INCREMENTAL PROCESSING OF MORPHOSYNTAX FOR COUNTERFACTUAL REASONING: AN EYE-TRACKING STUDY WITH TURKISH-SPEAKING CHILDREN AND ADULTS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF SOCIAL SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

SEMIH CAN AKTEPE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF ARTS
IN
THE DEPARTMENT OF ENGLISH LANGUAGE TEACHING

SEPTEMBER 2022
Approval of the thesis:

INCREMENTAL PROCESSING OF MORPHOSYNTAX FOR COUNTERFACTUAL REASONING: AN EYE-TRACKING STUDY WITH TURKISH-SPEAKING CHILDREN AND ADULTS

submitted by SEMİH CAN AKTEPE in partial fulfillment of the requirements for the degree of Master of Arts in English Language Teaching, the Graduate School of Social Sciences of Middle East Technical University by,

Prof. Dr. Sadettin KİRÄZCI
Dean
Graduate School of Social Sciences

Prof. Dr. Nurten BİRLİK
Head of Department
Department of Foreign Language Education

Assoc. Prof. Dr. Duygu ÖZGE
Supervisor
Department of Foreign Language Education

Examinining Committee Members:

Assoc. Prof. Dr. Tilbe GÖKSUN (Head of the Examining Committee)
Koç University
Department of Psychology

Assoc. Prof. Dr. Duygu ÖZGE (Supervisor)
Middle East Technical University
Department of Foreign Language Education

Prof. Dr. Çiğdem SAĞIN ŞİMŞEK
Middle East Technical University
Department of Foreign Language Education
I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name, Last Name: Semih Can AKTEPE

Signature:
ABSTRACT

INCREMENTAL PROCESSING OF MORPHOSYNTAX FOR COUNTERFACTUAL REASONING: AN EYE-TRACKING STUDY WITH TURKISH-SPEAKING CHILDREN AND ADULTS

AKTEPE, Semih Can
M.A., The Department of English Language Teaching
Supervisor: Assoc. Prof. Dr. Duygu ÖZGE

September 2022, 71 pages

This study aimed to investigate whether children as young as age four can incrementally use morphosyntactic cues for counterfactual reasoning at adult-like level. Therefore, in this study, we answered (i) when children can reason adult-like using counterfactuals and (ii) whether they can incrementally integrate the morphosyntax of counterfactuals in a language that encodes both the conditional and counterfactual meaning in concatenated verbal suffixes, Turkish. We conducted an eye-tracking experiment using visual world paradigm to answer these questions. Our results showed that children attended the target referent after they heard the verb conjugation of the antecedent in the conditional sentences. This result suggests that children as young as age four can interpret counterfactual conditionals incrementally using counterfactual morphosyntax as adults do. To our knowledge, this is the first piece of evidence showing that the morphosyntax marked on verbs quickly leads to complex inferences such as generating hypothetical alternative worlds for counterfactual reasoning not only in adults but also in very young children.

Keywords: counterfactuals, language development, incremental processing, reasoning, eye-tracking
ÖZ

KARŞI OLGUSAL USLAMLAMADA ARTIMLI BİÇİM-SÖZDİZİM İŞLEMESİ: TÜRKÇE KONUŞAN ÇOCUKLAR VE YETİŞKİNLER İLE BİR GÖZ İZLEME ÇALIŞMASI

AKTEPE, Semih Can
Yüksek Lisans, İngiliz Dili Öğretimi Bölümü
Tez Yöneticisi: Doç. Dr. Duygu ÖZGE

Anahtar Kelimeler: karşı olgusal ifadeler, dil gelişimi, artımlı işleme, uslamlama, göz izleme
To the ones who succeed without being obsequious
ACKNOWLEDGMENTS

I thank my supervisor, Assoc. Prof. Dr. Duygu Özge, for her guidance and providing me with a laboratory environment to conduct my studies.

Also, I would like to thank the jury members, Prof. Dr. Çağdem Sağın Şimşek and Assoc. Prof. Dr. Tilbe Göksun, for their constructive feedback.

Then, I present my gratitude to the members of METU language and Cognitive Development Laboratory, especially Özge Günay and Sena Gül for helping me with the data collection, Meryem Ezgi Bayramoğlu for voice recordings in the experiment and Mehmet İltırı Bozkurt for having a lot of conversation with me regarding the things that we think are a joke in academia (and many other fields).

Finally, huge thanks to my parents, Arzu and Davut Aktepe, for their endless and unconditional support. Sorry that I sometimes harshly criticize your (traditional) parenting; you might have found my actions disrespectful. Also, I have never been a kid that you desired me to be (probably, I will not be ever anyway). Despite all these, you still trust your son and ask for the best for him. Thanks again.

This research was supported by Scientific and Technological Research Council of Turkey (TÜBİTAK) 1001 grant (218K184).
TABLE OF CONTENTS

PLAGIARISM ... iii
ABSTRACT ... iv
ÖZ ... v
DEDICATION ... vi
ACKNOWLEDGMENTS ... vii
TABLE OF CONTENTS .. viii
LIST OF TABLES ... x
LIST OF FIGURES ... xi
LIST OF ABBREVIATIONS .. xii

CHAPTERS

1 INTRODUCTION ... 1
 1.1 Counterfactual Conditionals in Syntax-Semantics Interface 2
 1.2 Studies on the Processing of Counterfactual Conditionals in Adults 5
 1.2.1 Inferring to the falsity of the antecedent in counterfactual conditionals . 6
 1.2.2 Dual meaning representation in counterfactual conditionals 6
 1.2.3 Morphosyntactic parsing for semantic interpretation of counterfactual conditionals ... 8
 1.3 Studies on the Development of Counterfactual Reasoning in Children 11
 1.3.1 Counterfactuals in building causal relations 11
 1.3.2 Counterfactuals require inhibiting alternative possibilities 12
 1.3.3 Keeping multiple representations generated by counterfactuals in mind requires working memory 14
 1.3.4 Counterfactual reasoning requires addressing to other minds 15
 1.3.5 Comprehensive studies on the relationship between counterfactual reasoning and executive functioning 17
 1.3.6 Counterfactual reasoning given the outcome of the events 18
 1.4 Motivation for the Present Study 19
 1.4.1 Research Questions ... 20
 1.4.2 Structure of the Thesis 20
2 EXPERIMENT ... 21
2.1 Participants ... 21
2.2 Stimuli and Design .. 22
2.3 Procedure .. 25
2.4 Cognitive Tasks ... 25
2.5 Predictions .. 26

3 RESULTS .. 28
3.1 Analysis of Response Data ... 28
 3.1.1 Accuracy as a function of age, conditional and outcome 29
 3.1.2 Accuracy as a function of cognitive tasks 31
3.2 Analysis of Eye-Tracking Data ... 32
 3.2.1 Data Processing .. 32
 3.2.2 Generalized Additive Mixed Modeling .. 33
 3.2.2.1 Adults’ Processing of Conditional Morphosyntax 36
 3.2.2.2 Children’s Processing of Conditional Morphosyntax 38

4 DISCUSSION ... 40
 4.1 Do counterfactual conditionals pose a greater challenge than indicative conditionals? 40
 4.2 Do young children have an adult-like performance? 41
 4.3 Do executive functioning abilities affect counterfactual reasoning ability? 41
 4.4 Do children and adults incrementally use morphosyntactic cues for counterfactual rea-
 soning? ... 42

5 CONCLUSION .. 45
 5.1 Limitations and Further Studies .. 46
REFERENCES .. 47

APPENDICES
 A. EXPERIMENTAL SENTENCES .. 55
 B. APPROVAL OF THE METU HUMAN SUBJECTS ETHICS COMMITTEE 58
 C. TURKISH SUMMARY / TÜRKÇE ÖZET 59
 D. THESIS PERMISSION FORM / TEZ İZİN FORMU 71
LIST OF TABLES

Table 3.1 Comparison between two-way and three-way interaction models 29
Table 3.2 Summary of the generalized linear mixed model 30
Table 3.3 Pairwise comparisons between the conditional sentence types 31
Table 3.4 Summary of cognitive tasks model with no interaction 32
Table 3.5 Summary of the generalized additive mixed model for age group and type of conditional 35
Table 3.6 Summary of the generalized additive mixed model for the adults 37
Table 3.7 Summary of the generalized additive mixed model for the children 38
LIST OF FIGURES

Figure 1.1 A visual scene used in Orenes et al. (2019) 9

Figure 2.1 A visual scene used in the experiment 22

Figure 3.1 The difference in accuracy between adult and child participants. 29

Figure 3.2 Visualisation of the interaction between type of conditional and outcome 31

Figure 3.3 Raw plot of the eye-tracking data showing the target preference for each age group and the conditional sentence type. The first black line indicates the critical word onset, the second one represents the offset of the verb conjugation in the antecedent and the third one marks the end of the sentence. Error bars indicate 95% confidence intervals. 34

Figure 3.4 Smooth plots for the summed effects of the age group and the conditional sentence type. The shaded bands represent 95% confidence intervals. 36

Figure 3.5 Smooth plots for the summed effect of the conditional sentence type for the adults. The shaded bands represent 95% confidence intervals. 37

Figure 3.6 Smooth plots for the summed effects of the conditional sentence type for the children. The shaded bands represent 95% confidence intervals. 39
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VWP</td>
<td>Visual World Paradigm</td>
</tr>
<tr>
<td>GLMM</td>
<td>Generalized Linear Mixed Model</td>
</tr>
<tr>
<td>GAMM</td>
<td>Generalized Additive Mixed Model</td>
</tr>
<tr>
<td>AIC</td>
<td>Akaike Information Criterion</td>
</tr>
<tr>
<td>BIC</td>
<td>Bayesian Information Criterion</td>
</tr>
<tr>
<td>CN</td>
<td>Counterfactual Negative</td>
</tr>
<tr>
<td>CP</td>
<td>Counterfactual Positive</td>
</tr>
<tr>
<td>IN</td>
<td>Indicative Negative</td>
</tr>
<tr>
<td>IP</td>
<td>Indicative Positive</td>
</tr>
</tbody>
</table>
Children can reason through logical words such as *and* (Morris, 2008) and *not* (Feiman et al., 2017) from two and a half years of age, *or* from three years of age (Mody & Carey, 2016) and can differentiate the semantic and pragmatic use of these logical connectives by the age of four (Jasbi & Frank, 2017). They can also incrementally process the morphosyntactic cues such as case markers (Özge et al., 2019) and passivation (Huang et al., 2013) for thematic role assignment and predicting the upcoming context. What about more complex structures requiring inferencing via both morphosyntax and conditional logical connective: counterfactual conditionals? Along with their complex linguistic structure, counterfactual conditionals also necessitate a complex reasoning ability in which people need to represent both the hypothetical alternative and real-world situations as well as their possible outcomes (Byrne, 2007; Roese, 1997).

Different languages encode the linguistic structure of the counterfactual conditionals differently. Counterfactual conditionals in Turkish are encoded with the linear combination of a conditional marker -sA and a (fake) past tense marker that gives the counterfactual meaning -DI. Therefore, it is not certain whether young children can acquire such a complex structure given its semantic interpretation and morphosyntactic parsing early in their language development. Because of these complexities involved in counterfactual reasoning and morphosyntax, their acquisition might be later, and their processing might be harder compared to those of the logical connectives such as *and, or, and not*. Also, in some accounts, children are not expected to be fully developed in their domain-general logical abilities such as preemption, abstraction, and analogy making until the age of five or six (Tomasello, 2003). Hence, developing counterfactual thinking ability may last even longer than developing these abilities. Similarly, using morphosyntactic cues predictively for thematic role assignment may be earlier than doing so for counterfactual reasoning as case marking of morphosyntactic cues in thematic role assignment reflects the agents, themes, and recipients of the events which are already accessible from the percep-
tual system. However, case marking of morphosyntax in counterfactuals might be reflecting possible alternative realities about the events. Therefore, counterfactual conditionals require developing a more advanced conceptual system and a parser to process their morphosyntax, which may lead to later development in children.

Previous studies investigating the acquisition of counterfactuals yielded mixed findings about when children could interpret counterfactual conditionals at an adult-like level. While some studies report that children as young as age four could reason counterfactually (German & Nichols, 2003; Harris et al., 1996; Nyhout & Ganea, 2019b), others reveal that it is not until age 6-7 (sometimes not until 14) for children to interpret counterfactual situations in an adult-like fashion (McCormack et al., 2018; Rafetseder et al., 2010; Rafetseder et al., 2013). The difference among these studies may be methodological as they all relied on different offline measures incurring heavy processing demands where children need to both comprehend some stories including counterfactual situations and keep in mind the inferences of these situations. Therefore, it is possible that children process these structures on the fly, but they fail to retrieve their initial interpretation until the end of the utterance. Furthermore, we are still not certain whether adults can even incrementally interpret the morphosyntax of counterfactuals in different languages such as English and Spanish (Ferguson et al., 2010; Orenes et al., 2019).

To our knowledge, no other study has investigated the real-time processing of counterfactuals in children and focused on the acquisition of such a structure in a language that encodes both the conditional and counterfactual meaning in concatenated verbal suffixes. Therefore, we aim to fill this gap by investigating the online processing of counterfactual conditionals in Turkish.

In the remaining of this chapter, we give information about the syntax and semantics of counterfactual conditionals, which is the structure under investigation, then cover the previous literature regarding the processing of this structure by adults and its development in children for reasoning. Finally, we present the research questions attempted to answer in this thesis.

1.1 Counterfactual Conditionals in Syntax-Semantics Interface

There are different kinds of conditional sentences. These sentences vary by their morphosyntactic structures, and these structures differentiate the semantics of these different kinds of conditional sentences. For example, conditional sentences of the type, *if John drives the car, he will be on time for the job*, are called indicative conditionals. Such sentences have different interpretations according to
different views. One is that either John does not drive the car, or he is on time for the job. The other is that John is on time for the job because he drives the car. Another is that they are non-truth functional, so we cannot know the truth of their antecedent and consequent, rather they are assertible or acceptable by the interlocutors of the speech (Edgington, 2020; Jackson, 1991; Stalnaker, 1976).

Indicative conditionals lead to the imagination that John drives the car, and he is on time for the job. On the other hand, conditional sentences of the type, *if John had driven the car, he would have been on time for the job*, are called counterfactual conditionals. Unlike indicative conditionals, counterfactuals refer to the conceptual or imaginative alternatives that refer to the states and actions that might have happened but did not happen in reality (Roese & Epstude, 2017; Starr, 2021). These alternatives indicate a possible world counter to the fact or different from the factual world (Byrne, 2007; Epstude & Roese, 2008; Evans & Over, 2004; Roese, 1997). Counterfactual conditionals, unless it is stated in the context explicitly¹, imply that their antecedent is negated (Anderson, 1951). Therefore, the sentence, *if John had driven the car, he would have been on time for the job*, denotes that John did not drive the car and he is late for the job.

The linguistic configuration of the counterfactual sentences varies for different languages. Sentences can be made to infer counterfactual meaning by subjunctive mood such as German (*Konjunktiv II*) as in 1 (Durrell, 2013). Therefore, the presupposition implying the falsity of the antecedent is often associated with subjunctive mood (Karawani, 2014; Stalnaker, 1976; Von Fintel, 2012).

