that geometric 

constraints between beam and column members presented in Chapter 2 are also 

applied in this problem. The fact that DCR values for some member groups are not 

assigned to values around 1.0 in the optimum designs can be attributed to the use 

of geometric constraints. In order to satisfy these constraints, larger sections might 

be assigned to member groups, resulting in lower DCR values for some member 

groups. 

Table 5.7 Optimization statistics for the 160-member steel frame design example 

(under strength constraints). 

Analysis Count PSO EBB-BC (µ,λ)-ES (µ+λ)-ES GES 

500 

Best 914.93 916.83 999.49 925.36 831.42 

Mean 1016.69 955.89 1184.64 1069.75 854.12 

Worst 1114.47 1024.26 1328.10 1213.38 904.76 

STD 63.49 33.20 109.26 103.81 21.14 

CV 6.24 3.47 9.22 9.70 2.47 

1000 

Best 866.38 853.49 942.86 897.51 805.16 

Mean 948.33 904.66 1058.37 969.05 844.91 

Worst 1014.91 952.38 1259.27 1082.82 900.51 

STD 47.19 32.52 89.96 67.96 23.29 

CV 4.98 3.60 8.50 7.01 2.76 
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Table 5.7. (continued) 

2000 

Best 861.14 837.18 887.96 843.86 805.16 

Mean 922.85 876.39 976.65 894.04 838.43 

Worst 980.88 909.61 1076.57 942.23 876.77 

STD 37.95 25.94 51.23 30.84 17.33 

CV 4.11 2.96 5.25 3.45 2.07 

3000 

Best 861.14 837.18 887.96 843.86 805.16 

Mean 917.18 874.54 961.87 887.83 834.43 

Worst 974.07 909.61 1041.94 942.23 849.90 

STD 36.33 26.67 43.27 31.43 12.37 

CV 3.96 3.05 4.50 3.54 1.48 

 

Table 5.8 The optimum designs obtained for the 160-member steel frame design 

example (under strength constraints) with different optimization techniques. 

Stories Groups PSO EBB-BC (µ,λ)-ES (µ+λ)-ES GES 

1-2 

IB W24x76 W27x84    W24x68  W24x68 W24x68 

OB W16x40   W18x50   W14x34 W16x40 W12x40 

CG1 W24x55  W18x50  W27x84  W18x86 W18x76 

CG2 W30x99 W30x90 W36x135  W18x106 W21x101 

CG3 W33x221 W27x102   W27x194  W24x207 W24x146 

CG4 W21x182   W14x233   W24x207   W27x235 W14x211 

3-4 

IB W21x62 W21x62  W18x60 W18x55 W18x55 

OB W16x36  W14x34 W16x40 W16x36 W16x40 

CG1 W24x55 W18x50 W27x84 W18x50 W18x50 

CG2 W30x90 W30x90 W36x135 W18x76 W21x101 

CG3 W33x118    W27x102   W27x146  W24x117 24x104 

CG4 W21x182 W14x145 W24x146 W27x161 W14x132 

Weight (kN) 861.14 837.18 887.96 843.86 805.16 
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(a) (b) 

Figure 5.21 Average convergence curves obtained for the 160-member steel frame  

design example (under strength constraints) using various optimization techniques: 

(a) up to 500 analyses, (b) up to 3000 analyses  

 

  

(a) (b) 

Figure 5.22 Convergence curves obtained for the 160-member steel frame design 

example (under strength constraints) in the best run of various optimization 

techniques: (a) up to 1000 analyses, (b) up to 2000 analyses 
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Table 5.9 The member groups’ DCR values in the optimum designs of the 160-

member steel frame design example (under strength constraints) produced by 

various optimization techniques. 

Stories Groups PSO EBB-BC (µ,λ)-ES (µ+λ)-ES GES 

1-2 

IB 0.9941 0.8752 0.9934 0.9995 0.9965 

OB 0.9857 0.9969 0.9638 0.9961 0.9995 

CG1 0.9873 0.9261 0.6157 0.6234 0.7277 

CG2 0.9239 0.9579 0.7569 0.7499 0.9181 

CG3 0.9187 0.9880 0.9091 0.8034 0.8925 

CG4 0.9988 0.9927 0.9921 0.9151 0.9546 

3-4 

IB 0.9071 0.9021 0.9705 0.9705 0.9642 

OB 0.9989 0.9962 0.9182 0.9974 0.9998 

CG1 0.7526 0.8491 0.6250 0.7689 0.8138 

CG2 0.8103 0.9104 0.7161 0.7872 0.8608 

CG3 0.9925 0.9802 0.7794 0.8968 0.9970 

CG4 0.9895 0.9630 0.9930 0.9952 0.9969 

Average 0.9383 0.9448 0.8528 0.8753 0.9268 

Max. 0.9989 0.9969 0.9934 0.9995 0.9998 

5.2.2 Optimization Problem 1-B: 160-Member Steel Frame Under 

Strength and Inter-Story Drift Constraints 

In this example, the 160-member steel frame (shown in Figure 5.1) under both the 

strength and inter-story drift constraints is studied with the same optimization 

algorithms mentioned in the previous example. In Section 5.1.2.2, this example has 

been studied extensively for sensitivity analysis of the GES algorithm by testing a 

large set of parameter values. The best solutions to the problem are produced when 

an exponentially decreasing value of the GML parameter is implemented with the 

GML_75-3-EXP scheme and also the guided mutation ratio parameter is set as 0.5 

(i.e., %50).  

The frame is designed by executing ten independent runs with the GES algorithm 

as well as with each metaheuristic search technique employed here. In Table 5.10, 

the minimum weight designs (best feasible solutions) achieved for the frame are 
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presented in terms of the best, worst, and average (mean) solution attained with 

each optimization technique up to some selected stages of the optimization process; 

namely 1000, 1500, 2000, 3000 number of structural analyses. Moreover, the 

standard deviation (STD) and coefficient of variation (CV) values are also 

calculated and presented in the related table.  

The results presented in Table 5.10 indicate that the GES algorithm demonstrates a 

superior performance than the metaheuristic search techniques for all stages of the 

optimization process. In Figure 5.23, the (average) variation of the best design 

weight against the number of analyses (i.e., average convergence curve) is plotted 

for each optimization technique, after averaging the results of all runs performed 

with a particular method. Similarly, in Figure 5.24, convergence curves are plotted 

considering only the best performance of the methods for the problem of interest. 

It can be observed from Figure 5.24 that GES has a faster convergence rate 

compared to other algorithms, such that it reaches 96% of the best feasible design 

(1073.76 kN) within only the first 600 analyses. 

A comparison of the minimum weight designs (the best feasible designs) obtained 

using each optimization method is carried out in Table 5.11, where the section 

designations assigned to all member groups are indicated along with the weight of 

the resulting design. Among the results from the optimization algorithms shown in 

this table, the GES yields the least design weight for the 160-member steel frame, 

which is 1073.76 kN. The design weights that the other algorithms obtained are 

1092.60 kN by (µ+λ)-ES, 1079.11 kN by EBB-BC, and 1081.17 kN by PSO.  

In the optimum designs of the 160-member steel frame, the computed DCR 

(demand-to-capacity ratio) values for member groups, the inter-story drift ratios in 

the x-direction, and the inter-story drift ratios in the y-direction are given in Table 

5.12, Table 5.13 and Table 5.14, respectively. Moreover, in Figure 5.25, the 

variation of the best design’s inter-story drift ratios against the number of stories is 

plotted for each optimization technique. It is seen from these tables that mainly 

inter-story drift limitations (especially due to earthquake loading in the y-direction) 

are the dominant constraints in this example.  
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Table 5.10 Optimization statistics for the 160-member steel frame design example 

(under both strength and inter-story drift constraints). 

