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ABSTRACT 

 

EVALUATION OF THE WRF & WRF-HYDRO MODELING SYSTEM TO 

BETTER UNDERSTAND THE HYDROMETEOROLOGICAL 

INTERACTIONS OVER HUMID AND SEMI-ARID CLIMATE 

CONDITIONS 
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Doctor of Philosophy, Civil Engineering 

Supervisor : Assoc. Prof. Dr. Mustafa Tuğrul Yılmaz 

Co-Supervisor: Prof. Dr. İsmail Yücel 

 

 

October 2022, 112 pages 

 

Changing climate causes extreme weather events, such as heavy precipitation and 

flash floods, to occur more destructive and frequently. Thus, it is worthwhile to 

perform a reliable prediction of hydrometeorological circumstances reasonably 

before extreme events occur. Similarly, robust estimation of future weather 

conditions would contribute significantly to long-term water management issues, 

one of the most crucial problems of our time. Accordingly, this study evaluates the 

skill of (un)coupled WRF/WRF-Hydro system to estimate hydrometeorological 

variables for both short-term and long-term periods under humid and semi-arid 

climate conditions. Firstly, a sensitivity analysis of the model physics and initial and 

lateral boundary data source on the precipitation outputs of the standalone WRF 

model is conducted for some short-term extreme precipitation events over the 

Eastern Black Sea (EBS; a humid region) and Mediterranean (MED; a semi-arid 

region) regions. The sensitivity analysis is repeated for different seasons (i.e., 

autumn and summer) and spatial resolutions of the model domains (i.e., 9 km and 3 

km). The aim here is to construct a reliable early warning system for two flood-prone 
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regions of Turkey. Secondly, the WRF model is coupled with a hydrologic model, 

WRF-Hydro. The coupled model is initiated with Soil Moisture Active Passive level 

4 (SMAP) data. These analyses aim to improve the simulation of the energy fluxes 

between the land and the atmosphere. According to the results of the first part, the 

model physics are generally more influential than the initial and lateral boundary 

data source on extreme precipitation variability. For the second part, the fully 

coupled models correct the location and magnitude of the occurrence of hourly 

extreme precipitation. Changing the initial soil moisture data source affects the 

terrestrial water cycle elements in the semi-arid region more than in the humid area, 

especially in spring and summer, which are drier periods. 

 

Keywords: WRF & WRF-Hydro Coupling, Extreme Event Simulation, Terrestrial 

Water Cycle, Land Surface Energy Fluxes, Sensitivity Analysis 
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ÖZ 

 

HİDROMETEOROLOJİK ETKİLEŞİMLERİN DAHA İYİ 

ANLAŞILABİLMESİ AMACIYLA WRF & WRF-HYDRO MODELLEME 

SİSTEMİNİN NEMLİ VE YARI KURAK İKLİM KOŞULLARINDA 

DEĞERLENDİRİLMESİ 

 

 

 

Düzenli, Eren 

Doktora, İnşaat Mühendisliği 

Tez Yöneticisi: Doç. Dr. Mustafa Tuğrul Yılmaz 

Ortak Tez Yöneticisi: Prof. Dr. İsmail Yücel 

 

 

Ekim 2022, 112 sayfa 

 

Değişen iklim, yoğun yağış ve ani sel gibi aşırı hava olaylarının daha yıkıcı ve daha 

sık yaşanmasına sebep olmaktadır. Bu nedenle, hidrometeorolojik değişkenlerin 

güvenilir tahminlerini aşırı durumlar meydana gelmeden makul bir süre önce 

gerçekleştirmek ve geliştirmek çok önemlidir. Benzer şekilde, gelecekteki hava 

koşullarının sağlam bir şekilde tahmin edilmesi, zamanımızın en önemli 

sorunlarından biri olan uzun vadeli su yönetimi meselesine önemli ölçüde katkıda 

bulunacaktır. Alakalı olarak, bu çalışma bağımsız ve bütünleşik olarak çalıştırılan 

WRF/WRF-Hydro sisteminin nemli ve yarı kurak iklim koşullarında hem uzun hem 

de kısa dönemler için hidrometeorolojik değişkenleri tahmin edebilme beceresini 

değerlendirmektedir. İlk olarak, bağımsız WRF modelinin yağış çıktılarının, Doğu 

Karadeniz (EBS; nemli bölge) ve Akdeniz (MED; yarı kurak bölge) bölgeleri 

üzerinde, bazı kısa vadeli aşırı yağış olayları aracılığıyla model fiziği ve başlangıç 

veri kaynağına olan duyarlılığı test edilmiştir. Duyarlılık analizi, farklı mevsimler 

(yani; sonbahar ve yaz) ve farklı mekânsal çözünürlük değerleri (yani; 9 km ve 3 

km) için tekrarlanmıştır. Buradaki temel amaç, Türkiye’nin sele yatkın iki bölgesi 
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üzerinde güvenilir bir erken uyarı sistemi kurmaktır. İkinci olarak, WRF modeli 

hidrolojik bir model olan WRF-Hydro ile bütünleşik şekilde çalıştırılmıştır. 

Bütünleşik model ayrıca SMAP verileriyle de başlatılmıştır. Bu analizler, kara ve 

atmosfer arasındaki enerji akış simülasyonlarını iyileştirmeyi hedeflemektedir. İlk 

kısmın sonuçlarına göre, model fiziği aşırı yağış değişkenliği üzerinde başlangıç veri 

kaynağından genellikle daha etkilidir. İkinci kısma gelinirse, bütünleşik model 

kullanımı saatlik aşırı yağış oluşumunun konum ve büyüklük tahminini iyileştirmeye 

yardımcı olmuştur. Başlangıç toprak nemi veri kaynağının değiştirilmesi karasal su 

döngüsü çıktılarını yarı kurak bölgede özellikle kurak dönemler olan ilkbahar ve yaz 

aylarında nemli bölgeye nazaran daha fazla etkilemiştir. 

 

Anahtar Kelimeler: Bütünleşik WRF & WRF-Hydro Modeli, Aşırı olay 

simülasyonu, Karasal Su Döngüsü, Kara Yüzey Enerji Akıları, Duyarlılık Analizi 
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CHAPTER 1  

1 INTRODUCTION  

1.1 Sensitivity of the extreme precipitation simulation capability of the WRF 

model against model physics and initial and lateral boundary data 

source 

Spatiotemporal variability of precipitation characteristics (e.g., intensity and 

duration) are significantly influenced by global warming. The expected changes in 

hydrometeorological variables such as high temperatures, high evapotranspiration 

rates, and desiccating winds will not only cause drought with higher severity and 

longer duration but also increase the water vapor holding capacity of the air 

(Trenberth, 2011; Spinoni et al., 2020; Afshar et al., 2020) hence the increased 

likelihood of extreme precipitation events (e.g., rainstorms). In other words, the 

abrupt condensation of excessive water vapor enhances the probability of 

encountering more intense rain showers, which often triggers flash floods. To 

properly manage these extreme events, it is crucial to develop early warning systems 

(i.e., operational modeling systems that are capable of predicting extreme 

precipitation events a couple of days before it happens) utilizing the state-of-the-art 

weather prediction and hydrological models, which are capable of estimating the 

events with high accuracy and longer lead time. 

Sub-daily precipitation extremes are more prone to be exacerbated by global 

warming than daily or longer-term extremes (Ali and Mishra, 2018). Clausius–

Clapeyron equation proves that the water vapor holding capacity of the air, the origin 

of the sub-daily extreme precipitation, increases with 7% per kelvin for the average 

mid-latitude conditions (Berg et al., 2018), and the intensities of the sub-daily 

extremes are anticipated to increase more than 7% per degree warming for the 

regions in mid-latitude (Prein et al., 2017). Further, short term prediction or long-
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term projection of the variations in the sub-daily extremes are substantial for the 

estimation of the resulting flash or fluvial floods. Therefore, the competence to 

predict extreme precipitation in sub-daily temporal resolution is one of the greatest 

assets of an early warning system. 

Complex topography, land-use heterogeneity, and close proximity to the sea are 

some of the important geophysical features that control the synoptic-scale and local 

weather conditions (Pielke et al., 2006; Yucel et al., 2015; Bulut et al., 2019; Amjad 

et al., 2020). These features highly exist in Turkey, and they also provide significant 

control over land-sea-atmosphere interactions. Moreover, forecasting spatial and 

temporal variations of extreme precipitation is a challenging issue, especially for the 

regions with a complex topography (Yucel and Onen, 2014; Amjad et al., 2020). The 

Mediterranean (MED) and Black Sea regions show serious weather hazards that 

resulted from heavy precipitation events. Besides, extreme precipitation behaviors 

of these regions differ for dry and wet seasons (Duzenli et al., 2018). Thus, the 

evaluation of model predictability over these regions is essential. By constructing 

spatiotemporally sensitive simulations through the numerical weather prediction 

(NWP) models, the possible catastrophic consequences of probable disasters can be 

prevented. 

Even though there are global NWP models producing precipitation data, the spatial 

and temporal resolution of the data is generally low to study local extreme events 

because of the computational limitations (Sikder and Hossain, 2016) and the 

inadequacy in resolving the initial and lateral boundary conditions and the localized 

atmospheric dynamics in organized convective systems (Weisman et al., 1997, Done 

et al., 2004; Li et al., 2012; Gustafson Jr. et al., 2014; Li et al., 2019). According to 

Prein et al. (2015), with appropriate initial and lateral boundary conditions and model 

physics configurations, convection-permitting simulations (i.e., finer than 4 km) via 

NWP models offer great potential for the improved precipitation forecast. The added 

values of these kind of simulations to the global NWP models are widely accepted, 

especially in the regions with a strong heterogeneous underlying boundary (Fosser 

et al., 2015; Cassola et al., 2015; Zittis et al., 2017; Van de Walle et al., 2020). The 
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Weather Research and Forecasting (WRF; Skamarock et al., 2019) model is one of 

the most advanced convection-permitting (i.e., spatial resolution < 4km) NWP 

models to predict the alterations in the meteorological events through downscaling 

of the large scale models’ data (Zhou and Mu, 2018). 

However, the success of WRF predictability directly depends on selecting the 

appropriate model physical parameterization, the accurate initial and lateral 

boundary conditions, and the representative spatial resolution  (García-Díez et al., 

2013; Di et al., 2015; Dyer et al., 2016; Mylonas et al., 2019). There are a large 

number of options for each physics of the WRF model, enabling users to enhance 

the model for specific geographies (Evans et al., 2012). As the number of 

parameterization schemes increases, it becomes more difficult to determine the best 

combination of physical parameterization schemes. Therefore, model sensitivity 

study to determine the best WRF configuration and its testing through independent 

storm events and specified geographical regions are imperative prior to its 

operational use. Many other studies (Rao et al., 2007; Liu et al., 2012; Evans et al., 

2012; Efstathiou et al., 2013; Mannan et al., 2013; Yucel and Onen, 2014; Pennelly 

et al., 2014) evaluated the sensitivity of these features. 

Overall, NWP accuracy is primarily controlled by the choices of model physics, 

initial and lateral boundary condition dataset, and horizontal grid spacing (i.e., spatial 

resolution). Among five model physics of the WRF model, microphysics (MP), 

cumulus (CU), and planetary boundary layer (PBL) scheme selection received the 

highest attention in the literature in sensitivity studies. According to Kan et al. 

(2015), although the MP scheme is the most determinant among them, MP, CU, and 

PBL schemes are the main factors of precipitation estimation in WRF. Argüeso et 

al. (2011) have tested eight different scenarios to check the sensitivity of the 

precipitation and temperature outputs against MP, CU, and PBL schemes in a region 

with a complex topography and Mediterranean climate. They have found that, unlike 

Kan et al. (2015), the precipitation estimates are substantially driven by CU and PBL 

schemes in Andalusia, while MP scheme selection does not have a significant impact 

on the results. Similarly, Yucel and Onen (2014) also stated the higher sensitivity 
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from the choice of convective treatment (i.e., CU) rather than the MP scheme in 

simulating extreme summer precipitation in the Western Black Sea region of Turkey. 

Accuracy of the datasets used as initial and lateral boundary conditions are also 

studied to minimize the errors in the WRF predictability. To address this issue, Zhou 

and Mu (2018) have compared Global Forecast System (GFS) and Final Analysis 

(FNL) reanalysis data produced by National Centers for Environmental Prediction 

(NCEP) throughout Ili region located in China. The outcomes showed that both 

datasets could catch the temporal movement of precipitation for the selected event, 

and there is no significant difference in using any of the two datasets as boundary 

conditions. Dyer et al. (2016) have examined the changes in the statistical dispersion 

of WRF ensembles in response to horizontal grid spacing values. Results of four 

different ensembles, which have 9 km, 15 km, 25 km, and 35 km horizontal grid 

spacing, are comparatively discussed. In brief, an inverse proportion has been 

detected between uncertainty and spatial resolution.   

Each of above studies investigates the sensitivity of their WRF model configuration. 

However, until now, there is an apparent absence of a study encompassing a large 

ensemble that includes information about the impacts of physical parameterization, 

initial and lateral boundary data source, and spatial resolution on the extreme 

precipitation forecasts, and comprehensively interpreting the results through the 

ensemble mean approach for the events occurred in different climatic regions. Above 

studies so far either investigated the sensitivity of WRF-derived precipitation 

accuracy to model physics or initial and lateral boundary data source selection, but 

no study so far has investigated the sensitivity of the results to both factors 

comparatively. Furthermore, comparison of the abilities of modeling systems driven 

by reanalysis or forecast dataset is crucial for an early warning system since the 

reanalysis datasets have much longer latency and are not immediately available for 

operational use. However, no study so far comparatively evaluated the performances 

of WRF model driven by initial and lateral boundary conditions obtained from 

forecast and reanalysis datasets. It is also essential to understand the utility of the 

locally run WRF model with its optimum parameterization (the optimum refers to 
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the model parameterization that provides the best precipitation outputs) over the 

precipitation outputs compared against the initial and lateral boundary datasets. 

1.2 Contribution of the WRF & WRF-Hydro coupling and satellite soil 

moisture initialization to the accuracy of hydrometeorological forecasts 

A comprehensive understanding of the terrestrial water cycle, which is highly 

interconnected to the land surface interactions, becomes more of an issue with the 

changing climate (Yucel and Onen, 2014; Arnault et al., 2016; Rummler et al., 2022). 

One-dimensional (1D) Noah land surface model (LSM; Chen and Dudhia, 2001) is 

one of the most preferred LSM schemes in the WRF modeling studies (Hong et al., 

2009; Efstathiou et al., 2013; Pennelly et al., 2014; Ekström and Gilleland, 2017; 

Arnault et al., 2019; Gao et al., 2022). Even though the 1D Noah LSM in the WRF 

handles the surface-atmosphere interaction described by diffusive exchange and 

radiative processes, it lacks hydrologically enhanced processes such as surface and 

sub-surface routing. Therefore, this may result in a poorer surface feedback system, 

particularly in complex terrain areas and high-resolution studies. 

Moreover, a better representation of the LSM model not only provides a better 

contribution to the atmospheric model but also increases the quality of the LSM 

outcomes of the next time step due to the concurrent and interactive operation of the 

models. Therefore, the two-way coupling of the NWP models with a land surface 

model having an enhanced hydrologic model package is expected to improve both 

atmospheric and hydrologic outputs by investigating the feedback between the land 

and overlying planetary boundary layer, which results in a better presentation of the 

terrestrial water cycle (Ning et al., 2019). The WRF-Hydro (Gochis et al., 2018) is a 

2-D hydrologic model aiming to enhance terrestrial water cycle simulation by 

focusing on surface overland flow, saturated subsurface flow, channel flow, and 

baseflow processes. The WRF-Hydro model can be run in uncoupled mode or two-

way coupled (i.e., the feedback mechanism between the models is activated) to the 

WRF model. 
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The added value of coupling WRF with the WRF-Hydro hydrologic model on 

precipitation output is limited according to some studies (Senatore et al., 2015; Givati 

et al., 2016; Kerandi et al., 2018; Arnault et al., 2018; Rummler et al., 2019; Fersch 

et al., 2020; Zhang et al., 2021a). Senatore et al. (2015) claimed that the coupling 

effect on precipitation simulated over a MED coast is low because the primary 

precipitation moisture source comes from the MED sea not from the local soil 

moisture. Kerandi et al. (2018) and Arnault et al. (2018) stated that the coupled 

model did not improve the precipitation outcomes because the precipitation regime 

of their study area is mostly driven by the large-scale circulations, not by the local 

water cycle. Fersch et al. (2020) associated the slight improvement with selecting the 

innermost WRF domain too small, preventing reliable internal moisture recycling. 

Still, Givati et al. (2016), Naabil et al. (2017), and Wehbe et al. (2019) detected better 

simulation of summer extremes by the coupled model. This progress is because the 

WRF-Hydro model enhances the soil moisture outputs and thus the convective 

precipitation controlled by local latent heat fluxes. Moreover, a considerable number 

of the study showed that the amount of the soil moisture output increases with the 

WRF-Hydro coupling since the lateral distribution of the infiltrated water prevents 

the soils at higher elevations from being saturated, which also ends up with a 

decrease in the surface runoff amount (Senatore et al., 2015; Arnault et al., 2016; 

Fersch et al., 2020). In some cases, the increase in the soil moisture amount brings 

about overestimated intense precipitation with increased convectively available 

potential energy (cape) owing to the unstable convective environment originating 

from the strengthening of the latent heat flux (Lahmers et al., 2020; Wang et al., 

2020; Zhang et al., 2021a; Zhang et al., 2021b). 

The energy and water fluxes connecting the surface and the overlying atmosphere 

depend on the topsoil layer's moisture amount and distribution. For instance, soil 

moisture amount is critical in the allocation of total transferable energy between 

latent and sensible heat fluxes. With this aspect, it is one of the main moisture 

sources, especially for the convective summer extreme precipitation events over 

(semi)arid regions (Kerandi et al., 2018; Wang et al., 2018). In WRF-Hydro, soil 
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moisture at each level is used by the subsurface routing module and thus directly 

contributes to horizontal flows and river flows. In addition, as a result of irrigation 

works in agricultural areas of the basins, topsoil layer moisture amount unnaturally 

changes, and the model systems do not perceive these unexpected variations (Afshar 

et al., 2022). Therefore, forcing the coupled WRF/WRF-Hydro modeling system 

with a satellite-based topsoil layer moisture data and discussing the contribution of 

the updated soil moisture distribution to the (sub)surface flow outputs or the 

feedback to the overlying atmosphere and heavy precipitation formations is a subject 

that is open to exploration and is of great importance.  

The effect of the initial state of soil moisture data on the WRF-derived latent and 

sensible heat flux, accordingly evapotranspiration, precipitation, and temperature, is 

tested considering dry & wet soil initial conditions (Vivoni et al., 2009; Zeng et al., 

2014; Zhan et al., 2016; Xiang et al., 2018; Zhang et al., 2020a) or different models’ 

soil moisture products (Hong et al., 2009; Dillon et al., 2016). Lin and Pu (2019) 

assimilated a remotely sensed product, Soil Moisture Active Passive level 4 (SMAP), 

into the standalone WRF with Noah LSM, which improved the hydrometeorological 

variables like humidity, surface soil moisture, and temperature. The impact of the 

same remote sensing data on the hydrologic outputs (i.e., surface soil moisture, 

streamflow) of the WRF-Hydro model is examined by Abbaszadeh et al. (2020). 

Among these studies mentioned above, only Xiang et al. (2018) conducted their 

study through the fully coupled WRF/WRF-Hydro model. Also, most of them 

checked the sensitivity of the WRF modeling system against soil moisture forcing 

data for the short-term events during the dry period and over arid/semi-arid regions, 

as well as neither of them focused on the initiation of the WRF/WRF-Hydro fully 

coupled system with a satellite soil moisture data. 

1.3 The motivations of the study 

Based on the information and the gaps defined in the above parts, this study basically 

consists of two different parts:  
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1-) To address the issues in Section 1.1, this study conducts a sensitivity analysis of 

physical parameterization, initial and lateral boundary condition dataset, and spatial 

resolution to construct a set of WRF models that are capable of simulating selected 

extreme precipitation events. WRF model with two nested domains (9 km and 3 km) 

configured by four MP, three CU, two PBL schemes, and two initial and lateral 

boundary forcings from ERA5 and GFS is integrated to simulate the two summer 

(dry) and two autumn (wet) events from two different climate and flood-prone 

regions of Turkey, namely; Eastern Black Sea (EBS) and MED. In addition to the 

discussion by means of the ensemble mean approach, the ranking of the success of 

each simulation member is provided. The influences of the model physics and initial 

and lateral boundary data sources on the WRF outputs are comparatively examined. 