(1) Wenn mich jener Anruf nicht mehr erreicht hätte, wären wir einander nie begegnet.
If that call had not reached me, we would never have met.

However, although some sentences may look like counterfactuals due to the use of subjunctive mood, they do not denote counterfactual meaning. Thus, the verbal inflection in the subjunctive form does not guarantee the counterfactuality of the sentence. For example, French subjunctives do not infer counterfactual meaning, so the subjunctive sentence in 2a (*Subjonktif*) does not convey the counterfactual meaning in 2b (*Conditionnel Passé*) (Iatridou, 2000, 2014).

¹ The counterfactual conditional sentence *if John had taken arsenic, he would have shown just exactly those symptoms which he does in fact show* does not denote that John did not take the arsenic, and he does not show the symptoms.
(2) a. Je doute que Pierre soit venu.
 I doubt that Pierre had come.
 I doubt that Pierre had come.

b. Si Pierre était/*soit venu, je l’aurais vu.
 If Pierre had come, I him would have seen.
 If Pierre had come, I would have seen him.

Consequently, for a sentence to denote a counterfactual meaning, its verb must be x-marked. X-marking refers to the fact that a verb is ornamented with a certain morphological structure to denote a counterfactual meaning (von Fintel & Iatridou, 2020). For example, in English, the verb of the antecedent must have a past tense inflection, and that of the consequent must be in (perfect) modal form, and also this sentence must allow conditional inversion as in 3a (Iatridou, 2000). Otherwise, without the inversion, the antecedent of the counterfactual sentence is the same as the indicative sentence in 3b.

(3) a. Were Oswald not to kill Kennedy, someone else would.
 If Oswald did not kill Kennedy, someone else would.

b. If Oswald did not kill Kennedy, someone else did.
 *Were Oswald not to kill Kennedy, someone else did.

On the other hand, in Turkish, the linear morpheme order disambiguates counterfactual conditionals from the indicative ones. In indicative conditionals, first the temporal verbal inflection (-DI, -r, -AcAk) is concatenated to the root of the verb, then the conditional marker -sA is added to the verbal inflection as in 4a. In Turkish, there is no explicit conditional connective, if (“eğer” in Turkish) needed because the conditional marker -sA functions as if (Kornfilt, 1997). On the other hand, in counterfactual conditionals, the conditional marker is concatenated to the root of the verb first, and only past verbal inflection is added to the conditional marker as in 4b.

(4) a. Oswald Kennedy’yi öldür-me-di(y)-se başkasi öldür-dü.
 Oswald-Nom Kennedy-Acc kill-Neg-Past-Cond someone else kill-Past
 If Oswald did not kill Kennedy, someone else did.

b. Oswald Kennedy’yi öldür-me-se(y)-di başkasi öldür-ecek-ti.
 Oswald-Nom Kennedy-Acc kill-Neg-Cond-Past someone else kill-Fut-Past
 If Oswald did not kill Kennedy, someone else would.
Yarbay Duman et al. (2015) state that counterfactual and indicative conditionals are of the equivalent morphosyntactic structures except for the fact that the aforementioned morpheme order differentiates them. However, although the morpheme -DI seems to be phonologically equivalent in both structures, their morphosyntactic-semantic functions are different from each other. While the one in indicative conditionals points to the past tense conjugation of the verb as the other temporal morphemes like -r (Aorist) and -AcAk (Future), the one in counterfactual conditionals is an x-marking (fake past) morpheme (not a temporal morpheme). Therefore, such a linear combination of morphemes given in 5a is not possible in Turkish counterfactual conditionals, unlike the indicative ones in 5b. In other words, Turkish marks counterfactual conditionals with a fake past tense morpheme, not with the regular past tense morpheme (Iatridou, 2014). According to Can Bakırlı (2010), the verbal structures in the antecedent and consequent of the counterfactual conditionals in Turkish create a causal reasoning chain where the situation in the consequent triggers the situation in the antecedent. This causal chain infers the fact that the consequent did not happen. Therefore, when we regard sentence in 4b, we can say that someone else’s not killing Kennedy triggered Oswald to kill Kennedy, and anyone else but Oswald did not kill Kennedy. As a result, sentence 4b implies the fact that Oswald killed Kennedy and no one else killed Kennedy. On the other hand, the verbal inflections in the antecedent and consequent of the sentence 4a do not make any judgment about their falsity. Thus, the truth of the consequent of someone else’s not having killed Kennedy is determined by the truth of the antecedent of Oswald’s having killed Kennedy (Can Bakırlı, 2010).

1.2 Studies on the Processing of Counterfactual Conditionals in Adults

We can outline the studies investigating the adults’ processing of counterfactuals in terms of inferring to the falsity of the antecedent of counterfactual conditional sentences, dual meaning representation caused by this and making these inferences using morphosyntactic parsing.
1.2.1 Inferring to the falsity of the antecedent in counterfactual conditionals

In section 1.1, we said that counterfactual conditionals have the presupposition that their antecedent is negated. For instance, the counterfactual conditional sentence, *if John had driven the car, he would have been on time for the job*, points to the fact that John did not drive the car; possibly John’s not driving the car is the cause of his being late for the job. Such counterfactual sentences also denote the false suppositional state in which John drove the car, and he was on time for the job.

Fillenbaum (1974) states that participants falsely recognized the negated antecedents of the counterfactual conditional sentences, *he did not catch the plain* as already uttered after the counterfactual sentence, *if he had caught the plane, he would have arrived on time*, in a memory task where they decide whether the sentences have already been uttered or they are uttered newly. This early study suggests that people presuppose the antecedents of the counterfactual conditional as their denied propositions. Therefore, counterfactuals might be more costly to process as they require access to these alternative hypothetical possibilities and their presuppositions.

1.2.2 Dual meaning representation in counterfactual conditionals

Related to imagination and planning skills, the representation of these two contradicting meanings in counterfactual sentences makes them cognitively complex (Fauconnier, 1994; Johnson-Laird & Byrne, 2002). The dual meaning representation triggered during counterfactual language comprehension is considered as the typical feature of counterfactual sentences (Kulakova & Nieuwland, 2016a). Therefore, the processing of counterfactuals is discussed from the view of dual meaning representation and the suppositions expressed by them.

Some studies proved the fact that counterfactuals trigger two different mental models in mind. For instance, Byrne and Egan (2004) stated that contrary to indicative conditionals such as *if I were a movie star, I moved to Hollywood*, counterfactual conditionals such as *if I had been a movie star, I would have moved to Hollywood*, create a dual representation of an event that I am not a movie star and falsified proposition that I am a movie star. They also added that indicative conditionals such as *if I am a movie star, I will move to Hollywood*, imply a single representation that constructs the suppositional state *I am a movie star and I will move to Hollywood* unlike counterfactuals on which people make negated inferences. In another study, Santamaría et al. (2005) presented that the counterfactual conditional sentences such as *if it had rained, we would have gone to picnic* prime negative *not-p and not-q*
conjunctions that it did not rain and we did not go to picnic, and these conjunctions are read faster when they are read after counterfactual conditionals than when they are read after indicative conditionals.

In a self-paced reading study, the participants read a narrative sentence, while keeping the ticket in her hand, Mary switched on the radio and heard the winning lottery number. This sentence was either followed by a factual sentence, as she won the lottery first prize, the first thing she did was to buy a luxurious Mercedes car, or a counterfactual sentence, if she had won the lottery first prize, the first thing she would have done was to buy a luxurious Mercedes car, de Vega et al. (2007) measured the reading times of the participants in the new coming sentences, Mary got into the Mercedes car and she felt like a queen. The results showed that the participants read the new coming sentence faster after factuals than counterfactuals. Also, they read the sentence, Mary tore the ticket to pieces and started to clean the kitchen, faster after counterfactuals than factuals. The reading time results of the study demonstrated that only on reading the post-critical sentence, and started to clean the kitchen, the factual meaning of the counterfactual sentence that Mary won the lottery vanishes, unlike the factual sentences. Therefore, although people temporarily keep the new information in their mind after counterfactual sentences in the initial phases of the sentences, they fix their attention to the older sentences, suggesting that both meanings of the counterfactual scenarios are represented in counterfactual conditionals. Unlike offline studies, this study asserts that the processing of counterfactuals is more costly in comparison to their factual counterparts in terms of updating the processor based on the incoming information.

The use of brain imaging techniques provided further evidence for the dual representation of the counterfactual language processing and their processing load (De Brigard et al., 2013; Ferguson & Cane, 2015; Kulakova & Nieuwland, 2016b; Urrutia et al., 2012). For instance, Urrutia et al. (2012) reported that stronger activation in the left superior frontal gyrus, the area for executive functioning in the brain, was observed in counterfactual conditional sentences, if Pedro had decided to paint the room, he would have moved the sofa, than in factual causal sentences, since Pedro decided to paint the room, he is moving the sofa, suggesting that people create a different neural network for different types of input. They posited that as two representations are active simultaneously during the comprehension of the counterfactual sentence, inhibiting these representations is cognitively effortful. Hence, the activation in this area during counterfactual language comprehension might be pointing to the generation of alternative possibilities and inhibiting these possibilities to trigger the real-world situation during counterfactual thinking.

In another study, different from the other ones, Kulakova et al. (2013) compared the processing of
the indicative conditional scenarios, *the motor is switched off today; if the motor was switched on yesterday, did it burn fuel?*, with that of the counterfactual conditional scenarios, *the motor is switched off today; if the motor had been switched on today, would it have burned fuel?* This study revealed that more activity was observed in the right occipital cortex, which is the visual processing center in the brain, during the processing of counterfactual conditional sentences than indicative conditional sentences. In addition, more increased reaction times for follow-up responses in counterfactuals than indicatives showed that counterfactual conditionals create more processing load in the brain.

1.2.3 Morphosyntactic parsing for semantic interpretation of counterfactual conditionals

Kulakova and Nieuwland (2016a) remark that the point in counterfactual language processing should not be whether counterfactuals imply two meaning representations but rather how these representations are related to the incremental sentence construction. In this context, the role of linguistic input that might lead to the counterfactual meaning in speech, such as verbal inflections and conditional markers, is to be investigated. Not directly, but a few eye-tracking studies using visual world paradigm provide us with some ideas about the incremental processing of counterfactual conditionals.

Ferguson et al. (2010) pointed out that English-speaking participants shifted their gaze to the related referent (critical word) using the prior context right after the verb of the consequent and before the critical word in both counterfactual and indicative conditionals (*If cats were vegetarians/are hungry, they could feed their cats with a bowl of carrot/fish*). However, even before the critical time points in the consequent, there is an increase in the look to the related referent for the counterfactual world in the study. Therefore, we cannot decide whether it is the linguistic cues in the antecedent or in the consequent that gave rise to the related referent looks. In addition, as the verbal configuration is the same for both counterfactual and indicative conditionals in the experiment, we cannot determine whether the linguistic cues incur more looks to the related referent. On the other hand, only the lexico-semantic units such as contextual words (vegetarian) and critical nouns (carrot, fish) in the utterances might have led to the correct looks. Thus, we cannot abstract out the clear effect of morphosyntactic units for counterfactual reasoning in this study.

In another study with Spanish-speaking participants, Orenes et al. (2019) presented that the fixations were made to a single referent in the indicative conditional structures, whereas the referents for both the reality and its negated alternative were almost equally fixated in the counterfactual probes after the verb conjugation. Nevertheless, this study has some possible confounds because of its experimental
design. The first is that in their experimental sentences, \textit{(e.g., if there had been\[counterfactual verb\] oranges\[noun\], then there would have been pears)}, the noun after the verb was explicitly uttered, and this might be masking the effect of verb conjugation on the shifts in gaze. Thus, we cannot ascertain whether the counterfactual inflection of the verb in the antecedent or the noun coming right after the verb diverges the gaze of the participants. The second is that some of the referents were crossed out to represent the real-world situation for the counterfactual sentences, yet non-alternative world referents better represent the real-world situation for the counterfactual (Figure 1.1). In this study, two equally fixated referents are the alternative world referent and its crossed-out version. However, the non-alternative world referent must have been fixated. Therefore, it is not clear whether the looks would have converged on a single referent as in the indicative conditional sentences if there had been no crossed-out referents. Therefore, it is unclear to what extent the verbal markers in the counterfactual conditionals induced the generation of alternative possibilities in this study. On the other hand, the replication of this study conducted with English-speaking participants revealed that the participants’ gaze converged on a single referent both in indicative and counterfactual conditional sentences. However, that referent was the same for both types of conditional sentences, such that the participants only looked at the referents similar to the ones at the top left side of Figure 1.1. In their second experiment, Evcen and Wittenberg (2022) asked the participants follow-up questions regarding what should be expected from the situation implied by the conditional sentences. The results indicated that most of the participants kept their gaze on the same referent as in the previous experiment, although some of them fixated on the referents similar to the ones at the top right side of Figure 1.1. These results show that there is no clear finding regarding how conditional morphosyntactic structures are processed for counterfactual reasoning in adults.

In addition to these online studies, in an offline study, Yarbay Duman et al. (2016) presented the pa-
tients with Broca’s aphasia whose native language is Turkish, a series of connective, indicative conditional, and counterfactual conditional sentences. The connective sentences were of the type, *he ironed the shirt and hung it in the closet*, the indicative conditional sentences were of the type, *if he has ironed the shirt, he will hang it in the closet*, and the counterfactual conditional sentences were of the type, *if he had ironed the shirt, he would have hung it in the closet*. Uttering these sentences, (Yarbay Duman et al., 2016) asked the participants to match them with the correct representation among four pictures (*the shirt is not ironed and not hung in the closet, the shirt is ironed and hung in the closet, a dress is ironed and hung in the closet and a dress is not ironed and not hung in the closet*). As patients with Broca’s aphasia are characterized by having difficulty in integrating functional words and inflectional morphology into their speech (Goodglass et al., 1972; Kean, 1977), and Turkish is a highly inflectional agglutinating language (Taylan, 1984), Turkish-speaking patients of Broca’s aphasia were expected to perform poorly matching the correct picture in conditional sentences. Therefore, Yarbay Duman et al. (2016) demonstrated that patients with Broca’s aphasia were better at picking the correct picture in connective sentences than in indicative and counterfactual conditional sentences. Furthermore, the control group (individuals without Broca’s aphasia) had ceiling performance in all sentence types. These results suggest that in order to extract the semantic inferences made by the morphosyntax of the conditional sentences and distinguish them from each other, a proper morphosyntactic parser is required.

Finally, Yarbay Duman et al. (2016) also mention that Turkish counterfactuals are morphosyntactically less complex than their English counterparts because, unlike English, there are no if-embedding, modal auxiliaries, and past participles in Turkish. We cannot compare the complexity of these structures because Turkish counterfactuals might also be more complex than their English counterparts since, as we discussed in section 1.1, they have a more compact structure in which tense morphemes and conditional marker are packed within a more condensed morphemic structure of the verbs. Therefore, they may require a more advanced parser to process their morphology to interpret the semantic presuppositions of these structures. After all, although this study reveals the importance of morphosyntactic processing in generating the semantic interpretations of counterfactual conditionals, it does not disclose when the morphosyntactic units give rise to these interpretations during language comprehension.
1.3 Studies on the Development of Counterfactual Reasoning in Children

In section 1.2.1, looking at the counterfactual conditional, *if John had driven the car, he would have been on time for the job*, we said that John’s not driving the car is probably the cause of his being late for the job. Therefore, we can conclude that counterfactual sentences suggest a causal relationship between the situations implied by their antecedent and consequent. On the other hand, many studies assert that making such causal reasoning using counterfactuals requires a series of executive functioning abilities. In this section, we first present how counterfactuals imply a causal relation, and when children can understand the causal implicatures of counterfactuals, then how the assertedly required cognitive abilities relate to this kind of causal reasoning in children.