Analysis Count PSO EBB-BC (µ+λ)-ES GES 

1000 

MIN 1144.20 1160.07 1178.59 1094.03 

AVERAGE 1244.32 1198.26 1260.99 1143.14 

MAX 1391.15 1288.51 1352.34 1224.15 

STD 72.41 37.80 46.38 42.08 

CV 5.82 3.15 3.68 3.68 

1500 

MIN 1124.97 1103.22 1151.23 1083.30 

AVERAGE 1202.05 1164.92 1191.49 1127.64 

MAX 1330.92 1239.53 1230.67 1224.15 

STD 51.46 35.20 22.34 41.10 

CV 4.28 3.02 1.87 3.64 

2000 

MIN 1113.71 1079.11 1136.22 1073.76 

AVERAGE 1186.01 1138.74 1177.96 1119.73 

MAX 1239.59 1176.50 1209.75 1224.15 

STD 35.60 28.51 20.41 43.87 

CV 3.00 2.50 1.73 3.92 

3000 

MIN 1081.17 1079.11 1092.60 1073.76 

AVERAGE 1140.99 1117.98 1162.90 1097.91 

MAX 1174.75 1142.92 1209.75 1149.05 

STD 24.45 16.87 33.58 20.52 

CV 2.14 1.51 2.89 1.87 

 

Table 5.11 The optimum designs obtained for the 160-member steel frame design 

example (under both strength and inter-story drift constraints) with different 

optimization techniques 

Stories Groups PSO EBB-BC (µ+λ)-ES GES 

1-2 

IB W30x90 W30x90   W30x99 W30x90 

OB W21x50 W18x40 W14x30 W18x46 

CG1 W21x62 W24x68 W33x118 W24x55 

CG2 W27x10 W30x90 W30x99 W30x90 

CG3 W40x244 W40x221 W40x221 W40x268 

CG4 W40x328 W40x328 W40x298 W40x298 
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Table 5.11. (continued) 

3-4 

IB W24x62 W24x62  W24x62 W24x62 

OB W16x40 W24x55  W21x50 W18x46 

CG1 W21x62 W24x55  W33x118 W24x55 

CG2 W27x84 W30x90   W30x90 W30x90 

CG3 W40x221 W40x221  W40x192 W40x221 

CG4 W40x298 W40x298 W40x298 W40x298 

Weight (kN) 1081.17 1079.11 1092.60 1073.76 

 

 

  

(a) (b) 

Figure 5.23 Average convergence curves obtained for the 160-member steel frame  

design example (under both strength and inter-story drift constraints) using various 

optimization techniques: (a) up to 1000 analyses, (b) up to 3000 analyses 
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(a) (b) 

Figure 5.24 Convergence curves obtained for the 160-member steel frame design 

example (under both strength and inter-story drift constraints) in the best run of 

various optimization techniques: (a) up to 1000 analyses, (b) up to 3000 analyses 

Table 5.12 The member groups’ DCR values in the optimum designs of the 160-

member steel frame design example (under both strength and inter-story drift 

constraints) produced by various optimization techniques. 

Stories Groups PSO EBB-BC (µ+λ)-ES GES 

1-2 

IB 0.8106 0.8286 0.7810 0.8250 

OB 0.9970 0.9893 0.8738 0.8741 

CG1 0.7056 0.7100 0.5609 0.9391 

CG2 0.6477 0.7516 0.6729 0.7602 

CG3 0.5973 0.6375 0.6510 0.5819 

CG4 0.6152 0.6316 0.6671 0.6390 

3-4 

IB 0.9852 0.9948 0.9629 0.9868 

OB 0.7682 0.9659 0.9534 0.9191 

CG1 0.6416 0.6298 0.4953 0.6622 

CG2 0.6205 0.6402 0.6198 0.6395 

CG3 0.4426 0.4455 0.5356 0.4306 

CG4 0.4741 0.4653 0.4883 0.4793 

Average 0.6921 0.7242 0.6885 0.7281 
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Table 5.13 The x-direction inter-story drift constraint values in the optimum designs 

of the 160-member steel frame design example (under both strength and inter-story 

drift constraints) produced by various optimization techniques. 

Stories PSO EBB-BC (µ+λ)-ES GES 

1 0.4030 0.4435 0.4665 0.4269 

2 0.8242 0.8739 0.9397 0.8378 

3 0.9991 0.9145 0.9604 0.9918 

4 0.9946 0.8365 0.8021 0.9490 

Average 0.8052 0.7671 0.7922 0.8014 

 

Table 5.14 The y-direction inter-story drift constraint values in the optimum designs 

of the 160-member steel frame design example (under both strength and inter-story 

drift constraints) produced by various optimization techniques. 

Stories PSO EBB-BC (µ+λ)-ES GES 

1 0.7947 0.8199 0.8347 0.8028 

2 0.9794 0.9972 0.9875 0.9911 

3 0.9945 0.9808 0.9950 0.9910 

4 0.7838 0.7261 0.7387 0.7296 

Average 0.8881 0.8810 0.8890 0.8786 

  

(a) (b) 

Figure 5.25 Inter-story drift ratio curves obtained for the 160-member steel frame 

design example  in the best run of various optimization techniques: (a) for x-

direction, (b) for y-direction 
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5.2.3 Optimization Problem 2: 584-Member Steel Frame  

The third design example refers to the 584-member steel frame shown in Figure 

5.2. In Section 5.1.2.3, this example has also been studied extensively for sensitivity 

analysis of the GES algorithm by testing a large set of parameter values. The best 

solutions to the problem are produced when an exponentially decreasing value of 

the GML parameter is implemented with the GML_75-3-EXP scheme and also the 

guided mutation ratio parameter is set as 0.5 (i.e., %50).  

The frame is designed by executing ten independent runs with the GES algorithm 

as well as with each metaheuristic search technique employed here. In Table 5.15, 

the minimum weight designs (best feasible solutions) achieved for the frame are 

presented in terms of the best, worst, and average (mean) solution attained with 

each optimization technique up to some selected stages of the optimization process; 

namely 1000, 1500, 2000, 3000 number of structural analyses. Moreover, the 

standard deviation (STD) and coefficient of variation (CV) values are also 

calculated and presented in the related table.  

Although the GES algorithm provides guidance related to the strength constraints 

of the member groups only and the considered frame is subjected to high inter-story 

drift domination design constraints, the superior performance of this algorithm over 

the employed metaheuristic search techniques is observed in all the stages of the 

optimization process. In the early stages of the optimization process, the guiding 

ability of the GES algorithm is utilized more effectively. This is mainly due to the 

fact that both strength and inter-story drift constraints control the assignment of 

sections to the member groups. However, as better design solutions are generated 

through iterations, inter-story drift design constraints dominate the optimization 

process and mainly control the assignment of sections to the member groups. Since 

probabilistically half of the individuals (GMR parameter is set as 50%) are mutated 

according to the guided mutation scheme, the other half which is mutated according 

to the stochastic mutation handles geometric and inter-story constraints. This way, 
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the GES algorithm retains its exploration and exploitation capabilities through all 

stages of the optimization process. 

In Figure 5.26, the (average) variation of the best design weight against the number 

of analyses (i.e., average convergence curve) is plotted for each optimization 

technique, after averaging the results of all runs performed with a particular method. 

Similarly, in Figure 5.27, convergence curves are plotted considering only the best 

performance of the methods for the problem of interest. It can be observed from 

these two figures that GES has a faster convergence rate compared to other 

algorithms and yields the best design for the 584-member steel frame. 

A comparison of the minimum weight designs  (the best feasible designs) obtained 

using each optimization method is carried out in Table 5.16, where the section 

designations assigned to all member groups are indicated along with the weight of 

the resulting design. Among the results obtained from the optimization algorithms 

shown in this table, the GES yields the least design weight for the 584-member steel 

frame, which is 4771.93 kN. The design weights that the other algorithms obtained 

are 4877.17 kN by EBB-BC, 4884.44 kN by (µ+λ)-ES, and 5004.58 kN by POS. 

In the optimum designs of the 584-member steel frame, the computed  DCR 

(demand-to-capacity ratio) values for member groups, the inter-story drift ratios in 

the x-direction, and the inter-story drift ratios in the y-direction are given in Table 

5.17, Table 5.18 and Table 5.19, respectively. Moreover, in Figure 5.28, the 

variation of the best design’s inter-story drift ratios against the number of stories is 

plotted for each optimization technique.It is seen from these tables that like the 

previous design example mainly inter-story drift constraints (especially due to 

earthquake loading in the y-direction) are the dominant constraints in this example 

as well.  
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Table 5.15 Optimization statistics for the 584-member steel frame design example.  