The most successful model configurations are chosen from the ensemble to form a 

new smaller ensemble for each event, and the small ensembles are tested in the 

independent events that have the same spatiotemporal circumstances to validate the 

selections. The performances of these ensembles at the independent events are also 

compared with the ERA5-derived precipitation data to show the added value of WRF 

forecasts. With the intent of discussing the success of the convection-permitting 

simulations (i.e., the combinations with 3 km horizontal grid spacing), the results of 

9 km and 3 km simulations are separately presented. 

2-) In the second part, the effect of the feedback mechanism provided by 

hydrologically enhanced LSM with and without an initial soil moisture update is 

evaluated not only for precipitation formation but also for runoff, soil moisture, near-

surface specific humidity, and temperature. The main motivation is to explore the 

relationship between the components of the terrestrial water cycle utilizing different 

model simulation cases. The analyses are repeated over a semi-arid (i.e., MED) and 

a humid (i.e., EBS) regions of Turkey and assessed for both short-term extremes and 

longer terms (i.e., monthly and yearly) to consider different climate and terrain 

conditions when evaluating the coupling and soil moisture update effects. Moreover, 

the standalone WRF-Hydro model is calibrated separately for hourly and daily 

streamflow data over EBS. In this way, it is shown whether the model calibration 
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performed using daily streamflow data is adequate in capturing hourly flow 

hydrographs of steeply-sloping and small watersheds of the EBS region. The 

calibration over MED is achieved based on Kling-Gupta efficiency (KGE; Gupta et 

al., 2009) and Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) coefficients 

to see the decision coefficient influence on the selected parameter values of the 

hydrologic model. Then, calibrated standalone hydrologic models are forced by four 

different precipitation products (i.e., in-situ measurement, uncorrected radar, 

corrected radar, and WRF) and are validated under different spatiotemporal 

circumstances. In other words, another motivation of this study is to focus on the 

sensitivity of the WRF-Hydro parameters against the time scale of the observed 

streamflow data and the decision functions, as well as the sensitivity of the WRF-

Hydro outputs to the precipitation forcing data products.
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CHAPTER 2  

2 MATERIALS AND METHODS 

Sections 2.1 and 2.2 introduce the study areas and the atmospheric & hydrologic 

models used in that study. As explained before, the first part of the study conducts a 

sensitivity analysis of the WRF-derived precipitation to define the best model 

physics and initial and lateral boundary data source combinations capable of 

successfully simulating extreme events. The details of the first part are mentioned in 

Section 2.3. The second part discusses the contribution of the WRF-Hydro coupling 

to the hydrometeorological outputs of the WRF modeling system. Besides, the 

performance of the coupled model is tested when the system is initiated with the 

satellite soil moisture data. Section 2.4 clarifies the steps of the second part. 

2.1 Study area 

This study focuses on Turkey's MED and EBS regions, which have different climate 

types. For example, the EBS region prevails humid climate and receives rainfall 

throughout the year. However, MED is a typical representative of the Mediterranean 

climate (semi-arid, semi-humid) in which summers are hot and dry, and winters are 

cool and rainy (Türkeş, 1996). The EBS area is impacted by polar air masses with 

the continental origin of cold Siberian High, and maritime origin of Iceland Low in 

the winter and by subtropical air-masses (Azores High and part of Pakistan Low) in 

the summer (Duzenli et al., 2018). When the Siberian High crosses the Black Sea 

and approaches the northern coasts of Turkey, cold and dry air turn into a maritime 

continental air mass due to the acquired moisture content. MED is under the 

influence of mid-latitude depression (Icelandic and Mediterranean based low 

pressure) that produces cool and rainy weather in winter (Türkeş, 1996). Both 

maritime tropical air mass (Azores High) and continental tropical air masses are also 
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responsible for precipitation events. Both regions show a strong dependency on 

orographic lifting because of the existence of mountains parallel to the sea. Frequent 

moisture fluxes from sea to windward direction of the mountain throughout the year, 

particularly for the EBS region, favor the heavy precipitation events. Surface heating 

of complex topography in spring, summer, and fall seasons also triggers precipitation 

events through convection. The schematic demonstration and further information 

about the local and synoptic scale drivers of the climate over the regions are provided 

by Saris et al. (2010). 

2.2 The modeling systems 

2.2.1 WRF 

NWP models are precious tools to monitor the interactions between the components 

of the hydrometeorological cycle, such as precipitation, temperature, (sub)surface 

runoff, soil moisture/temperature, and specific humidity. WRF model is an example 

of the new generation NWP models appropriate for long-term atmospheric research 

or short-term extreme weather event studies. It can be used for multiple purposes, 

including hindcasting, real-time numerical weather prediction, and regional climate 

modeling. The modeling system consists of two parts: WRF preprocessing system 

(WPS) and WRF (Figure 2.1). The former part, WPS, comprises three programs: 

i) Geogrid: This program specifies the model domain and interpolates the input 

geographical data to this domain. Also, map projection of the study area is specified 

by using this program (Lambert conformal conic projection (LCC) is chosen for this 

study since LCC is the recommended projection type for the mid-latitudes). The 

geogrid program allows the users to form nested model domains, making simulations 

with high spatial resolution possible for the specific areas in a shorter run time. 

ii) Ungrib: Input meteorological data for the WRF model are generally in GRIB data 

format (i.e., a file format to store the meteorological data). The ungrib program 
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extracts the GRIB-formatted meteorological data to the simple data format used by 

the WRF model called as intermediate data format. This process makes the 

meteorological data useable for the metgrid program. 

iii) Metgrid: The meteorological input data extracted by the ungrib program are 

horizontally interpolated to the model domains determined by the geogrid program. 

After the preprocessing is completed, the second component of the modeling system, 

WRF, can be initiated. The WRF component composes of two parts: 

i) Real: The real program reads the input data prepared by the WPS and forms the 

initial and lateral boundary condition files to force the WRF model. In addition to 

the horizontal interpolation in the WPS part, input data are also interpolated in the 

vertical direction (i.e., along the vertical column of the domain grids). 

ii) WRF: This is the main program where; dynamical downscaling occurs using the 

initial and lateral boundary condition data. The non-hydrostatic WRF modeling 

system sequentially solves the atmosphere using dynamics and physics consisting of 

CU, MP, PBL, radiation, and surface physics that are interactive through model 

integration. It is worthwhile to state that surface physics is divided into an 

atmospheric surface layer and an LSM. Direct interactions between the model 

physics can be followed in Figure 2.2. 
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Figure 2.1. Workflow and components of the WRF modeling system  

 

Figure 2.2. Direct interactions between the model physics. The arrows show the 

direction of the impact. The figure is formed based on the information by Dudhia 

(2014). 
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2.2.2 WRF-Hydro 

The WRF-Hydro hydrologic model is an extended version of the traditional 1D Noah 

LSM and developed to simulate the corresponding water cycle more robustly. It can 

be run in standalone mode or fully coupled with the WRF atmospheric model. In 1D 

Noah LSM, the infiltration excess in a vertical grid column is directly assigned as 

the surface runoff. This excess water is considered the sink term, which does not 

affect the calculations of the next time step. However, the WRF-Hydro model can 

laterally redistribute the (sub)surface water based on high-resolution topographical 

data via its (sub)surface routing options. Also, the surface runoff in WRF-Hydro is 

a state variable (contrary to the sink term, state variables affect the system's future 

behavior) instead of just being a sink term. The subsurface routing is performed first 

to allow for possible exfiltration during the routing processes. Through the 

disaggregation algorithm developed by Gochis and Chen (2003), the soil moisture 

and surface head variables are routed at higher resolutions than the Noah LSM 

horizontal grid spacing. The streamflow is fed by the surface runoff, subsurface 

runoff from the soil layers, and underground runoff from the buckets (if activated). 

Lateral distribution of the (sub)surface water at higher resolutions is prospective to 

cause a better partitioning of the terrestrial water budget as the model can illustrate 

more detailed mesoscale orography and land surface heterogeneities (Givati et al., 

2016; Cerbelaud et al., 2022). The schematic representation of the processes in 

WRF-Hydro is demonstrated in Figure 2.3. 
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Figure 2.3. Demonstration of the processes in a single soil column in WRF-Hydro. 

The figure is retrieved from Rummler et al. (2019) 

2.3 Sensitivity of the extreme precipitation simulation capability of the WRF 

model against model physics and initial and lateral boundary data 

source 

This section focuses on the data, methods, and model configurations used for the 

sensitivity analysis. Even though the details about the steps of the study can be found 
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in the subsections of Section 2.3, a summary of the work is also provided in Figure 

2.4. 

 

Figure 2.4. Summary of the sensitivity analysis. This process is repeated for each 

spatial resolution used as well as each extreme precipitation event selected for the 

corresponding season and region. 

2.3.1 Observational data 

There are above 2000 automated weather observation systems (AWOS) stations over 

the country maintained by the General Directorate of Meteorology (MGM) in 

Turkey. For this study, MGM provided hourly precipitation and temperature records 

of 159 AWOS stations for the period of 01/01/2008 - 31/12/2017 (109 of them is in 

EBS and 50 of them is in MED). Two basic problems are foreseen related to the data 

quality of these gauges. First, some of the stations are eliminated since all data of 
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them were recorded as zero. After this process, 46 and 99 stations are operational for 

MED and EBS, respectively (Figure 2.5-B, blue points). Second, some stations are 

omitted from the analyses as their not available (NA) data amount is too high to 

conduct the analyses. However, the NA amount is not checked for the 10-year data. 

The reason is that the study focuses on short term extreme events. The availability 

of the data for the simulation period is sufficient. Hence, instead of entire datasets, 

NA amount criteria are verified for each of the events separately. The stations, at 

which the NA ratio exceeds 5% of whole data of the simulation period, are not 

included among the stations used for the performance measure study of the 

corresponding event. 
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Figure 2.5. Panel B shows the WRF domains for both regions; d01: the parent 

domain, d02: the child domains. The WRF-Hydro model with 250 m horizontal grid 

spacing is operated over child domains. Panel A and Panel C provides detailed 

information over the (sub)basins defined for EBS and MED regions, respectively. 

Background of the maps: digital elevation model (DEM) provided by MODIS. 

Dashed areas in panels A and C show coverage of radar echos. The figure is obtained 

using R-programming language (R Core Team, 2020). 
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2.3.2 Selection of the events 

MGM also records the extraordinary meteorological events that occur throughout 

Turkey each year based on the observations acquired over AWOS stations. As the 

main criteria, MGM considers the magnitude of the damage due to these events when 

selecting and recording. A total of 62 and 100 extreme events are acquired from 

MGM for MED and EBS regions between 01/01/2008 and 31/12/2017 (Table 2.1) 

where these acquired records are tagged as heavy rain and/or flood. During this 

period, the highest number of events for MED and EBS regions are observed in 

autumn (23) and summer & autumn (45 and 38), respectively. Even though the 

number of summer events is approximately the same as the winter and spring events 

for the MED region, the summer events in this area are relatively complex to solve 

due to their convection-dominant nature. Accordingly, two events per region, one 

from summer and one from autumn, are chosen, and the sensitivity analyses are 

performed for each case to show the temporal variability aside from spatial variation. 

Among the total 162 events (Table 2.1), 8 events are used in this study: 4 of them 

are from summer and 4 are from autumn, 4 of them are for EBS and 4 of them are 

for MED, 4 are selected for calibration and 4 are for independent validation (details 

about these 8 events are given below in Table 2.2). Here, the calibration indicates 

the events used for the sensitivity analyses to specify the best model physics and 

initial and lateral boundary data source combinations for simulating extreme 

precipitation. 
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Table 2.1 Number of the extreme precipitation/flooding events with respect to the 

years and the seasons. Spring: From 21 March to 20 June. Summer: From 21 June to 

22 September. Autumn: From 23 September to 20 December. Winter: From 21 

December to 20 March 

  
  

MED Region EBS Region 

Spring Summer Autumn Winter Spring Summer Autumn Winter 

2008 0 1 0 0 1 6 0 0 

2009 0 1 5 3 2 13 7 1 

2010 0 0 4 4 2 4 2 1 

2011 3 0 1 0 0 3 4 0 

2012 2 0 1 3 0 4 6 0 

2013 0 1 1 1 2 3 1 1 

2014 1 1 5 1 0 3 4 0 

2015 1 2 2 1 4 4 6 0 

2016 0 1 0 0 0 4 3 0 

2017 7 5 4 0 2 1 5 1 

Total 14 12 23 13 13 45 38 4 

General 
Total 

62 100 

 

Considering the precipitation regimes of the regions, spatially smaller scale short-

term extreme cases reflect the typical features of the summer events, while the 

spatially larger scale and long-term extreme events exemplify the autumn events. 

The events selected for the calibration are used for the sensitivity analysis of the 

WRF model. Table 2.2 gives some characteristics of the selected events: date of the 

event, maximum hourly rainfall amount in the event center, cumulative rainfall 

amount of the event center for the simulation period, the hour at which maximum 

hourly precipitation occurred (i.e., peak hour), number of the stations passed the 

event-based quality control (stations, at which the not available (NA) data length 

exceeds 5% of the whole simulation period, are omitted for the corresponding event) 

and percent of the rainy data (the records higher than 0.3 mm is assumed as rainy). 

It is noted that the percent of the rainy data parameter (%) shows how many of the 

records are rainy. For instance, 75 stations pass the quality control procedure for the 
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event dated 21.09.2016. So, a total of 5475 (i.e., 75 stations * 73 h = 5475 h) hours 

of data are recorded for the incident. Table 2.2 indicates that the records at 23% of 

5475 hours are higher than 0.3 mm. 

Additionally, calibration and validation events (Table 2.2) are selected to have 

similar spatial and temporal characteristics, so that the adaptability of the results of 

the sensitivity analysis is tested in the independent events. For the validation events 

of the EBS-summer and MED-autumn, the simulations continue six days because of 

the several successive precipitation events that follow each other. 

Table 2.2 The characteristics of the selected events used in model calibration and 

validation 

 

Figure 2.6 depicts the accumulated precipitation and the temperature variations from 

AWOS stations during the 73-hour simulation period for the calibration events. The 

steep increase of the cumulative precipitation line and the instantaneous drop of 

temperature just before the peak hour reveal the convection-dominant nature of the 

summer events. Especially for MED, percent of rainy data is very low, and 59.2 mm 

of a total 66.2 mm rainfall at the central station (station # 18844) occurs just in 1 

hour (Figure 2.6). These also support the inference that the convective factors trigger 
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20.09.2016 3 days EBS 18231 41.0328 39.2144 81.1 299.7 34 75 23 

13.11.2016 3 days EBS 19059 40.9758 41.1125 40.1 398 31 87 27 

29.08.2017 3 days MED 18844 37.5242 31.1881 59.2 66.2 38 34 4 

26.11.2017 3 days MED 17954 36.7895 31.441 29.6 163.2 68 43 28 

V
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id
a
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o

n
 E

ve
n

ts
 21.08.2015 6 days EBS 18554 41.3166 41.2928 36.9 315.3 26 77 12 

13.10.2015 3 days EBS 17800 40.9898 40.6083 39.8 169.8 37 24 37 

30.07.2015 3 days MED 17927 37.0968 31.5952 22.6 34.2 44 34 3 

20.10.2015 6 days MED 17954 36.7895 31.441 78.2 268.4 71 35 21 
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the event. For autumn, the milder slope of the cumulative precipitation lines proves 

the longevity of the events in comparison to summer. 

 

Figure 2.6. The time-series of the observed precipitation and temperature for the 

central stations of the calibration events for the simulation period 

2.3.3 Model configuration 

The physics-based ensemble simulations are generated using the WRF system with 

Advanced Research WRF version 4.0 developed at the National Center of 

Atmospheric Research (NCAR; Skamarock et al., 2019) The MP, CU, and PBL 

schemes are alternated in the ensemble and described in Section 2.3.3.1 while all 

experiments use the unified Noah land surface model, Dudhia short- and RRTM 

long-wave radiation schemes, and Eta & MM5 similarity surface layer schemes. 

Herein, it is substantial to note that the usage of the surface layer scheme depends on 

the used PBL scheme. In this study, the sensitivity of two different PBL schemes, 

Yonsei University Scheme (YSU) and Mellor–Yamada–Janjic Scheme (MYJ), are 

tested. According to the WRF working algorithm, when the PBL scheme is selected 

as MYJ, the surface layer option has to be selected as the Eta similarity scheme. 

However, the YSU option is not compatible with this surface layer option. 
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Each simulation is a nested run (two-way nesting) with the spectral nudging of the 

parent domain (d01). The spatial resolutions of the outer and inner domains are 9 km 

and 3 km, respectively. The areas covered by the domains (d01 & d02) together with 

elevation distribution are shown in Figure 2.5-B. The outer domain is situated 

between the coordinates of 23.5°E-47.5°E and 34.5°N- 43.5°N with 232 x 111 grid 

points. It extends further from the national border of Turkey to account for weather 

systems under the influence of synoptic-scale circulations that originate overseas 

(Türkeş and Erlat, 2003; Givati and Rosenfeld, 2013). Two inner domains shown 

with red frames (d02) in Figure 2.5-B have 73 x 88 grid points and 136 x 52 grid 

points for the MED and EBS regions, respectively. As stated in the literature, the 

input variables are expected to have a remarkable impact on WRF outputs. 

Accordingly, the products of the National Oceanic and Atmospheric Administration 

(NOAA) and European Centre for Medium-Range Weather Forecasts (ECMWF) are 

employed as initial and lateral boundary conditions and the sensitivity of the model 

against data sources are deliberated for different spatiotemporal conditions. NCEP 

GFS Global Forecast Grids (NOAA, 2015) contains the forecasts for the upcoming 

16 days with a 0.25° horizontal grid spacing. The temporal resolution is 3 hours for 

the first ten days and 12 hours for the last six days. Alternatively, ERA5 data, the 

successor to ERA-Interim, originated by ECMWF atmospheric reanalysis, provides 

hourly reanalysis data from 1979 to present with 0.25° spatial resolution. Data are 

available at 137 model levels in the vertical direction. The vertical resolution of the 

WRF models in this study is 40 atmospheric levels spaced closer together in the PBL. 

Each WRF simulation starts from a day before the event day to get rid of spin-up 

time error, and lasts until a day after, including the midnights. 

2.3.3.1 Physics ensemble design 

Multiple options for most physics parameterizations that are actual model 

representations of sub-grid scale processes are available in the WRF system. The 

implementation of various physics schemes, as well as their interactions, causes a 
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considerable variation in the forecast output (Zhang et al., 2006). The key 

parameterization of CU convection, MP, and boundary layer are examined to return 

the best configuration that would produce reliable precipitation simulation for 

selected rainfall events. Here we investigate the performance of different options in 

three physics schemes to simulate two storms occurring over MED and two storms 

occurring over EBS regions in Turkey. The physics schemes tested are the MP 

scheme, the CU scheme, and the PBL scheme. 

The MP scheme is mainly responsible for the cloud formation and water particle 

action, as well as specifies the interactions between the atmosphere and the surface 

(ElTahan and Magooda, 2017). The scheme plays a vital role in the estimation of 

non-convective large-scale precipitation. Four different MP schemes are selected to 

be tested in this study. These are Kessler Scheme (KS), Eta (Ferrier) Scheme (ES), 

WRF Single–moment 6–class Scheme (WSM6), and Aerosol–aware Thompson 

Scheme (AATS). KS is the oldest MP scheme of WRF, which considers the air 

circulations in two-dimension (Mielikainen et al., 2013). It calculates the values of 

water vapor, cloud water, and rainfall in response to microphysical processes 

(Kessler, 1995). ES assesses two more condensed matters: small ice crystals, and 

precipitation ice like snow, graupel, or sleet (Ferrier et al., 2002). WSM6 explores 

the processes of water vapor, cloud water, cloud ice, snow, rain, and graupel (Hong 

and Lim, 2006). AATS algorithm utilizes the same water particles with WSM6. 

Additionally, this algorithm takes the aerosols (their size and spread in the air) into 

account while generating cloud and precipitation (Thompson and Eidhammer, 2014). 

The CU scheme determines the convective fluxes and resulting phase modulation of 

water (e.g., from gas to liquid or vice versa) on individual columns where the scheme 

is triggered. In general, the estimation of convective rainfall is directed by the choice 

of CU scheme. This study involves Kain–Fritsch Scheme (KF), Betts–Miller–Janjic 

Scheme (BMJ), and Grell–Freitas Ensemble Scheme (GFES). KF searches for the 

instabilities, which may cause the forming of a CU cloud by concentrating on mass 

fluxes (Kain, 2004). On the other hand, BMJ is not a mass flux scheme; it deduces 

the convective processes from the reference temperature and moisture profiles 
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(Janjić, 1994). These profiles are constituted in the wake of a vast number of 

observations (Vaidya and Singh, 2000). A procedure (Grell and Dévényi, 2002), 

including an ensemble probability density function and a data assimilation technique, 

underlies the working mechanism of the GFES scheme (Grell and Freitas, 2013). All 

of the selected CU parametrization schemes can simulate both deep and shallow 

convection phenomena. 