1.3.1 Counterfactuals in building causal relations

Causality refers to the fact that one action, event, or process (cause) leads to the emergence of another (effect). The causal associations between causes and effects are the abstractions that allow people to understand how things in the world proceed (Mackie, 1980). The ability to construct such causal associations is called causal reasoning. Young children can make causal inferences about the events if they have real-world knowledge (Bullock, 1985; Shultz, 1982). Therefore, experience is necessary to build a concept of causality (Carey, 2009). However, some argue that there are basic blocks for causality driven by intuitions, so human causality is innate (Goodman et al., 2011; Griffiths & Tenenbaum, 2009; Steyvers et al., 2003). Therefore, children might be able to make causal inferences from a very early age, but their ability to reason might be constrained by the contextual knowledge and linguistic demands to express their reasoning, which limits their innate knowledge to put into practice (Bullock et al., 1982).

Fundamentally, the claims about the idea of causality about the actions, events, and processes are made by the existence of their effects given the existence of their causes. On the other hand, according to the counterfactual theory of causation, the causal claims are made by the counterfactual conditions of the form if A had not occurred, B would not have occurred (Menzies & Beebee, 2020). In other words, the non-existence of the cause will lead to the non-existence of all its effects. D. Lewis (1973/2013) states that the cause of an effect must make a difference from the case where it does exist, so we must be able to claim that if the cause had been absent, all its effects would have been absent as well. Therefore, counterfactuals play a crucial role in human reasoning. Sobel (2004) states that even very
young children could make predictions about possible situations using counterfactuals, even though, as mentioned earlier, counterfactual conditionals necessitate the representation of multiple alternative scenarios in mind and have a linguistically complex structure. However, different researchers handle the ability to reason counterfactually differently depending on how they view this ability.

Counterfactual reasoning can be seen in children’s imaginations, beliefs about other people’s actions, and pretence. Therefore, imagination, theory of mind, pretend play in children, and counterfactual reasoning point to the same segment of cognition (Byrne, 2016; Ferguson et al., 2010; Weisberg & Gopnik, 2013). Counterfactual reasoning is important for children to plan their actions according to the false premises through pretending about non-real situations (e.g., supposing a banana as if it was a telephone). Therefore, pretend play in the early phases of their development is crucial to generate alternatives for future events. However, psychologists do not compromise on whether imagination and pretend play contribute to the counterfactual reasoning ability of children. Pretend play and counterfactual reasoning ability are asserted to have some common features in terms of the separation from reality, referring to alternative reality based on unreal events and considering these alternatives as future possibilities, suggesting that pretence is adequate for planning, causal models, and counterfactual processes (Buchsbaum et al., 2012; Weisberg & Gopnik, 2013). In the definition they adopt, counterfactuals cover the pretence, imagination of the real world, and future planning. However, unlike the scientists regarding this definition, Beck (2016) argues that reasoning with counterfactuals includes generating thoughts about alternative and real-world situations. Therefore, we also view counterfactual reasoning as the ability to make inferences about the real-world situation given the alternative situations triggered by counterfactuals.

Generating alternative situations in mind and inferring the real-world situation among these situations included in counterfactual reasoning are often related to such cognitive abilities as theory of mind, false belief, inhibitory control, and working memory capacity. In the following sections, we will discuss the effects of these abilities when children engage in tasks where they need to reason counterfactually.

1.3.2 Counterfactuals require inhibiting alternative possibilities

Given the nature of the task employed in different studies and the requirements for counterfactual reasoning, previous studies conducted on such languages as English, German, Greek, and Turkish have not addressed children’s processing patterns of counterfactuals, and they yielded mixed findings about when children could interpret counterfactual conditionals in an adult-like fashion. For instance,
in an earlier study, Harris et al. (1996) tested if counterfactual thinking allows children to make causal inferences. In their experiments, 3- to 4-year-old children were told a story where an event, *a girl named Carol walk in with muddy boots*, causes another event, *making kitchen floor dirty*. Then, the children were asked a question about the story, *what if Carol did not walk in with muddy boots, would the floor be dirty?* The results showed that children as young as three years of age could answer such questions, and 4-year-old children were even more accurate in their responses. To make such a causal inference that the floor is dirty, children should have the ability to inhibit the fact that the floor is clean, as explicitly stated by the counterfactual sentence. Therefore, the earlier signs of inhibiting some of the possibilities seem to be observed by the age of three.

Another study shows that children can also inhibit the multiple alternatives to reason about a possibility when the events have two causes. Rafetseder et al. (2010) told children stories such as a mother placed a candy on either the top shelf or the bottom shelf. If it was placed on the top one, the boy could pick it up, and if on the bottom one, the little girl could pick it up, and they brought to their room. Children could answer such counterfactual questions as *what would happen if the candy was on the top shelf and the little girl came?* or so. However, after telling the story in which the mother placed the candy on the top shelf, and the boy picked it up then brought to his room, they asked children *what if the girl had come instead of the boy?* 6-year-old children had difficulty in answering such questions unlike the adults because in this case there was more than one alternative possibility. Rafetseder et al. (2013) further investigated this and demonstrated that 14-year-old children showed adult-like performance answering such questions. Thus, in this case, although previous research pointed out that inhibiting the possibilities is seen at three years of age, as the task requires inhibiting more than one possibility, young children have difficulty inhibiting the alternative possibilities.

Similarly, in an experiment where either an event A or an event B (or both) causes an event C to happen, McCormack et al. (2018) asked children from four years of age to nine years of age counterfactual questions such as *if A had not happened, would C have happened?* and *if A had been prevented, would C have happened?* Their results showed that 6-to-7-year-old children could answer such questions, and 8-to-9-year children did so at ceiling level. The difference between the experimental paradigm of Rafetseder et al. (2013) and McCormack et al. (2018) was that while Rafetseder and colleagues’ experiment required children to make reasoning from the narratives about the behavior of the agents, McCormack and colleagues’ experiment used a physical system where the different combination of the pegs’ placement caused the toy pigs to fall down or not. Nyhout and Ganea (2019b) further showed that children as young as age four could reason counterfactually with a blicket detector paradigm.
where the physical objects caused the blicket detector machine to go off after asked counterfactual conditional questions such as *if she had not put the object on the box, would the light still have switched on?* Therefore, it is concluded that children are better at making counterfactual inferences about the physical events and objects compared to the stories including agents with different choices (Nyhout & Ganea, 2019a).

1.3.3 Keeping multiple representations generated by counterfactuals in mind requires working memory

As people should hold multiple alternatives in mind during counterfactual language processing, working memory capacity could affect their ability to reason counterfactually. German and Nichols (2003) stated that counterfactual reasoning in children emerges at the age of four, and maintaining causal relations between the antecedent and the consequent of the counterfactual sentence depends on the temporal proximity between the antecedent and the consequent. For example, in a sequence of events A, B, C, and D, 3-year-old children could answer questions where the event in the antecedent and the consequent were closer in the sequence, such as *what if C had not happened, would D have happened?* (short causal chains). However, they failed to answer questions where the event in the antecedent and the consequent were more distant from each other in the sequence, such as *what if A had not happened, would D have happened?* (long causal chains). The result showed that 4-year-old children could answer these questions while 3-year-olders could not. Thus, we can say that as the memory load increases, retrieving the information about the earlier events becomes harder during speech.

In addition, Beck et al. (2006) reported that in an experiment where an object follows either the blue way or the red way, if it continues to follow the red way, it separates into two ways as spotty and stripy based on the cards chosen, the participants were asked future hypothetical question about the path the object follows, *what if next time it goes the other way, where will it be?* As the second event (spotty-stripy selection) happens later than the first event (red-blue selection), the participants are expected to respond by saying spotty or stripy, and most of them did so. However, some participants inferred the red or blue selection, which can be indirect evidence for German and Nichols’ (2003) claim that longer causal chains require more processing power, yet because Beck et al. (2006) did not specify these participants, it is not possible to make a proper discussion. The issue raised in causal chains is that the possible lack of transitivity between the events, which does not contribute to the counterfactual causation of an outcome. The causal chains in these studies maintain the connections
between the events so that these events are consecutively the cause of each other due to transitivity.
On the other hand, suppose such a story in which an enemy puts a bomb outside the door of Lucy, and
Brian sees the bomb and then pinches out the fuse, so Lucy survives. In this story, Brian’s pinching
out the fuse is the cause of Lucy’s survival, yet the enemy’s planting the bomb is not the cause of
Lucy’s survival. Hence, the counterfactual conditional sentence, *if someone had not placed the bomb,
Lucy would not have survived*, suggesting the cause of Lucy’s survival is someone’s placing a bomb at
her door, is not an appropriate sentence regarding the transitivity in causal chains. Therefore, children
might be considering the possibility that some of the events are not the cause of the final situation in
counterfactual conditionals, or they simply find some of the possible causes as irrelevant, thus failing
to respond correctly in such experimental tasks.

1.3.4 Counterfactual reasoning requires addressing to other minds

Besides the executive functioning skills, as people must consider the alternative situations and reality
when thinking counterfactually, counterfactual thinking ability might address to theory of mind and
false belief skills where one’s and others’ views are considered (Drayton et al., 2011; Guajardo &
old children’s ability to generate alternative situations about the counterfactual scenarios after telling
them stories like the ones in Harris et al. (1996) and checked whether this ability correlates with
the children’s performance in a series of theory of mind tasks. The results showed that there was a
significant correlation between counterfactual thinking and theory of mind ability. However, whether
theory of mind or counterfactual thinking is the prerequisite for the other is not clear.
Yet, the studies conducted with the children with autism present a more precise image regarding the
effect of theory of mind on counterfactual reasoning. Children with autism spectrum disorder often
have certain conditions such as having difficulty in social interactions, understanding emotions, and
pretending the objects as if they were something else (Frith, 2003). Therefore, as counterfactual rea-
soning is asserted to be related to theory of mind abilities, children with autism are expected to have
poorer counterfactual reasoning abilities as well. Nonetheless, the research shows that children with
autism can make counterfactual inferences as accurately as the typically developing children (Begeer
et al., 2014; Grant et al., 2004; Scott et al., 1999). For example, in an experiment where children were
told a story, *John and Mary are in the kitchen. They have some chocolate. They put the chocolate
in the fridge. Then John leaves the house to go and visit a friend. Mary wonders to herself, “what
will I do today? I know, I’ll bake a cake.” She goes to the fridge and gets the chocolate. She makes the cake with some of the chocolate and puts the rest of it away in the cupboard. Then, she eats the cake. John has finished visiting his friend now. He’s hungry and wants to eat some chocolate, and asked a counterfactual question, if Mary had not baked a cake, where would the chocolate be?, and a false-belief question, where does John think the chocolate is?, Peterson and Bowler (2000) showed that children with autism could correctly respond to counterfactual questions as typically developing children. However, there was a significant difference between their response accuracy in false belief questions, such that typically developing children were better than the ones with autism.

In another study, children listened to a story, In the bedroom, John hears his sister Anne say she wants to find her ball to play with it. Then, John goes to kitchen. But while he is away, Anne’s mother tells Anne to tidy her bedroom. When John passes Anne’s bedroom again, he sees her picking up toys from her bedroom floor. Then, they were asked a counterfactual question, if Anne’s mother hadn’t asked Anne to tidy her room, what would have been the reason she was picking up toys?, and a false belief question, what will John believe is the reason that Anne is picking up toys? Rasga et al. (2017) indicated that 6- and 8-year-old autistic children’s performances answering false belief and counterfactual conditional questions were poorer compared to their typically developing peers, but this different faded at the age of ten. On the other hand, children with autism in all age groups had better performance answering the counterfactual questions than false belief questions. These results imply that theory of mind abilities may not be a predictor of counterfactual reasoning ability.

In both typically developing and autistic children studies, when the age of the children is controlled, the effect of theory of mind skills on counterfactual reasoning vanishes. Given the effect of age in previous research, age seems to be a better predictor than theory of mind and executive functioning skills. This may be because such abilities as working memory capacity, inhibitory control, theory of mind, and language develop as the age of the children also increase. As the development in counterfactual reasoning can be both explained by age and these cognitive abilities, which also develop by age, detecting the true effect of each is a challenge. Thus, analyzing the effect of executive functioning abilities along with age may lead to a collinearity problem in which a strong correlation between two measures makes the interpretation of their true effects difficult (Mason & Perreault Jr, 1991).
1.3.5 Comprehensive studies on the relationship between counterfactual reasoning and executive functioning

The studies covered so far showed that making causal inferences using counterfactuals might be related to age, language, working memory, inhibitory control, and theory of mind abilities. Two pieces of work studied these factors comprehensively. Drayton et al. (2011) assessed children’s receptive language skills (using the TACL3 (Carrow-Woolfolk, 1985)), false belief ability (using unexpected change, deception, active deception, unexpected contents task (Bartsch & Wellman, 1989; C. Lewis & Osborne, 1990; Wimmer & Perner, 1983)), working memory capacity (using backward digit span, counting and labelling, finger tipping and labelling (Davis & Pratt, 1995; Gordon & Olson, 1998)), inhibitory control (using grass/snow, bear/dragon and card sort task (Carlson & Moses, 2001; Frye et al., 1995; Kochanska et al., 1996)) and counterfactual reasoning ability (using the experimental paradigms in Guajardo and Turley-Ames (2004) and Riggs et al. (1998)). Their regression model indicated that age, language, working memory, and counterfactual ability could account for the false belief ability of the children. This study pointed out that counterfactual thinking is related to false belief even when controlled for age and language.

Beck et al. (2009) also tested children’s verbal ability measure (using the British Picture Vocabulary Scale Second Edition (Dunn et al., 1997)), inhibitory control measures (using bear/dragon and black/white Stroop tasks (Gerstadt et al., 1994; Kochanska et al., 1996; Simpson & Riggs, 2005)), working memory measures (using counting and labelling, and noisy books tasks (Gordon & Olson, 1998; Hughes, 1998)) and counterfactual reasoning measures (using syllogism task in Dias and Harris (1988, 1990), causal chains in German and Nichols (2003) and location change task in Riggs et al. (1998)). The results showed that there was a significant positive correlation between counterfactual reasoning tasks and inhibitory control tasks and working memory tasks, and language scores. However, interestingly, only in the long causal chain counterfactual reasoning task, which is cognitively more demanding, and the working memory and inhibitory control tasks, there was a negative correlation. Beck and colleagues’ regression model also demonstrated that inhibitory control and language but not working memory were the predictors of counterfactual thinking ability. Different from Drayton et al. (2011), their model did not include age as a predictor because it showed heteroscedasticity, and they added that they did not expect any effect of age since age did not correlate with most of their measures.