Analysis Count PSO EBB-BC (µ+λ)-ES GES 

1000 

MIN 5099.92 5095.45 5272.50 4978.12 

AVERAGE 5651.20 5580.88 5958.14 5236.75 

MAX 6522.44 6056.19 6591.63 5498.65 

STD 395.01 283.16 379.36 174.93 

CV 6.99 5.07 6.37 3.34 

1500 

MIN 5053.08 5028.35 5117.80 4898.68 

AVERAGE 5559.69 5437.94 5438.57 5158.29 

MAX 6522.44 5824.74 5853.46 5421.78 

STD 407.92 211.44 200.52 144.07 

CV 7.34 3.89 3.69 2.79 

2000 

MIN 5018.64 4919.18 4991.35 4771.93 

AVERAGE 5512.87 5352.90 5268.34 5069.11 

MAX 6522.44 5628.03 5577.43 5247.47 

STD 414.65 184.31 174.52 165.76 

CV 7.52 3.44 3.31 3.27 

3000 

MIN 5004.58 4877.17 4884.44 4771.93 

AVERAGE 5481.44 5272.89 5163.69 5017.01 

MAX 6522.44 5462.96 5540.25 5221.91 

STD 421.88 153.87 187.26 153.18 

CV 7.70 2.92 3.63 3.05 

 

Table 5.16 The optimum designs obtained for the 584-member steel frame design 

example with different optimization techniques. 

Stories Groups PSO EBB-BC (µ+λ)-ES GES 

1-2 

CG1 W33x201 W33x201 W30x173 W30x173 

CG2 W40x244 W33x241 W40x221 W36x230 

CG3 W33x221 W36x245 W30x326 W40x249 

CG4 W36x359 W36x328 W36x439 W40x268 

IB W33x118 W33x118 W30x99 W36x135 

OB W24x68 W24x76 W24x76 W24x76 

 

 

 



 114 

Table 5.16. (continued) 

3-4 

CG1 W33x201 W33x201 W30x173 W30x173 

CG2 W40x244 W33x221 W40x221 W36x230 

CG3 W33x221 W33x221 W30x326 W40x215 

CG4 W36x300 W36x328 W36x393 W40x268 

IB W40x149 W33x118 W30x108 W33x118 

OB W24x62 W24x76 W24x68 W24x68 

5-6 

CG1 W33x201 W33x118 W30x132 W30x173 

CG2 W40x192 W33x221 W40x221 W33x201 

CG3 W33x221 W33x201 W30x235 W40x199 

CG4 W36x245 W36x280 W36x300 W40x268 

IB W30x99 W30x90 W30x90 W27x84 

OB W24x62 W24x62 W24x55 W24x55 

7-8 

CG1 W33x201 W33x118 W30x90 W30x90 

CG2 W40x192 W33x201 W40x192 W33x201 

CG3 W33x118 W33x201 W30x173 W40x199 

CG4 W36x230 W33x221 W33x201 W40x192 

IB W24x55 W21x50 W24x55 W24x62 

OB W14x30 W14x34 W18x35 W18x35 

Weight (kN) 5004.58 4877.17 4884.44 4771.93 

 

  

(a) (b) 

Figure 5.26 Average convergence curves obtained for the 584-member steel frame  

design example using various optimization techniques: (a) up to 1500 analyses, (b) 

up to 3000 analyses 



 115 

  

(a) (b) 

Figure 5.27 Convergence curves obtained for the 584-member steel frame design 

example in the best run of various optimization techniques:, (a) up to 1500 analyses, 

(b) up to 3000 analyses. 

Table 5.17 The member groups’ DCR values in the optimum designs of the 584-

member steel frame design example produced by various optimization techniques 

Stories Groups PSO EBB-BC (µ+λ)-ES GES 

1-2 

CG1 0.5360 0.5702 0.6286 0.5870 

CG2 0.6791 0.6235 0.7079 0.5910 

CG3 0.8375 0.8247 0.6323 0.8428 

CG4 0.7741 0.8161 0.6138 0.8705 

IB 0.5840 0.5831 0.6616 0.6036 

OB 0.6869 0.5420 0.5613 0.6146 

3-4 

CG1 0.4129 0.4623 0.4853 0.5132 

CG2 0.4859 0.5808 0.5623 0.4490 

CG3 0.7475 0.7054 0.4723 0.6842 

CG4 0.7630 0.6749 0.5654 0.7460 

IB 0.5472 0.6191 0.6861 0.6764 

OB 0.9735 0.6158 0.6476 0.8343 
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Table 5.17. (continued) 

5-6 

CG1 0.3781 0.5775 0.5066 0.6237 

CG2 0.5979 0.5134 0.4925 0.4613 

CG3 0.6402 0.6149 0.5200 0.5772 

CG4 0.7615 0.6545 0.6002 0.6413 

IB 0.6572 0.6664 0.6780 0.7071 

OB 0.9546 0.7800 0.8851 0.6304 

7-8 

CG1 0.2792 0.4803 0.5157 0.5576 

CG2 0.4400 0.3866 0.4153 0.4706 

CG3 0.6048 0.4654 0.5110 0.5900 

CG4 0.5649 0.5367 0.5830 0.5176 

IB 0.9074 0.9188 0.8418 0.9600 

OB 0.8749 0.6857 0.9465 0.7082 

Average 0.6537 0.6207 0.6133 0.6441 

 

Table 5.18 The x-direction inter-story drift constraint values in the optimum designs 

of the 584-member steel frame design example produced by various optimization 

techniques 

Story PSO EBB-BC (µ+λ)-ES GES 

1 0.3406 0.3066 0.3011 0.2906 

2 0.6953 0.5585 0.5909 0.5655 

3 0.8503 0.6766 0.6987 0.7036 

4 0.8960 0.7094 0.7447 0.7557 

5 0.8755 0.7398 0.7770 0.7705 

6 0.8466 0.7386 0.7572 0.7567 

7 0.9078 0.7684 0.7553 0.7502 

8 0.9324 0.7892 0.7026 0.7052 

Average 0.7931 0.6609 0.6659 0.6622 
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Table 5.19 The y-direction inter-story drift constraint values in the optimum designs 

of the 584-member steel frame design example produced by various optimization 

techniques 

Story PSO EBB-BC (µ+λ)-ES GES 

1 0.8033 0.8224 0.7367 0.8344 

2 0.9793 0.9950 0.9896 0.9881 

3 0.9911 0.9977 0.9967 0.9934 

4 0.9667 0.9326 0.9555 0.9642 

5 0.9967 0.9917 0.9953 0.9923 

6 0.9328 0.8955 0.8882 0.9449 

7 0.9915 0.9919 0.9993 0.9829 

8 0.9154 0.8581 0.7103 0.6866 

Average 0.9471 0.9356 0.9089 0.9233 

 

  

(a) (b) 

Figure 5.28 Inter-story drift ratio curves obtained for the 584-member steel frame 

design example  in the best run of various optimization techniques: (a) for x-

direction, (b) for y-direction 

5.3 Numerical Examples of Real-World Steel Structures 

In this section, three real-world steel structures that have been formerly designed 

by practicing engineers using a traditional design procedure are optimized and 

redesigned by the GES algorithm and metaheuristic search techniques. This way 
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the practical applicability of optimization techniques for real-world problems is 

illustrated. Besides, the amount of material savings that could be achieved through 

a design optimization procedure is identified with respect to a traditional design 

procedure implemented by a practicing engineer. 

5.3.1 Optimization Problem 1: 545-Member Steel Frame 

The first real-world steel structure refers to a trade center constructed at the ropeway 

station in Beşikdüzü, Trabzon. The trade center consists of three blocks designated 

as Block-A, Block-B, and Block-C. Each block has a steel frame structural system. 

The blocks are designed in accordance with the provisions of AISC 360-10 design 

specifications. The dead, live, snow, and wind loads acting on the blocks are 

computed according to TS-498 design load specifications. Load combinations 

applied to this structure are shown in Table 5.20. On the other hand, the earthquake 

loads are applied to the steel frames by the equivalent lateral load procedure in the 

Turkish Seismic Code 2018 (TSC-2018), where the seismic coefficients are chosen 

as listed in Table 5.22. The amplified inter-story drift is restricted to 2% of story 

height. Moreover, the design constraints are enforced as defined in detail in Chapter 

2. 