The PBL tied to the surface layer determines the vertical sub-grid fluxes due to eddy 

transports in the atmospheric column. Along with the cloud formation and chemistry, 

a thorough understanding of the interaction between the atmosphere and the Earth 

surface is a vital issue to consider in order to increase the performance of NWP 

models. From this point of view, PBL schemes trace the turbulent vertical mixing of 

thermodynamic and kinematic profiles such as heat, momentum, or the atmospheric 

constituents like moisture (Hu et al., 2010). The influences of the YSU and MYJ on 

WRF-derived precipitation are measured in this study.  

In total, 24 ensemble members (i.e., scenarios) based on physics are generated for 

each case study region. However, since each of these 24 members is performed using 

two datasets for initial and lateral boundary conditions (GFS and ERA5), 48 

scenarios are formed for the sensitivity analysis (Table 2.3). It is worthy to remark 

that no CU option is used for 3 km domain runs since the MP scheme is sufficiently 

capable of solving convective processes at a finer resolution (Hsiao et al., 2013; 

Pennelly et al., 2014). Finally, for the validation events, the five best scenarios for 

the 3 km and 9 km analyses (i.e., a total of 10 scenarios) are selected from the 

ensembles of the sensitivity analysis for each calibration event. 
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Table 2.3 MP, CU, PBL, and initial and lateral boundary datasets selections for the 

scenarios used in the sensitivity analysis.  

Scenario Number MP CU PBL Initial 

1 KS (1) KF (1) YSU (1) GFS 
2 ES (5) KF (1) YSU (1) GFS 
3 WSM6 (6) KF (1) YSU (1) GFS 
4 AATS (28) KF (1) YSU (1) GFS 
5 KS (1) BMJ (2) YSU (1) GFS 
6 ES (5) BMJ (2) YSU (1) GFS 
7 WSM6 (6) BMJ (2) YSU (1) GFS 
8 AATS (28) BMJ (2) YSU (1) GFS 
9 KS (1) GFES (3) YSU (1) GFS 

10 ES (5) GFES (3) YSU (1) GFS 
11 WSM6 (6) GFES (3) YSU (1) GFS 
12 AATS (28) GFES (3) YSU (1) GFS 
13 KS (1) KF (1) MYJ (2) GFS 
14 ES (5) KF (1) MYJ (2) GFS 
15 WSM6 (6) KF (1) MYJ (2) GFS 
16 AATS (28) KF (1) MYJ (2) GFS 
17 KS (1) BMJ (2) MYJ (2) GFS 
18 ES (5) BMJ (2) MYJ (2) GFS 
19 WSM6 (6) BMJ (2) MYJ (2) GFS 
20 AATS (28) BMJ (2) MYJ (2) GFS 
21 KS (1) GFES (3) MYJ (2) GFS 
22 ES (5) GFES (3) MYJ (2) GFS 
23 WSM6 (6) GFES (3) MYJ (2) GFS 
24 AATS (28) GFES (3) MYJ (2) GFS 
25 KS (1) KF (1) YSU (1) ERA5 
26 ES (5) KF (1) YSU (1) ERA5 
27 WSM6 (6) KF (1) YSU (1) ERA5 
28 AATS (28) KF (1) YSU (1) ERA5 
29 KS (1) BMJ (2) YSU (1) ERA5 
30 ES (5) BMJ (2) YSU (1) ERA5 
31 WSM6 (6) BMJ (2) YSU (1) ERA5 
32 AATS (28) BMJ (2) YSU (1) ERA5 
33 KS (1) GFES (3) YSU (1) ERA5 
34 ES (5) GFES (3) YSU (1) ERA5 
35 WSM6 (6) GFES (3) YSU (1) ERA5 
36 AATS (28) GFES (3) YSU (1) ERA5 
37 KS (1) KF (1) MYJ (2) ERA5 
38 ES (5) KF (1) MYJ (2) ERA5 
39 WSM6 (6) KF (1) MYJ (2) ERA5 
40 AATS (28) KF (1) MYJ (2) ERA5 
41 KS (1) BMJ (2) MYJ (2) ERA5 
42 ES (5) BMJ (2) MYJ (2) ERA5 
43 WSM6 (6) BMJ (2) MYJ (2) ERA5 
44 AATS (28) BMJ (2) MYJ (2) ERA5 
45 KS (1) GFES (3) MYJ (2) ERA5 
46 ES (5) GFES (3) MYJ (2) ERA5 
47 WSM6 (6) GFES (3) MYJ (2) ERA5 
48 AATS (28) GFES (3) MYJ (2) ERA5 
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2.3.3.2 Performance statistics 

In total nine accuracy statistics (Probability of Detection, POD; False Alarm Ratio, 

FAR; Critical Success Index, CSI; Percent Correct, PC; Frequency Bias Index, FBI; 

Root Mean Square Error, RMSE; Mean Bias Error, MBE; Standard Deviation Ratio, 

SD; Pearson Correlation Coefficient) from two different metric groups (categorical 

metrics and pairwise statistics) are utilized to specify the hierarchy between the 

scenarios (Table 2.4). Categorical metrics inform about the precipitation detection 

capacity of the model, while pairwise statistics measure the goodness of the model 

in forecasting the total amount and trend (Toté et al., 2015). The values of the metrics 

are calculated between each station and the closest WRF grid to that station. For 

instance, for a scenario of an event having 75 available stations with sufficient 

quality, a total of 75 values are calculated for each metric. Determination of the best 

scenarios for the entire region is based on the average of these 75 values since the 

stations are almost uniformly distributed over the regions. In other words, scenarios 

are rated regarding the nine distinct metrics mean values calculated for each scenario. 

Nevertheless, ordering the combinations on the basis of these nine values requires 

the usage of a multi-criteria decision-making method. The Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS; Hwang and Yoon, 1981) 

method is used to fulfill the requirement. The method identifies relatively the best 

and the worst ideal alternatives by normalizing the input metrics. Afterward, the 

distances between the metric value and the ideal best/worst solutions of the 

corresponding metric are calculated for each scenario. Finally, the TOPSIS 

algorithm ranks the scenarios with respect to the closeness to the best and the 

remoteness to the worst alternatives.   

Before operating the TOPSIS algorithm, the weight and the impact direction of the 

individual metrics are assigned. The weight denotes the magnitude of the influence 

of a metric on the resulting decision. For this study, weights are equally appointed to 

all metrics. The impact direction indicates whether the convergence of a scenario to 

the best ideal solution is caused by an increase or a decrease in a metric. The 
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relationship between the convergence and a metric must always be the same, either 

linearly positive or negative, for any range. In other words, the best value of the 

metrics should be either the minimum or the maximum value the metric can take. 

So, the FBI, MBE, and SD are rescaled (Table 2.4). It is precious to note that the 

rescaled values of the metrics are merely used to manipulate the TOPSIS algorithm. 

All other interpretations are made considering the real (i.e., not rescaled) values. 

Table 2.4 Characteristics of the categorical metrics and pairwise statistics. A: 

Number of Correct Detection, B: Number of False Alarms, C: Number of Misses, D: 

Number of Correct Negative, E: Total forecast number (73) 

Name Group 
Possible 

Range 

Perfect 

Score 

Rescaled 

Range 

Impact 

Direction 

Rescaling 

Method 

 POD = 
𝐴

𝐴+𝐶
 Categorical 0 to 1 1 x + x 

FAR= 
𝐵

𝐴+𝐵
 Categorical 0 to 1 0 x - x 

CSI= 
𝐴

𝐴+𝐵+𝐶
 Categorical 0 to 1 1 x + x 

PC= 
𝐴+𝐷

𝐸
 Categorical 0 to 1 1 x + x 

FBI= 
𝐴+𝐵

𝐴+𝐶
 Categorical 0 to ∞ 1 0 to 1 + 

A) If FBI[i]>2, FBI[i]=0 

B) If 2>FBI[i]>1, 

FBI[i]=2-FBI[i] 

C) If FBI[i]<1, 

FBI[i]= FBI[i] 

RMSE Pairwise 0 to ∞ 0 x - x 

MBE Pairwise -∞ to ∞ 0 0 to ∞ - MBE[i]=|MBE[i]| 

SD Pairwise -∞ to ∞ 1 0 to 1 + 

A) If SD[i]>2, SD[i]=0 

B) If 2>SD[i]>1, 

SD[i]=2-SD[i] 

C) If SD[i]<1, 

SD[i]= SD[i] 

Correlation Pairwise -1 to 1 1 x + x 
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2.4 Contribution of the WRF & WRF-Hydro coupling and satellite soil 

moisture initialization to the accuracy of hydrometeorological forecasts 

Within the scope of this section, 4 different long-term simulations are performed as 

follows: 

1. WRF-SA: The standalone WRF model including traditional 1D Noah LSM 

2. WRF-Hydro-SA: The standalone WRF-Hydro model, which is calibrated 

and validated with the meteorological input derived from the WRF-SA 

3. WRF-Coup: The fully coupled WRF/WRF-Hydro modeling system 

operated with calibrated WRF-Hydro parameters 

4. WRF-Coup-SM: The fully coupled WRF/WRF-Hydro modeling system 

operated with calibrated WRF-Hydro parameters and initiated with SMAP product 

The temporal coverage of the simulations is shown in Figure 2.7. The details of these 

runs and model setups are explained in the following sub-sections.  

 

Figure 2.7. Temporal coverage of the models 
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2.4.1 WRF-SA 

The WRF-SA model is run over two areas (i.e., EBS and MED) to compare its 

performance with the coupled models and produce meteorological input variables 

for the WRF-Hydro-SA model for a long-term period. Study areas of the WRF-SA 

models for EBS and MED are designed as two nested domains (Figure 2.5-B). The 

models' initial and lateral boundary conditions are provided by GFS data. However, 

according to Pilatin et al. (2021), the lower boundary of the WRF model applied over 

the Black Sea region is better represented with the use of high-resolution sea surface 

temperature (SST) from NCEP data. Therefore, for initial and time-continuous 

boundary conditions, NCEP-SST data are used instead of SST data of GFS. The CU, 

MP, and PBL schemes (Table 2.5) of the WRF-SA models are selected according to 

the outputs of the sensitivity analysis (i.e., the scenario introduced in Section 2.3 and 

Duzenli et al. (2021), which gives the best precipitation output). The CU physics are 

not initiated for the convection-permitting child domains. The model's time step for 

solving dynamic and physical equations is 54 seconds for the parent domain (d01) 

and 18 seconds for the child domain (d02). The models consist of 40 vertical levels, 

and the pressure in the topmost level is 5 kPa. 
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Table 2.5 The physics used in long-term WRF simulations with respect to the 

regions. The CU physics are not initiated for the child domains (i.e., the physics 

marked in red show the CU used not in the inner domain, but in the outer domain 

operated simultaneously). 

Physics EBS MED 

MP 
WSM6 (WRF Single–moment 6–

class Scheme) 
ES (Eta (Ferrier) Scheme) 

CU 
GFES (Grell–Freitas Ensemble 

Scheme) 
GFES 

PBL YSU (Yonsei University Scheme) MYJ (Mellor–Yamada–Janjic Scheme) 

Shortwave radiation 

scheme 
Dudhia short-wave radiation scheme Dudhia short-wave radiation scheme 

Longwave radiation 

scheme 
RRTM long-wave radiation scheme RRTM long-wave radiation scheme 

Land surface model Noah land surface model Noah land surface model 

Surface model 
Eta & MM5 similarity surface layer 

schemes 

Eta & MM5 similarity surface layer 

schemes 

 

2.4.2 WRF-Hydro-SA 

2.4.2.1 Selection of the calibration and validation subbasins 

General Directorate of State Hydraulic Works (DSI) provided the daily streamflow 

data for the stream gauges in EBS and MED. The subbasin corresponding to each 

stream gauge is delineated using the ArcGIS preprocessing tool (Sampson and 

Gochis, 2018). The elevation data for this process is retrieved from the Hydrological 

data and maps based on Shuttle Elevation Derivatives at multiple Scales 

(HydroSHEDS) that have 3 arc-second (~90m) spatial resolutions. 
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The EBS basin consists of many small and steeply elevated subbasins owing to its 

complex and steep-sided topography. Because of these geographical features, the 

hydrological response in the region's subbasins is rapid against sudden and excessive 

precipitation events. Therefore, it is worthwhile to calibrate the WRF-Hydro model 

for the EBS region not only according to daily data but also according to hourly data 

and to discuss the possible differences between the values of calibrated parameters. 

Hence, the calibration of the WRF-Hydro model for the EBS region is separately 

achieved for daily and hourly streamflow data over the Arhavi subbasin (Figure 2.5-

A, red subbasin), which has hourly streamflow data as well as daily. The calibrated 

values of the parameters acquired from the calibration of the Arhavi subbasin are 

validated for both red and blue subbasins in Figure 2.5-A. Calibration of the WRF-

Hydro model for the MED region is performed over the Oymapınar subbasin (Figure 

2.5-C, red subbasin), and the calibrated model is validated for both the red and blue 

subbasins shown in Figure 2.5-C. At least one subbasin adjacent to the calibration 

subbasins is incorporated among the subbasins selected for the validation. The time 

series of the calibration basins are provided in Figure 2.8. 

The spatial resolution of the WRF-Hydro model run over the d02 domains (Figure 

2.5) is chosen as 250 m. The model terrain comprises four different soil layers of 10, 

30, 60, and 100 cm from the surface to the ground. All routing modules (surface, 

subsurface, and channel) and baseflow bucket model are activated. The time step is 

15 seconds for the terrain routing and 300 seconds for the channel routing operations. 
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Figure 2.8. Time series of streamflow gauges used for the calibration study. 

D22A049: Calibration basin of EBS, E09A012: Calibration basin of MED.  

2.4.2.2 WRF-Hydro-SA calibration period 

The WRF-Hydro-SA model parameters are calibrated throughout one year (i.e., 

between 01.04.2016 - 01.04.2017 for EBS and 01.01.2016 - 01.01.2017 for MED). 
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Seven different parameters, which are the most calibrated in the literature and 

thought to have a significant effect on the streamflow output, are selected to calibrate 

in this study (Yucel et al., 2015; Senatore et al., 2015; Givati et al., 2016; Naabil et 

al., 2017; Kerandi et al., 2018; Fersch et al., 2020; Zhang et al., 2020b; Camera et 

al., 2020; Abbaszadeh et al., 2020; Kilicarslan et al., 2021): 

• REFKDT: Infiltration depth  

• RETDEPRTFAC: Retention depth scaling factor  

• REFDK: the reference (silty clay loam) saturated hydraulic conductivity 

• SLOPE: Free drainage coefficient  

• OVROUGHRTFAC: Overland roughness scaling factor  

• MAnnN: Manning's roughness coefficient  

• LKSATFAC: Lateral saturated hydraulic conductivity scaling factor 

In the calibration part, ten different values are tested for each parameter. Before 

starting the calibration process, a sensitivity analysis is applied to the hydrologic 

model during the relatively short spin-up period. As a result of this analysis, the 

model's sensitivity to the RETDEPRTFAC parameter is low, and the model gives 

the best streamflow outputs for the both region when this parameter value is selected 

as 0. Based on this result, the best parameter value of RETDEPRTFAC is assumed 

as 0, and this parameter is excluded from the calibration study. 

The WRF-Hydro-SA model is calibrated for four different cases: 

• EBS-daily: Calibration of Arhavi subbasin in EBS considering daily 

streamflow data (based on KGE coefficient) 

• EBS-hourly: Calibration of Arhavi subbasin in EBS considering hourly 

streamflow data (based on KGE coefficient) 

• MED-KGE: Calibration of Oymapınar subbasin in MED considering daily 

streamflow data (based on KGE coefficient) 

• MED-NSE: Calibration of Oymapınar subbasin in MED considering daily 

streamflow data (based on NSE coefficient) 
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The calibration process is carried out starting from the MED-KGE scenario. During 

the calibration of this scenario, it is observed that any value selected for the REFDK 

parameter other than the default value causes unreasonable streamflow outputs. In 

addition, Camera et al. (2020) stated that calibrating one of the REFDK and 

REFKDT parameters would be sufficient since these parameters are equifinal (i.e. 

Both parameters have the same effect on the WRF-Hydro-SA outputs). Thus, the 

REFDK parameter is not calibrated for the other scenarios, and the default value (i.e., 

2x10-6) is assigned to this parameter. 

The calibration is done based on the KGE coefficient for the first three cases, whereas 

the NSE coefficient is the decision statistic for the last case. The primary purpose is 

to compare the calibrated parameter values obtained for the same region and period 

but based on different coefficients. Besides, the WRF-Hydro-SA model is calibrated 

via the manual step-wise calibration method, as in Yucel et al. (2015). The manual 

calibration method first calibrates the parameters determining the total water volume 

(i.e., REFKDT, REFDK, SLOPE) and then the parameters specifying the hydrograph 

shape (i.e., OVROUGHRTFAC, MAnnN, LKSATFAC). While calibrating the first 

parameter (i.e., REFKDT), the model is run with the default values of the other 

parameters. For the following parameters, the model is initiated with the values of 

the parameters calibrated until then. 

The WRF-Hydro-SA model is forced with the meteorological data (i.e., 

shortwave/longwave radiation, specific humidity, wind (u-v), temperature, surface 

pressure) generated by the WRF-SA model. However, in-situ measurements are 

utilized as precipitation forcing data instead of WRF-SA output for the calibration 

of the hydrologic model. The precipitation data of 181 stations in and around EBS 

and 99 stations in and around MED are provided by MGM. These point data are 

converted into gridded precipitation via the Inverse Distance Weighting (IDW) 

method since the WRF-Hydro model needs gridded inputs. The meteorological 

stations located inside the basins (shown in Figure 2.5) are used to evaluate the 
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precipitation and temperature outputs of the WRF-SA, WRF-Coup, and WRF-SM-

Coup models. 

2.4.2.3 WRF-Hydro-SA validation period 

The WRF-Hydro-SA model is forced along the validation period with the calibrated 

parameters using four different precipitation input data sources: 

• In-situ measurement 

• WRF-SA 

• Uncorrected radar 

• Corrected radar 

In this way, it is possible to measure the streamflow generation performance of the 

WRF-Hydro model with respect to different precipitation input products as well as 

different spatiotemporal conditions.  

Uncorrected and corrected radar data (Yousefi, 2020) are used in this study. The 

spatial resolution of the radar data is 1 km. However, the meteorological variables to 

be given as input data to the WRF-Hydro-SA model have a spatial resolution of 3 

km. Furthermore, the complex topography of the study areas causes the beam 

blockage in radar sensors, and correspondingly, this condition prevents the 

acquisition of spatially continuous radar data over the regions. Due to the beam 

blockage, 55% of the Eastern Black Sea region and 38% of the Mediterranean region 

do not have radar data (Figure 2.5-A and Figure 2.5-C). Hence, the radar data with 

1 km spatial resolution are interpolated into 3 km grids, and the grids that do not 

incorporate radar data are filled with the in-situ measurements before being used as 

forcing for the WRF-Hydro-SA model. Fundamentally, four different methods have 

been tried: 

• Method 1: In-situ measurements are interpolated to the domain with the 

grids having 3 km horizontal grid spacing via the IDW method. 1 km radar 

data are upscaled to the 3 km grid resolution using the bilinear interpolation 
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method. The empty grids in the 3-km radar data are filled with the 

observation data. 

• Method 2: In-situ measurements are interpolated to the domain with the 

grids having 1 km horizontal grid spacing via the IDW method. The empty 

grids in the 1-km radar data are filled with the observation data. The filled 

data at 1 km are upscaled to the 3 km grid resolution using the bilinear 

interpolation method. 

• Method 3: In-situ measurements are interpolated to the domain with the 

grids having 3 km horizontal grid spacing via the IDW method. 1 km radar 

data are upscaled to the 3 km grid resolution using the weighted average 

method. The empty grids in the 3-km radar data are filled with the 

observation data. 

• Method 4: In-situ measurements are interpolated to the domain with the 

grids having 1 km horizontal grid spacing via the IDW method. The empty 

grids in the 1 km radar data are filled with the observation data. The filled 

data at 1-km are upscaled to the 3 km grid resolution using the weighted 

average method. 

A sensitivity analysis is conducted to understand which of these four different ways 

is more robust to generate radar data that will force the WRF-Hydro-SA model. The 

WRF-Hydro-SA model is separately run for a week using the radar data obtained 

from each method. The radar product, which produces the most accurate streamflow 

data at the end of these 1-week simulations, is also preferred to produce the radar 

data to be used as precipitation input for the validation analyses. As a result of this 

sensitivity analysis, the radar product obtained via the Method 2 is chosen as the 

radar data to be used in the validation period (Table 2.6). Also, the time series for 

each streamflow product obtained at the end of this sensitivity analysis and the 

spatial distribution of the precipitation at peak hour are presented in Figure 2.9 and 

Figure 2.10, respectively. 
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Table 2.6 Statistics calculated between the hourly streamflow outputs of the WRF-

Hydro-SA model and the closest stream gauge data for the flood event in Kemer 

between 13.12.2018 - 20.12.2018. The WRF-Hydro-SA model is separately 

simulated, considering each radar product obtained from different methods. RMSE: 

root means square error, NSE: Nash Sutcliffe Efficiency, R: Correlation. The unit of 

the streamflow data is m3/s. 