The common point between Drayton et al. (2011) and Beck et al. (2009) is that they both emphasized
the effect of language on counterfactual thinking. Yarbay Duman et al. (2015) compared the performances of the typically developing children with the ones who had specific language impairment\(^2\). In a picture matching task, they told children a counterfactual conditional, *if he had ironed the shirt, he would have hung it in the closet*, and showed four pictures: a shirt is not ironed and not hung in the closet (target), a shirt is ironed and hung in the closet, a dress is not ironed and not hung in the closet, and a dress is ironed and hung in the closet. Their results indicated that typically developing children were significantly better at picking the correct picture than children with specific language impairment. This implies that language skills play an important role in counterfactual thinking. However, the problem with their experimental design is that there is more than one matching picture with the sentence, even though the authors determined only one. The alternative scenario implied by the counterfactual conditional might be that the person ironed something else instead of the shirt or nothing at all and hung that in the closet. Therefore, the pictures where the dress (instead of the shirt) is ironed and hung in the closet, and the dress is not ironed and not hung in the closet also correctly match the counterfactual conditional. Despite this confounding factor in the experimental design, one positive thing about this study is that they also compared the performances of the children not only in counterfactual conditional but also in indicative conditionals, *if he has ironed the shirt, he will hang it in the closet*, and connective sentences, *he ironed the shirt and hung it in the closet*. This is a design pattern that we often see in adult studies but not in children studies. Their result in this aspect showed that children in both groups were better at understanding the indicative and connective sentences than counterfactual conditionals. Thus, based on this study, we can posit that counterfactuals are language-wise more demanding compared to indicative conditional and connective sentences, yet the confounding factor in the study must be noted. This study also reported a positive correlation between age and task performance in typically developing children, but as the sample size (N=13) is too small, and the range is too wide (5:6-9:1), the results are not generalizable.

1.3.6 Counterfactual reasoning given the outcome of the events

Besides all these, one interesting point related to the provocation of the counterfactual thoughts is the outcome of the situation for the agent in the counterfactual scenario. German (1999) showed that after listening to the stories ending with negative outcome such as *Sally ate chocolate instead of sandwich and ended up hungry*, 5-year-old children could answer questions such as *what would Sally have done instead so she was hungry?* However, their performance was not as high as the performance

\(^2\) Specific language impairment is a disorder where people have a certain deficiency in expressive and receptive language skills although they have no hearing loss or neurological impairment (Leonard, 2014).
they showed in stories with positive outcome such as *Sally ate sandwich instead of chocolate and ended up full*. These results imply that counterfactual thinking was triggered more by the situations related to prevention from negative events rather than situations with positive outcome. This result might be related to the fact that counterfactual thinking is often attributed to regret, such that people make claims about their wrong decisions (Epstude & Roese, 2008). From this emotional aspect, some developmental studies pointed out that children have adult-like performance in understanding regret in counterfactual scenarios (Beck & Crilly, 2009; Guttentag & Ferrell, 2004; Nakamichi, 2019; Payir & Guttentag, 2019). Nevertheless, the valence of the outcome outside of regret in counterfactual thinking was not investigated by anyone else but German (1999). Therefore, German’s hypothesis must be re-tested.

1.4 Motivation for the Present Study

Given the results of the studies covered so far, the literature is far from conclusive as to when children can think counterfactually, when they can interpret counterfactual conditionals, and how their executive functioning abilities and other factors affect their counterfactual reasoning abilities. The discrepancy between the difficulty of the tasks employed in the previous studies seems to be the cause of the variation. Therefore, especially the tasks where the participants make causal inferences using the counterfactual situations about the behavior of the human agents pose a greater challenge for the young children than the task using physical object paradigms. We speculate that children actually comprehend counterfactuals in these tasks, but they have difficulty expressing their inferences. After all, since the development of language augments as age increases, it is expected that young children cannot fully express their ideas. Thus, their physiological reactions, such as gaze movements, might be the indication of their early counterfactual language processing at an adult-like level. Nevertheless, when we look at adult studies, when the real-world and alternative world representations are triggered during counterfactual language comprehension and what linguistic units (morphosyntax or pragmatic context) trigger the generation of these representations are the questions still to be answered. Fortunately, Turkish, a language that expresses conditional and counterfactual meaning with a combinatorial sequence of morphemes, allows us to test the effect of morphosyntax on generating inferences caused by counterfactual conditionals. Nonetheless, while we were conducting this study, there were only two studies having investigated the comprehension of counterfactual conditionals in Turkish (see Yarbay Duman et al., 2016; Yarbay Duman et al., 2015). However, neither of them focused on the online processing of counterfactual morphosyntax.
1.4.1 Research Questions

Because of the rationales advocated in section 1.4, the present study aims to answer,

(i) whether children as young as four years of age can comprehend counterfactual conditionals at an adult-like level,

(ii) whether adults can incrementally use morphosyntax for counterfactual reasoning during speech,

(iii) whether children as young as four years of age can also incrementally interpret the morphosyntactic cues to reason counterfactually,

(iv) whether the negative outcomes of the counterfactual conditionals trigger the arousal of counterfactual thoughts more,

(v) whether the executive functioning abilities of the children predict their ability to reason counterfactually (if they do, which of them predict how).

1.4.2 Structure of the Thesis

In this chapter, we introduced counterfactual conditionals, which is the structure under investigation in this study. Then, we gave information about its syntax and semantics and covered the previous literature regarding the processing of this structure by adults and its development in children for causal reasoning. Finally, we rationalized the motivation and need for this study and presented the aim and research questions.

In chapter 2, we introduce the experimental paradigms and statistical methods employed to answer the research questions and our assumptions. In chapter 3, we present the results of our statistical analyses. In chapter 4, we discuss our findings in the light of the previous studies. Finally, in chapter 5, we share our concluding remarks and directions for future studies.
CHAPTER 2

EXPERIMENT

In this experiment, we employ visual world paradigm (VWP) (Cooper, 1974) to investigate online processing and ask an end-sentence comprehension question testing the offline interpretation of counterfactuals. In doing that, we also controlled the effect of the children’s executive functioning abilities such as short-term memory, working memory, and inhibitory control on their response accuracy to examine the individual differences.

The principal hypothesis behind the visual world eye-tracking paradigm is that the probability of attending a visual stimulus, excluding noise, is \(p\left(\frac{1}{N}\right) \) where \(N \) is the total number of stimuli in the scene when there is no auditory stimulus accompanying the visuals. Once the auditory stimulus respecting the visual scene is heard, the gaze shifts towards the related visual stimulus (Altmann & Kamide, 1999; Langton et al., 2000). These eye movements indicate attention to the information extracted from the utterance.

2.1 Participants

Twenty-three children (\(M_{\text{age}} = 4:10; \) Range = 4:05-5:11; 11 Females) and eighteen adults (\(M_{\text{age}} = 25.27; \) Range = 20-35; 11 Females) participated in the experiment (\(N = 41 \)). The participants had normal or corrected-to-normal vision and were without any hearing problems. The adults reported that they had no neurological and behavioral problems. The parents of the children also reported that their children were of typical language development and had no neurological and behavioral problems. All participants were native speakers of Turkish and naïve to the purposes of the study. Child participants were recruited from preschools in Ankara or by announcements on social media. Participation in the experiment was voluntary for the adults, and children participated in the experiment on the condition that their parents gave written consent before the experiment. Additionally, children were asked for
their oral consent before the experiment started. At the end of the experiment, children were given a treat, and their parents were given a gift card from a bookstore for compensation. We excluded six children and three adult participants from the data due to some technical problems with the eye-tracking such as calibration issues.

2.2 Stimuli and Design

In this experiment, participants were first presented with a visual scene as in Figure 2.1. The referent pictures used in the visual scenes were taken from copyright-free online sources. These referents were introduced with a context sentence as in 6a and 6b followed with the experimental items.

(6) a. **Context sentence (past tense)**

Garaj-da araba ve bisiklet var-dı.
Garage-Loc car-Nom and bicycle-Nom exist-Past
There were a car and a bicycle in the garage.

b. **Context sentence (aorist tense)**

Garaj-da araba ve bisiklet var-∅.
Garage-Loc car-Nom and bicycle-Nom exist-Aor
There are a car and a bicycle in the garage.

The experimental items were in two conditions with two levels. The first condition was whether the conditional sentence was in a counterfactual or indicative conditional form, and the second condition was whether the outcome of the event was positive or negative for the agent in the sentence. Therefore,

1 Sentence 6a was used to set the scene for the counterfactual conditionals, sentence 6b was for the indicative conditionals.
this 2×2 design led to the total of four types of conditional sentences given in 7a-7d. Given these experimental items, the two referents in the visual scene corresponded to the real-world situation and the alternative world situation. The real-world situation referred to the target referent in which the agent in the experimental trials was engaged. On the other hand, the alternative world situation referred to the competitor referent in which the agent was engaged. The position of the referents in the visual scene (i.e., target or competitor) was counterbalanced so that there was no bias for the location of the target or competitor referent. There were sixteen experimental items in the experiment (four items per condition and no filler items were used). The experimental items were presented in two blocks, and their order was randomized. We also constructed four lists such that one participant could only hear one version of each experimental item. In other words, if the participant given a certain list heard a sentence in one condition, s/he did not hear its form in other conditions with the same stimuli. Before seeing the actual experimental items, the participants saw three training items with some basic questions as a warm-up (see Appendix A for the full list of items).

(7) a. **Counterfactual conditional sentence with negative outcome**

Can araba-(y)ı sür-se-(y)di, işe zamanında yetiş-ecek-ti.
Can-Nom car-Acc drive-Cond-Past job-Dat timely catch-Fut-Past

If John had driven the car, he would have been on time for the job.

Target: Bicycle

b. **Counterfactual conditional sentence with positive outcome**

Can bisiklet-i sür-se-(y)di, işe geç kal-acak-tı.
Can-Nom bicycle-Acc ride-Cond-Past job-Dat late become-Fut-Past

If John had ridden the bicycle, he would have been late for the job.

Target: Car

c. **Indicative conditional sentence with negative outcome**

Can bisiklet-i sür-er-se, işe geç kal-acak.
Can-Nom bicycle-Acc ride-Aor-Cond job late become-Fut

If John rides the bicycle, he will be late for the job.

Target: Car

d. **Indicative conditional sentence with positive outcome**

Can araba-(y)ı sür-er-se, işe zamanında yetiş-ecek.
Can-Nom car-Acc drive-Aor-Cond job timely catch-Fut

If John drives the car, he will be on time for the job.

Target: Car
At the end of each trial, the participants were asked a comprehension question asking what the agent did or will do given the sentence they heard. This question was formed in the past form after the counterfactual conditional sentences as in 8a, and it was formed in the future form after the indicative conditional sentences as in 8b. Adult participants used a button box to select the correct referent. The children did not use the button box in order to simplify the task for them. They either said the name of the referent out loud or pointed to the referent. The experimenter registered the child participants’ responses using the button box. After each response, the participants received encouraging feedback such as “You’re good!” and “You play well!” etc. There was no feedback implying whether the question was answered correctly or incorrectly.

(8)

a. **Comprehension questions after counterfactual conditional sentences**

```plaintext
Sen-ce Can hangisi-(n)i sür-dü?
You-Abl Can-Nom which-Acc drive/ride-Past
Which one do you think John drove/rode?
```

b. **Comprehension questions after indicative conditional sentences**

```plaintext
Sen-ce Can hangisi-(n)i sür-ecek)?
You-Abl Can-Nom which-Acc drive/ride-Fut
Which one do you think John will drive/ride?
```

A female adult who was a native speaker of Turkish recorded the auditory stimuli. The speaker was instructed to voice the sentences at a normal pace in a child-directed manner. The files were recorded using Audacity, a free and open-source digital audio editor and recording application software, at a sampling frequency of 44100 Hz. The recordings were on a mono channel to avoid unequal sound levels between right and left ears. The critical onset and offset times of the experimental items were determined using Audacity. In the same software, we also manipulated these critical times so that none of the values were significantly discrete from the others and the lengths of the experimental items were closer to each other as much as possible by adding or removing some pauses. In addition, any noise in the recording was cleaned, and they were normalized so that each had the same volume level. The visual scenes were shown 500ms prior to the onset of the context sentences. Besides, there were 1000ms silent periods between each experimental phase (i.e., context sentence, experimental sentence, and comprehension question). The participants heard the auditory stimuli via either a headset or external speakers based on their choice. Prior to the experiment, the volume of the sound system equipment was adjusted to a level that the participants could hear the auditory stimuli comfortably.
2.3 Procedure

The experimental session took place in a silent room at a preschool or METU Language and Cognitive Development Laboratory. Participants were seated in front of a laptop computer with a 15.6-inch 1920 by 1080 resolution screen running at a 144 Hz refresh rate. They saw the visual stimuli on this screen. The experiment was created using SR Research Experiment Builder software. The participants’ eye movements were sampled using SR Research Eyelink Portable Duo head-free eye-tracking system running at 1000 Hz. The recording was binocular, but the dominant eye of the participants was used for the analysis. Before the experiment, the participants received the following instruction from the experimenter: *In this experiment, you will hear a story and see pictures related to that story. After the story, you will hear a comprehension question about the story, and you will answer that question. Please look at the screen and listen to the stories carefully.* Then, five-point calibration and validation were performed, and this procedure was repeated whenever the calibration was off, or the participants moved from the chair and had excessive head movement. After the calibration and validation, this instruction was repeated with an animation where a character spoke in a more child-directed manner before the experiment began. Before each trial, a fixation cross in the form of a star having a dot in the middle appeared at the center of the screen as a drift correction procedure to check the calibration. The whole session lasted approximately fifteen minutes.

2.4 Cognitive Tasks

We also measured the cognitive skills of the participants, such as short-term memory capacity, working-memory capacity, and inhibition skills, using a series of executive function tests. These tests included forward digit-span task for short-term memory capacity, backward digit-span task for working-memory capacity (Wechsler, 1949; Wechsler & Kodama, 1949) and happy-sad face task for inhibition skills (Lagattuta et al., 2011). The participants participated in these tasks after the eye-tracking experiment. The order of the memory tasks and the inhibition task were counterbalanced across the participants.

In the forward digit-span tasks, the experimenter told the participants a series of integers from 1 to 9, differing in length, and asked them to repeat that series in the order she recited after her. The trials started from the series of the length 3, and if the participants correctly recited at least one out of two series with the same length, \(n \), the experimenter gave them a series of the length, \(n + 1 \). If the
participants failed to recite two series of the same length consecutively, the experimenter finished the task. For each correct recitation, the experimenter gave one point to the participants. In the backward digit-span task, the procedure was the same, but the participants had to recite the series in reverse order. Also, the trials started from the series of length 2 in this task.

For the inhibition task, we used a Stroop test where the experimenter showed the participants happy or sad faces and asked them to say “sad” if the face seen is happy, and “happy” if the face seen is sad. The participants saw twenty faces, and the gender of the person whose face they saw was counterbalanced across them as female and male. For each correct answer, the participants got one point. The experimental stimuli were shown on a computer screen in random order.