Figure 5.29 shows the structural model prepared for the Block-A of this building, 

which is used for the optimization studies carried out in this section. The initial 

design process has been carried out by a design office, resulting in a total design 

weight of 482.49 kN for the steel frame. However, it has been found that this initial 

design violates beam-deflection constraints with a maximum constraint violation of 

2.117. Besides, beam-column geometric constraint violations are identified in the 

order of 1.36 in total, and strong column-weak beam constraints are violated in the 

order of 2.30 in total.   

The grouping of the frame members is carried out in the same line with the way the 

structure has been formerly designed in practice. Accordingly, the 545 members of 

the frame are collected under 13 member groups. As highlighted in Figure 5.30, the 
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first floor girders and beams are grouped into six sizing variables. On the other 

hand, the roof girders and beams are grouped into three sizing variables, as depicted 

in Figure 5.31. Similarly, all the columns are grouped into two sizing variables, as 

shown in Figure 5.32. Finally, as demonstrated in Figure 5.33, all lateral bracing 

members of the frame are all grouped into a single sizing variable, and so are all 

vertical bracing members. Five different profile lists are defined and used for sizing 

the 13 member groups in accordance with the original treatment of the design 

problem. The columns and girders are selected from S275JR HE sections, the first 

floor beams are selected from S275JR IPE sections, the roof floor beams are 

selected from S235JR RHS (Rectangular Hollow Sections) and the bracing 

members are selected from S235JR CHS (Circular Hollow Sections).  In Table 5.21, 

the profile lists containing the corresponding sections of the member groups are 

presented. 

The GES algorithm is executed with the most effective parameter settings 

determined in the previous sections; that is, an exponentially decreasing value of 

the GML parameter is implemented with the GML_15-5-EXP scheme and also the 

GMR parameter is set to 0.5 (i.e., %50).  

The frame is designed by executing ten independent runs with the GES algorithm 

as well as with each metaheuristic search technique employed here. In Table 5.23, 

the minimum weight designs (best feasible solutions) achieved for the frame are 

presented in terms of the best, worst, and average (mean) solution attained with 

each optimization technique up to some selected stages of the optimization process; 

namely 500 and 1000 number of structural analyses. Moreover, the standard 

deviation (STD) and coefficient of variation (CV) values are also calculated and 

presented in the related table. The results presented in Table 5.23 indicate that the 

GES technique's superior performance over the other metaheuristic techniques 

employed is observed and only GES and EBB-BC algorithms can reach the  

optimum design before 500 analyses. 

In Figure 5.34, the (average) variation of the best design weight against the number 

of analyses (i.e., average convergence curve) is plotted for each optimization 
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technique, after averaging the results of all runs performed with a particular method. 

Similarly, in Figure 5.35, convergence curves are plotted considering only the best 

performance of the methods for the problem of interest. The GES technique reaches 

the optimum design by performing the least number of structural analyses compared 

to metaheuristic search methods. Indeed, the GES algorithm seizes the optimum 

design (448.84 kN) by performing only 209 structural analyses. The minimum 

design weight of the frame obtained with other methods at the same number of 

structural analyses (i.e., 209 structural analyses) is 460.43 kN by EBB-BC, 466.89 

kN by PSO, and 715.52 kN by (µ+λ)-ES. Although all metaheuristic algorithms can 

find the optimum design in 1000 analyses, only the EBB-BC manages to reach it in 

the first 500 analyses. In Table 5.24, the initial (original) and optimum design of 

the steel frame are reported and compared with the section designations assigned to 

all member groups.  

In the optimum design of the steel frame, the computed  DCR (demand-to-capacity 

ratio) values for member groups and inter-story drift ratios in x and y-directions are 

given in Table 5.25 and Table 5.26, respectively. The results presented in these 

tables indicate that the design variables (cross-sections of the member groups) are 

mainly controlled by DCRs. However, as mentioned in previous sections, geometric 

constraints presented in Chapter 2 also affect the selection of cross-sections for 

member groups. In order to satisfy these constraints, larger sections are assigned to 

member groups, resulting in lower DCR values for some member groups. 
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(a) (b) 

 

  

(c) (d) 

Figure 5.29 545-member steel frame: (a) 3-D view, (b) plan view, (c) side view in 

x-z plane, (d) side view in y-z plane. 
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(a) (b) 

  

(c) (d) 

Figure 5.30 The first floor girder and beam member groups for the 545-member 

steel frame: (a) the first floor long-side girders on A and C axes (GR1), (b) the first 

floor long-side girders on B axis (GR2),  (c) the first floor long-side girder on D 

axis (GR3), (d) the first floor short-side girders between A-C axes (GR4), (e) the 

first floor short-side beams (BM1), (f) the first floor short-side girders between C-

D axes (GR7).  
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(e) (f) 

Figure 5.30 (continued) 

  

  

(a) (b) 

Figure 5.31 The roof floor girder and beam member groups for the 545-member 

steel frame: (a) the roof floor long-side girders and short-side exterior girders 

(GR5), (b) the roof floor short-side interior girders (GR6), (c) the roof floor beams 

(BM2). 
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(c) 

Figure 5.31 (continued) 

 

  

(a) (b) 

Figure 5.32 The column member groups for the 545-member steel frame: (a) the 

columns on axes A and C (CL1), (b) the columns on axis D (CL2). 
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(a) (b) 

Figure 5.33 Bracing member groups for the 545-member steel frame: (a) horizontal 

braces (BR1), (b) vertical braces (BR2). 

Table 5.20 Load combination definitions for the 545-member steel frame design 

example 

Load Combination Definitions 

1.4G* 1.2G+1.6Q+0.5S+T 1.2G+Q+0.5S-1.6Wy+T 

1.2G+1.6Q+0.5S* 1.2G+1.6Q+0.5S-T 1.2G+Q+0.5S-1.6Wy-T 

1.2G+Q+1.6S 1.2G+Q+1.6S+T 0.9G+1.6Wx+T 

1.2G+1.6S+0.8Wx* 1.2G+Q+1.6S-T 0.9G+1.6Wx-T 

1.2G+1.6S-0.8Wx 1.2G+1.6S+0.8Wx+T 0.9G-1.6Wx+T 

1.2G+1.6S+0.8Wy 1.2G+1.6S+0.8Wx-T 0.9G-1.6Wx-T 

1.2G+1.6S-0.8Wy 1.2G+1.6S-0.8Wx+T 0.9G+1.6Wy+T 

1.2G+Q+0.5S+1.6Wx 1.2G+1.6S-0.8Wx-T 0.9G+1.6Wy-T 

1.2G+Q+0.5S-1.6Wx 1.2G+1.6S+0.8Wy+T 0.9G-1.6Wy+T 

1.2G+Q+0.5S+1.6Wy 1.2G+1.6S+0.8Wy-T 0.9G-1.6Wy-T 

1.2G+Q+0.5S-1.6Wy 1.2G+1.6S-0.8Wy+T 1.2G+Q+0.2S+0.3Ex+Ey 

1.2G+Q+0.2S+Ex+0.3Ey* 1.2G+1.6S-0.8Wy-T 0.9G+Ex+0.3Ey 

0.9G+1.6Wx 1.2G+Q+0.5S+1.6Wx+T 0.9G+0.3Ex+Ey 

0.9G-1.6Wx 1.2G+Q+0.5S+1.6Wx-T 1.2G+Q+0.2S+Ex+0.3Ey 

0.9G+1.6Wy 1.2G+Q+0.5S-1.6Wx+T 1.2G+Q+0.2S+0.3Ex+Ey 

0.9G-1.6Wy 1.2G+Q+0.5S-1.6Wx-T 0.9G+Ex+0.3Ey 

1.4G+T* 1.2G+Q+0.5S+1.6Wy+T 0.9G+0.3Ex+Ey 

1.4G-T 1.2G+Q+0.5S+1.6Wy-T   

*G: Dead Loads; Q: Live Loads; Ex, Ey: Earthquake in x-direction, y-direction; S: Snow Load; T: 

Temperature; Wx, Wy: Wind Load in x-direction, y-direction 
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Table 5.21 Profile Lists for the 545-member steel frame design example 