 RMSE NSE R 
Method 1 72.73 0.18 0.72 
Method 2 64.31 0.34 0.77 
Method 3 66.80 0.29 0.75 
Method 4 66.81 0.29 0.75 

 

 

Figure 2.9. The observed streamflow data from station D08A071 and WRF-Hydro-

SA model outputs for the Kemer – Ovacık event simulations. WRF Hydro (WRF): 

The output when the WRF Hydro-SA model is forced with WRF precipitation, WRF 

Hydro (OBS): The output when the WRF Hydro-SA model is forced with 

precipitation from in-situ measurement, WRF Hydro (RADAR): The output when 

the WRF Hydro-SA model is forced with the radar precipitation obtained from 

method 2. 
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Figure 2.10. Spatial distribution of precipitation (in mm) by products for the peak 

hour of the Kemer event (for the output obtained with Method 2). 
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2.4.3 WRF-Coup 

Input data source, model physics, and spatial resolution of the atmospheric model of 

the WRF-Coup model are the same as the WRF-SA described in Section 2.4.1, and 

the characteristics of the hydrological model of the WRF-Coup are the same as the 

calibrated WRF-Hydro-SA model mentioned in Section 2.4.2. The WRF-Hydro 

model in the coupled model is run with the calibrated parameters obtained from the 

MED-KGE and EBS-daily calibration scenarios for the MED and EBS regions, 

respectively. 

2.4.4 WRF-SM-Coup 

The coupled WRF & WRF-Hydro modeling system is initiated with the topsoil layer 

moisture data from the SMAP product to obtain the WRF-Coup-SA model. The 

SMAP product has a temporal resolution of 3-hour and a spatial resolution of 9 km. 

The GFS keeps providing the other boundary conditions of this model. The SMAP 

product is not raw satellite data; the National Aeronautics and Space Administration 

(NASA) downscales the SMAP satellite outputs (36 km) to form such high-

resolution data. 

The soil moisture data from different sources (i.e., satellite, model, in-situ 

measurement) have different scales (i.e., data distribution/dispersion); therefore, the 

corresponding data are rescaled before being used in the same analyses (Dirmeyer et 

al., 2004; Reichle and Koster, 2005; Afshar and Yilmaz, 2017). Accordingly, the 

SMAP product is rescaled to the scale of GFS soil moisture because the GFS source 

supplies all the other boundary data. Albeit the study covers two years, the rescaling 

processes are conducted between 2015-10-01 and 2019-10-01 since using a more 

extended period improves the rescaling success (Yilmaz and Crow, 2013). The 

rescaling process is achieved using three different methods; two of which are linear 

(linear regression (REG) and variance matching (VAR)), and one is nonlinear 

(multivariate adaptive regression splines (MARS)). Method performances are 
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compared in terms of Bias, correlation, root-mean-square-error (RMSE), and 

standard deviation ratio (SD ratio) statistics. 

Linear rescaling is performed using the following equations based on the existence 

of a simple linear relationship between SMAP and GFS soil moisture (Yilmaz and 

Crow, 2013). 

Y*
REG = μx + (Y- μy)xcREG (1) 

Y*
VAR = μx + (Y- μy)xcVAR (2) 

cREG = 
σ𝑥

σy
𝜌(𝑥, 𝑦) (3) 

cVAR = 
σ𝑥

σy
 (4) 

where; 

Y= SMAP time series 

Y*
REG = SMAP data obtained via REG method  

Y*
VAR = SMAP data obtained via VAR method 

μx = Mean of the GFS time series 

μy = Mean of the SMAP time series 

𝛒(x,y) = Correlation between GFS and SMAP time series 

σx = Standard deviation of the GFS time series 

σy = Standard deviation of the SMAP time series 

Although MARS is a linear model in terms of its algorithm, it examines the nonlinear 

relationships that might exist between input and output variables (Friedman, 1991). 

The model consists of two steps: i) forward stepwise phase ii) backward stepwise 

phase. In the forward stepwise phase, the model aims to minimize the errors between 

the output and target (i.e., rescaled and reference data set for our case) variables. It 

is the backward stepwise phase that prunes the function to avoid overfitting and 

allows the model to converge to the real function rather than the existing data.  
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SMAP data are used as input data for the rescaling methods to estimate the GFS data. 

The statistics are calculated between the estimated GFS and the actual GFS products 

over each SMAP grid in d01 domain and the closest GFS grid. The MARS method 

gives the best value for all the statistics except the SD ratio, in which the VAR 

method is the best. The VAR method inherently equates the standard deviation of 

the rescaled data to the standard deviation of the reference data. Nevertheless, the 

method excessively focuses on matching the standard deviation and causes relatively 

low values at other statistics and highly fluctuated outputs (Figure 2.11-A, and Figure 

2.11-B). Therefore, the WRF-SM-Coup model is initiated using SMAP data rescaled 

with the MARS method. Moreover, the spatial distribution of the SMAP (i.e., before 

the rescaling), GFS, and SMAP (MARS) data at the initiation time of the models 

(i.e., 2015-10-01-00:00:00) are shown under the corresponding columns in Figure 

2.11-C and Figure 2.11-D. According to these figures, SMAP soil moistures are 

consistently smaller than the GFS values for both regions, which could be due to a 

scaling difference between the products; hence the satellite soil moisture data should 

be rescaled before their use in models. 
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Figure 2.11. Time series of the topsoil layer moisture of different products for the 

study period (Panel A and B). Panel C and D shows the spatial distribution of the 

topsoil layer moisture products by regions for the initiation time of the long-term 

WRF model simulations (i.e., 10.01.2015-00:00:00). The figure is obtained using R-

programming language (R Core Team, 2020). 
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CHAPTER 3  

3 RESULTS AND DISCUSSION 

3.1 Sensitivity of the extreme precipitation simulation capability of the WRF 

model against model physics and initial and lateral boundary data 

source 

3.1.1 Temporal characteristics of area-averaged precipitation 

In this section, the ensembles, which are composed of 24 members, are formed 

concerning the initial and lateral boundary condition & horizontal grid spacing 

combinations. Here, the primary motivation is to discuss the differences in the WRF 

outcomes associated with the changing external parameters (i.e., initial and lateral 

boundary data source and spatial resolution) rather than the model physics. 

Evaluations are performed based on the information between the ensemble mean 

value of the members and observed areal mean precipitation for the regions. 

Figure 3.1 shows the mean time series for the simulation period of the events. Each 

column in the figure indicates the scenarios that correspond to the different initial 

and lateral boundary conditions & horizontal grid spacing combination, whereas 

each row exhibits an event. The variations in the observed areal mean precipitation, 

each of WRF ensemble members, and ensemble mean of the members can be 

observed from the figure. Fundamentally, Figure 3.1 shows that the model members 

underestimate the precipitation amount except for the MED-autumn and some 

members of the EBS-summer events. Particularly for the MED-autumn event, all 

members overestimate the peak value. Though WRF does not correctly predict the 

amount of the peak values, it is generally successful at capturing the peak hours of 

the extreme events. Notably, a considerable part of the model configurations that 

include GFS can accurately detect even the peak hour of the MED-summer, which 
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is a highly intense and short-term event. Approximately 35% of the members 

involving GFS determines the peak hour of this event. The ratio of those members 

missing the peak hour more than one hour is 18.75%. According to the correlation 

values between the ensemble means and the area-averaged precipitation, the general 

fluctuations of the WRF ensembles during the 73 hours agree well with the 

observations. For the EBS-autumn event, the correlations are around 0.90. The 

correlation is higher at summer events when GFS is used as the initial and lateral 

boundary conditions. ERA5 ensembles give a better correlation only for the MED-

autumn event. Furthermore, based on areal mean precipitation, the cases having 3 

km horizontal grid spacing are as successful as 9 km in terms of the correlation 

coefficient. 

 

Figure 3.1. The area-averaged observed and WRF-derived precipitation considering 

different initial and lateral boundary condition & horizontal grid spacing 

combinations. For each case, the correlation values are calculated between the 

ensemble mean of the corresponding 24 scenarios and the observed data. 
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In Figure 3.2, dispersions of the hourly areal mean precipitation data for the event 

day (i.e., 24 data points) are presented for the gauge records, as well as for the 

different initial and lateral boundary conditions & horizontal grid spacing 

configurations. The observations are shown in green, and each scenario is marked 

with a color, changing from red to blue. The member colored with red has the lowest 

TOPSIS coefficient among the 24 members, and the blue one indicates the member 

with the highest coefficient. The other colors between these two show the order of 

each member. For the illustration of Figure 3.2, TOPSIS coefficients are obtained 

based on the metrics calculated between the hourly areal mean values of the 

observations and each member. In this way, the capacity of the model in capturing 

area-averaged hourly precipitation for the entire region is displayed. Firstly, the 

limits of the interquartile range and the maximum point for the observation of the 

EBS-summer are well presented by the best members of each of ERA5 and GFS 

ensembles. However, the skill for demonstrating the interquartile range and the 

maximum point is highly variable between the scenarios. Thus, the physics choices 

are quite influential on the variability of the simulations performed for this event. 

Secondly, most of the ERA5 configurations shown with bluish colors provide almost 

the same median value as the EBS-autumn observation. In other words, these 

configurations are successful at predicting the average precipitation amount for the 

event day. Nevertheless, all combinations simulating EBS-autumn underestimate the 

peak value of the event. Figure 3.2 also shows that, compared to the other events, the 

observed data of the EBS-autumn has a more symmetrical distribution shape. So, the 

total precipitation amount is more uniformly distributed along the simulation period 

than the other events. The scenarios generally have difficulty in following this 

symmetrical shape owing to the underestimation of the peak value. Moreover, the 

MED-summer event's distribution shape dramatically has positive skewness since 

the event occurs just in a few hours. Albeit the scenarios are successful at matching 

the distribution shape, they are not capable of determining the maximum value. 

Lastly, the overestimation of the MED-autumn event in terms of the peak value and 

the size of the interquartile range is also presented by the boxplots of scenarios. The 
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overestimation is more explicit in GFS-forced members than those in ERA5-forced 

members. 

 

Figure 3.2. The comparison of the dispersions of the observed precipitation and the 

individual WRF scenarios for the event day. Colors of the boxes indicate the 

hierarchy between the scenarios based on TOPSIS algorithm. The rating is 

performed for each initial and lateral boundary condition & horizontal grid spacing 

combination, separately. Scenario numbers are assigned based on Table 2.3. 

Figure 3.3 compares the influences of the initial and lateral boundary data source and 

parameterization choices on the variability of the WRF outputs for the 9 km spatial 

resolution. The blue line in the figure is obtained by calculating the variance of the 

area-averaged precipitation values from the 24 members of ERA5 forcing for each 

hour. This line shows the effect of the parameterization on the variability when 

ERA5 is chosen as the initial and lateral boundary data source. Similarly, the orange 

line indicates the effect of the parameterization, in case meteorological data of the 

GFS is used to initiate the model. The purple line shows the initial and lateral 
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boundary data effect. As seen in Table 2.3, each of the 24 parameterization 

combinations forms two different scenarios, one with ERA5 and one with GFS. A 

new precipitation time series is attained for the grids of each combination by taking 

the mean of the precipitation outputs coming from these two scenarios (e.g., 1-25, 2-

26, 3-27, …, 24-48 in Table 2.3). The variance of the area-averaged precipitations 

of the newly obtained 24 scenarios for each hour is assumed to present the initial and 

lateral boundary data effect on the area-averaged precipitation variability generated 

by WRF. In general, when the initial and lateral boundary data source is chosen as 

GFS, the parameterization effect is higher in comparison to ERA5 except for the 

MED-summer. Still, there are some hours, at which the parameterization effect is 

relatively higher for the ERA5 choices. Figure 3.3 additionally proves that the 

parameterization choices affect the area-averaged precipitation variability more than 

the initial and lateral boundary data source selection for the simulated events. 

 

Figure 3.3. The influences of the initial and lateral boundary data source and 

parameterization on WRF-derived precipitation. The horizontal lines show the mean 

values of the plots represented with the same color. 
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3.1.2 Selection of the best scenarios 

The ensemble approach is quite useful for the sensitivity analyses since the error of 

the predictions originates from the model configurations (Houtekamer et al., 1996). 

One of the primary objectives of this section is to choose the best WRF-model 

configurations from the constituted scenarios that are composed of parameterization 

schemes, initial and lateral boundary data, and spatial resolutions for each event. 

Table 3.1 and Table 3.2 show the hierarchy between the scenarios considering the 

TOPSIS algorithm for each event and spatial resolution, separately (i.e., Table 3.1 

for 9 km and Table 3.2 for 3 km spatial resolutions). In Table 3.2, the CU 

parameterization of 3 km scenarios is colored with red because it is kept inactive in 

simulations. Those show the CU scheme of the collaborating coarse domain. To 

begin with, the best scenarios of the EBS-summer case for both 9 km and 3 km grid 

spacing commonly include MYJ and ERA5 combinations. PBL scheme of the best 

scenarios is changeable for the other events. Nevertheless, ERA5 is dominant for the 

EBS-Autumn as well, at which 8 of the best 10 scenarios (i.e., best five scenarios per 

resolution, a total of 10 scenarios) use ERA5 as initial and lateral boundary 

conditions. Thus, it can be asserted that ERA5 is superior compared to GFS over the 

EBS region. On the contrary, given the MED-summer event, GFS is better than 

ERA5. Both data sources are credible for the MED-autumn event. Besides, WSM6 

is the driving MP scheme of the EBS-autumn. Whereas, ES is the MP scheme of all 

the best scenarios of the MED-autumn. The driving MP scheme is generally variable 

in summer except for the small domain of the MED-summer. AATS governs the best 

scenarios for the 3 km domain of the MED-summer. The choice of the MP scheme 

is determinant for the EBS-summer event because the other parameters of the best 

scenarios are stable. In terms of the CU scheme, rather than autumn, BMJ is more 

efficient in summer. Unlike, KF is more influential in autumn. It is encountered with 

the GFES scheme in the best scenarios of both autumn and summer events. 
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Table 3.1 List of the scenarios ordered from the best to the worst, based on the 

TOPSIS results for the 9 km spatial resolution.  

  EBS-Summer EBS-Autumn MED-Summer MED-Autumn 

  MP CU PBL Initial MP CU PBL Initial MP CU PBL Initial MP CU PBL Initial 

1 ATS BMJ MYJ ERA5 WSM6 KF MYJ ERA5 ES BMJ YSU ERA5 ES KF MYJ GFS 

2 ES GFES MYJ ERA5 WSM6 GFES YSU ERA5 KS BMJ YSU GFS ES GFES YSU ERA5 

3 WSM6 BMJ MYJ ERA5 WSM6 GFES YSU GFS ATS BMJ MYJ ERA5 ES GFES MYJ GFS 

4 KS BMJ MYJ ERA5 WSM6 GFES MYJ ERA5 WSM6 GFES MYJ GFS ES KF YSU GFS 

5 ATS GFES MYJ ERA5 ATS KF MYJ ERA5 ATS GFES MYJ ERA5 ES GFES MYJ ERA5 

6 WSM6 GFES MYJ ERA5 WSM6 GFES MYJ GFS KS KF YSU GFS ATS GFES MYJ GFS 

7 ATS GFES YSU ERA5 KS KF YSU ERA5 KS KF MYJ GFS ES GFES YSU GFS 

8 KS GFES MYJ GFS ES GFES YSU GFS ES GFES MYJ GFS ES BMJ MYJ GFS 

9 WSM6 GFES YSU ERA5 ATS GFES YSU ERA5 KS BMJ MYJ GFS ATS GFES YSU GFS 

10 ES KF MYJ GFS ES KF MYJ ERA5 ATS BMJ MYJ GFS WSM6 GFES MYJ ERA5 

11 ATS KF MYJ ERA5 WSM6 KF YSU ERA5 ATS BMJ YSU GFS ES BMJ YSU GFS 

12 ES KF MYJ ERA5 ATS KF YSU ERA5 ATS KF MYJ GFS ES BMJ MYJ ERA5 

13 WSM6 KF MYJ ERA5 KS BMJ MYJ GFS KS GFES YSU GFS WSM6 KF YSU GFS 

14 ES BMJ MYJ ERA5 ES KF YSU ERA5 WSM6 KF YSU ERA5 ATS BMJ MYJ GFS 

15 ES BMJ YSU ERA5 ATS KF YSU GFS WSM6 BMJ MYJ GFS ATS GFES MYJ ERA5 

16 ES GFES YSU ERA5 WSM6 BMJ YSU ERA5 ATS GFES MYJ GFS ES BMJ YSU ERA5 

17 ES GFES MYJ GFS ES GFES YSU ERA5 KS GFES MYJ GFS ATS BMJ YSU GFS 

18 WSM6 BMJ YSU ERA5 KS GFES YSU ERA5 ATS KF YSU GFS WSM6 KF MYJ GFS 

19 ES KF YSU ERA5 WSM6 KF MYJ GFS ATS KF YSU ERA5 ATS KF MYJ GFS 

20 ATS BMJ YSU ERA5 ATS BMJ MYJ GFS WSM6 BMJ YSU GFS WSM6 GFES YSU ERA5 

21 ATS KF MYJ GFS ES GFES MYJ ERA5 WSM6 BMJ YSU ERA5 ATS KF YSU GFS 

22 ES GFES YSU GFS ATS KF MYJ GFS ATS BMJ YSU ERA5 WSM6 GFES MYJ GFS 

23 KS GFES YSU ERA5 KS KF MYJ ERA5 WSM6 KF MYJ ERA5 WSM6 GFES YSU GFS 

24 KS KF MYJ ERA5 ATS BMJ YSU GFS WSM6 GFES MYJ ERA5 ATS BMJ YSU ERA5 

25 KS GFES MYJ ERA5 ES KF MYJ GFS ES GFES MYJ ERA5 WSM6 BMJ YSU GFS 

26 WSM6 BMJ MYJ GFS ATS BMJ YSU ERA5 KS GFES MYJ ERA5 WSM6 BMJ MYJ GFS 

27 ATS KF YSU ERA5 KS GFES MYJ GFS ES KF YSU ERA5 ES KF YSU ERA5 

28 KS BMJ YSU GFS ES BMJ YSU GFS WSM6 KF YSU GFS ATS BMJ MYJ ERA5 

29 KS BMJ YSU ERA5 WSM6 KF YSU GFS WSM6 BMJ MYJ ERA5 KS GFES YSU GFS 

30 KS KF YSU ERA5 WSM6 BMJ MYJ ERA5 ATS GFES YSU GFS WSM6 BMJ MYJ ERA5 

31 ES KF YSU GFS ES BMJ YSU ERA5 KS KF YSU ERA5 ATS GFES YSU ERA5 

32 ATS KF YSU GFS ATS GFES MYJ ERA5 ATS GFES YSU ERA5 ES KF MYJ ERA5 

33 ATS GFES YSU GFS KS GFES YSU GFS ES KF MYJ GFS KS GFES MYJ GFS 

34 KS GFES YSU GFS ES BMJ MYJ GFS ES GFES YSU ERA5 KS BMJ YSU GFS 

35 KS BMJ MYJ GFS ATS BMJ MYJ ERA5 ES KF YSU GFS WSM6 BMJ YSU ERA5 

36 KS KF MYJ GFS KS BMJ YSU ERA5 ATS KF MYJ ERA5 KS BMJ MYJ GFS 

37 ATS BMJ YSU GFS ES KF YSU GFS WSM6 KF MYJ GFS KS KF YSU GFS 

38 WSM6 GFES MYJ GFS WSM6 BMJ YSU GFS WSM6 GFES YSU GFS ATS KF MYJ ERA5 

39 ATS GFES MYJ GFS ATS GFES MYJ GFS ES BMJ YSU GFS KS KF MYJ GFS 

40 WSM6 KF MYJ GFS KS KF MYJ GFS WSM6 GFES YSU ERA5 KS KF MYJ ERA5 

41 KS KF YSU GFS WSM6 BMJ MYJ GFS ES BMJ MYJ ERA5 KS GFES MYJ ERA5 

42 WSM6 BMJ YSU GFS ATS GFES YSU GFS ES GFES YSU GFS KS BMJ MYJ ERA5 

43 WSM6 KF YSU ERA5 KS BMJ YSU GFS KS GFES YSU ERA5 KS BMJ YSU ERA5 

44 WSM6 GFES YSU GFS KS GFES MYJ ERA5 ES KF MYJ ERA5 ATS KF YSU ERA5 

45 WSM6 KF YSU GFS KS KF YSU GFS KS BMJ YSU ERA5 WSM6 KF MYJ ERA5 

46 ES BMJ YSU GFS KS BMJ MYJ ERA5 KS BMJ MYJ ERA5 KS KF YSU ERA5 

47 ES BMJ MYJ GFS ES BMJ MYJ ERA5 KS KF MYJ ERA5 WSM6 KF YSU ERA5 

48 ATS BMJ MYJ GFS ES GFES MYJ GFS ES BMJ MYJ GFS KS GFES YSU ERA5 
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Table 3.2 List of the scenarios ordered from the best to the worst, based on the 

TOPSIS results for the 3 km spatial resolution.  