2.5 Predictions

If the participants can incrementally process the morphosyntax of indicative and counterfactual conditionals, we expect that the participants move their gaze to the target referent after they hear the verb conjugation of the antecedent. Also, if children use such morphosyntactic cues as adults do, we predict a similar fixation pattern among adults and children. German (1999) stated that the performances of the children answering counterfactual situations with negative outcome were better than those with positive outcome. Similarly, we predicted that the increase in the target looks happens earlier in the counterfactual sentences with negative outcome than the ones with positive outcome. Besides, there might be overall more looks to the target in the negative outcome sentences than in positive outcome sentences. On the other hand, with respect to the responses to the end-sentence comprehension questions, we predict more correct answers for the counterfactuals with negative outcome than the ones with positive outcome if German’s claim is right. In addition, since indicative conditionals do not require alternative representations, unlike the counterfactuals (De Brigard et al., 2013; Kulakova & Nieuwland, 2016a), we expect more accurate answers for indicative conditionals compared to counterfactual conditionals. In counterfactual conditionals, the real-world and the alternative world situations are represented at the same time according to the dual representation theories (Byrne, 2007; Byrne & Egan, 2004; Kulakova et al., 2013). Therefore, we expect fixations to be distributed equally between the target and competitor referents in our experiment. However, the fixations of the participants should converge on a single referent in indicative conditionals as they do not require generating multiple possibilities. Such gaze patterns were observed in Orenes et al. (2019), so we also anticipate a similar pattern. As to the cognitive task scores and the performances in the comprehension questions, we
expect that children with higher working memory capacity and inhibitory control ability will perform better as the previous research showed that working memory capacity and inhibitory control skills necessary for generating alternative situations, representing them simultaneously and inhibiting them to reason about the real-world situation (Beck & Riggs, 2014; Beck et al., 2009; Drayton et al., 2011).
From the experiment, we collected two types of data. The first is the participants’ responses to the comprehension questions at the end of the trials, and the second is the participants’ gaze patterns recorded during the experiment. We first report the analysis of the response data and then the analysis of the eye-tracking data.

3.1 Analysis of Response Data

The participants’ responses to the end-sentence comprehension questions were coded as 1 if they answered the question correctly and 0 otherwise. Therefore, our data was distributed binomially. We analyzed this binomial data by fitting a series of generalized linear mixed models (GLMM) using lme4 package (version 1.1.27.1) in R statistical programming language environment (Bates et al., 2015; Bates et al., 2011). Prior to the analysis, the data points with no response were removed from the data. We started our analysis with the most complex model and reduced the model complexity by checking the model convergence. The models that did not converge were discarded. Thus, we eliminated the random slope models and the model with three-way interaction (age \times type of conditional \times outcome). The final models included the main effects of the experimental manipulations (group, type of conditional, and outcome), the interaction between type of conditional and outcome, and random intercepts for subjects and items (Equation 3.1). The model comparisons were made using Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) (Akaike, 1974; Schwarz, 1978). We also used multcomp package (version 1.4.18) to compare the levels of factors (Hothorn et al., 2016).

$$Model = glmer(accuracy \sim age + conditional \times outcome + (1|Subject) + (1|Item)) \quad (3.1)$$
3.1.1 Accuracy as a function of age, conditional and outcome

Figure 3.1 demonstrates that the participants’ proportion of correct answers for each type of conditional and outcome. The accuracy of the participants’ responses was analyzed with a generalized linear mixed model where the age group (adults and children) and type of conditional (counterfactual and indicative), and outcome (negative and positive) were the independent variables. The model including the three-way interaction term between age group, type of conditional, and outcome did not converge, so we reduced the nAGQ parameter of the model to 0 (default 1). This model was compared with the model with two-way interaction between type of conditional and outcome. The comparison revealed that the three-way interaction term did not significantly improve the model fit. Moreover, the model with only a two-way interaction term had lower AIC and BIC values (Table 3.1). Therefore, we presented the results of the model with two-way interaction.

The results of the model (Table 3.2) show that the adults were significantly better than the children ($\hat{\text{Estimate}} = 0.8727, SE = 0.3574, z = 2.442, p < 0.05$). These results suggest that children
did not perform as well as adults in their comprehension of conditionals. Nevertheless, although the children had lower performance compared to the adults, their performance in all conditions, except for the CN condition, was over 75%, indicating that they had good enough comprehension of the conditionals. On the other hand, even the adults had 100% accuracy in none of the conditions; even they had accuracy below 75% in the CN condition. These mark that such linguistic structures are demanding to process even for adults.

Table 3.2: Summary of the generalized linear mixed model

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.8727</td>
<td>0.3574</td>
<td>2.442</td>
<td>0.0146</td>
<td>*</td>
</tr>
<tr>
<td>Children</td>
<td>-1.8801</td>
<td>0.4425</td>
<td>-4.249</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>Indicative</td>
<td>2.2618</td>
<td>0.3936</td>
<td>5.746</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>Positive</td>
<td>2.4759</td>
<td>0.4035</td>
<td>6.136</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>Indicative:Positive</td>
<td>-2.5194</td>
<td>0.5762</td>
<td>-4.373</td>
<td><0.001</td>
<td>***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The results also indicate that the performances of all participants were higher in the indicative conditional sentences than in the counterfactual conditional sentences with negative outcome ($Estimate = 2.2618, SE = 0.3936, z = 5.746, p < 0.001$). In addition, the model summary points that the participants had more correct answer in the conditional sentences ending with a positive outcome than a negative outcome ($Estimate = 2.4759, SE = 0.4035, z = 6.136, p < 0.001$). Therefore, we can conclude that the participants found the comprehension questions after the counterfactual conditional with negative outcome harder. Finally, the model shows that there is a significant interaction between type of conditional and outcome ($Estimate = -2.5194, SE = 0.5762, z = -4.373, p < 0.001$). Figure 3.2 points out that the participants’ accuracy increases if the outcome is negative in the indicative conditionals, yet if the outcome of the event is positive, then the accuracy of the participants slightly increases in the counterfactual conditionals.

We also ran pairwise comparisons to investigate if there was any significant difference between the four conditionals that emerged from the two-way interaction. The results of the pairwise comparisons showed that counterfactual sentences with negative outcome significantly differed from the other three conditional sentence types, and these three conditional sentence types did not significantly differ from each other (Table 3.3).
Interaction between Type of Conditional and Outcome

Figure 3.2: Visualisation of the interaction between type of conditional and outcome

Table 3.3: Pairwise comparisons between the conditional sentence types

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP - CN</td>
<td>2.47595</td>
<td>0.40349</td>
<td>6.136</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>IN - CN</td>
<td>2.26179</td>
<td>0.39365</td>
<td>5.746</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>IP - CN</td>
<td>2.21828</td>
<td>0.38767</td>
<td>5.722</td>
<td><0.001</td>
<td>***</td>
</tr>
<tr>
<td>IN - CP</td>
<td>-0.21415</td>
<td>0.42065</td>
<td>-0.509</td>
<td>0.610</td>
<td></td>
</tr>
<tr>
<td>IP - CP</td>
<td>-0.25767</td>
<td>0.41727</td>
<td>-0.618</td>
<td>0.926</td>
<td></td>
</tr>
<tr>
<td>IP - IN</td>
<td>-0.04351</td>
<td>0.40907</td>
<td>-0.106</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

3.1.2 Accuracy as a function of cognitive tasks

We fitted a second generalized linear mixed model where the predictors were the standardized short-term and working memory and inhibition task scores for the response accuracy of the participants. The standardization was made using the formula,

\[
\text{standardized score} = \frac{\text{Raw Task Score} - \text{mean(Task Score)}}{\text{sd(Task Score)}}
\]

This procedure scales all the predictor variable values to standard normal distribution. Similar to the first model, subject and item were added to the model as the random effects. As the previous model showed that the adult participants were significantly better at giving correct responses to the comprehension questions, only the child data was analyzed in this model to avoid the collinearity problem, touched upon at the end of section 1.3.4.

We first analyzed the interaction model, where we checked if any cognitive task score intervened with
Table 3.4: Summary of cognitive tasks model with no interaction

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>z-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>2.0649</td>
<td>0.9007</td>
<td>2.293</td>
<td>0.0219</td>
<td>*</td>
</tr>
<tr>
<td>Short Term Memory</td>
<td>1.1900</td>
<td>0.9023</td>
<td>1.319</td>
<td>0.1872</td>
<td></td>
</tr>
<tr>
<td>Working Memory</td>
<td>0.5389</td>
<td>1.0354</td>
<td>0.521</td>
<td>0.6027</td>
<td></td>
</tr>
<tr>
<td>Inhibition</td>
<td>-0.8686</td>
<td>0.4385</td>
<td>-1.981</td>
<td>0.0476</td>
<td>*</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The model summary showed that there was no significant interaction between any cognitive task score and no significant effect of any predictor variable. Therefore, we re-ran the model with no interaction to reduce the model complexity. The model without interaction had slightly lower AIC and BIC scores than the interaction model. The model summary (Table 3.4) indicated that there was a marginally significant effect of inhibition task score (Estimate = -0.8686, SE = 0.4385, z = -1.981, p < 0.05). This result implies that as the inhibition scores of the participants decreased, there was a higher chance that the participants give correct responses. The implications are discussed in chapter 4. The effects of the short-term and working memory capacity did not turn out to be significant.

3.2 Analysis of Eye-Tracking Data

In analyzing eye-tracking data, we first processed the raw data as outlined in section 3.2.1. Then, we analyzed the processed data using generalized additive mixed modeling, the use which was rationalized in section 3.2.2.

3.2.1 Data Processing

The eye-tracking data sample reports were created using SR Research Viewer software. We used fixation counts on the areas of interest (referents) for the analysis because the number of fixations on a referent shows the attention paid to that referent (Cooper, 1974). No switch type of analysis was performed, so saccades and regressions were not used for the analysis. The raw files were merged as a single file using the statistical programming language, R (version 4.1.2) (R Core Team, 2021). Then, the training items were removed from the data. Data preparation, relabelling of interest areas, creating time-series were performed using VWPre package (version 1.2.4) (Porretta et al., 2017). Then, the time points were subdivided into 100ms bins. Binning the data was necessary to reduce the noise. As our dependent variable, we used a score we call target preference, which was acquired through
the difference between the empirical logit score of the target referent and the empirical logit score of the competitor referent at a given time point (for a similar application see Cooper-Cunningham et al., 2020). This variable indicated whether and to what extent there were more looks towards the target referent on a Gaussian continuous scale where the mean of the dependent variable ($\mu_{\text{targetpreference}}$) is 0 if the target and competitor looks’ empirical logit scores are equal to each other, and its standard deviation ($\sigma_{\text{targetpreference}}$) varies with a certain degree.

In the CN, CP, and IN conditions, at around 675ms, the participants heard the noun referring to the competitor referent in the antecedent, whereas, in the IP condition, they heard the noun referring to the target referent. Therefore, in the CN, CP, and IN conditions, we expected less target preference (below 50%) in these conditions, while the target preference was expected to increase in the IP condition for this period. However, after the participants heard the verb conjugation in the antecedent (\sim2200ms) and the consequent (\sim3900ms) before the comprehension question, we anticipated an increase in the target preference in all conditions (not below 50%).

The raw plot in Figure 3.3 shows the participants’ target preference as a function of time. After the offset of the verb conjugation in the antecedent, the target preference in all conditions is at the 50% band (not below 50% anymore). Additionally, the plot demonstrates no significant difference between adults and children. To statistically evaluate these results, we fitted a series of Generalized Additive Mixed Models (GAMM).

3.2.2 Generalized Additive Mixed Modeling

Generalized Additive Mixed Model is a flexible generalized linear regression method to capture non-linear covariate effects with the linear predictor that has the sum of a smooth function of those covariates (Hastie & Tibshirani, 1987, 1990; Wood, 2006). GAMMs are suitable for time series analysis since the change in the time series can be modeled not only linearly but also non-linearly by smooth terms. In addition, the autocorrelation in the time series where the observation at a time point, t, is correlated with the previous time points, $t - n$ with a certain lag can be controlled in GAMM (Baayen et al., 2018). In many previous studies, the effect of time was analyzed using GLMM by splitting the time course data into critical time windows. However, this procedure causes a problem called researcher degrees of freedom where the researcher’s selection of a data analysis procedure among the other possibilities may lead to false positive results (Simmons et al., 2011). On the other hand, the effect of the whole time series without the split time windows can be analyzed using GAMM. Furthermore,
the (non-linear) interaction between continuous variables (time) and the other variables (categorical or continuous) can be analyzed using GAMM (Wieling, 2018; Winter & Wieling, 2016). GAMMs also allow for the random effects of the non-linear terms (Baayen et al., 2017). Thus, GAMM was suitable for our data analysis as we aimed to investigate the change in gaze positions of the participants as a function of time and examine the random effects of participant and item.

For the GAMM analysis, we selected the period starting from the offset of the verb conjugation until the onset of the comprehension question. This period lasts approximately 2700ms. Our dependent variable was target preference (detailed in section 3.2.1), and the independent variables were age group, type of conditional, and outcome. These terms as a function of time were also introduced to the model as the smooth terms. To better interpret the smooth terms of the categorical interactions between type of conditional and outcome, we introduced the type of conditional in four factors (CN, CP, IN, and IP). Because there may be a significant change as a function of time in one type of conditional and outcome (say CP) but may not be any change in the other (say IN), this was necessary. Otherwise, separate smooth terms for the type of conditional and outcome do not reveal that information. Furthermore, the random effect of subject and item by the type of conditional sentence as a function of time was introduced to the model as the smooth terms. The statistical analysis was made using mgcv package (version 1.8.38) (Wood, 2012), and the visualization of the statistical results was made using itsadug
Table 3.5: Summary of the generalized additive mixed model for age group and type of conditional

A. Parametric coefficients

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.7855</td>
<td>0.2505</td>
<td>-3.1357</td>
<td>0.0017</td>
<td>**</td>
</tr>
<tr>
<td>groupChildren</td>
<td>-0.0699</td>
<td>0.2081</td>
<td>-0.3359</td>
<td>0.7369</td>
<td></td>
</tr>
<tr>
<td>condtypeCP</td>
<td>-0.0177</td>
<td>0.3169</td>
<td>-0.0559</td>
<td>0.9554</td>
<td></td>
</tr>
<tr>
<td>condtypeIN</td>
<td>0.1624</td>
<td>0.2953</td>
<td>0.5499</td>
<td>0.5824</td>
<td></td>
</tr>
<tr>
<td>condtypeIP</td>
<td>1.8984</td>
<td>0.3320</td>
<td>5.7186</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
</tbody>
</table>

B. Smooth terms

<table>
<thead>
<tr>
<th>Term</th>
<th>edf</th>
<th>Ref.df</th>
<th>F-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(Time):condtypeCN</td>
<td>1.2109</td>
<td>1.3046</td>
<td>2.8795</td>
<td>0.0585</td>
<td>.</td>
</tr>
<tr>
<td>s(Time):condtypeCP</td>
<td>1.0001</td>
<td>1.0002</td>
<td>1.9989</td>
<td>0.1574</td>
<td></td>
</tr>
<tr>
<td>s(Time):condtypeIN</td>
<td>0.0025</td>
<td>0.0036</td>
<td>0.0038</td>
<td>0.9971</td>
<td></td>
</tr>
<tr>
<td>s(Time):condtypeIP</td>
<td>1.0009</td>
<td>1.0012</td>
<td>13.7327</td>
<td>0.0002</td>
<td>***</td>
</tr>
<tr>
<td>s(Time):groupAdults</td>
<td>1.0001</td>
<td>1.0002</td>
<td>14.1709</td>
<td>0.0002</td>
<td>***</td>
</tr>
<tr>
<td>s(Time):groupChildren</td>
<td>1.7300</td>
<td>2.0097</td>
<td>8.4048</td>
<td>0.0002</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeCN</td>
<td>126.9190</td>
<td>341.0000</td>
<td>0.6588</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeCP</td>
<td>113.8793</td>
<td>341.0000</td>
<td>0.5433</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeIN</td>
<td>145.3579</td>
<td>341.0000</td>
<td>0.8171</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeIP</td>
<td>148.3552</td>
<td>341.0000</td>
<td>0.8344</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Item):condtypeCN</td>
<td>8.3095</td>
<td>44.0000</td>
<td>0.2521</td>
<td>0.0786</td>
<td>.</td>
</tr>
<tr>
<td>s(Time,Item):condtypeCP</td>
<td>13.2706</td>
<td>35.0000</td>
<td>0.6098</td>
<td>0.0113</td>
<td>*</td>
</tr>
<tr>
<td>s(Time,Item):condtypeIN</td>
<td>6.9014</td>
<td>35.0000</td>
<td>0.2809</td>
<td>0.0559</td>
<td>.</td>
</tr>
<tr>
<td>s(Time,Item):condtypeIP</td>
<td>20.1580</td>
<td>35.0000</td>
<td>1.6846</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We first ran the model that has both the effect of age group and the type of conditional (deviance explained = 23.9%). The model summary did not show any significant effect of age according to the parametric coefficients of the model, which suggests that there is no difference between adults and children in terms of overall looks to the target (Table 3.5). On the other hand, the smooth terms of the model pointed to a significant change in the target preference as a function of time for both adults and children. To observe the trend of the change, visual inspection was necessary. The visualization of the smooth terms of the conditional sentence types indicates an increase in the target looks not only for adults but also for children in CN, CP, and IN conditions. Besides, there was significantly more target preference in the IP condition than in the other conditions according to the parametric coefficients of the model and significant change as a function of time according to the smooth terms, although we observed a decrease in the target looks in that condition, suggesting that the participants attended the target after the offset of the verb conjugation until the end of the sentence in all conditions but the IP condition (Figure 3.4). As the target referent and the referent uttered in the critical word are the same
Figure 3.4: Smooth plots for the summed effects of the age group and the conditional sentence type. The shaded bands represent 95% confidence intervals.