Profile List 1 - I/Wide Flange 

HE100A HE100B HE120A HE120B HE140A HE140B HE160A HE160B 

HE160M HE180A HE180B HE180M HE200A HE200B HE200M HE220A 

HE220B HE220M HE240A HE240B HE240M HE260A HE260B HE260M 

HE280A HE280B HE280M HE300A HE300B HE300C HE300M HE320A 

HE320B HE320M HE340A HE340B HE340M HE360A HE360B HE360M 

HE400A HE400B HE400M HE400x107 HE450A HE450B HE450M HE450x123 

HE500A HE500B HE500M HE600x151 HE550B HE550M HE600A HE600x137 

HE600M HE600B HE550A HE600x174 HE650A HE650B HE650M HE800A 

HE700B HE700M HE700A HE700x166 HE800B HE800M HE900A   

Profile List 2 - I/Wide Flange 

IPE100 IPE120 IPE140 IPE160 IPE180 IPE200 IPE220 IPE240 

IPE270 IPE300 IPE600           

Profile List 3 - Pipe 

CHS114.3X3 CHS114.3X4 CHS139.7X4 CHS76.1X4 

CHS88.9X3   

Profile List 4 - Pipe 

TUBO-D168.3X4 TUBO-D273X5.6 

Profile List 5 - Box/Tube 

RHS120X60X3.6 RHS160X80X4 RHS200X100X5   

 

Table 5.22 Earthquake seismic coefficients used for calculating earthquake loads 

acting on the 545-member steel frame. 

Seismic Coefficients 

0.2 Sec Spectral Accel, Ss 0.459 

0.1 Sec Spectral Accel, S1 0.121 

Long-Period Transition Period 8 

Site Class  ZB 

Site Coefficient, Fa 0.9 

Site Coefficient, Fv 0.8 

SDS= Fa Ss 0.4131 

SD1= Fv S1 0.0968 
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Table 5.23 Optimization statistics for the 545-member steel frame design example. 

Analysis Count PSO EBB-BC (µ+λ)-ES GES 

500 

Best 453.01 448.84 451.66 448.84 

Mean 456.23 452.56 461.20 451.78 

Worst 464.92 463.64 473.20 457.11 

STD 3.41 3.97 6.58 2.47 

CV 0.75 0.88 1.43 0.55 

1000 

Best 448.84 448.84 448.84 448.84 

Mean 451.82 449.37 452.14 451.22 

Worst 454.37 451.50 457.40 453.23 

STD 2.06 1.06 2.58 1.72 

CV 0.46 0.24 0.57 0.38 

 

Table 5.24 The initial (original) and optimum designs of the 545-member steel 

frame design example 

Groups Sections in the 

Initial Design 

Sections in the 

Optimum Design 

GR1 HE300A HE260A 

GR2 HE320A        HE320A 

GR3 HE200A        HE240A 

GR4 HE300B        HE400x107 

BM1 IPE200        IPE200 

BR1 CHS88.9X3     CHS88.9X3 

BR2 TUBO-D168.3X4 TUBO-D168.3X4 

GR5 HE200A        HE140A 

GR6 HE200A        HE160A 

BM2 RHS100X100X3  RHS120X60X3.6 

CL1 HE300B        HE400x107 

CL2 HE200A        HE260A 

GR7 HE200A        HE100A 

Weight (kN) 482.49 448.84 
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(a) (b) 

Figure 5.34 Average convergence curves obtained for the 545-member steel frame  

design example using various optimization techniques: (a) up to 500 analyses, (b) 

up to 1000 analyses 

 

  

(a) (b) 

Figure 5.35 Convergence curves obtained for the 545-member steel frame design 

example in the best run of various optimization techniques: (a) up to 500 analyses, 

(b) up to 1000 analyses 
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Table 5.25 The member groups’ DCR values in the optimum design of the 545-

member steel frame design example. 

Groups DCR 

GR1 0.9158 

GR2 0.9009 

GR3 0.6293 

GR4 0.8648 

BM1 0.7013 

BR1 0.3475 

BR2 0.3013 

GR5 0.8532 

GR6 0.8048 

BM2 0.9562 

CL1 0.6468 

CL2 0.2673 

GR7 0.7784 

Average 0.6898 

 

Table 5.26 The inter-story drift constraint values in the optimum design of the 545-

member steel frame design example. 

Story 

Inter-Story Drift X-

Dir. 

Inter-Story Drift Y-

Dir. 

1 0.2619 0.0718 

2 0.3186 0.2011 

Average 0.2902 0.1365 

5.3.2 Optimization Problem 2: 551-Member Steel Frame  

As a second problem from the real-world steel structures, the Block-B of the trade 

center mentioned in the previous section is studied. Figure 5.36 presents a structural 

model of this block, which consists of 551 steel members. The loads and design 

conditions are defined as the same in the previous example.  
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The initial design process has been carried out by a design office, resulting in a total 

design weight of 428,55 kN for the steel frame. However, it has been found that this 

initial design violates beam-deflection constraints with a maximum constraint 

violation of 2.097. Besides, strong column-weak beam constraints are violated in 

the order of 7.34 in total, whereas the geometric constraints between beams and 

columns are all satisfied.  

The grouping of the frame members is carried out in the same line with the way the 

structure has been formerly designed in practice. Accordingly, the 551 members of 

the frame are collected under 12 member groups. As highlighted in Figure 5.37, the 

roof floor girders and beams are grouped into three sizing variables. Similarly, the 

first floor girders and beams are grouped into three sizing variables as in Figure 

5.38. All the columns are grouped into three sizing variables, as shown in Figure 

5.39. Finally, the bracing members are grouped into three sizing variables, as 

demonstrated in Figure 5.40. The columns and girders are selected from S275JR 

HE sections, the first floor beams are selected from S275JR IPE sections, the roof 

floor beams are selected from S235JR RHS (Rectangular Hollow Sections) and the 

bracing members are selected from S235JR CHS (Circular Hollow Sections). In 

Table 5.27, the profile lists containing the corresponding sections of the member 

groups are presented. 

The GES algorithm is executed with the most effective parameter settings 

determined in the previous sections; that is, an exponentially decreasing value of 

the GML parameter is implemented with the GML_15-53-EXP scheme and also 

the GMR parameter is set to 0.5 (i.e., %50).  

The frame is designed by executing ten independent runs with the GES algorithm 

as well as with each metaheuristic search technique employed here. In Table 5.28, 

the minimum weight designs (best feasible solutions) achieved for the frame are 

presented in terms of the best, worst, and average (mean) solution attained with 

each optimization technique up to some selected stages of the optimization process; 

namely 250 and 500  number of structural analyses. Moreover, the standard 

deviation (STD) and coefficient of variation (CV) values are also calculated and 
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presented in the related table. The results presented in Table 5.28 indicate a superior 

performance of the GES technique over the other metaheuristic techniques 

employed at all stages of the optimization.  

In Figure 5.41, the (average) variation of the best design weight against the number 

of analyses (i.e., average convergence curve) is plotted for each optimization 

technique, after averaging the results of all runs performed with a particular method. 

Similarly, in Figure 5.42, convergence curves are plotted considering only the best 

performance of the methods for the problem of interest. All the optimization 

algorithms successfully converge to the same optimum design weight, which is 

390.94 kN. However, among all the results obtained with different optimization 

algorithms, the GES algorithm reaches the optimum solution by performing the 

least number of structural analyses compared to the metaheuristic search 

techniques. Indeed, the GES algorithm seizes the optimum design (390.94 kN) by 

performing only 45 structural analyses. The minimum design weight of the frame 

obtained with other methods at the same number of structural analyses (i.e., 45 

structural analyses) is 542.86 kN by EBB-BC, 463.35 kN by PSO, while the (µ+λ)-

ES does not reach a feasible design yet. The metaheuristic techniques EBB-BC, 

PSO, and (µ+λ)-ES locate the optimum design (390.94 kN) after 277, 315, and 423 

structural analyses, respectively. In Table 5.29, the initial (original) and optimum 

design of the steel frame are reported and compared with the section designations 

assigned to all member groups.  