  EBS-Summer EBS-Autumn MED-Summer MED-Autumn 

  MP CU PBL Initial MP CU PBL Initial MP CU PBL Initial MP CU PBL Initial 

1 ATS BMJ MYJ ERA5 WSM6 KF MYJ ERA5 ATS GFES MYJ GFS ES GFES YSU ERA5 

2 ATS GFES MYJ ERA5 WSM6 GFES YSU ERA5 ATS GFES MYJ ERA5 ES GFES MYJ GFS 

3 WSM6 BMJ MYJ ERA5 ATS KF MYJ ERA5 KS GFES MYJ GFS ES KF YSU GFS 

4 WSM6 GFES MYJ ERA5 ATS BMJ YSU ERA5 ATS KF YSU GFS ES GFES MYJ ERA5 

5 ES GFES MYJ ERA5 WSM6 GFES YSU GFS ATS GFES YSU GFS ES BMJ YSU GFS 

6 ATS GFES YSU ERA5 WSM6 GFES MYJ GFS KS KF YSU GFS ES GFES YSU GFS 

7 KS BMJ MYJ ERA5 ATS BMJ MYJ GFS WSM6 BMJ YSU GFS ES BMJ MYJ GFS 

8 KS GFES MYJ GFS WSM6 KF YSU ERA5 KS GFES YSU GFS ES KF MYJ GFS 

9 WSM6 GFES YSU ERA5 ATS GFES MYJ ERA5 ES GFES MYJ GFS ATS GFES MYJ GFS 

10 ES BMJ YSU ERA5 WSM6 KF MYJ GFS ATS BMJ MYJ ERA5 ATS GFES YSU GFS 

11 WSM6 KF MYJ ERA5 KS KF YSU ERA5 ATS KF MYJ GFS ATS BMJ MYJ GFS 

12 ES BMJ MYJ ERA5 ATS KF MYJ GFS WSM6 GFES MYJ ERA5 ES BMJ YSU ERA5 

13 ES KF MYJ ERA5 KS KF MYJ ERA5 WSM6 BMJ MYJ GFS WSM6 GFES MYJ ERA5 

14 ES GFES YSU ERA5 ES GFES YSU GFS ATS KF YSU ERA5 ES BMJ MYJ ERA5 

15 WSM6 BMJ YSU ERA5 WSM6 GFES MYJ ERA5 ATS GFES YSU ERA5 ATS GFES MYJ ERA5 

16 ES KF MYJ GFS ATS GFES YSU ERA5 ATS BMJ MYJ GFS WSM6 KF YSU GFS 

17 ATS KF MYJ ERA5 KS BMJ MYJ GFS ES GFES MYJ ERA5 ATS BMJ YSU GFS 

18 WSM6 BMJ MYJ GFS ATS BMJ MYJ ERA5 WSM6 GFES YSU GFS WSM6 GFES MYJ GFS 

19 ATS BMJ YSU ERA5 ATS KF YSU ERA5 ES BMJ YSU ERA5 ATS BMJ MYJ ERA5 

20 ES GFES YSU GFS WSM6 BMJ YSU ERA5 ATS BMJ YSU GFS WSM6 GFES YSU ERA5 

21 ATS KF YSU ERA5 WSM6 BMJ YSU GFS WSM6 GFES MYJ GFS WSM6 GFES YSU GFS 

22 ATS KF MYJ GFS WSM6 BMJ MYJ ERA5 WSM6 KF YSU ERA5 WSM6 BMJ MYJ GFS 

23 ES GFES MYJ GFS WSM6 KF YSU GFS KS GFES MYJ ERA5 WSM6 BMJ YSU GFS 

24 KS KF YSU ERA5 KS GFES MYJ GFS KS BMJ YSU GFS ATS KF MYJ GFS 

25 KS GFES MYJ ERA5 KS GFES YSU GFS ES KF MYJ GFS ATS BMJ YSU ERA5 

26 ATS KF YSU GFS ES GFES YSU ERA5 WSM6 BMJ MYJ ERA5 ATS KF YSU GFS 

27 ES KF YSU ERA5 ATS BMJ YSU GFS ES BMJ MYJ ERA5 ES KF YSU ERA5 

28 ES KF YSU GFS ATS KF YSU GFS ES BMJ YSU GFS WSM6 KF MYJ GFS 

29 KS GFES YSU ERA5 KS GFES YSU ERA5 WSM6 KF MYJ GFS KS GFES YSU GFS 

30 KS KF MYJ ERA5 ES KF YSU ERA5 KS BMJ MYJ GFS WSM6 BMJ MYJ ERA5 

31 KS BMJ YSU ERA5 ATS GFES YSU GFS KS KF MYJ GFS ATS GFES YSU ERA5 

32 ATS GFES YSU GFS KS BMJ MYJ ERA5 ES GFES YSU ERA5 WSM6 BMJ YSU ERA5 

33 KS BMJ YSU GFS ES GFES MYJ GFS ES GFES YSU GFS KS GFES MYJ GFS 

34 KS BMJ MYJ GFS WSM6 BMJ MYJ GFS WSM6 BMJ YSU ERA5 ES KF MYJ ERA5 

35 KS GFES YSU GFS KS BMJ YSU ERA5 WSM6 KF MYJ ERA5 KS BMJ MYJ GFS 

36 WSM6 GFES MYJ GFS ES KF YSU GFS KS KF YSU ERA5 KS BMJ YSU GFS 

37 ATS GFES MYJ GFS ATS GFES MYJ GFS WSM6 KF YSU GFS KS BMJ MYJ ERA5 

38 WSM6 KF MYJ GFS KS KF YSU GFS WSM6 GFES YSU ERA5 KS KF YSU GFS 

39 ATS BMJ YSU GFS KS KF MYJ GFS ATS KF MYJ ERA5 KS KF MYJ ERA5 

40 KS KF MYJ GFS KS GFES MYJ ERA5 ES KF MYJ ERA5 ATS KF MYJ ERA5 

41 WSM6 BMJ YSU GFS KS BMJ YSU GFS ATS BMJ YSU ERA5 KS GFES MYJ ERA5 

42 WSM6 KF YSU GFS ES KF MYJ ERA5 KS KF MYJ ERA5 KS KF MYJ GFS 

43 ES BMJ MYJ GFS ES BMJ YSU ERA5 ES BMJ MYJ GFS KS GFES YSU ERA5 

44 WSM6 KF YSU ERA5 ES GFES MYJ ERA5 ES KF YSU GFS KS BMJ YSU ERA5 

45 WSM6 GFES YSU GFS ES BMJ YSU GFS ES KF YSU ERA5 KS KF YSU ERA5 

46 KS KF YSU GFS ES BMJ MYJ GFS KS GFES YSU ERA5 ATS KF YSU ERA5 

47 ES BMJ YSU GFS ES KF MYJ GFS KS BMJ MYJ ERA5 WSM6 KF YSU ERA5 

48 ATS BMJ MYJ GFS ES BMJ MYJ ERA5 KS BMJ YSU ERA5 WSM6 KF MYJ ERA5 
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Taylor diagram (Taylor, 2001) summarizes the model performance by presenting 

some statistics between the model and the reference. These statistics are the 

correlation coefficient, the root-mean-square difference, and the ratio of standard 

deviations. Figure 3.4 comprises Taylor diagrams with regard to the different model 

parameterizations and initial and lateral boundary data for each event. Each dot in 

this figure indicates a combination. In Figure 3.4, there are 96 combinations under 

the column of the parameterization and initial and lateral boundary data inputs except 

for the CU scheme (There are 48 combinations for this column) since all the 

simulations are run with a nested run, but CU scheme is inactivated for the 3 km grid 

spacing. The shape and the colors of the dots represent the used parameterizations 

and initial and lateral boundary data source in the corresponding combination. The 

statistics of the combinations in Figure 3.4 are obtained by taking the mean of the 

statistics calculated between the stations and the closest grid to the stations for each 

combination. OBS is the optimal point (i.e., correlation=1, ratio of standard 

deviations=1, and the root-mean-square difference=0). So, if a model outcome is 

closer to the OBS, then it is a better outcome. According to the TOPSIS results, MYJ 

& ERA5 combination is detected at all the best scenarios of the EBS-summer event. 

Although the Taylor diagram results are commonly similar to the TOPSIS results, a 

few of the best scenarios of the Taylor diagram includes GFS. This difference derives 

from that ERA5 is more successful than GFS in categorical metrics. For instance, 

the mean of the POD index is 0.45 for the GFS scenarios, while the mean POD value 

of the ERA5 scenarios is 0.53. It is worthwhile to remind that categorical metrics are 

used in the TOPSIS algorithm, whereas they are not taken into consideration in the 

Taylor diagram. Also, GFS and ERA5 values are highly separable when the MED-

autumn event is considered. For this event, the scenarios with GFS widely find out 

higher correlation values, but the ratio of the standard deviation is mostly higher as 

well. The best MP, CU, boundary layer schemes, and input data of the event are ES, 

GFES, YSU-MYJ, and ERA5, respectively. Both PBL schemes in this event show a 

very similar performance. 
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Further, it is possible to mention some local clusters in terms of the MP scheme for 

the events. However, the clustering is quite evident at the EBS-autumn analyses. For 

EBS-autumn clusters, the correlation and root-mean-square difference values are 

similar. Nonetheless, the standard deviation rates are highly variable and are, 

therefore, the main reason for clustering. The standard deviation of the WRF 

estimates produced by the scenarios that include the KS scheme is lower than the 

observations. Contrarily, the WSM6 scheme generates time series with more 

variability. The ratios of the standard deviations aggregate around 1 for the other two 

MP schemes. Differently from the other events, the values of the root-mean-square 

that belong to 96 members are close to each other for the EBS-autumn incident. 

Correlation values in EBS-autumn stay between 0.4-0.6 while they stay less than 0.4 

in the other three events (EBS-summer, MED-summer, and MED-autumn). 

Moreover, for the MED-summer event, the figure proves that there are four different 

scenarios, the standard deviations of which are nearly the same with the reference. 

These four scenarios are composed of the combinations of ES - KF(GFES) - YSU - 

ERA5 - 9 km (3 km). The highest variability (standard deviation) in all 

parameterization schemes and initial and lateral boundary datasets is observable in 

the MED-summer event. 
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Figure 3.4. Taylor diagram for the different parameters and events. OBS is the best 

point. The red semi-circles show the RMSE differences, and the black quarter-

circles, except for the one indicating the correlation values, present the standard 

deviation ratios. The presented statistics for each scenario are obtained by taking the 

mean of the statistics, which are calculated between the stations and the closest grid. 

Because of the complexity in its occurrence, the primary factors behind the summer 

precipitation are still uncharted (Tabari and Willems, 2018). Therefore, forecasting 

summer extremes is a challenging issue. Assuming that the summer events are 

convective and small-scaled, the evaluation of the performance of a model at the 

event center is noteworthy. Figure 3.5 shows the hourly variation of the summer 

event centers from observed stations in EBS and MED and the closest grid ensemble. 

As a result, the model cannot thoroughly solve the system causing extreme rainfall 
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at the central station of the MED event. FAR index for the best and the worst ten 

scenarios is close to each other, which is about 0.8, along with showing a low 

correlation value with the central station. For the EBS-summer event, while the peak 

amount at the central station is 81.1 mm, this amount is 12 mm for the ensemble 

mean of the best ten scenarios. In other words, the model has difficulty estimating 

the peak amount. However, the peak hour corresponds to the 34th hour after the 

simulation started, is captured by the model. Further, the FAR and POD index and 

the correlation coefficient between the ensemble mean of the best ten scenarios and 

the central station are 0.41, 0.91, and 0.84. These values prove that the WRF 

ensemble is successful not only in describing the fluctuation but also in detecting 

precipitation at an hourly scale. 

 

Figure 3.5. The time-series for the central stations of the summer events and the 

ensembles of the closest grids to the central stations. The correlation values colored 

with dark blue, purple, and orange show the linear relationship between the central 

stations of the events and the ensemble mean of the best ten scenarios, the best 

scenario, and the ensemble mean of the worst ten scenarios, respectively. 
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The spatial distribution of the extreme precipitation events is evaluated using the 

ensemble of the best ten scenarios and the best scenarios in Figure 3.6 (for EBS) and 

Figure 3.7 (for MED). All maps in the figures consist of total precipitation values 

that occur per each grid on the event day. The first row of the figures shows the 

spatial dispersion of the in-situ measurements distributed over the region using the 

IDW method because the stations almost uniformly spread over the regions. The 

figures provide information about the 3 km horizontal grid spacing analyses. The 

observation maps agree that the rainfall event occurs around one center for EBS-

summer and a few centers for EBS-autumn events rather than occurring across the 

region. For both events, the event centers are commonly located near the sea. This 

condition may be triggered by the orographic influences since the mountains lie 

parallel to the sea throughout EBS coasts. Moreover, the rainfall is considerably 

intense and occurs over the spatially smaller scales for the summer events of the 

regions. Although the EBS-summer seems to be amplified by the orography as well, 

both summer events are mainly driven by the local convective systems.  

The second and the third rows show the spatial distribution of the ensemble mean of 

the best ten scenarios and the best scenarios. The WRF maps of the EBS-autumn 

event support the inferences about the orography and demonstrate precipitation all 

along the coast. Besides, the ensemble mean map accurately detect the spatial 

positions of most of the event centers. The convection-permitting analysis spatially 

overestimates the extreme event; however, the observed peak amounts are still 

underestimated.  On the contrary, the MED-autumn event is overestimated in terms 

of both spatial scale and precipitation amount. The overestimation is more apparent 

for the best scenario case than the ensemble mean of the best ten scenarios case. In 

general, the ensemble mean of the best ten scenarios improves the findings of the 

best scenario. Exceptionally, the spatial location of the convective event center is 

more accurately determined by the best scenario of the MED-summer event. 
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Figure 3.6. The spatial distribution of the daily total precipitation of the EBS events 

for the observations, the ensemble mean of the best 10 scenarios, and the best 

scenarios regarding 3 km spatial resolution on the event day. The point observations 

are converted into gridded data through the IDW method. 
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Figure 3.7. The spatial distribution of the daily total precipitation of the MED events 

for the observations, the ensemble mean of the best 10 scenarios, and the best 

scenarios regarding 3 km spatial resolution on the event day. The point observations 

are converted into gridded data through the IDW method. 

Figure 3.8 is a useful visual to further investigate the orographic influences in 

precipitation extremes for the EBS-autumn event. In the first panel of the figure, the 

spatial distribution of the precipitation amount in 3 km horizontal grid spacing is 
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presented for the peak hour relative to the areal mean. A cross-section (A-B) of the 

slice that includes the grid having the maximum hourly precipitation is obtained in 

the south-north direction. The second panel shows the mixing ratio and the vertical 

wind speed (i.e., contours) distributions regarding the changing WRF vertical level 

(i.e., sigma level) and the latitude along the cross-section. All the WRF-outputs (i.e., 

mixing ratio, precipitation, and wind speed) in this figure are the ensemble mean of 

the best ten scenarios for the 3 km spatial resolution. Also, the red line provides the 

value of the altitude corresponding to each latitude. The primary aim of the graph is 

to determine whether the orographic barrier triggers the condensation of the moisture 

coming from the sea or not as well as detecting the vertical level of the cloud 

formation causing the extreme precipitation and finding out the magnitude and the 

direction of the vertical wind waves over the region. According to the figure, there 

is intense cloud formation around the 10th vertical level and over the 41°N latitude. 

The vertical wind-wave up to 0.6 m/s is detected in the upward direction for this part. 

The cloud formation and wind wave overlap with the region on which the maximum 

precipitation originates. Likewise, the altitude of the maximum precipitation area is 

around 250 m. This is the first hilly region that the moisture encounters while coming 

from the sea. Even though they are not as strong as the cloud formation driving the 

maximum precipitation, the clouds generating precipitation appear at higher altitudes 

than 250 m as well. The cloud formation stops at approximately 800 m altitude. 

Neither precipitation nor cloud formation is observed at the places higher than this 

altitude. Based on these inferences, the orography seems one of the leading 

precipitating causes of the EBS-autumn extreme precipitation events. 
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Figure 3.8. The first panel shows the spatial distribution of WRF-derived 

precipitation that has 3 km horizontal grid spacing for the peak hour relative to the 

areal mean. The x-axis of the second panel indicates the latitudes for the A-B cross-

section, while the first y-axis shows the vertical WRF-levels. The colored 

background presents the mixing ratio distribution concerning the latitudes and the 

vertical levels, whereas the counters demonstrate the vertical wind magnitude and 

direction in m/sec. The positive wind values indicate the upward wind movement, 

and the negative ones are the indicator of the downward wind circulation. The values 

of precipitation, mixing ratio, and wind speed are obtained by taking the ensemble 

mean of the best ten scenarios. The second y-axis demonstrates the altitude values 

for the corresponding latitudes. 
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3.1.3 Validation of the selected best scenarios with the independent events 

The performance of the selected best ten combinations is tested for the independent 

events occurring over the same region and in the same season. Figure 3.9 the results 

of the calibration and validation ensembles in terms of the values of some metrics. 

The metrics are calculated between each station and the ensemble mean of the closest 

grid (i.e., the ensemble mean of the best ten scenarios for the calibration events and 

ensemble mean of the ten scenarios for the validation events.). The boxes in this 

figure represent the dispersion of the statistical measures of stations for these events.  

As expected, both categorical and other statistical measures decrease in the 

validation period as these measures are calculated through independent events. The 

chaotic situation of the atmosphere is responsible for the changes in statistical 

measures between two events, even though the similar (same) model configuration 

is used. Still, there are some situations at which the indices are as successful as 

calibration values. For instance, the categorical metric values are very close to each 

other for the calibration and validation events of the MED-autumn. Similarly, 

although the range of it is slightly more extensive, the median value of the RMSE is 

lower for the validation event of the EBS-summer compared to the calibration event. 

The selected physics configurations for these two regions and seasons are 

particularly appropriate to use in future storm simulations over these domains. 
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Figure 3.9. The comparison of the performance of the calibration and validation 

ensembles 

For the validation events, the performance of the WRF model in precipitation 

generation is compared with the performance of the ERA5 dataset, which is one of 

the two data sources used in this study as the initial and lateral boundary conditions 

for the constructed WRF models. The precipitation forecasts of the other data source, 

GFS, are not compared with the WRF results since GFS forecasts are not provided 

in the hourly time scale. It is worthy to state that the comparisons are made based on 

the area-averaged values because ERA5 data and WRF ensembles have different 

spatial resolutions. Figure 3.10 demonstrates the fluctuations of the time series of the 

observations, WRF ensemble mean, and ERA5 mean data for each event. The TP 

ratios indicate the fraction of the cumulative precipitation generated by the models 

to the cumulative precipitation acquired from the stations for the simulation periods. 

First of all, the total precipitation amount that occurs in the EBS-summer and MED-

autumn events is precisely accumulated by the WRF ensemble. However, the model 

underestimates the total amounts of the EBS-autumn and MED-summer events. 

Especially for the MED-summer event, both models highly underestimate the total 
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amount and have a relatively low correlation with the observations because of the 

strong convection-driven occurrence mechanism of the summer events. This 

mechanism results in very intense and short duration precipitation. Indeed, WRF 

catches the time of the first peak of the validation event, but it misses the subsequent 

essential precipitation peak and thereby underestimates the total precipitation 

amount. Checking the sensitivity of the model against different sea surface 

temperatures may be a valuable contribution to the improved simulation of 

convective summer events (Senatore et al., 2019). Moreover, the correlation between 

the observations and WRF is more powerful compared to the ERA5 except for the 

EBS-summer event. The positive contribution of the dynamical downscaling to the 

TP ratio of the MED-autumn and the correlation of the EBS-autumn events is 

notable. To conclude, though there are some exceptions, WRF outputs are commonly 

more successful than the ERA5 precipitation estimates for the selected validation 

events. 