In the IP condition, the participants already had more target looks even before the verb conjugation in the antecedent and started to look at the competitor referent towards the end of the utterance.

As the age groups did not differ from each other, we subset the data into two (adults and children) and fitted a separate GAMM to investigate the effect of the conditional sentence type for each age group individually. This procedure reduces the model complexity and allows us to compare the differences between the conditional sentence types in terms of the change in target preference for a given age group (Cooper-Cunningham et al., 2020).

3.2.2.1 Adults’ Processing of Conditional Morphosyntax

The summary of the GAMM for the adult participants (deviance explained = 25.8%) presented that the participants had significantly more target looks in the IP condition than in the other conditions, and there was no significant difference among the other three conditions according to the parametric coefficients. According to the smooth terms of the model, there was a significant change in the target preference in the IN and IP conditions (Table 3.6). A visual inspection is necessary to learn the trend of change in the conditions. The smooth terms of the model as visualized in Figure 3.5 demonstrated that adults’ target looks increased as a function of time in all conditions except for the IP condition.
Table 3.6: Summary of the generalized additive mixed model for the adults

<table>
<thead>
<tr>
<th>A. Parametric coefficients</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.7370</td>
<td>0.2911</td>
<td>-2.5318</td>
<td>0.0114</td>
<td>*</td>
</tr>
<tr>
<td>condtypeCP</td>
<td>-0.1916</td>
<td>0.4444</td>
<td>-0.4312</td>
<td>0.6663</td>
<td></td>
</tr>
<tr>
<td>condtypeIN</td>
<td>0.0728</td>
<td>0.4287</td>
<td>0.1699</td>
<td>0.8651</td>
<td></td>
</tr>
<tr>
<td>condtypeIP</td>
<td>2.1272</td>
<td>0.5257</td>
<td>4.0467</td>
<td>0.0001</td>
<td>***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B. Smooth terms</th>
<th>edf</th>
<th>Ref.df</th>
<th>F-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(Time):condtypeCN</td>
<td>1.0003</td>
<td>1.0004</td>
<td>2.2448</td>
<td>0.1340</td>
<td></td>
</tr>
<tr>
<td>s(Time):condtypeCP</td>
<td>1.0000</td>
<td>1.0001</td>
<td>0.6590</td>
<td>0.4169</td>
<td></td>
</tr>
<tr>
<td>s(Time):condtypeIN</td>
<td>1.0002</td>
<td>1.0003</td>
<td>9.3960</td>
<td>0.0022</td>
<td>**</td>
</tr>
<tr>
<td>s(Time):condtypeIP</td>
<td>4.8244</td>
<td>5.8210</td>
<td>3.0919</td>
<td>0.0056</td>
<td>**</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeCN</td>
<td>54.5429</td>
<td>143.0000</td>
<td>0.7122</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeCP</td>
<td>61.6102</td>
<td>143.0000</td>
<td>0.8391</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeIN</td>
<td>65.0208</td>
<td>143.0000</td>
<td>0.9433</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeIP</td>
<td>45.9063</td>
<td>143.0000</td>
<td>0.6044</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Item):condtypeCN</td>
<td>0.4130</td>
<td>35.0000</td>
<td>0.0120</td>
<td>0.3783</td>
<td></td>
</tr>
<tr>
<td>s(Time,Item):condtypeCP</td>
<td>11.4194</td>
<td>35.0000</td>
<td>0.5189</td>
<td>0.0149</td>
<td>*</td>
</tr>
<tr>
<td>s(Time,Item):condtypeIN</td>
<td>2.5815</td>
<td>35.0000</td>
<td>0.0830</td>
<td>0.2452</td>
<td></td>
</tr>
<tr>
<td>s(Time,Item):condtypeIP</td>
<td>6.0590</td>
<td>35.0000</td>
<td>0.2402</td>
<td>0.0843</td>
<td>.</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 3.5: Smooth plots for the summed effect of the conditional sentence type for the adults. The shaded bands represent 95% confidence intervals.
Table 3.7: Summary of the generalized additive mixed model for the children

A. Parametric coefficients

<table>
<thead>
<tr>
<th>Term</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.8732</td>
<td>0.2860</td>
<td>-3.0529</td>
<td>0.0023</td>
<td>**</td>
</tr>
<tr>
<td>condtypeCP</td>
<td>0.1233</td>
<td>0.3976</td>
<td>0.3102</td>
<td>0.7564</td>
<td></td>
</tr>
<tr>
<td>condtypeIN</td>
<td>0.2127</td>
<td>0.4344</td>
<td>0.4897</td>
<td>0.6243</td>
<td></td>
</tr>
<tr>
<td>condtypeIP</td>
<td>1.7593</td>
<td>0.4259</td>
<td>4.1309</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
</tbody>
</table>

B. Smooth terms

<table>
<thead>
<tr>
<th>Term</th>
<th>edf</th>
<th>Ref.df</th>
<th>F-value</th>
<th>p-value</th>
<th>sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(Time):condtypeCN</td>
<td>1.0003</td>
<td>1.0004</td>
<td>0.8672</td>
<td>0.3519</td>
<td></td>
</tr>
<tr>
<td>s(Time):condtypeCP</td>
<td>1.0006</td>
<td>1.0010</td>
<td>10.9281</td>
<td>0.0009</td>
<td>***</td>
</tr>
<tr>
<td>s(Time):condtypeIN</td>
<td>1.0002</td>
<td>1.0003</td>
<td>7.0275</td>
<td>0.0080</td>
<td>**</td>
</tr>
<tr>
<td>s(Time):condtypeIP</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.4221</td>
<td>0.2331</td>
<td></td>
</tr>
<tr>
<td>s(Time,Subject):condtypeCN</td>
<td>72.6502</td>
<td>197.000</td>
<td>0.6592</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeCP</td>
<td>46.9836</td>
<td>197.000</td>
<td>0.3434</td>
<td>0.0004</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeIN</td>
<td>79.3574</td>
<td>197.000</td>
<td>0.7272</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Subject):condtypeIP</td>
<td>97.3761</td>
<td>197.000</td>
<td>1.0085</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
<tr>
<td>s(Time,Item):condtypeCN</td>
<td>12.4916</td>
<td>44.000</td>
<td>0.4779</td>
<td>0.0079</td>
<td>**</td>
</tr>
<tr>
<td>s(Time,Item):condtypeCP</td>
<td>0.8309</td>
<td>35.000</td>
<td>0.0328</td>
<td>0.2460</td>
<td></td>
</tr>
<tr>
<td>s(Time,Item):condtypeIN</td>
<td>13.4207</td>
<td>35.000</td>
<td>0.6799</td>
<td>0.0036</td>
<td>**</td>
</tr>
<tr>
<td>s(Time,Item):condtypeIP</td>
<td>21.7281</td>
<td>35.000</td>
<td>1.9688</td>
<td>< 0.0001</td>
<td>***</td>
</tr>
</tbody>
</table>

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

3.2.2.2 Children’s Processing of Conditional Morphosyntax

The summary of the GAMM for the children (deviance explained = 23.7%) showed that as the adults did, the children had overall more target preference in the IP condition than the other conditions according to the parametric coefficients of the model (Table 3.7). There was also a significant effect of time in the IN condition, which is similar to the adults’ results according to the smooth terms of the model. However, unlike the adults, there was a significant change in the CP condition as a function of time in the children, yet the significant change in the IP condition in the adults could not be observed in the children.

The smooth terms as visualized in Figure 3.6 pointed that the children had an increasing trend in the CP and IN conditions (also in CN, albeit not significant) in terms of their target preference. These results suggest that the children attended the target in these conditions after the offset of the verb conjugation in the antecedent.
Figure 3.6: Smooth plots for the summed effects of the conditional sentence type for the children. The shaded bands represent 95% confidence intervals.
CHAPTER 4

DISCUSSION

This study investigated whether children as young as age four could reason at adult-like level when they hear counterfactual conditionals and whether they use the morphosyntactic cues for counterfactual reasoning in a language that encodes both the indicative and counterfactual conditional meaning with concatenated verbal suffixes, Turkish.

4.1 Do counterfactual conditionals pose a greater challenge than indicative conditionals?

We showed that children could respond to the comprehension questions with high accuracy after they heard counterfactual conditionals. However, their performance was even better in indicative conditionals. This result is also valid for the adults as their performance was better in indicative conditionals than in counterfactual ones. This result suggests that counterfactual conditionals pose a greater challenge than indicative ones. This might be because counterfactual conditionals require access to the representation of the real and alternative worlds (Byrne, 2007; Epstude & Roese, 2008; Roese, 1997; Roese & Epstude, 2017). Furthermore, counterfactual conditionals presuppose the falsity of their antecedents. As the presuppositions are not computed by default, and they necessitate further processing to activate the other implicatures of the speech, they are more costly (Degen & Tanenhaus, 2015, 2016). Therefore, when reasoning counterfactually, people may need to suppress the alternative world explicitly uttered in counterfactual conditionals to surface the real-world representation. Since indicative conditionals activate only one representation, selecting the target referent in these conditionals is probably less challenging than in counterfactual conditionals. Therefore, our results are in line with the previous experimental research pointing that indicative conditions are processed more easily compared to counterfactual conditionals due to their not requiring generating alternative possibilities and inhibiting these possibilities, thus incurring less activation in the left superior frontal gyrus in contrast to counterfactuals (De Brigard et al., 2013; Kulakova & Nieuwland, 2016a).
4.2 Do young children have an adult-like performance?

We also demonstrated that children had adult-like performance responding to the comprehension questions after indicative conditionals but not after counterfactual conditionals although their accuracy was over 75% in CP, IN, and IP conditions. The better performance of the adults is probably because adults have much more exposure to the linguistic input and more familiarity with the conditional structures. In addition, adults have better executive functioning abilities which they can entertain multiple alternatives, shift between them and inhibit less likely ones. Another reason may be that children have poorer working memory capacities, and they could process the up-to-date linguistic input immediately yet fail to remember the earlier input as the new input comes, thus leading to less accurate answers in the comprehension question phase. From one view, these results are in line with Harris et al. (1996) and German and Nichols (2003) stating that 4-year-old children could reason counterfactually. From another view, they are not, as we cannot observe a ceiling performance in children in any of the conditionals, which is in line with Rafetseder et al. (2013) asserting that adult-like ceiling performance in counterfactual reasoning can only be seen after 14 years of age. Nevertheless, in our study, even adults did not have a ~100% accuracy in any of the conditionals. Moreover, their performance was as low as 75% in CN condition. Therefore, some counterfactual conditionals are even harder for the adults, and it is reasonable that children had difficulty in answering comprehension questions after such complex structures.

As German (1999) stated that children had better performance in counterfactuals with negative outcome than the ones with positive outcome, we expected our participants to have a better performance in CN condition than CP condition. However, our results conflict with German (1999), such that the participants were better at CP condition than CN condition. This finding is intriguing, such that people engage in counterfactual thinking more when they have experiences with their wrong decisions (Epstude & Roese, 2008). From this view, our finding seems incompatible with these assertions. Therefore, both the findings of German (1999) and ours are still open to question and must be re-evaluated with a more robust experimental design.

4.3 Do executive functioning abilities affect counterfactual reasoning ability?

Johnson-Laird et al. (1992) state that working memory capacity may limit the representation of the alternative possibilities in mind. Furthermore, suppressing the alternative representations to make an in-
ference about the real-world situation is an essential skill for counterfactual reasoning (Beck & Riggs, 2014). Therefore, enhancement in the counterfactual reasoning abilities can be explained with the development of working memory and inhibitory control (Byrne, 2007; Robinson & Beck, 2014). Nevertheless, Beck et al. (2009) demonstrated that there was no relation between counterfactual thinking and working memory capacity. Our findings are in line with these results, such that working memory measure was not a significant predictor of the response accuracy of children. However, Beck et al. (2009) also stated that there was a negative correlation between the inhibitory skills and one counterfactual thinking task, which is the long causal chains in German and Nichols (2003). Interestingly, their finding points to the claim that the lower the inhibitory control abilities of children, the better their performances in long causal chains, which is cognitively a more demanding task. Even more intriguing finding is that there was a negative effect of inhibition score on the accuracy of the responses according to our analysis. Therefore, we speculate that children might stick to one representation instead of switching between the alternative representations to select their responses. Another reason might be that children pick a clue allowing them to reason about the real-world representation, such as counterfactual conditional morphosyntax or contextual information, and they incrementally cancel out the inferences about the previous alternative representations instead of evaluating the alternatives to choose which one to inhibit. On the other hand, our results might have originated from the small sample size. Obviously, to make more robust generalizations, a larger sample of participants is needed.

4.4 Do children and adults incrementally use morphosyntactic cues for counterfactual reasoning?

As to the participants’ gaze patterns, our results show that not only adults but also children as young as four years of age can predict the real-world situation and assign meaning to indicative and counterfactual conditionals by incrementally integrating their morphosyntactic structures. These results are compatible with the previous studies demonstrating that children can extract information and predict the upcoming context incrementally using the morphosyntactic cues in many different languages such as Turkish (Özge et al., 2019), Chinese (Huang et al., 2013), Dutch (Brouwer et al., 2017) and German (Özge et al., 2022).