In the optimum design of the steel frame, the computed  DCR (demand-to-capacity 

ratio) values for member groups and inter-story drift ratios in x and y-directions are 

given in Table 5.30 and Table 5.31, respectively. The results presented in these 

tables indicate that the design variables (cross-sections of the member groups) are 

mainly controlled by DCRs. However, as mentioned in previous sections, geometric 

constraints presented in Chapter 2 also affect the selection of cross-sections for 

member groups. In order to satisfy these constraints, larger sections are assigned to 

member groups, resulting in lower DCR values for some member groups. 
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(a) (b) 

 

  

(c) (d) 

Figure 5.36 551-member steel frame: (a) 3-D view, (b) plan view, (c) side view in 

x-z plane, (d) side view in y-z plane 
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(a) (b) 

 

  

(c) 

Figure 5.37 The roof floor girder and beam member groups for the 551-member 

steel frame: (a) roof girders1, (b) roof girders2, (c) roof beams 
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(a) (b) 

 

  

(c) 

Figure 5.38 The first floor girder and beam member groups for the 551-member 

steel frame: (a) the first floor girders1, (b) the first floor girders2, (c) the first floor 

beams1. 
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(a) (b) 

 

  

(c) 

Figure 5.39 the column member groups for the 551-member steel frame: (a) 

columns1, (b) columns2, (c) columns3 
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(a) (b) 

 

  

(c) 

Figure 5.40 The brace member groups for the 551-member steel frame: (a) lateral 

braces1, (b) lateral braces2, (c) vertical braces 
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Table 5.27 Profile Lists for the 551-member steel frame design example 

Profile List 1 - I/Wide Flange 

HE800M HE700M HE650M HE600M HE550M HE500M HE450M HEA700 

HE800B HE400M HE900A HE360M HE340M HE320M HE700B HE300M 

HE800A HE650B HE600B HE700A HE550B HE650A HE280M HE500B 

HE600A HE300C HE600x174 HE260M HE450B HE550A HE700x166 HE240M 

HE500A HE400B HE600x151 HE360B HE450A HE600x137 HE340B HE320B 

HE400A HE450x123 HE300B HE220M HE360A HE400x107 HE340A HE200M 

HE280B HE320A HE260B HE180M HE300A HE240B HE280A HE160M 

HE220B HE260A HE200B HE240A HE180B HE220A HE160B HE200A 

HE180A HE140B HE160A HE120B HE140A HE100B HE120A HE100A 

Profile List 2 - I/Wide Flange 

IPE600 IPE300 IPE270 IPE240 IPE220 IPE200 IPE180 IPE160 

IPE140 IPE120 IPE100           

Profile List 3 - Box/Tube 

RHS120X60X3.6 RHS160X80X4 RHS200X100X5 RHS100X50X3 

Profile List 4 - Pipe 

CHS76.1X4 CHS88.9X3 CHS114.3X3 CHS114.3X4 

CHS139.7X3.2   

Profile List 5 - Pipe 

TUBO-D273X5.6 TUBO-D168.3X4   

 

Table 5.28 Optimization statistics for the 551-member steel frame design example 

Analysis Count PSO EBB-BC (µ+λ)-ES GES 

250 

Best 390.94 390.94 400.81 390.94 

Mean 409.55 397.52 421.36 391.75 

Worst 433.93 415.04 440.58 399.10 

STD 13.99 6.97 11.61 2.45 

CV 3.42 1.75 2.76 0.62 

500 

Best 390.94 390.94 390.94 390.94 

Mean 396.97 392.26 393.39 391.75 

Worst 428.37 397.71 401.28 399.10 

STD 11.53 2.03 3.63 2.45 

CV 2.91 0.52 0.92 0.62 
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Table 5.29 The initial (original) and optimum designs of the 551-member steel 

frame design example 

Groups 
Sections in the 

Initial Design 

Sections in the 

Optimum Design 

RoofGirders1 HE200A HE200A 

RoofGirders2 HE300A HE140A 

RoofBeams1 RHS100X100X3 RHS100X50X3 

LateralBraces1 CHS88.9X3 CHS88.9X3 

FirstFloorGirders1 HE260A HE260A 

FirstFloorGirders2 HE320A HE300A 

FirstFloorBeams1 IPE200 IPE180 

LateralBraces2 CHS114X3 CHS88.9X3 

Columns1 HE260A HE220A 

Columns2 HE300A HE320A 

Columns3 HE300A HE300A 

VerticalBraces TUBO-D168.3X4 TUBO-D168.3X4 

Weight (kN) 428.55 390.94 

 

  

(a) (b) 

Figure 5.41 Average convergence curves obtained for the 551-member steel frame  

design example using various optimization techniques: (a) up to 250 analyses, (b) 

up to 500 analyses 
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(a) (b) 

Figure 5.42 Convergence curves obtained for the 551-member steel frame design 

example in the best run of various optimization techniques: (a) up to 250 analyses, 

(b) up to 500 analyses 

Table 5.30 The member groups’ DCR values in the optimum design of the 551-

member steel frame design example. 

Groups DCR 

RoofGirders1 0.8202 

RoofGirders2 0.9503 

RoofBeams1 0.7257 

LateralBraces1 0.5423 

FirstFloorGirders1 0.9915 

FirstFloorGirders2 0.9434 

FirstFloorBeams1 0.8122 

LateralBraces2 0.2580 

Columns1 0.3416 

Columns2 0.4311 

Columns3 0.3641 

VerticalBraces 0.4463 

Average 0.6355 
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Table 5.31 Inter-story drift constraint values in the optimum design of the 551-

member steel frame design example. 

Story Inter-Story Drift X-Dir. Inter-Story Drift Y-Dir. 

1 0.2428 0.0893 

2 0.2664 0.0859 

Average 0.2546 0.0876 

5.3.3 Optimization Problem 3: 1634-Member Steel Structure 

The third design example selected for a real-world application of structural 

optimization refers to the steel roof of a swimming pool complex located in Çankırı, 

Türkiye. The steel roof is shown in Figure 5.43 and it consists of 608 joints and 

1634 structural members. The roof is designed in accordance with the provisions of 

AISC 360-10 design specifications.  The structure is subjected to dead load plus a 

uniform roof cladding pressure of 50 kg/m2 and a uniform snow pressure of 200 

kg/m2. The maximum wind load (WL) pressure is assumed as 80 kg/m2 and it is 

distributed to the roof with varying pressure levels depending on the location-wise 

slope of the roof, according to TS-EN 1991-1-4. The earthquake loads are applied 

to the steel roof by the equivalent lateral load procedure in the Turkish Seismic 

Code 2018 (TSC-2018), where the seismic coefficients are chosen as listed in Table 

5.35. Load combinations applied to this structure are shown in Table 5.32. Unlike 

the previous examples, no inter-story drift constraint is considered in this example 

structure. Moreover, the design constraints are enforced as defined in detail in 

Chapter 2. 

The original design process of the roof has been carried out by a design office, 

resulting in a total design weight of 2399.39 kN for the structure. However, it has 

been found that the original design violates demand-to-capacity ratio (DCR) for one 

member group in the order of 1.1016.    

The grouping of the frame members is carried out in the same line with the way the 

steel has been formerly designed in practice. Accordingly, the 1634 members of the 
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roof are collected under 12 member groups, as highlighted in Figure 5.44. Three 

different profile lists are defined as presented in Table 5.33 and used for sizing the 

12 member groups in accordance with the original treatment of the design problem. 

Section of the member groups is selected from their assigned profile list and each 

member group’s profile list is shown in Table 5.34. It is worth to mention that one 

of the member group (group-5) has a predefined section, i.e., its profile list contains 

only one section.  

The GES algorithm is executed with the most effective parameter settings 

determined in the previous sections; that is, an exponentially decreasing value of 

the GML parameter is implemented with the GML_15-5-EXP scheme and also the 

GMR parameter is set to 0.5 (i.e., %50).  

The steel roof is designed by executing ten independent runs with the GES 

algorithm as well as with each metaheuristic search technique employed here. In 

Table 5.36, the minimum weight designs (best feasible solutions) achieved for the 

frame are presented in terms of the best, worst, and average (mean) solution attained 

with each optimization technique up to some selected stages of the optimization 

process; namely 500 and 1000 number of structural analyses. Moreover, the 

standard deviation (STD) and coefficient of variation (CV) values are also 

calculated and presented in the related table. The results presented in Table 5.36 

indicate a superior performance of the GES algorithm over the metaheuristic 

techniques at all stages of the optimization process.    