 

Figure 3.10. The performance comparison of the WRF- and ERA5-derived 

precipitation for the validation events 
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3.2 Contribution of the WRF & WRF-Hydro coupling and satellite soil 

moisture initialization to the accuracy of hydrometeorological forecasts 

3.2.1 Calibration and validation of the WRF-Hydro-SA 

Table 3.3 shows the statistics of the best trial of each calibration step and KGE/NSE 

values of the run with the default and calibrated parameter combinations. The best 

trial indicates the run giving the highest KGE value for the first three scenarios and 

the highest NSE value for the MED-NSE scenario. 

The calibrated values obtained from two different calibration scenarios performed 

for the EBS region (i.e., daily and hourly) are different for the REFKDT, SLOPE, 

and MAnnN parameters. The calibrated REFKDT value is lower for the EBS-daily 

scenario than the EBS-hourly scenario, whereas the calibrated SLOPE value of the 

EBS-daily scenario is relatively higher. The infiltration rate at the EBS-daily 

simulation is lower because of this low REFKDT value. Also, the water transition 

from the soil to the bucket model under the soil is more for the EBS-daily scenario, 

owing to the higher SLOPE value. In a word, in the EBS-daily scenario, a lower 

amount of water enters the soil, and more water exits. For instance, for the validation 

run forced with observed precipitation, the basin average soil moisture values of the 

topmost soil level (i.e., the soil level at which infiltration occurs) and the lowest soil 

level (i.e., the soil level just above the bucket model) are 0.27 and 0.29 for the EBS-

daily scenario, while they are 0.28 and 0.31 for the EBS-hourly scenario. Further, 

the calibrated MAnnN value is lower for the EBS-hourly scenario than the EBS-

daily scenario. In other words, the model calibrated considering the hourly data 

perceives the river bed as less rough. The reason is that Arhavi, the calibration basin, 

is a steep and small subbasin. Therefore, the surface runoff in the system reaches its 

peak quickly (i.e., sometimes within hours after the start of precipitation), which is 

possible with lower roughness. Finally, the improvement of the KGE statistic in the 

EBS-daily scenario (i.e., 14%) is greater than in the EBS-hourly scenario (i.e., 1%). 
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Due to varying performance metrics, the calibrated parameter values differ for the 

MED-KGE and MED-NSE scenarios. The primary motivation of the NSE is testing 

the capacity of the model to catch the variation of the observed hydrograph and the 

peaks. On the other hand, the KGE has three different focuses: alpha (i.e., the ratio 

of the standard deviation of the model to the standard deviation of the observation), 

beta (i.e., the ratio of the mean of the model to the mean of the observation), and R. 

For the REFKDT parameter, the simulation initiated with the calibrated value 

selected by the MED-NSE (i.e., 3.75) are more successful at the statistics of RMSE, 

R, and MAE than the simulation run by the calibrated value chosen by the MED-

KGE (i.e., 0.25). However, in Bias statistics, the model causes better KGE for the 

REFKDT value of 0.25 than 3.75 by improving the beta statistic. Moreover, the 

MED-KGE model has greater runoff volume than the MED-NSE model. The Bias 

is -34.28% for the REFKDT value of 0.25 and -38.12% for the REFKDT value of 

3.75. The MED-KGE scenario improves the Bias as the calibration steps progress, 

but there is no such improvement for the MED-NSE scenario. At the end of the 

calibration process, Bias decreases to -26.77% in the model calibrated with KGE, 

while Bias improvement is limited (i.e., -35.54%) in the model calibrated with NSE. 

Lastly, the KGE statistic increases by 13% through the KGE-oriented calibration. 

The NSE value shows an increase of only 2% in the NSE-oriented calibration. 
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Table 3.3 The statistics calculated between the streamflow observations and the 

model outputs simulated with the best parameter value selected as a result of 10 trials 

for each parameter. The statistics are calculated based on daily streamflow data for 

the EBS-daily, MED-KGE, and MED-NSE scenarios, whereas they are obtained 

based on hourly streamflow data for the EBS-hourly scenario. All calculations are 

carried out with the unit of m3/s. Black bold statistics are obtained when the model 

is run with the default parameters, and bold red statistics show the performance of 

the calibrated model. 

Calibration 

scenario 
Parameter 

Calibrated 

parameter 

value 

RMSE NSE R MAE KGE Bias (%) 

EBS-daily 

Default -  0.41   0.64  

REFKDT 0.75 8.01 0.52 0.82 4.98 0.72 -0.53% 

SLOPE 0.6 7.85 0.53 0.79 5.18 0.77 1.92% 

OVROUGHRTFAC 0.1 7.57 0.57 0.79 5.09 0.79 0.23% 

MAnnN 2.1 7.4 0.59 0.8 5 0.8 0.30% 

LKSATFAC 1120 7.38 0.59 0.8 5 0.8 0.08% 

EBS-hourly 

Default -  0.21   0.64  

REFKDT 2.75 13.68 0.21 0.66 6.59 0.64 0.90% 

SLOPE 0.3 13.68 0.21 0.66 6.59 0.64 0.90% 

OVROUGHRTFAC 0.1 13.42 0.24 0.66 6.54 0.65 0.61% 

MAnnN 1.3 13.39 0.25 0.66 6.58 0.65 0.84% 

LKSATFAC 1000 13.39 0.25 0.66 6.58 0.65 0.84% 

MED-KGE 

Default -  0.74   0.56  

REFKDT 0.25 29.23 0.59 0.82 19.73 0.59 -34.28% 

REFDK 2*10-6 29.23 0.59 0.82 19.73 0.59 -34.28% 

SLOPE 1 27.92 0.63 0.83 17.94 0.67 -26.67% 

OVROUGHRTFAC 1 27.92 0.63 0.83 17.94 0.67 -26.67% 

MAnnN 2.3 25.35 0.69 0.86 16.41 0.68 -26.72% 

LKSATFAC 10000 24.92 0.7 0.87 16.33 0.69 -26.77% 

MED-NSE 

Default -  0.74   0.56  

REFKDT 3.75 23.23 0.74 0.93 16.32 0.56 -38.12% 

SLOPE 0.4 23.19 0.74 0.92 15.83 0.58 -36.10% 

OVROUGHRTFAC 0.1 22.83 0.75 0.93 15.76 0.59 -35.65% 

MAnnN 0.9 22.83 0.75 0.93 15.8 0.59 -35.64% 

LKSATFAC 2230 22.3 0.76 0.93 15.84 0.61 -35.54% 

 



 

 

68 

The hourly streamflow outputs of the calibrated models forced with the parameter 

values obtained from the EBS-daily and EBS-hourly scenarios are represented in 

Figure 3.1. The KGE values that are calculated between the hourly streamflow 

outputs of the models and DSI observations for each month of the calibration period 

are provided in Table 3.4. The results show that the KGE values obtained for the 

EBS-hourly scenario are higher than the ones for the EBS-daily scenario at 9 of the 

12 months. In contrast, for September, the KGE value of the EBS-daily scenario is 

higher than the EBS-hourly scenario. The main reason for this situation is that the 

EBS-hourly scenario overestimates the first peak at the beginning of the month, 

which brings about a dramatic decrease in its KGE coefficient. This overestimation 

might originate from the lower MAnnN value of the EBS-hourly scenarios causing 

less rough channel surface. Even though the EBS-hourly scenario has less rough 

channel surface, there is no consistent overestimation problem for the EBS-hourly 

model along the calibration period since its soil stores higher moisture in comparison 

to the EBS-daily model, as it is explained above. Nevertheless, for this event, a 

relatively high precipitation amount results in overestimation, most probably by 

directly overfeeding the channel and turning into surface runoff before the soil 

reaches the saturation (i.e., precipitation rate might be higher than the infiltration rate 

as in Horton overland flow). 
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Figure 3.11. Hourly streamflow data from in-situ measurement and WRF-Hydro-SA 

models operated with the calibrated parameters obtained as a result of EBS-daily and 

EBS-hourly calibration scenarios for the Arhavi DSI station. The precipitation data 

is the area averaged precipitation for the corresponding subbasin. 

Table 3.4 KGE coefficients obtained between the hourly streamflow of Arhavi DSI 

station and WRF-Hydro-SA models operated with the calibrated parameters 

obtained as a result of EBS-daily and EBS-hourly calibration scenarios. The 

coefficient is calculated for each month separately. 

Calibrat
ion 

scale 

KGE 

Apr-
16 

May-
16 

Jun-
16 

Jul-
16 

Aug-
16 

Sep-
16 

Oct-
16 

Nov-
16 

Dec-
16 

Jan-
17 

Feb-
17 

Mar-
17 

daily 0.24 0.37 0.22 0.34 0.30 0.52 0.47 0.62 0.25 0.33 -0.03 -0.31 

hourly 0.25 0.38 0.50 0.51 0.04 0.25 0.43 0.64 0.26 0.40 0.08 -0.25 

 

In WRF-Hydro, there are two options for the distribution of groundwater (and a third 

option: it can be considered a sink term). The first one is the exponential bucket 

model, and the second one is pass-through. In the former, the water is transferred 

from the bottom soil layer to the underlying groundwater bucket and accumulated. 

After the bucket fills up, the excess water feeds the channel flow. On the other hand, 
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in the pass-through option, the water is directly transferred to the channel bypassing 

the bucket (D. J. Gochis et al., 2018). Accordingly, the exponential bucket model is 

expected to give better streamflow outputs for long-term simulations. In contrast, the 

pass-through option is highly recommended for short-term extreme event 

simulations. In this study, even though the simulations are performed for a long-term 

period, the pass-through option is used since one of the main aims here is to 

successfully simulate extreme events in the calibration period. However, we realize 

that the model underestimates the recession part of the streamflow (Figure 3.12). To 

understand whether this situation is associated with the groundwater option, the 

WRF-Hydro-SA model having the parameter values obtained as a result of the MED-

KGE scenario is initiated with the option of the exponential bucket model. According 

to the results, the influence of the choice of groundwater option on streamflow 

outputs is not significant for our case (Figure 3.12). 

 

Figure 3.12. DSI observation and WRF-Hydro-SA streamflow outputs from different 

run conditions for the Oymapınar basin 

The parameters calibrated for the EBS-daily, EBS-hourly, and MED-KGE scenarios 

are validated for different periods, sub-basins, and input precipitation sources (Table 

3.5). The performance of the models dramatically decreases in validation periods. 

Three components of the KGE statistics are focused on understanding the potential 

reasons for these decreases.  
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Figure 3.13-A shows the KGE values and components (i.e., alpha, beta, and 

correlation) for each calibration and validation simulation of the MED-KGE 

scenario. It can be seen that from Figure 3.13-A, the beta value is around 0.8 for the 

best of the calibration simulations. In the validation period, the beta value increases 

to around 1 for the WRF-Hydro-SA model outputs forced with the observed and 

corrected radar precipitation. In other words, the model is more successful in the 

validation period in terms of the beta statistic. This outcome is interesting; because 

the total flow volume is more accurately estimated in the validation period despite 

the dramatic decrease in the KGE. As for the correlation statistic, the model is more 

successful during the calibration period; but the performance decrease during the 

validation period is slight. Thus, the decrease in the KGE originates from neither 

beta nor correlation statistics. However, the alpha statistic is around 90% for the best 

calibration simulation and this value rises to around 200% for the validation 

scenarios. Namely, although the WRF-Hydro-SA model successfully determines the 

total flow volume during the validation period, it cannot propagate the total volume 

correctly throughout the time series and misses the variability. 

Figure 3.13-B is formed to determine why the WRF-Hydro-SA fails to distribute the 

total water volume through the time series. The figure demonstrates the precipitation, 

temperature, streamflow, and snow water equivalent variables for different products 

along the validation period. At the beginning of the validation period, precipitation 

occurs, as seen from the observation data, and the basin responds rapidly to the 

precipitation by generating the streamflow. For this period, a large portion of the 

precipitation is rainfall since the observed temperature (i.e., the black lines) is 

frequently above 0°C. However, the WRF-Hydro-SA model is run using the WRF-

derived temperature (i.e., the purple lines) as input and the WRF-derived temperature 

values are commonly below 0°C in this period. So, the WRF-Hydro-SA model 

considers the precipitation given to it as substantially snow, not rain. Due to this 

situation, the model underestimates the streamflow in early January and stores a good 

part of the precipitation as snowpack. The snowpack starts to melt slowly towards 

April, thanks to the temperature increase. When the model encounters precipitation 
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around April at above 0°C, it overestimates the streamflow because of the melting 

snow contribution to the runoff budget in addition to its response to rain. The 

overestimation lasts until mid-May when snowpack budgets consume. The model 

performance is better in the calibration period since it does not encounter any 

condition causing snow-rain complications in 2016. The circumstance for the other 

nine subbasins is also similar. 

After, the validation simulations are repeated using the observed temperature to 

recover the systematic error originated by the temperature input. However, this time, 

overestimation occurs for the streamflow output in the first three months, and 

underestimation occurs in April and May (Figure 3.13-B). The described problem 

does not entirely disappear. Still, this study proves that the input temperature data 

deserve more attention, especially for the long-term WRF-Hydro runs covering the 

snowy seasons. 
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Table 3.5 The KGE values calculated between the streamflow observations and 

WRF-Hydro-SA outputs obtained from the simulations initiated with the calibrated 

parameter combinations. Red bold numbers show the best KGE for the 

corresponding row.  Subbasins are numbered starting from the eastern-based on 

Figure 2.5-A for EBS and Figure 2.5-C for MED. 

  KGE (with respect to the input precipitation 

data source) 

Calibration 

scenario 

Time 

interval 
Basin No In-situ 

Uncorrected 

radar 

Corrected 

radar 

WRF-

SA 

 MED-

KGE  

Calibration 

[01.01.2016- 

01.01.2017] 
Basin 3 0.69 - - - 

Validation 

[01.01.2017- 

01.10.2017] 

Basin 3 0.27 0.1 0.3 0.37 

Basin 1 -0.54 -1.33 -0.61 -0.19 

Basin 2 -0.25 -1.25 -0.52 -0.23 

Basin 4 -1.61 0.55 -0.06 -21.22 

EBS-daily 

Calibration 

[01.04.2016- 

01.04.2017] 
Basin 1 0.8 - - - 

Validation 

[01.04.2017- 

01.10.2017] 

Basin 1 -0.72 -0.69 -0.69 -1.1 

Basin 2 0.51 0.51 0.51 0.28 

Basin 3 -2.03 -1.24 -1.75 -2.75 

Basin 4 0.66 0.53 0.67 0.51 

Basin 5 0.38 -0.21 0.21 0.16 

Basin 6 0.69 0.56 0.71 0.4 

EBS-

hourly 

Calibration 

[01.04.2016- 

01.04.2017] 
Basin 1 0.65 - - - 

Validation 

[01.04.2017- 

01.10.2017] 

Basin 1 -1.85 -1.73 -1.75 -2.3 
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Figure 3.13. Panel A: The KGE values and their components obtained in each 

calibration step and validation simulations for the Oymapınar basin (i.e., the 

calibration basin of the MED region). Panel B: The precipitation, streamflow, and 

temperature time series of existing/obtained products for the Oymapınar basin along 

the validation period. Streamflow values are provided for the point at the exit of the 

basin, while the temperature and precipitation values are the basin averages. The 

figure is obtained using R-programming language (R Core Team, 2020). 
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3.2.2 Short-term evaluation of hydrometeorological variables 

This section discusses the hydrometeorological outputs of the four long-term 

simulations (i.e., for the period of 01.10.2015 – 01.10.2017) for some short-term 

periods. 

Precipitation, air temperature, soil moisture, specific humidity, and soil temperature 

outputs of the atmospheric models (i.e., WRF-SA, WRF-Coup, WRF-SM-Coup) are 

evaluated for the meteorological stations in Arhavi and Döşemealtı districts of EBS 

and MED, which are notably flood-prone regions (Figure 3.14). The model 

performances are discussed for the hourly data of a one-month dry period (2017-

July), considering the danger of convective floods and harmful drought events during 

the summer.  

The WRF-SA model generally underestimates the daily minimum temperature 

values in EBS, but both coupled models are relatively successful in catching the daily 

minimum and peak temperatures. All three models, particularly WRF-SA, 

overestimate the minimum temperature values in MED, and the offline model (i.e., 

WRF-SA) is more accurate in predicting peak values. For the coupled models, even 

though changing the initial soil moisture data source does not significantly affect the 

temperature outputs, the precipitation and soil moisture outputs differ thoroughly. 

For instance, the WRF-SM-Coup model underestimates the precipitation event 

occurring on the 5th of July, whereas it is overestimated by the WRF-Coup model 

(Figure 3.14-A). This overestimation also causes a steep increase in soil moisture for 

the corresponding period. After reaching the peak point, the WRF-Coup model's soil 

moisture quickly decreases due to the high evaporation rate in summer, which results 

in local increases in the amount of specific humidity. Albeit specific humidity value 

decreases after a slight increase, decreases in the temperature make the air reach the 

dew point, and another precipitation event occurs a few days later. An increase in the 

air temperature and specific humidity just prior to the precipitation events in the EBS 

region indicates a typical cloud-precipitation signature formed by local summer 

convection. This character of the lower boundary layer is presented from all three 
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model runs. Moreover, the MED region is drier than the EBS region in summer 

(Figure 3.14-B). For the MED region, the soil moisture outputs of all models 

constantly decrease all along the month since the models produce almost no 

precipitation. Also, the decrease rate (i.e., slope) of soil moisture for coupled models 

(particularly for SM coupled run) is much higher than the decrease rate for the WRF-

SA model. Moisture feedbacks from the surface to the atmosphere stay higher 

(higher specific humidity) for WRF-SM-Coup compared to the other two model 

runs. The soil moisture values of the WRF-SA model are higher than the soil 

moisture of the coupled models. Because of this, the soil temperature of the WRF-

SA model is relatively low compared to the coupled models. Coupled models, 

especially for the MED region, show a higher daily amplitude of the soil temperature 

than WRF-SA. Drier (i.e., semi-arid) MED region exhibits more variable surface-air 

interaction resulting from differences introduced by three model runs. However, in 

the wet EBS region, the variability of such interaction is less pronounced by these 

model runs. 
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Figure 3.14. Hourly observations (for precipitation and temperature) at the Arhavi 

and Döşemealtı meteorological stations of the EBS and MED regions and the model 

outputs (for precipitation, temperature, soil moisture, specific humidity and soil 

temperature) at the closest grids to these stations for the July-2017. The figure is 

obtained using R-programming language (R Core Team, 2020). 

Figure 3.15-A represents the spatial distribution of the observed precipitation 

(obtained via the IDW method) for the extreme precipitation event that occurred in 

EBS on 21.09.2016 at 10:00 am. Figure 3.15-B demonstrates the temperature, 

precipitation, specific humidity, and latent heat flux estimations of the WRF-SA, 

WRF-Coup, and WRF-SM-Coup models for the event time. The precipitation event 
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occurs on a small scale in the mid of the region, where the peak rainfall reaches 50 

mm/h. The event arises on the seaside of the mountains parallel to the sea, indicating 

a strong contribution from orography. The WRF-Coup model simulates the peak 

precipitation with high accuracy in quantity and location. The WRF-SM-Coup 

successfully catches the peak precipitation amount, but it misses the actual 

occurrence location. The WRF-SA model, on the other hand, wrongly simulates the 

location and the magnitude of the extreme event. As consistent with the observed 

precipitation distribution, the initial soil moisture update in coupled model run 

diminishes the rainfall activities in the northeast of the EBS region. Availability of 

the humidity towards the topographical cross-section triggers rainfall enhancement 

together with elevated heat sources. Warmer air temperature over the sea, moisture 

transport from the sea to the mid of the Black Sea via wind, and greater near-surface 

humidity over this region well match the actual location of the peak precipitation 

event for both coupled model runs. The latent heat flux distribution is thoroughly 

changed by the coupled models especially for the northeastern part of the region, 

which shows the influence of the WRF-Hydro coupling on local moisture flux. 
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Figure 3.15. Panel A: Observed precipitation map (obtained with IDW) of the EBS 

region for the extreme precipitation event on 21.09.2016 at 10:00. Panel B: 

Temperature, precipitation, specific humidity and latent heat flux with respect to 

different models for the same spatiotemporal condition with Panel A. The arrows on 

the specific humidity maps are the vectors showing the direction and relative 

magnitude of the wind. The figure is obtained using R-programming language (R 

Core Team, 2020). 

3.2.3 Long-term evaluation of hydrometeorological variables 

In this study, the initial and lateral boundary conditions (i.e., wind, pressure, 

moisture, temperature, and geopotential height) for the WRF atmospheric models are 

provided by the GFS-forecast product. GFS model also forecasts precipitation by 

using the same initial and lateral boundary conditions. Thus, before comparatively 
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discussing the hydrometeorological outputs coming from WRF-SA, WRF-Coup, and 

WRF-SM-Coup, the precipitation output of WRF-SA is evaluated against the GFS-

derived precipitation to see the possible contribution of the dynamical downscaling. 