Our findings provide further evidence for Ferguson et al. (2010) and Orenes et al. (2019) revealing that people could use contextual information to predict the related referent in the indicative and counterfactual conditionals. Unlike English and Spanish, which mark conditional meaning via the explicit
connective, *if/si*, Turkish marks conditional meaning via compound morphemes (Kornfilt, 1997). The order of these morphemes separates the indicative conditional meaning from the counterfactual conditional meaning (Göksel & Kerslake, 2004). Consequently, we could demonstrate the use of morphosyntax to engage in complex logical reasoning. However, this effect becomes larger towards the end of the utterance. In Turkish, the verb conjugation in the consequent is also marked differently for indicative and counterfactual conditionals, and we even observe a further increase in the target looks after the end of the sentence where the participants fully heard the verb conjugation in the consequent. Therefore, it may be the case that our participants might have combined the verbal counterfactual morphosyntax in the antecedent with the one in the consequent to comprehend the counterfactual conditionals fully. Nevertheless, this might also be a late effect of only the morphosyntactic structure in the antecedent. Normally, it takes around 200-400ms to program a fixation (Fischer, 1992; Matin et al., 1993), yet late effects could also surface after around 1000ms (Huettig & Altmann, 2011). We think this type of late effect is actually expected for our experimental design because, in the counterfactual conditional probes, the presented noun in the antecedent refers to the alternative world referent, which corresponds to the competitor picture. Therefore, as the noun is processed before the verbal inflection, the gaze shift to the referent referring to the real-world situation begins from a lower probability, and it requires a shift from the competitor referent and inhibiting this stronger alternative.

The same effect is also observed for the indicative conditionals with negative outcome because of the same reason. The only condition where we do not observe this pattern is the indicative conditionals with positive outcome since the noun in the antecedent already refers to the real-world situation, so this condition does not require a shift in the fixations. That’s why, after the verb conjugation in the antecedent, the probability of fixations quickly goes over 50% in that condition. Besides, many studies mention the dual representation model proposing that both the real and alternative worlds are represented in mind at the same time when the counterfactuals are processed (De Brigard et al., 2013; Ferguson & Cane, 2015; Kulakova & Nieuwland, 2016b; Urrutia et al., 2012). This further strengthens our hypothesis that this is indeed an effect of incremental morphosyntactic integration. To be sure about this interpretation and to dissociate the effect of the antecedent and the consequent, we plan to conduct a future study.

Finally, German (1999) asserted that children’s responses to the comprehension questions about counterfactual stories are better when the events have a negative outcome for the agent in the story. Therefore, for our eye-tracking analysis, we expected more target looks for the counterfactuals with negative outcome than those with positive outcome. In our study, the participants from neither of the age groups
showed any sign of such an effect. Hence, the results are not in line with German’s conclusions. However, there is an effect of outcome of the event for the indicative conditionals such that there are more looks towards the target in the positive outcome sentences than in the negative outcome sentences. However, this effect is most probably not because either condition generates more thoughts for the real-world situations but because the experimental probes differentiate from each other for the indicative conditionals with positive and negative outcome. In our experimental design, as the indicative conditionals with positive outcome do not require a shift in the fixations in contrast to the ones with negative outcomes, this situation might have led to more fixation for the target referent in indicative conditionals with positive outcome.
CHAPTER 5

CONCLUSION

Children can make inferences about the real-world by using logical connectives such as and, or and not, and they can differentiate the semantic and pragmatic functions of these logical structures in speech from a very early age. On the other hand, young children can also incrementally integrate the morphosyntax of their language to make predictions about the forthcoming context (Snedeker & Huang, 2009). With this regard, we questioned how about the development and processing of counterfactual conditionals, which require a sophisticated reasoning ability such that people need to generate alternative possibilities along with inferring the real-world situation, which are triggered by some complex combinatorial sequence of morphosyntactic structure. Given these complexities in hand, not only constructing a reasoning mechanism might be delayed in the course of children’s language development but building a processing mechanism for adults might be challenging as well.

Research examining the acquisition of counterfactuals rendered discrepant results in terms of when children could make inferences using these structures in an adult-like fashion. Depending on the complexity of the task employed in different research studies, the answer varies from as very early ages as three (Harris et al., 1996) to adolescent ages like fourteen (Rafetseder et al., 2013). We suspect that children can understand such structures immediately when they hear them, but when it comes to explicitly uttering their inferences about the situations, their performances might drop due to the cognitive load already involved in them. On the other hand, our knowledge about such incremental processing of counterfactual conditionals is limited even in adults.

By the time of conducting this study, no other study surveyed the online processing of morphosyntax for counterfactual reasoning. In this study, we investigated children’s as well as adults’ use of morphosyntactic cues to reason about counterfactual conditional sentences by conducting a visual world eye-tracking paradigm experiment. Our results demonstrated that not only adults but also children...
shifted their gaze to the referent that represents the real-world situation after they heard the verb conjugation in the antecedent. To our knowledge, this is the first piece of evidence showing that the morphosyntax marked on verbs quickly leads to complex inferences such as generating hypothetical alternative worlds for counterfactual reasoning not only in adults but also in children as young as four years of age.

This finding is of importance since it suggests that children can use morphosyntactic cues incrementally to create alternative situations regarding the counterfactual situations and to make hypothetical inferences about these situations as well as their outcomes. Our findings further display that young children can respond to the comprehension questions after both indicative and counterfactual conditionals with a high percentage of accuracy, even though their performances are not as high as those of adults. However, given the fact that some of the conditionals, such as counterfactuals with negative outcome are even harder for adults, we can say that young children can make adult-like inferences when they hear counterfactual and indicative conditionals. On the other hand, whether the outcome of the events in the conditionals sentences is negative or positive does not affect the distribution of the participants’ fixations, but as to the response accuracy of the participants, they had more accurate responses in the conditionals with positive outcome.

5.1 Limitations and Further Studies

Because of the COVID-19 pandemic, we were not able to reach participants during the data collection phase of the study. Therefore, our study must be replicated with a larger sample size. Although this study provides an important piece of evidence that not only adults but also children as young as four years of age could integrate the morphosyntactic structure of indicative and counterfactual conditionals, we still could not disclose whether people use the morphosyntax of the verb in the antecedent per se for such a parsing, or they integrate the contextual information provided in the consequent and its verb conjugation to reason counterfactually. Therefore, the next study will attempt to factor out the possible effects of these linguistic cues to better examine the direct effect of verbal inflection in the antecedent with more participants.
REFERENCES

53

APPENDICES

A. EXPERIMENTAL SENTENCES

<table>
<thead>
<tr>
<th>Item</th>
<th>Experimental Sentence</th>
</tr>
</thead>
</table>
| 1 | CN: Ahmet tostu yeseydi karnı tok olacaktı.
 | CP: Ahmet çikolatayı yeseydi karnı aç kalacaktı.
 | IN: Ahmet çikolatayı yerse karnı aç kalacak.
 | IP: Ahmet tostu yerse karnı tok olacak. |
| 2 | CN: Pelin çizmeyi giyseydi ayakları temiz olacaktır.
 | CP: Pelin terliği giyseydi ayakları çamur olacaktır.
 | IN: Pelin terliği giyerse ayakları çamur olacak.
 | IP: Pelin çizmeyi giyerse ayakları temiz kalacak. |
| 3 | CN: Umut arabayı sürseydi işe zamanında yetişecek.
 | CP: Umut bisikleti sürseydi işe geç kalacaktı.
 | IN: Umut bisikleti sürerse işe geç kalacak.
 | IP: Umut arabayı sürerse işe zamanında yetişecek. |
| 4 | CN: Leyla kazağı giyseydi dışarda sıcak kalacaktır.
 | CP: Leyla tişörtü giyseydi dışarda çok şişeyecekti.
 | IN: Leyla tişörtü giyerse dışarda çok şişeyecek.
 | IP: Leyla kazağı giyerse dışarda sıcak kalacak. |
| 5 | CN: Cengiz koltuğa otursaydı sırtı rahat edecek.
 | CP: Cengiz sandalyeye otursaydı sırtı çok ağrıyacaktı.
 | IN: Cengiz sandalyeye oturursa sırtı çok ağriyacak.
<pre><code> | IP: Cengiz koltuğa oturursa sırtı rahat edecek. |
</code></pre>
<table>
<thead>
<tr>
<th>Item</th>
<th>Experimental Sentence</th>
</tr>
</thead>
</table>
| 6 | CN: Ela şemsiyeyi alsaydı dışında kuru kalacaktı.
 | CP: Ela atkıyı alsaydı dışında çok ıslanacaktı.
 | IN: Ela atkıyı alırsa dışında çok ıslanacak.
 | IP: Ela şemsiyeyi alırsa dışında kuru kalacak. |
| 7 | CN: Ömer domatesi kullansaydı yemeği tatlı olacaktır.
 | CP: Ömer biberi kullansaydı yemeği acı olacaktır.
 | IN: Ömer acı biberi kullanırsa yemeği acı olacaktır.
 | IP: Ömer domatesi kullanırsa yemeği tatlı olacaktır. |
| 8 | CN: Zeynep gözlüğü taksaydı etrafı net görecekti.
 | CP: Zeynep uyku bandını taksaydı etrafı karanlık görecekti.
 | IN: Zeynep uyku bandını takarsa etrafı karanlık görecek.
 | IP: Zeynep gözlüğü takarsa etrafı net görecektir. |
| 9 | CN: Ege kolay içseydi dili tatlı hissedecekti.
 | CP: Ege çayı içseydi dili çok yanacaktı.
 | IN: Ege çayı içerse dili çok yanacak.
 | IP: Ege kolay içere dili tatlı hissedecek. |
| 10 | CN: Salih atlı karıncaya binseydi lunaparkta çok eğlenecekti.
 | CP: Salih korku trenine binseydi lunaparkta çok korkacaktı.
 | IN: Salih korku trenine binerse lunaparkta çok korkacak.
 | IP: Salih atlı karıncaya binnerse lunaparkta çok eğlenecektir. |
| 11 | CN: Erdem haritayı alsaydı yolunu kolayca bulacaktı.
 | CP: Erdem defteri alsaydı yolunu hemen kaybedecekti.
 | IN: Erdem defteri alırsa yolunu hemen kaybedecek.
 | IP: Erdem haritayı alırsa yolunu kolayca bulacak. |
| 12 | CN: Elif can yeleğini kapsaydı denizde yüzeyde kalacaktı.
 | CP: Elif telsizi kapsaydı denizde dibe batacaktı.
 | IN: Elif telsizi kaparsa denizde dibe batacak.
<pre><code> | IP: Elif can yeleğini kaparsa denizde yüzeyde kalacaktır. |
</code></pre>
<table>
<thead>
<tr>
<th>Item</th>
<th>Experimental Sentence</th>
</tr>
</thead>
</table>
| 13 | CN: Furkan yağmurluğunu giyseydi kıyafetleri kuru kalacaktır.
 | CP: Furkan yeleği giyseydi kıyafetleri sırlılsıklam olacaktır.
 | IN: Furkan yeleği giyseyse kıyafetleri sırlılsıklam olacaktır.
 | IP: Furkan yağmurluğunu giyseyse kıyafetleri kuru kalacaktır. |
| 14 | CN: Özlem çizgi filmi izleyseydi çok eğlenecekti.
 | CP: Özlem belgesel izleyseydi canı çok sıkılacaktır.
 | IN: Özlem belgeseli izlersese canı çok sıkılacak.
 | IP: Özlem çizgi filmi izlerse çok eğlenecektir. |
| 15 | CN: Mehmet mandalinayı yeseydi dişleri sapsa sağlam olacaktı.
 | CP: Mehmet şeker yeseydi dişleri hemencecik çürüyecekti.
 | IN: Mehmet şekeri yerse dişleri hemencecik çürüyecek.
 | IP: Mehmet mandalinayı yerse dişleri sapasa sağlam olacak. |
| 16 | CN: Burak asansörü kullanırsaydı dinlenmiş hissedecekti.
 | CP: Burak merdivenleri kullanırsaydı yorgun hissedecekti.
 | IN: Burak merdivenleri kullanırsa yorgun hissedecede.
 | IP: Burak asansörü kullanırsa dinlenmiş hissedecede. |
| T1 | Masanın üstünde kaşık ve boya kalemi vardı.
 | Ezgi resim defterine resim yaptı.
 | Sence Ezgi hangisini kullandı? |
| T2 | Masada top ve raket var.
 | İlte futbol oynamak istiyor.
 | Sence İlte hangisini alacak? |
| T3 | Dolapta siyah tişört ve mavi gömlek var.
 | Arda mavi rengi çok seviyor.
 | Sence Arda hangisini giyecek? |
B. APPROVAL OF THE METU HUMAN SUBJECTS ETHICS COMMITTEE
C. TURKISH SUMMARY / TÜRKÇE ÖZET

KARŞI OLGUSAL USLAMLAMADA ARTIMLI BİÇİM-SÖZDİZİM İŞLEMESİ: TÜRKÇE KONUŞAN ÇOCUKLAR VE YETİŞKİNLER İLE BİR GÖZ İZLEME ÇALIŞMASI

1 Giriş
uslamlama için yapmaktan daha erken görülebilir çünkü konusal rol atamasında biçim-sözdizimsel ipuçlarındaki hâl-durum ekleri hâlihazarda algısal sistemde erişilebilir olan olayların kişilerini, konularını ve alıcılarını yansıtmaktadır. Ancak karşı olgusal ifadelerin biçim-sözdizimindeki ekler olaylar hakkındaki muhtemel alternatif gerçeklikleri yansıtıyor olabilir. Bu nedenle de karşı olgusal koşullu ifadelerin biçim-sözdizimini işlemek için daha ileri bir kavramsal sistem ve araştırmacı icap ediyor olabilir ki bu da çocuklarda bu yetinin gelişiminin daha geç gerçekleşmesine yol açıyor olabilir.

Karşı olgusal ifadelerin edinimini araştıran çalışmalar çocuklarının bu yapıları kaç yaşından itibaren anladıkları konusunda çeşitli sonuçlara sahiptir. Bazi çalışmalar dört yaş kadar küçük çocukların karşı olgusal ifadeleri anladığını savunurken (German & Nichols, 2003; Harris et al., 1996; Nyhout & Ganea, 2019b), bazı çalışmalar bunun yetişkin seviyesinde bir hâl almasını yedi yaşa (hatta dört yaşa bkz. Rafetseder et al., 2013) kadar sürebileceğini ileri sürmektedir (McCormack et al., 2018). Çalışmalar arasında bu denli bir fark olmasının sebebi çocukların hem karşı olgusal ifadeleri içeren hikayeleri anlamasını hem de bu hikayelerdeki sebebi çocuklara hem karşı olgusal ifadeleri anladıkları konusundaki konuşımda önceki yorumlarını hatırlama başarısız olmalarını muhtemel olabilir. Dahası henüz yetişkinlerin bile İngilizce ve İspanyolca gibi dillerde karşı olgusal biçim-sözdizimi artırmak ve anlayamamaları hakkında emin değiliz. (Ferguson et al., 2010; Orenes et al., 2019).