In Figure 5.45, the (average) variation of the best design weight against the number 

of analyses (i.e., average convergence curve) is plotted for each optimization 

technique, after averaging the results of all runs performed with a particular method. 

Similarly, in Figure 5.46, convergence curves are plotted considering only the best 

performance of the methods for the problem of interest. The GES technique reaches 

the optimum design by performing the least number of structural analyses compared 

to metaheuristic search methods. Indeed, the GES algorithm seizes the optimum 

design (1429.03 kN) by performing only 168 structural analyses. The minimum 

design weight of the roof obtained with other methods at the same number of 
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structural analysis (i.e., 168 structural analysis) is 1574.34 kN by EBB-BC, 1810.70 

kN by PSO, and 2931.70 kN by (µ+λ)-ES. In Table 5.37, the original and optimum 

design of the steel roof are reported and compared with the section designations 

assigned to member groups. 

In the optimum design of the steel frame, the computed DCR (demand-to-capacity 

ratio) values for member groups are given in Table 5.38. The DCR values, close to 

its max value of 1.0, indicate that DCRs mainly control the design variables (cross-

sections of the member groups). 

 

 

  

(a) (b) 

 

  

(c) 

Figure 5.43 1634-member steel roof: (a) 3-D view, (b) side view in x-z plane, (c) 

side view in y-z plane.  
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(a) (b) 

  

 (c) (d) 

  

(e) (f) 

Figure 5.44 The member groups 1-6 for the 1634-member steel roof: (a) group-1, 

(b) group-2, (c) group-3,  (d) group-4,  (e) group-5,  (f) group-6, (g) group-7, (h) 

group-8, (i) group-9, (j) group-10, (k) group-11, (l) group-12  
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(g) (h) 

              

(i) (j) 

              

 (k) (l) 

Figure 5.44 (continued) 
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Table 5.32 Load combination definitions for the 1634-member steel roof design 

example 

Load Combination Definitions 

1.4((Gk+t))+1.4G+1T* 1.4(Gk+t)+1.4G-1T 

1.2(Gk+t)+1.2G+1.6S+1T 1.2(Gk+t)+1.2G+1.6S-1T 

1.2(Gk+t)+1.2G+1.6S+0.8-Wx+1T* 1.2(Gk+t)+1.2G+1.6S+0.8-Wx-1T 

1.2(Gk+t)+1.2G+1.6S+0.8+Wx+1T 1.2(Gk+t)+1.2G+1.6S+0.8+Wx-1T 

1.2(Gk+t)+1.2G+1.6S+0.8-Wy+1T 1.2(Gk+t)+1.2G+1.6S+0.8-Wy-1T 

1.2(Gk+t)+1.2G+1.6S+0.8+Wy+1T 1.2(Gk+t)+1.2G+1.6S+0.8+Wy-1T 

1.2(Gk+t)+1.2G+0.5S+1.6-Wx+1T 1.2(Gk+t)+1.2G+0.5S+1.6-Wx-1T 

1.2(Gk+t)+1.2G+0.5S+1.6+Wx+1T 1.2(Gk+t)+1.2G+0.5S+1.6+Wx-1T 

1.2(Gk+t)+1.2G+0.5S+1.6-Wy+1T 1.2(Gk+t)+1.2G+0.5S+1.6-Wy-1T 

1.2(Gk+t)+1.2G+0.5S+1.6+Wy+1T 1.2(Gk+t)+1.2G+0.5S+1.6+Wy-1T 

0.9(Gk+t)+0.9G+1.6-Wx+1T 0.9(Gk+t)+0.9G+1.6-Wx-1T 

0.9(Gk+t)+0.9G+1.6+Wx+1T 0.9(Gk+t)+0.9G+1.6+Wx-1T 

0.9(Gk+t)+0.9G+1.6-Wy+1T 0.9(Gk+t)+0.9G+1.6-Wy-1T 

1.351(Gk+t)+1.351G+0.2S+1Ex+0.3Ey+1T* 1.351(Gk+t)+1.351G+0.2S+1Ex+0.3Ey-1T 

1.351(Gk+t)+1.351G+0.2S-1Ex-0.3Ey+1T 1.351(Gk+t)+1.351G+0.2S-1Ex-0.3Ey-1T 

1.351(Gk+t)+1.351G+0.2S-1Ey+0.3Ex+1T 1.351(Gk+t)+1.351G+0.2S-1Ey+0.3Ex-1T 

1.351(Gk+t)+1.351G+0.2S+1Ey+0.3Ex+1T 1.351(Gk+t)+1.351G+0.2S+1Ey+0.3Ex-1T 

0.675(Gk+t)+0.675G+1Ex+0.3Ey+1T 0.675(Gk+t)+0.675G+1Ex+0.3Ey-1T 

0.675(Gk+t)+0.675G-1Ex+0.3Ey+1T 0.675(Gk+t)+0.675G-1Ex+0.3Ey-1T 

0.675(Gk+t)+0.675G-1Ey+0.3Ex+1T 0.675(Gk+t)+0.675G-1Ey+0.3Ex-1T 

0.675(Gk+t)+0.675G+1Ey-0.3Ex+1T 0.675(Gk+t)+0.675G+1Ey-0.3Ex-1T 

1.351(Gk+t)+1.351G+0.2S+1Ex-0.3Ey+1T 1.351(Gk+t)+1.351G+0.2S+1Ex-0.3Ey-1T 

1.351(Gk+t)+1.351G+0.2S-1Ex+0.3Ey+1T 1.351(Gk+t)+1.351G+0.2S-1Ex+0.3Ey-1T 

1.351(Gk+t)+1.351G+0.2S-1Ey-0.3Ex+1T 1.351(Gk+t)+1.351G+0.2S-1Ey-0.3Ex-1T 

1.351(Gk+t)+1.351G+0.2S+1Ey-0.3Ex+1T 1.351(Gk+t)+1.351G+0.2S+1Ey-0.3Ex-1T 

0.675(Gk+t)+0.675G+1Ex-0.3Ey+1T 0.675(Gk+t)+0.675G+1Ex-0.3Ey-1T 

0.675(Gk+t)+0.675G-1Ex-0.3Ey+1T 0.675(Gk+t)+0.675G-1Ex-0.3Ey-1T 

0.675(Gk+t)+0.675G-1Ey-0.3Ex+1T 0.675(Gk+t)+0.675G-1Ey-0.3Ex-1T 

*G:Dead Loads; Gk+t: Cladding; Ex, Ey: Earthquake in x-direction, y-direction; S: Snow Load; T: 

Temperature; Wx, Wy: Wind Load in x-direction, y-direction 
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Table 5.33 Profile Lists for the 1634-member steel roof design example 

Profile List 1 - I/Wide Flange 

HE100A HE120A HE100B HE140A HE120B HE160A HE140B HE180A 

HE200A HE160B HE220A HE180B HE240A HE200B HE260A HE220B 

HE280A HE240B HE300A HE260B HE320A HE280B HE340A HE360A 

HE300B HE400A HE320B HE340B HE450A HE360B HE400B HE500A 

HE550A HE450B HE600A HE500B HE650A HE550B HE700A HE600B 

HE650B HE800A HE700B HE900A HE800B HE1000A HE900B HE1000B 

Profile List 2 - Channel 

UPN80 UPN100 UPN120 UPN140 UPN160 UPN180 UPN200 UPN220 

UPN240 UPN260 UPN280 UPN300 UPN320 UPN350 UPN380 UPN400 

Profile List 3 - Pipe 

CHS60.3x3.0 CHS76.1x3.0 CHS88.9x3.0 CHS101.6x3.0 

CHS114.3x3.0 CHS127.0x3.0 CHS133.0x3.0 CHS139.7x3.0 

CHS159.0x3.0 CHS165.1x4.0 CHS168.3x4.0 CHS177.8x4.0 

CHS193.7x4.0 CHS168.3x5.0 CHS219.1x4.0 CHS219.1x5.0 

CHS244.5x5.0 CHS273.0x5.0 CHS323.9x6.0 CHS339.7x6.0 

CHS273.0x8.0 CHS368.0x8.0 CHS419.0x8.0 CHS457.2x10.0 

Profile List 4 - SD Section 

Y900IST 

 