Figure 3.16 shows the variation of the area-averaged precipitation from observation, 

GFS (0.25° spatial resolution), and WRF (3-km spatial resolution) products along 

the study period. The correlation coefficients between the area averaged precipitation 

from the observation and GFS are 0.77 and 0.90 for the EBS and MED regions. 

These values are 0.84 and 0.92 for the WRF outputs. In other words, especially in 

EBS, the WRF model improves the precipitation outputs in terms of correlation 

coefficients. The total precipitation amount in MED is 1342.33 mm for two years 

with respect to in-situ measurements. GFS overestimates the total precipitation 

amount (1462.44 mm), whereas WRF is relatively successful in determining this 

value (1319.42 mm). For EBS, total precipitation for two years is 2900.44 mm, while 

this value is estimated as 2570.24 mm and 2479.22 mm by the GFS and WRF 

models, respectively. In other words, for this region, the WRF model amplifies the 

underestimation amount. Still, it can be said that the WRF model improves the 

obtained precipitation using the GFS-derived initial and lateral boundary conditions 

on average as well as provides the outputs with higher resolution. 



 

 

81 

 

Figure 3.16. Time series of the area averaged precipitation for different products 

The Arhavi, one of the subbasins in the wettest region of the country, receives 

precipitation in all seasons (Figure 3.17). Oymapınar has rainy winters and dry 

summers; thus, precipitation generally occurs in the winter months. The models can 

capture the mentioned precipitation behaviors of both regions that fluctuate 

according to the seasons. Statistics of both streamflow and precipitation data for the 
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WRF-Coup and WRF-SM-Coup models are almost identical for Arhavi. In other 

words, the sensitivity of the streamflow and the average basin precipitation outputs 

against changing initial soil moisture data source is minor in Arhavi, a more humid 

region than Oymapınar. Modifications that may alter the land-surface model outputs 

of the modeling system, such as running the model in fully coupled mode or updating 

the initial soil moisture data source, change the local water cycle and, consequently, 

the local precipitation formation mechanism. Local-scale atmospheric movements 

are more determinant on the precipitation formation processes in MED than in EBS, 

particularly in summer. The long-term precipitation variability of the EBS 

precipitation is generally shaped by the large-scale teleconnection pattern such as 

North Atlantic Oscillation (Türkeş and Erlat, 2003; Duzenli et al., 2018). Thus, 

model results more explicitly differ in Oymapınar, specifically for the spring and 

summer months. Moreover, the WRF-SA exaggerates the streamflow peaks in both 

study basins, but this feature disappeared in both coupled models. Coupled models 

also improve the recession parts of the streamflow graph that is highly overestimated 

by the WRF-SA model for the Oymapınar basin. For this basin, streamflow 

simulation of WRF-SM-Coup in the 2017 water year matches perfectly with 

observation. The relatively low streamflow simulation performance of the WRF-

SM-Coup model in early 2016 most probably originates from the selection of the 

short spin-up period. The semi-arid region needs more spin-up time to reach an 

equilibrium state that contributes to simulating streamflow better. In addition, since 

surface soil moisture is a precipitation-dominant state variable as the region stays 

under semi-arid conditions (i.e., rare precipitation), the effect of updated initial soil 

moisture in long-term simulation becomes more significant. This, in turn, results in 

more appropriate exchange fluxes realistically modifying cloud-precipitation 

systems. 
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Figure 3.17. The streamflow and averaged precipitation data of the Arhavi and 

Oymapınar basins for the period 01.01.2016 - 01.10.2017. The time scales of the 

data are daily. The reverse axes show the precipitation time series. The figure is 

obtained using R-programming language (R Core Team, 2020). 

Figure 3.18 shows the spatial distribution of the RMSE and correlation statistics for 

precipitation and temperature covering the period of 01.01.2016 - 01.10.2017. For 

the EBS region, the primary difference in the outputs occurs over the coastal area in 

the northeastern part of the region. The WRF-SA model provides higher correlation 

values over this region, albeit the RMSE values are similar. Coupled models do not 

develop the outputs in that region, probably because the interannual precipitation is 

highly connected to the instabilities arising at the sea surface rather than the land 
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surface (Senatore et al., 2020). Unlike precipitation, the coupled models provide 

more successful outcomes for the temperature of EBS, which highly depends on the 

Bowen ratio (sensible to latent heat fluxes ratio). Besides, the satellite soil moisture 

usage thoroughly contributes to the precipitation outputs in interior parts of the 

southeastern MED region. The topsoil layer moisture is one of the fundamental 

moisture sources of precipitation since the region is located on the inland side of the 

mountains. Thus, the output precipitation from the model gives a reaction to any 

variation done on the soil moisture initiation. For this case, even though the WRF-

Coup model does not improve the WRF-SA precipitation, the WRF-Coup-SM, 

namely the SMAP data, significantly enhances the precipitation. The temperature 

outputs of the WRF-SA and WRF-Coup-SM models in MED are also more realistic 

based on the statistical distribution maps. 
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Figure 3.18. Spatial distribution of the statistics calculated between each 

meteorological station and the closest grid for the daily time series including 

01.01.2016 - 01.10.2017. The statistics are interpolated to entire study are via the 

IDW method. The figure is obtained using R-programming language (R Core Team, 

2020). 
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Figure 3.19 shows the monthly water budget distribution of the models considering 

two flood-prone subbasins of EBS (i.e., Arhavi) and MED (i.e., Kemer). Negligibly 

small residual values prove that the water balance closure is successfully maintained 

in both regions. For the EBS region, snowfall in winter is a crucial element of the 

water budget distribution in spring. Thus, the water distribution of EBS is provided, 

including the winter months. In EBS, the snowpacks formed in December and 

January start melting in March and contribute to the (sub)surface runoff until June 

(even July for the coupled models). The total streamflow is mainly contributed by 

the underground runoff (i.e., UR; moisture–driven mechanism) for all models of the 

EBS region. Coupled models yield more snowmelt than the standalone WRF in 

spring, so their interflow contribution is higher. Summer increase (decrease) in ET 

(precipitation) and winter increase (decrease) in precipitation (ET) exist as some 

seasonal character of the water cycle. Given the highly elevated terrain of the Arhavi 

basin, the infiltrated water is widely distributed to the lower elevations via the 

subsurface routing option of the coupled models. This lets the existing soil stay 

unsaturated and continue infiltrating along the region,  increasing the groundwater 

flow (Senatore et al., 2015; Arnault et al., 2016; Fersch et al., 2020). On the other 

hand, in Kemer, both coupled models substantially reduce the precipitation amount 

simulated by WRF-SA. This signifies the critical influence of surface energy 

exchanges generated by coupled models under semi-arid climate conditions. After 

June, the ET losses of coupled models are solely driven by soil moisture, which 

further increases the soil moisture deficit. Higher infiltration as a result of increased 

soil moisture deficit causes streamflow contributed largely by interflow while 

precipitation occurs during spring. Besides, from May through September, 

particularly in August, WRF-SM-Coup yields greater precipitation than the WRF-

Coup, addressing the effect of redistribution of initial soil moisture. Nevertheless, 

the soil moisture update does not significantly affect the water budget distribution in 

the humid Arhavi basin. 

Furthermore, Fersch et al. (2020) define some residuals in terrestrial water balance 

outputs of both standalone and coupled models due to the numerical errors and 
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subgrid aggregation/disaggregation processes of the coupled models. For our case, 

the residual amounts for the water balances of standalone models are almost zero. 

The residuals are higher in percentage in the semi-arid region (i.e., MED) than in the 

humid region (i.e., EBS) for the coupled models. 
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Figure 3.19. Water budget distribution for different model cases over Arhavi (Basin 

1 on Figure 2-A) and Kemer (Basin 4 on Figure 2C) subbasins. Subbasins are 

numbered starting from the eastern-based on Figure 2-A for EBS and Figure 2-C for 

MED. PRCP= ET + SM-VAR + SR + UR + SNOW-VAR + RESIDUAL; where, 

PRCP: Precipitation, ET: Evapotranspiration, SM-VAR: Soil moisture storage 

variation, SR: Surface runoff, UR: Underground runoff, SNOW-VAR: Snow-water 

equivalent depth variation. The figure is obtained using R-programming language (R 

Core Team, 2020). 



 

 

89 

CHAPTER 4  

4 CONCLUSIONS 

This study consists of two different parts. In the first part, a sensitivity analysis is 

conducted on the model physics, initial and lateral boundary data source, and 

horizontal grid spacing of the WRF model to improve extreme precipitation 

simulation capacity. The primary aim here is to construct early warning systems 

against extreme precipitation events over two flood-prone regions of Turkey (i.e., 

EBS and MED) and discuss the model behavior in different simulation conditions. 

In the second part, the atmospheric model is coupled with a hydrologic model, WRF-

Hydro, to enhance the feedback mechanism between the land and the overlying 

atmosphere. Before coupling the WRF and WRF-Hydro models, some essential 

parameters of the WRF-Hydro are calibrated. The coupled model is also initiated 

with the soil moisture data retrieved from the SMAP source. The influences of the 

coupling and soil moisture data update on the land surface energy fluxes, and 

accordingly, the modeling system outputs are discussed. The outcomes of the study 

are provided in the following sections. 

4.1 Sensitivity of the extreme precipitation simulation capability of the WRF 

model against model physics and initial and lateral boundary data 

source 

According to the TOPSIS results, the ERA5 improves the WRF-derived precipitation 

performance more than GFS when it is used as initial and lateral boundary conditions 

in the EBS region. The GFS is a better data source for the simulations of the MED-

summer event. Various members initiated with GFS and ERA5 do appear among the 

best scenarios of the MED-autumn event. The MYJ governs the PBL option of the 

EBS-summer event. Yet, for the other events, it is not possible to identify a dominant 
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PBL choice. The TOPSIS algorithm commonly proposes the combinations 

containing WSM6 as the MP option for the EBS-autumn event, while it recommends 

ES for the MED-autumn event. Also, the combinations of these MP schemes with 

the CU scheme of GFES improves the results. AATS is the most prevailing MP 

scheme for the MED-summer event simulations that have a 3 km grid spacing. Albeit 

most of the top ten scenarios based on ranking applied over 96 scenarios (two nest 

domains used together) have a spatial resolution of 9 km for the events, the model is 

also successful in downscaling precipitation values to the 3 km spatial resolution. 

For instance, five of the best ten scenarios of the MED-autumn event comprise 3 km 

horizontal grid spacing. For the CU parameterization, the BMJ option is more 

influential in summer months, whereas KF is more active in autumn. It can be 

encountered with the GFES option in the best scenarios of both seasons. Another 

robust conclusion is that physics combinations used in ensemble members 18, 20, 

22, 42 for EBS and ensemble members 18, 27, 33, 37 for MED should be avoided.  

Based on the analyses performed in this study, the precipitation variability is more 

sensitive to the model parameterization than the initial and lateral boundary data 

source selection for the area-averaged precipitation. Still, this conclusion might be 

case specific. In future studies, rechecking this result via larger ensembles, including 

more initial and lateral boundary condition data sources and various extreme 

precipitation events with different characteristics, would be beneficial. 

For the calibration events, the ensemble means underestimate the area-averaged 

precipitation except for the MED-autumn event. For the simulation period of this 

event, not only the ensemble mean but also all of the scenarios overestimate the 

amount of precipitation. This situation might originate from the biased SST data or 

excessive local soil moisture evaporation during the simulations. Accordingly, 

testing the sensitivity of the WRF-derived precipitation against different SST and 

soil moisture data sources over MED would be a good contribution to the existing 

literature. Still, the WRF (3 km) ensemble is more successful than the ERA5 (0.25°) 

in simulating the validation event for the MED-Autumn. This is one of the essential 

contributions of this study because MED is a region considered a climate change 
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hotspot, so better simulation of the extreme events over this region is crucial. 

Moreover, the model for the EBS-summer validation event almost perfectly predicts 

the total precipitation amount. The validation ensemble overestimates the occurred 

total precipitation by only 3%. Estimating the total amount of a summer event with 

an error of 3% is quite valuable. 

It is unquestionable that finding the best model physics combination together with 

representative grid resolving and accurate initial and lateral boundary datasets is of 

primary importance in weather prediction efforts. Further work under-way includes 

repeating this analysis on additional geographical regions using higher number of 

events in Turkey to release more comprehensive evaluation and addressed model 

combinations throughout the country.  

4.2 Contribution of the WRF & WRF-Hydro coupling and satellite soil 

moisture initialization to the accuracy of hydrometeorological forecasts 

The WRF-Hydro-SA model is calibrated using the in-situ measurements as 

precipitation input for a long-term period that includes the seasons. It is validated for 

different spatiotemporal conditions considering each of the WRF and (un)corrected 

radar precipitation, as well as the in-situ measurements. The model is calibrated 

based on both KGE and NSE statistics using daily streamflow for MED and daily 

and hourly streamflow observations using KGE function for EBS. According to the 

results, the best parameter values differ notably in the KGE- and NSE-based 

calibration, although the model is calibrated along the same period. The essential 

difference between the two calibration functions arises because the KGE coefficient 

is mainly driven by the bias component of the runoff obtained in this study. As a 

result of this tendency, the KGE-based calibration chooses the parameter values 

providing better biases but worse MAE, R, and RMSE values. Similarly, the selected 

parameter values vary at the end of the daily and hourly streamflow-based 

calibration. The hourly calibration ends with less rough channel surface, higher 

infiltration, and lower groundwater recharge, causing higher soil moisture volume. 



 

 

92 

The highly elevated terrain and small basins of EBS trigger different model 

construction in hourly precision. This information is valuable for the early warning 

system studies over the basins showing fast hydrologic response as a result of a 

complex topography and prone to flash floods. 

The worse performance measures obtained for the validation periods are partly 

related to a systematic error in the WRF temperature variable given as input data to 

the WRF-Hydro-SA model, which induces confusion in the model when partitioning 

the input precipitation as rainfall or snow. Accordingly, the model fails to 

successfully distribute the total runoff budget throughout the time series since it 

could not define the snowpacks and melting periods correctly. In spite of the 

availability of the spatiotemporal changes in different precipitation forcings (i.e., 

radar, WRF, in-situ), winter snow accumulation significantly controls the 

streamflow. The model is forced with the observed temperature to overcome this 

issue. Even though this process improves the outcomes, there are still undisclosed 

points waiting to be explored. In future works, merging the temperature data taken 

from different sources such as remote sensing tools, models, and in-situ 

measurements, via innovative ensemble techniques to provide high-quality 

temperature input to the hydrologic model or coupling the model with a state-of-the-

art snow module would make an excellent contribution to this field of work. 

Hydrometeorological variables obtained from the long-term simulations of the 

WRF-SA, WRF-Coup, and WRF-Coup-SM models are evaluated for long-term and 

short-term periods. As a result, coupling WRF/WRF-Hydro modeling system causes 

higher underground runoff and soil moisture outputs, whereas coupling induces 

lower surface runoff volume, especially in EBS (i.e., highly elevated and steep-sided 

basin). Besides, the lateral distribution of the water budget in coupled model 

positively contributes to the convection-driven extreme precipitation simulation for 

the EBS region. Based on this result, using the coupled systems for early warning 

purposes is quite beneficial, especially for the summer extremes of humid regions 

having complex topography. 
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The initiation of the model with the satellite soil moisture affects the outputs more 

explicitly in the MED region than in the EBS region. Soil moisture update has a 

negligible effect on long-term precipitation outputs in the more humid region, in 

which precipitation is mainly driven by large-scale circulations instead of local 

convection. However, the SMAP data usage to initiate the coupled model upgrades 

the temperature outputs for the regions by sharing the total energy between latent 

and sensible heat fluxes more accurately. With a better representation of exchange 

fluxes provided by initial satellite soil moisture update in long-term simulation, 

simulated streamflow matches perfectly with observation. For future studies, 

coupling and soil moisture update contribution can be measured over the interior 

regions, where the continental climate is dominant, to compare the outcomes with 

the coastal regions. Likewise, testing the soil moisture initiation with different spin-

up periods and with respect to various data sources would form an ensemble 

including helpful information about the terrestrial water cycle components and their 

interactions.





 

 

95 

REFERENCES 

Abbaszadeh, P., Gavahi, K., & Moradkhani, H. (2020). Multivariate remotely sensed 

and in-situ data assimilation for enhancing community WRF-Hydro model 

forecasting. Advances in Water Resources, 145, 103721. 

https://doi.org/10.1016/j.advwatres.2020.103721 

Afshar, M.H., Bulut, B., Duzenli, E., Amjad, M., & Yilmaz, M. T. (2022). Global 

spatiotemporal consistency between meteorological and soil moisture drought 

indices. Agricultural and Forest Meteorology, 316, 108848. 

https://doi.org/10.1016/j.agrformet.2022.108848 

Afshar, M.H., & Yilmaz, M. T. (2017). The added utility of nonlinear methods 

compared to linear methods in rescaling soil moisture products. Remote Sensing 

of Environment, 196, 224–237. https://doi.org/10.1016/j.rse.2017.05.017 

Afshar, Mehdi H., Şorman, A. Ü., Tosunoğlu, F., Bulut, B., Yilmaz, M. T., & 

Danandeh Mehr, A. (2020). Climate change impact assessment on mild and 

extreme drought events using copulas over Ankara, Turkey. Theoretical and 

Applied Climatology. https://doi.org/10.1007/s00704-020-03257-6 

Ali, H., & Mishra, V. (2018). Increase in Subdaily Precipitation Extremes in India 

Under 1.5 and 2.0 °C Warming Worlds. Geophysical Research Letters, 45(14), 

6972–6982. https://doi.org/10.1029/2018GL078689 

Amjad, M., Yilmaz, M. T., Yucel, I., & Yilmaz, K. K. (2020). Performance 

evaluation of satellite- and model-based precipitation products over varying 

climate and complex topography. Journal of Hydrology, 584, 124707. 

https://doi.org/10.1016/j.jhydrol.2020.124707 

Argüeso, D., Hidalgo-Muñoz, J. M., Gámiz-Fortis, S. R., Esteban-Parra, M. J., 

Dudhia, J., & Castro-Díez, Y. (2011). Evaluation of WRF Parameterizations for 

Climate Studies over Southern Spain Using a Multistep Regionalization. 

Journal of Climate, 24(21), 5633–5651. https://doi.org/10.1175/JCLI-D-11-

00073.1 



 

 

96 

Arnault, J., Rummler, T., Baur, F., Lerch, S., Wagner, S., Fersch, B., Zhang, Z., 

Kerandi, N., Keil, C., & Kunstmann, H. (2018). Precipitation Sensitivity to the 

Uncertainty of Terrestrial Water Flow in WRF-Hydro: An Ensemble Analysis 

for Central Europe. Journal of Hydrometeorology, 19(6), 1007–1025. 

https://doi.org/10.1175/JHM-D-17-0042.1 

Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., & 

Kunstmann, H. (2016). Role of Runoff–Infiltration Partitioning and Resolved 

Overland Flow on Land–Atmosphere Feedbacks: A Case Study with the WRF-

Hydro Coupled Modeling System for West Africa. Journal of 

Hydrometeorology, 17(5), 1489–1516. https://doi.org/10.1175/JHM-D-15-

0089.1 

Arnault, J., Wei, J., Rummler, T., Fersch, B., Zhang, Z., Jung, G., Wagner, S., & 

Kunstmann, H. (2019). A Joint Soil‐Vegetation‐Atmospheric Water Tagging 

Procedure With WRF‐Hydro: Implementation and Application to the Case of 

Precipitation Partitioning in the Upper Danube River Basin. Water Resources 

Research, 55(7), 6217–6243. https://doi.org/10.1029/2019WR024780 

Berg, P., Christensen, O. B., Klehmet, K., Lenderink, G., Olsson, J., Teichmann, C., 

& Yang, W. (2018). Summertime precipitation extremes in a EURO-CORDEX 

0.11◦ ensemble at an hourly resolution. Natural Hazards and Earth System 

Sciences Discussions, 1–21. https://doi.org/10.5194/nhess-2018-362 

Bulut, B., Yılmaz, M. T., Afshar, M. H., Şorman, A. Ü., Yücel, İ., Cosh, M. H., & 

Şimşek, O. (2019). Evaluation of Remotely-Sensed and Model-Based Soil 

Moisture Products According to Different Soil Type, Vegetation Cover and 

Climate Regime Using Station-Based Observations over Turkey. Remote 

Sensing, 11(16), 1875. https://doi.org/10.3390/rs11161875 

Camera, C., Bruggeman, A., Zittis, G., Sofokleous, I., & Arnault, J. (2020). 

Simulation of extreme rainfall and streamflow events in small Mediterranean 

watersheds with a one-way-coupled atmospheric–hydrologic modelling 

system. Natural Hazards and Earth System Sciences, 20(10), 2791–2810. 