Bildiğimiz kadarda bir çalışma çocuklarının karşı olgusal ifadeleri gerçek zamanlı olarak işlenebilir ve karşı olgusal koşullu ifadeleri birleşik fiil ekleriyle kodlayan bir dilde bu tarz ifadelerin edinimine odaklanmaktadır. Bu yüzden biz Türkçedeği karşı olgusal koşullu ifadelerin çevrim içi işlenebilirliği literatürdeki bu boşluğu doldurmayı hedefliyoruz.

1.1 Çalışmanın Gerekliliği

Literatürde bu zamanda kadar yapılan çalışmaların sonuçları göz önune alındığında bu çalışmaların çocukun ne zamandan itibaren karşı olgusal uslamlama yapabildiği ve yürütücü işlevlerin bu yetiyi nasıl etkilediği konusunda nihai bir sonuca varamamış olduğu görülmektedir. Bu çalışmalarında kullanılan deneylerin zorlukları arasındaki farklılıkların varıp varolsunun temel sebebi olarak görülür. Bu nedenle özellikle katılımcıların karşı olgusal ifadeleri kullanarak olayların içindeki kişilerin davranışlarını hakkında nedensel çıkarımları yaptığı görevler fiziksel obje paradigma gibi görevlere göre çocukları daha fazla zorlamaktadır. Biz çocukların asında bu görevlere karşı olgusal yapıları anlamaları ancak çıkarımlarını ifade etmede zorlandığı tahmin etmektedikten Sonuçta dildeki gelişim

1.2 Araştırma Soruları

Yukarıda izah ettiği nedenlerden dolayı bu çalışmada,

(i) dört yaş kadar küçük çocuklara karşı olgusal koşullu ifadeler yetişkin seviyesinde anlayabilir mi,

(ii) yetişkinler konuşma esnasında karşı olgusal uslamlama için biçim-sözdizimi artırmak olarak kullanabilir mi,

(iii) dört yaş kadar küçük çocuklara karşı olgusal akıl yürütürken biçim-sözdizimsel ipuçlarını anlayabilir mi,

(iv) karşı olgusal koşullu ifadelerdeki olayların olumsuz sonuçları karşı olgusal düşüncelerin ortaya çıkışını daha fazla tetikler mi,

(v) çocukların yürütücü işlevleri karşı olgusal uslamlama yetisini öngörebilir mi (eğer görünse hangileri nasıl öngörür),

sorularını yanıtlamayı amaçlamaktadır.

2 Deney

Bu deneyde çevrimiçi işlemeyi araştırmak için görsel dünya göz izleme paradigması (Cooper, 1974) kullandık ve karşı olgusal ifadelerin nasıl yorumlandığı test eden anlama sorularını sorduk. Bunları yaparken ayrıca bireysel farklılıkları incelemek adına çocukların kısa süreli bellek kapasitesi, çalışma belleği kapasitesi ve baskılama yetisi gibi yürütücü işlevlerinin etkisini de kontrol ettik.
Görsel dünya paradigmasının arkasındaki prensip insanların sahnedeki belli sayıda \((N)\) görsel uyaran-

dandan birine bakma olasılığının bu uyaranlara eşlik eden herhangi bir sesli uyaran yokken \(p(1/N)\) olması

ancak bu görsel uyaranlarla alakalı bir sesli uyaran duyulduğunda bakışların bu olasılıktan daha yük-

sek bir olasılıkla sesli uyaranla alakalı bulunduğu düşünülen görsel uyaran çevrilmesidir (Altmann &

Kamide, 1999; Langton et al., 2000). Bakışlardaki bu değişim sesli uyarandan çıkarılan bilgiye verilen

dikkatin göstergesidir.

2.1 Katılımcılar

Anadili Türkçe olan yirmi üç çocuk (\(M_{\text{yas}} = 4:10;\) Aralık = 4:05-5:11; 12 Erkek) ve on sekiz yetişkin

(\(M_{\text{yas}} = 25,27;\) Aralık = 20-35; 7 Erkek) çalışmaya katılmıştır (\(N = 41\)).

2.2 Uyaranlar ve Tasarım

Bu deneyde katılımcılar iki göstergenin bulunduğu bir görsel sahne görülür. Bu göstergeler 9a’daki

yo da 9b’deki bağlam cümleleriyle tanıtıldılar. Bu cümleleri deneysel cümleler takip etmiştir.

\(9\) a. **Bağlam cümlesi (geçmiş zaman)**

Garajda araba ve bisiklet vardı.

b. **Bağlam cümlesi (geniş zaman)**

Garajda araba ve bisiklet var.

Deneysel cümleler iki seviyeli iki koşulda yer aldlar. İlk koşul cümlenin karşı olgusal koşulu ifade

mi yoksa bildirim koşulu ifadesi mi olduğuydı. İkinci koşul ise cümledeki olayın olumsuz mu yoksa

oluşumu mu sonuçlandığıydı. Bu nedenle \(2 \times 2\) tasarım toplamda dört tipte koşul cümle oluşturulmuştur (10a-10d). Görsel sahnedeki iki gösterge gerçek dünya ve alternatif dünya durumlarına karşılık

gelmektediydi. Gerçek dünya durumu hedef göstergeye, alternatif dünya durumu ise rakip göstergeye

karşılık gelmektediydi. Deneyde her tipten dört cümle olmak üzere toplamda on altı deneysel cümle

yer aldi (Doğru (filler) cümleleri kullanılmamıştır). Deneysel cümlelerden önce katılımcılar deneye

alışmak adına üç tane deneme cümleleri görmüşdür.

\(10\) a. **Olumsuz sonuçla karşı olgusal koşulu ifade**

Can arabayı sürseydi ise zamanında yetişecekti.

Hedef: Bisiklet
b. **Olumlu sonuçlu karşılı olguşal koşullu ifade**
 Can bisikleti sürseydi ise geç kalacaktı.
 Hedef: Araba

c. **Olumsuz sonuçlu bildirim koşullu ifadesi**
 Can bisikleti sürerse ise geç kalacak.
 Hedef: Araba

d. **Olumlu sonuçlu bildirim koşullu ifadesi**
 Can arabayı sürerse ise zamanda yetişecek.
 Hedef: Araba

(11) a. **Karşılı olguşal koşullu ifadelerden sonraki anlama sorusu**
 Sence Can hangisini sürdü?

 b. **Bildirim koşullu ifadelerinden sonraki anlama sorusu**
 Sence Can hangisini sürecek?

2.3 **Prosedür**

bozulduğunda ya da katılımcı başını aşırt derecede oynattığında tekrarlanmıştır. Oturum yaklaşık on beş dakika sürmüştür.

2.4 Bilişsel Testler

Bu çalışmada ayrıca bir dizi yürütücü işlev testiyle kısa süreli bellek kapasitesi, çalışma bellegi kapasitesi ve baskılama yetisi gibi bilişsel yetenekleri ölçülmemektedir. Bu testler, kısa süreli bellek kapasitesi için ileri sayı dizisi testini, çalışma bellegi kapasitesi için ters sayılı dizisi testini (Wechsler, 1949; Wechsler & Kodama, 1949) ve baskılama yetisi için de mutlu-üzgün surat testini (Lagattuta et al., 2011) içermekteydi. Katılımcular bu testlere göz izleme deneyinden sonra katıldıkları ve bu testlerin sırası katılımcılar arasında eşit şekilde dengelendi.

2.5 Öngörüler

kapasitesinin ve baskılama yetisinin gerektiğini öne sürmüşlerdir (Beck & Riggs, 2014; Beck et al., 2009; Drayton et al., 2011).

3 Tartışma

Bu çalışmada dört yaş kadar küçük çocukların karşı olgusal koşulu ifadeleri duyduklarında yetişkin düzeyinde aklı yürüt tepki vermediği ve ardışık fil ekleri ile hem bildirim hem de karşı olgusal koşulu ifadelerin anlamsını kodlayan bir dilde, Türkçe, karşı olgusal aklı yürütmede biçim-sözdizimsel ipuçlarını kullanıp kullanmadığı araştırılmıştır.

3.1 Karşı olgusal koşulu ifadeler bildirim koşulu ifadelerinden daha mı zor?

3.2 Çocuklar yetişkin seviyesinde bir performansa sahip mı?

Biz bu çalışmada ayrıca çocukların bildirim koşulu ifadelerinden sonra gelen anlam sorularına cevap vermede yetişkinler gibi performans sergilediğini gösterdik. Öte yandan CP, IN ve IP koşullarında yüzde yetmiş beşin üzerinde doğruluğa sahip olmalarına rağmen karşı olgusal koşulu ifadelerden sonra gelen anlam sorularında çocukların yetişkinler kadar performans gösteremediği de gözlem-

3.3 Yürütücü işlevler karşı olgusal uslamlama yetisini etkiliyor mu?

Johnson-Laird ve diğerleri (1992) çalışma belleği kapasitesinin karşı olgusal uslamlamada alternatif

3.4 Çocuklar ve yetişkinler karşı olgusal uslamlamada biçim-söz dizimsel ipuçlarını artımsı olarak kullanıyor mu?

Son olarak German (1999) çocukların karşı olgusal durumlar hakkında anlama sorularındaki cevaplarının olaylar içindeki kişi için olumsuz sonuçlandığında daha doğru olduğunu iddia etmektedir. Bu sebeple göz izleme analizimiz için olumsuz sonuçlu karşı olgusal ifadelerde olumlu sonuçlananlardan daha fazla hedef gösterge bakişi beklemekteydim. Bizim çalışmanın her iki gruptan da katılımcılar böyle bir etki göstermemişlerdir. Bu yüzden sonuçlarımız German’ın vardıdı sonuçlarla par-

4 Sonuç

Çocuklar, ve, veya, ve değil gibi mantıksal bağlaçları kullanarak gerçek dünya hakkında çıkarımlarda bulunabilirler ve çok erken yaşlardan itibaren konuşmadaki bu mantıksal yapının anlamsal ve pragmatik işlevlerini ayırt edebilirler. Öte yandan, erken yaştaşı çocuklar, geceke bağlam hakkında tahlımlarla bulunmak için dillerinin biçim-sözdizimini artırmak olarak bütünleştirebilirler (Snedeker & Huang, 2009). Bu bağlamda biz, insanların birtakım karışık kombinataryal biçim-sözdizimsel yapılar tarafından tetiklenen gerçek dünya hakkında sonuç çıkarırken alternatif olsalıkları ürettiği karmaşık bir akıl yürütme yetisi olan karşı olgusal koşulu ifadelerin gelişimini ve işlenmesini sorgulamaktayız. Bu karmaşıklıklar göz önüne alındığında sadece çocukların dil gelişiminde bir akıl yürütme mekanizması oluşturmasının gecikmesi değil aynı zamanda yetişkinlerin de bir işleme mekanizması oluşturmalarının zorlandığı olabilir.

Karşı olgusal ifadelerin edinimini inceleyen araştırmalar, çocukların bu yapıları kullanarak ne zaman yetişkinler gibi çıkarımlar yapabilecekleri konusunda farklı sonuçlar vermektedir. Bu sorunun cevabı farklı çalışmalarındaki deneylerin karmaşıklığına bağlı olarak üç yaş gibi çok erken yaşlardan (Harris et al., 1996) on dört gibi ergenlik yaşlarına kadar değişmektedir (Rafetseder et al., 2013). Biz ise çocukların bu tür yapıları duyduklarında hemen anlayabileceklerinden ancak bu durumlar hakkında karışık çıkarımları açıkça ifade ederken bu süreçle dahi olan bilişel yükten dolayı performanslarının düşebileceğinden şüphelenmektediz. Öte yandan karşılı olgusal ifadelerin artımlı işlenmesi hakkında bilgimiz yetişkinlerde bile kısıtlı hâldedir.

Bu çalışma yürütüldüğünde daha önce hiçbir çalışma karşı olgusal uslamlamada biçim-sözdizimsel yapıların çevrimi içi olarak işlenmesini araştırmamıştır. Bu çalışmada biz çocukların ve yetişkinlerin karşı olgusal cümleler hakkında akıl yürütürken biçim-sözdizimsel ipuçlarını kullanğini görmüş dünya paradigması içeren bir göz izleme deneyiyle araştırdık. Sonuçlarımız yalanızca yetişkinlerin
değil aynı zamanda çocukların da öncüldeki fiil çekimini duyduktan sonra bakışlarını gerçek dünyayı temsili eden hedef göstergeye çevirdiklerini göstermektedir. Bildiğimiz kadarıyla bu, tiellere işaretlenen biçim-sözdizimin yalnızca yetişkinlerde değil aynı zamanda dört yaşındaki çocuklarda da karşı olgusal akl yürütme için varsayımsal alternatif dünyalar oluşturmak gibi karmaşık çıkarımlara yol açtığı gösterecek ilk kanittır.

Bu bulgu çocukların karşı olgusal durumlara ilişkin alternatif durumları yaratmak ve bu durumlarla sonuçlar hakkında varsayımsal çıkarımlar yapmak için biçim-sözdizimsel ipuçlarını artırmak olarak kullanabileceği öne sürmesi açısından önemlidir. Ayrıca bulgularımız küçük çocukların, Performansları yetişkinlerinki kadar yüksek olsamsa da hem bildirim hem de karşı olgusal koşulu ifadelerden sonra anlam anlamlarla yüksek doğruluk yüzdesiyle yanıt verebildiğini göstermektedir. Ancak olumsuz sonuçlu sonuçlu karşı olgusal koşulu ifadelerin yetişkinler için bile zararlı olduğu göz önünde aldığımızda çocukların da bildirim ve karşı olgusal koşulu ifadeleri duydıklarında yetişkinler gibi çıkarımlar yapabildiğini söyleyebiliriz. Son olarak koşulu ifadelerin sonuçlarının olumlu ya da olumsuz olması katılımcıların fiksasyonlarının dağılımını etkilememek, ancak is cevap doğruğuna geldiğinde katılımcılar olumlu sonuçlu koşulu ifadelerden sonra anlamanın daha fazla doğru cevap vermektedirler.

4.1 Kısıtlar ve Gelecek Çalışmalar

D. THESIS PERMISSION FORM / TEZ İZİN FORMU

(Please fill out this form on computer. Double click on the boxes to fill them)

ENSTITÜ / INSTITUTE

Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences ☐
Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences ☒
Uygulamali Matematik Enstitüsü / Graduate School of Applied Mathematics ☐
Enformatik Enstitüsü / Graduate School of Informatics ☐
Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences ☐

YAZARIN / AUTHOR

Soyadı / Surname : Aktepe
Adı / Name : Semih Can
Bölümü / Department : İngiliz Dili Öğretimi / English Language Teaching

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English): Incremental Processing of Morphosyntax for Counterfactual Reasoning: An Eye-tracking Study with Turkish-speaking Children and Adults

TEZİN TÜRÜ / DEGREE: Yüksek Lisans / Master ☒ Doktora / PhD ☐

1. Tez tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately for access worldwide. ☒
2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or proprietary purposes for a period of two years. * ☐
3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six months. * ☐

* Enstitü Yönetim Kurulu kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir. / A copy of the decision of the Institute Administrative Committee will be delivered to the library together with the printed thesis.

Yazanın imzası / Signature Tarih / Date
(Kütüphaneye teslim ettiği tarih Elle doldurulacaktır.)
(Library submission date. Please fill out by hand.)

Tez son sayfasıdır. / This is the last page of the thesis/dissertation.