Table 5.34 Profile Lists assigned for member groups for the 1634-member steel 

roof design example 

Groups 
Profile List 

Number 

1 1 

2 3 

3 3 

4 2 

5 4 

6 3 

7 1 

8 1 

9 3 

10 3 

11 1 

12 2 
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Table 5.35 Earthquake seismic coefficients used for calculating earthquake loads 

acting on the 1634-member steel roof 

Seismic Coefficients 

0.2 Sec Spectral Accel, Ss 0.695 

0.1 Sec Spectral Accel, S1 0.222 

Long-Period Transition Period 6 

Site Class  ZE 

Site Coefficient, Fa 1.388 

Site Coefficient, Fv 3.19 

SDS = Fa Ss 0.9647 

SD1 = Fv S1 0.7082 

 

Table 5.36 Optimization statistics for the 1634-member steel roof design example 

Analysis Count PSO EBB-BC (µ+λ)-ES GES 

500 

Best 1429.03 1429.03 1431.90 1429.03 

Mean 1465.44 1442.52 1598.97 1431.26 

Worst 1539.45 1515.36 1673.81 1441.86 

STD 34.93 24.89 65.12 4.53 

CV 23.37 16.92 39.94 3.10 

1000 

Best 1429.03 1429.03 1429.03 1429.03 

Mean 1437.31 1429.03 1471.19 1430.31 

Worst 1511.85 1429.03 1519.24 1441.86 

STD 24.85 0.00 35.34 3.85 

CV 16.95 0.00 23.56 2.64 
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Table 5.37 The initial (original) and optimum designs of the 1634-member steel 

roof design example 

Groups 
Sections in the 

Initial Design 

Sections in the 

Optimum Design 

1 HE240A HE200A 

2 CHS168.3X6.0 CHS 159,0x3,0 

3 CHS193X12.0 CHS 219,1x4,0 

4 UPN220 UPN200 

5 Y900IST Y900IST 

6 CHS168.3X6.0 CHS 177,8x4,0 

7 HE300A HE120A 

8 HE300A HE240A 

9 HE160A CHS 127,0x3,0 

10 HE180A CHS 127,0x3,0 

11 HE240A HE160A  

12 UPN220 UPN260 

Weight (kN) 2399.39 1429.03 

 

  

(a) (b) 

Figure 5.45 Average convergence curves obtained for the 1634-member steel roof  

design example using various optimization techniques: (a) up to 500 analyses, (b) 

up to 1000 analyses 
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(a) (b) 

Figure 5.46 Convergence curves obtained for the 1634-member steel roof design 

example in the best run of various optimization techniques: (a) up to 500 analyses, 

(b) up to 1000 analyses 

Table 5.38 The member groups’ DCR values in the optimum design of the 1634-

member steel roof design example. 

Groups DCR 

1 0.6494 

2 0.7710 

3 0.9374 

4 0.9998 

5 0.9142 

6 0.9154 

7 0.9846 

8 0.9273 

9 0.9328 

10 0.9632 

11 0.8598 

12 0.8938 

Average 0.8957 

 





 151 

 

  

6 CONCLUSION 

6.1 Summary and Concluding Remarks 

This study covers developing an efficient and robust discrete sizing optimization 

technique and the software platform for optimum design of real-world steel 

structures subjected to the strength, displacement, and geometric constraints under 

the conventional design codes. Firstly, computationally efficient, a novel design-

driven discrete sizing optimization technique called Guided Evolution Strategy 

(GES) is introduced. Secondly, the practical, efficient and robust infrastructure that 

brings the potential of the optimization techniques with the design software 

capabilities (SAP2000) together into a single software package called “Structural 

Optimization Platform Software (SOPS)” is developed. Thirdly, besides the GES 

technique, various metaheuristic techniques are implemented into SOPS to compare 

outcomes of GES with the other metaheuristics techniques, such as particle swarm 

optimization (PSO), exponential big bang big crunch (EBB-BC; enhanced version 

of the big-bang big crunch algorithm), Evolution Strategies with two variants, 

namely (μ,λ)-ES and (μ+λ)-ES.  

In chapter 3, the working principles of the GES technique are explained. The GES 

involves two tuning parameters that significantly affect its performance. The first 

one, Guided Mutation Limit (GML), is the upper bound of the design variables 

subjected to mutation. The second one, the Guided Mutation Ratio (GMR), is the 

ratio of guided offspring. Since the poor configuration of the GES parameter 

settings may lead to slow or premature convergence, in the first part of chapter 5, 

these two parameters are examined for their most efficient values. The results show 

that the GES algorithm is quite sensitive to its parameters. While GML provides 
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the relative rate of local/global convergence performance, the intensity of the GES 

technique’s guidance is determined by the GMR parameter. Therefore, these 

parameters should be adjusted as recommended in chapter 5 to get a more qualified 

solution. 

Chapter 4 introduces “Structural Optimization Platform Software (SOPS)” 

developed in this study. Firstly, the interaction of optimization modules of SOPS 

with the external design software (SAP2000) through the Application Programming 

Interface (API) is presented. Secondly, the SOPS architecture and its fundamental 

working principles are explained. Finally, the modules of SOPS (such as 

Input/Output, Constraints, and Optimization) are described. The application of 

SOPS to the optimization problems demonstrates that SOPS successfully combines 

the potential of the optimization techniques and the design software capabilities 

(SAP2000). Moreover, due to the ability of its real-time monitoring, the 

performance of the optimization techniques, convergence rate, and stagnation 

durations can be easily observed in real-time while the optimization process 

continues in the background. 

In chapter 5, the performance of the proposed Guided Evolution Strategy (GES) is 

compared with other metaheuristics; particle swarm optimization (PSO), 

exponential big bang big crunch (EBB-BC; enhanced version of the big-bang big 

crunch algorithm), Evolution Strategies with two variants, namely (μ,λ)-ES and 

(μ+λ)-ES in terms of convergence rate and quality of the solutions. The numerical 

outcomes demonstrate the computational efficiency of the proposed technique 

(GES) for the optimal design of real-world steel structures subjected to the strength, 

displacement, and geometric constraints following the conventional design codes. 

Moreover, the results also show that the proposed technique (GES) has a faster 

convergence rate and reaches an optimum or reasonable near-optimum solution 

using less analyses. The results also demonstrate that applying optimization 

techniques to real-world structures can save significant construction materials and 

costs. The initial designs carried out by a design office are optimized using the 

optimization technique (GES) and the results show that for the three real-world 
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structures, 6.97%, 8.78%, and 40.44% savings in material (steel) usage are 

obtained. Therefore, the GES optimization technique with SOPS can satisfy the 

needs of practical engineers’ efficient, functional and robust optimization 

infrastructure.   

As a result of this study, the following remarks can be pointed out: 

 The proposed GES algorithm is a fast, robust, easy-to-implement, design-

driven optimization algorithm. 

 GES can handle not only strength and displacement constraints but also 

geometric constraints. 

 GES can obtain code-compliant, cost-efficient designs with a fast 

convergence rate and fewer structural analyses than required for other 

metaheuristics. 

 Due to its selection scheme, GES can utilize the UBS efficiently, 

diminishing unnecessary structural evaluations. 

 SOPS successfully integrates optimization computing software 

(optimization algorithms) and commercial design software packages 

(SAP2000) to automate the optimization and design procedures. 

 Besides the GES technique, various metaheuristic techniques are also 

implemented into SOPS, such as particle swarm optimization (PSO), 

exponential big bang big crunch (EBB-BC; enhanced version of the big-

bang big crunch algorithm), Evolution Strategies with two variants, namely 

(μ,λ)-ES and (μ+λ)-ES. Therefore, SOPS can solve optimization design 

problems utilizing various optimization algorithms and compare these 

solutions. 

 SOPS provides real-time monitoring of the optimization process such as 

convergence rate and stagnation durations to examine the performance of 

the optimization techniques more efficiently. 
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