 

 

97 

https://doi.org/10.5194/nhess-20-2791-2020 

Cassola, F., Ferrari, F., & Mazzino, A. (2015). Numerical simulations of 

Mediterranean heavy precipitation events with the WRF model: A verification 

exercise using different approaches. Atmospheric Research, 164, 210–225. 

https://doi.org/10.1016/j.atmosres.2015.05.010 

Cerbelaud, A., Lefèvre, J., Genthon, P., & Menkes, C. (2022). Assessment of the 

WRF-Hydro uncoupled hydro-meteorological model on flashy watersheds of 

the Grande Terre tropical island of New Caledonia (South-West Pacific). 

Journal of Hydrology: Regional Studies, 40, 101003. 

https://doi.org/https://doi.org/10.1016/j.ejrh.2022.101003 

Chen, F., & Dudhia, J. (2001). Coupling an Advanced Land Surface–Hydrology 

Model with the Penn State–NCAR MM5 Modeling System. Part I: Model 

Implementation and Sensitivity. Monthly Weather Review, 129(4), 569–585. 

https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2 

Di, Z., Duan, Q., Gong, W., Wang, C., Gan, Y., Quan, J., Li, J., Miao, C., Ye, A., & 

Tong, C. (2015). Assessing WRF model parameter sensitivity: A case study with 

5 day summer precipitation forecasting in the Greater Beijing Area. 42(2), 579–

587. 

Dillon, M. E., Collini, E. A., & Ferreira, L. J. (2016). Sensitivity of WRF short-term 

forecasts to different soil moisture initializations from the GLDAS database 

over South America in March 2009. Atmospheric Research, 167, 196–207. 

https://doi.org/10.1016/j.atmosres.2015.07.022 

Dirmeyer, P. A., Guo, Z., & Gao, X. (2004). Comparison, validation, and 

transferability of eight multiyear global soil wetness products. Journal of 

Hydrometeorology, 5(6), 1011–1033. 

Done, J., Davis, C. A., & Weisman, M. (2004). The next generation of NWP: Explicit 

forecasts of convection using the weather research and forecasting (WRF) 

model. Atmospheric Science Letters, 5(6), 110–117. 

https://doi.org/10.1002/asl.72 



 

 

98 

Dudhia, J. (2014). Overview of WRF physics. University Corporation for 

Atmospheric Research, Boulder, CO, Http://Www2. Mmm. Ucar. 

Edu/Wrf/Users/Tutorial/201401/Physics_full. Pdf. 

Duzenli, E., Tabari, H., Willems, P., & Yilmaz, M. T. (2018). Decadal variability 

analysis of extreme precipitation in Turkey and its relationship with 

teleconnection patterns. Hydrological Processes, 32(23), 3513–3528. 

https://doi.org/10.1002/hyp.13275 

Duzenli, E., Yucel, I., Pilatin, H., & Yilmaz, M. T. (2021). Evaluating the 

performance of a WRF initial and physics ensemble over Eastern Black Sea and 

Mediterranean regions in Turkey. Atmospheric Research, 248, 105184. 

https://doi.org/10.1016/j.atmosres.2020.105184 

Dyer, J., Zarzar, C., Amburn, P., Dumais, R., Raby, J., & Smith, J. A. (2016). 

Defining the Influence of Horizontal Grid Spacing on Ensemble Uncertainty 

within a Regional Modeling Framework. Weather and Forecasting, 31(6), 

1997–2017. https://doi.org/10.1175/waf-d-16-0030.1 

Efstathiou, G. A., Zoumakis, N. M., Melas, D., Lolis, C. J., & Kassomenos, P. 

(2013). Sensitivity of WRF to boundary layer parameterizations in simulating 

a heavy rainfall event using different microphysical schemes. Effect on large-

scale processes. Atmospheric Research, 132, 125–143. 

https://doi.org/10.1016/j.atmosres.2013.05.004 

Ekström, M., & Gilleland, E. (2017). Assessing convection permitting resolutions of 

WRF for the purpose of water resource impact assessment and vulnerability 

work: A southeast Australian case study. Water Resources Research, 53(1), 

726–743. https://doi.org/10.1002/2016WR019545 

ElTahan, M., & Magooda, M. (2017). Evaluation of different WRF microphysics 

schemes: severe rainfall over Egypt case study. ArXiv Preprint 

ArXiv:1711.04163. 

Evans, J. P., Ekström, M., & Ji, F. (2012). Evaluating the performance of a WRF 

physics ensemble over South-East Australia. Climate Dynamics, 39(6), 1241–



 

 

99 

1258. https://doi.org/10.1007/s00382-011-1244-5 

Ferrier, B. S., Jin, Y., Lin, Y., Black, T., Rogers, E., & DiMego, G. (2002). 

Implementation of a new grid-scale cloud and precipitation scheme in the 

NCEP Eta model. Conference on Weather Analysis and Forecasting, 19, 280–

283. 

Fersch, B., Senatore, A., Adler, B., Arnault, J., Mauder, M., Schneider, K., Völksch, 

I., & Kunstmann, H. (2020). High-resolution fully coupled atmospheric–

hydrological modeling: a cross-compartment regional water and energy cycle 

evaluation. Hydrology and Earth System Sciences, 24(5), 2457–2481. 

https://doi.org/10.5194/hess-24-2457-2020 

Fosser, G., Khodayar, S., & Berg, P. (2015). Benefit of convection permitting 

climate model simulations in the representation of convective precipitation. 

Climate Dynamics, 44(1–2), 45–60. https://doi.org/10.1007/s00382-014-2242-

1 

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of 

Statistics, 19(1), 1–67. https://doi.org/10.1214/aos/1176347963 

Gao, S., Huang, D., Du, N., Ren, C., & Yu, H. (2022). WRF ensemble dynamical 

downscaling of precipitation over China using different cumulus convective 

schemes. Atmospheric Research, 271, 106116. 

https://doi.org/10.1016/j.atmosres.2022.106116 

García-Díez, M., Fernández, J., Fita, L., & Yagüe, C. (2013). Seasonal dependence 

of WRF model biases and sensitivity to PBL schemes over Europe. Quarterly 

Journal of the Royal Meteorological Society, 139(671), 501–514. 

https://doi.org/10.1002/qj.1976 

Givati, A., Gochis, D., Rummler, T., & Kunstmann, H. (2016). Comparing one-way 

and two-way coupled hydrometeorological forecasting systems for flood 

forecasting in the mediterranean region. Hydrology, 3(2). 

https://doi.org/10.3390/hydrology3020019 



 

 

100 

Givati, A., & Rosenfeld, D. (2013). The Arctic Oscillation, climate change and the 

effects on precipitation in Israel. Atmospheric Research, 132, 114–124. 

https://doi.org/10.1016/j.atmosres.2013.05.001 

Gochis, D., & Chen, F. (2003). Hydrological enhancements to the community Noah 

land surface model. NCAR Scientific Technical Report, 77. 

https://doi.org/10.5065/D60P0X00 

Gochis, D. J., Dugger, A., Barlage, M., Fitzgerald, K., Karsten, L., McAllister, M., 

McCreight, J., Mills, J., Rafieeinasab, A., & Read, L. (2018). The NCAR WRF-

Hydro Modeling System Technical Description. 

Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing 

convection combining ensemble and data assimilation techniques. Geophysical 

Research Letters, 29(14), 38–1. https://doi.org/10.1029/2002gl015311 

Grell, G. A., & Freitas, S. R. (2013). A scale and aerosol aware convective 

parameterization. Atmos. Chem. Phys, 14(10), 5233–5250. 

https://doi.org/10.5194/acpd-13-23845-2013 

Gupta, H. V, Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of 

the mean squared error and NSE performance criteria: Implications for 

improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. 

https://doi.org/10.1016/j.jhydrol.2009.08.003 

Gustafson Jr., W. I., Ma, P.-L., & Singh, B. (2014). Precipitation characteristics of 

CAM5 physics at mesoscale resolution during MC3E and the impact of 

convective timescale choice. Journal of Advances in Modeling Earth Systems, 

6(4), 1271–1287. 

Hong, S.-Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics 

scheme (WSM6). Asia-Pacific Journal of Atmospheric Sciences, 42(2), 129–

151. 

Hong, S., Lakshmi, V., Small, E. E., Chen, F., Tewari, M., & Manning, K. W. (2009). 

Effects of vegetation and soil moisture on the simulated land surface processes 



 

 

101 

from the coupled WRF/Noah model. Journal of Geophysical Research, 

114(D18), D18118. https://doi.org/10.1029/2008JD011249 

Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H., & Mitchell, H. L. (1996). 

A system simulation approach to ensemble prediction. Monthly Weather 

Review, 124(6), 1225–1242. https://doi.org/10.1175/1520-

0493(1996)124<1225:ASSATE>2.0.CO;2 

Hsiao, L. F., Yang, M. J., Lee, C. S., Kuo, H. C., Shih, D. S., Tsai, C. C., Wang, C. 

J., Chang, L. Y., Chen, D. Y. C., Feng, L., Hong, J. S., Fong, C. T., Chen, D. 

S., Yeh, T. C., Huang, C. Y., Guo, W. D., & Lin, G. F. (2013). Ensemble 

forecasting of typhoon rainfall and floods over a mountainous watershed in 

Taiwan. Journal of Hydrology, 506, 55–68. 

https://doi.org/10.1016/j.jhydrol.2013.08.046 

Hu, X. M., Nielsen-Gammon, J. W., & Zhang, F. (2010). Evaluation of three 

planetary boundary layer schemes in the WRF model. Journal of Applied 

Meteorology and Climatology, 49(9), 1831–1844. 

https://doi.org/10.1175/2010JAMC2432.1 

Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and 

Applications. Springer. 

Janjić, Z. I. (1994). The step-mountain eta coordinate model: Further developments 

of the convection, viscous sublayer, and turbulence closure schemes. Monthly 

Weather Review, 122(5), 927–945. 

Kain, J. S. (2004). The Kain–Fritsch convective parameterization: an update. Journal 

of Applied Meteorology, 43(1), 170–181. https://doi.org/10.1175/1520-

0450(2004)043<0170:TKCPAU>2.0.CO;2 

Kan, Y., Liu, C., Liu, Y., & Zhou, C. (2015). Evaluation of WRF microphysics and 

cumulus parameterization schemes in simulating a heavy rainfall event over 

Yangtze River delta. Remote Sensing and Modeling of Ecosystems for 

Sustainability XII, 9610, 96100R. 



 

 

102 

Kerandi, N., Arnault, J., Laux, P., Wagner, S., Kitheka, J., & Kunstmann, H. (2018). 

Joint atmospheric-terrestrial water balances for East Africa: a WRF-Hydro case 

study for the upper Tana River basin. Theoretical and Applied Climatology, 

131(3–4), 1337–1355. https://doi.org/10.1007/s00704-017-2050-8 

Kessler, E. (1995). On the continuity and distribution of water substance in 

atmospheric circulations. Atmospheric Research, 38(1–4), 109–145. 

Kilicarslan, B. M., Yucel, I., Pilatin, H., Duzenli, E., & Yilmaz, M. T. (2021). 

Improving WRF‐Hydro runoff simulations of heavy floods through the sea 

surface temperature fields with higher spatio‐temporal resolution. Hydrological 

Processes, 35(9), e14338. https://doi.org/10.1002/hyp.14338 

Lahmers, T. M., Castro, C. L., & Hazenberg, P. (2020). Effects of Lateral Flow on 

the Convective Environment in a Coupled Hydrometeorological Modeling 

System in a Semiarid Environment. Journal of Hydrometeorology, 21(4), 615–

642. https://doi.org/10.1175/JHM-D-19-0100.1 

Li, F., Rosa, D., Collins, W. D., & Wehner, M. F. (2012). Super-parameterization: 

A better way to simulate regional extreme precipitation. Journal of Advances in 

Modeling Earth Systems, 4(2). https://doi.org/10.1029/2011MS000106 

Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., & Pan, X. (2019). High-

Resolution Regional Climate Modeling and Projection over Western Canada 

using a Weather Research Forecasting Model with a Pseudo-Global Warming 

Approach. Hydrology and Earth System Sciences Discussions, 23(11), 4635–

4659. https://doi.org/10.5194/hess-2019-201 

Lin, L.-F., & Pu, Z. (2019). Examining the Impact of SMAP Soil Moisture Retrievals 

on Short-Range Weather Prediction under Weakly and Strongly Coupled Data 

Assimilation with WRF-Noah. Monthly Weather Review, 147(12), 4345–4366. 

https://doi.org/10.1175/MWR-D-19-0017.1 

Liu, J., Bray, M., & Han, D. (2012). Sensitivity of the Weather Research and 

Forecasting (WRF) model to downscaling ratios and storm types in rainfall 

simulation. Hydrological Processes, 26(20), 3012–3031. 



 

 

103 

https://doi.org/10.1002/hyp.8247 

Mannan, M. A., Chowdhury, M. A. M., & Karmakar, S. (2013). Application of NWP 

model in prediction of heavy rainfall in Bangladesh. Procedia Engineering, 56, 

667–675. https://doi.org/10.1016/j.proeng.2013.03.176 

Mielikainen, J., Huang, B., Wang, J., Allen Huang, H. L., & Goldberg, M. D. (2013). 

Compute unified device architecture (CUDA)-based parallelization of WRF 

Kessler cloud microphysics scheme. Computers and Geosciences, 52, 292–299. 

https://doi.org/10.1016/j.cageo.2012.10.006 

Mylonas, M. P., Douvis, K. C., Polychroni, I. D., Politi, N., & Nastos, P. T. (2019). 

Analysis of a Mediterranean Tropical-Like Cyclone. Sensitivity to WRF 

Parameterizations and Horizontal Resolution. Atmosphere, 10(8), 425. 

https://doi.org/10.3390/atmos10080425 

Naabil, E., Lamptey, B. ., Arnault, J., Olufayo, A., & Kunstmann, H. (2017). Water 

resources management using the WRF-Hydro modelling system: Case-study of 

the Tono dam in West Africa. Journal of Hydrology: Regional Studies, 12, 196–

209. https://doi.org/10.1016/j.ejrh.2017.05.010 

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual 

models part I — A discussion of principles. Journal of Hydrology, 10(3), 282–

290. https://doi.org/10.1016/0022-1694(70)90255-6 

Ning, L., Zhan, C., Luo, Y., Wang, Y., & Liu, L. (2019). A review of fully coupled 

atmosphere-hydrology simulations. Journal of Geographical Sciences, 29(3), 

465–479. https://doi.org/10.1007/s11442-019-1610-5 

NOAA. (2015). NCEP GFS 0.25 Degree Global Forecast Grids Historical Archive. 

Research Data Archive at the National Center for Atmospheric Research, 

Computational and Information Systems Laboratory. 

https://doi.org/10.5065/D65D8PWK 

Pennelly, C., Reuter, G., & Flesch, T. (2014). Verification of the WRF model for 

simulating heavy precipitation in Alberta. Atmospheric Research, 135–136, 



 

 

104 

172–192. https://doi.org/10.1016/j.atmosres.2013.09.004 

Pielke Sr, R. A., Beltrán-Przekurat, A., Hiemstra, C. A., Lin, J., Nobis, T. E., 

Adegoke, J., Nair, U. S., & Niyogi, D. (2006). Impacts of regional land use and 

land cover on rainfall: an overview. Climate Variability and Change: 

Hydrological Impacts, 325–331. 

Pilatin, H., Yucel, I., Duzenli, E., & Yilmaz, M. T. (2021). Sensitivity of WRF-

derived hydrometeorological extremes to sea surface temperatures in regions 

with complex topography and diverse climate. Atmospheric Research, 264, 

105816. https://doi.org/10.1016/j.atmosres.2021.105816 

Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, 

M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., Van 

Lipzig, N. P. M., & Leung, R. (2015). A review on regional convection-

permitting climate modeling: Demonstrations, prospects, and challenges. 

Reviews of Geophysics, 53(2), 323–361. 

https://doi.org/10.1002/2014RG000475 

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. 

(2017). The future intensification of hourly precipitation extremes. Nature 

Climate Change, 7(1), 48–52. https://doi.org/10.1038/nclimate3168 

R Core Team (2022). R: A language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-

project.org/ 

Rama Rao, Y. V., Hatwar, H. R., Salah, A. K., & Sudhakar, Y. (2007). An 

experiment using the high resolution Eta and WRF models to forecast heavy 

precipitation over India. Pure and Applied Geophysics, 164(8–9), 1593–1615. 

https://doi.org/10.1007/s00024-007-0244-1 

Reichle, R. H., & Koster, R. D. (2005). Global assimilation of satellite surface soil 

moisture retrievals into the NASA Catchment land surface model. Geophysical 

Research Letters, 32(2). https://doi.org/10.1029/2004GL021700 



 

 

105 

Rummler, T., Arnault, J., Gochis, D., & Kunstmann, H. (2019). Role of Lateral 

Terrestrial Water Flow on the Regional Water Cycle in a Complex Terrain 

Region: Investigation With a Fully Coupled Model System. Journal of 

Geophysical Research: Atmospheres, 124(2), 507–529. 

https://doi.org/10.1029/2018JD029004 

Rummler, T., Wagner, A., Arnault, J., & Kunstmann, H. (2022). Lateral terrestrial 

water fluxes in the LSM of WRF‐Hydro: benefits of a 2D groundwater 

representation. Hydrological Processes, 36(3), e14510. 

https://doi.org/https://doi.org/10.1002/hyp.14510 

Sampson, K., & Gochis, D. (2018). WRF Hydro GIS Pre-Processing Tools, Version 

5.0, Documentation. Boulder, CO: National Center for Atmospheric Research, 

Research Applications Laboratory. 

Saris, F., Hannah, D. M., & Eastwood, W. J. (2010). Spatial variability of 

precipitation regimes over Turkey. Hydrological Sciences Journal, 55(2), 234–

249. https://doi.org/10.1080/02626660903546142 

Senatore, A., Furnari, L., & Mendicino, G. (2019). Impact of improved Sea Surface 

Temperature representation on the forecast of small Mediterranean catchments 

hydrological response to heavy precipitation. Hydrology and Earth System 

Sciences Discussions, July, 1–42. https://doi.org/10.5194/hess-2019-345 

Senatore, A., Furnari, L., & Mendicino, G. (2020). Impact of high-resolution sea 

surface temperature representation on the forecast of small Mediterranean 

catchments’ hydrological responses to heavy precipitation. Hydrology and 

Earth System Sciences, 24(1), 269–291. https://doi.org/10.5194/hess-24-269-

2020 

Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N., & Kunstmann, H. 

(2015). Fully coupled atmosphere-hydrology simulations for the central 

Mediterranean: Impact of enhanced hydrological parameterization for short and 

long time scales. Journal of Advances in Modeling Earth Systems, 7(4), 1693–

1715. https://doi.org/10.1002/2015MS000510 



 

 

106 

Sikder, S., & Hossain, F. (2016). Assessment of the weather research and forecasting 

model generalized parameterization schemes for advancement of precipitation 

forecasting in monsoon-driven river basins. Journal of Advances in Modeling 

Earth Systems, 8(3), 1210–1228. 

https://doi.org/https://doi.org/10.1002/2016MS000678 

Skamarock, C., W., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, 

W., Powers, J. G., Duda, M. G., Barker, D. M., & Huang, X.-Y. (2019). A 

Description of the Advanced Research WRF Version 4. NCAR Tech. Note 

NCAR/TN-556+STR, 145 pp. https://doi.org/doi:10.5065/1dfh-6p97 

Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Christensen, J. 

H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B., Giorgi, F., 

Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C. 

J., Kurnaz, M. L., Li, D., … Dosio, A. (2020). Future Global Meteorological 

Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 

33(9), 3635–3661. https://doi.org/10.1175/jcli-d-19-0084.1 

Tabari, H., & Willems, P. (2018). Lagged influence of Atlantic and Pacific climate 

patterns on European extreme precipitation. Scientific Reports, 8(1), 5748. 

https://doi.org/10.1038/s41598-018-24069-9 

Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single 

diagram. Journal of Geophysical Research, 106(D7), 7183–7192. 

https://doi.org/https://doi.org/10.1002/2014GL061623 

Thompson, G., & Eidhammer, T. (2014). A study of aerosol impacts on clouds and 

precipitation development in a large winter cyclone. Journal of the Atmospheric 

Sciences, 71(10), 3636–3658. 

Toté, C., Patricio, D., Boogaard, H., van der Wijngaart, R., Tarnavsky, E., & Funk, 

C. (2015). Evaluation of satellite rainfall estimates for drought and flood 

monitoring in Mozambique. Remote Sensing, 7(2), 1758–1776. 

https://doi.org/10.3390/rs70201758 

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate 



 

 

107 

Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953 

Türkeş, M. (1996). Spatial and temporal analysis of annual rainfall variations in 

Turkey. International Journal of Climatology, 16(9), 1057–1076. 

https://doi.org/10.1002/(SICI)1097-0088(199609)16:9<1057::AID-

JOC75>3.0.CO;2-D 

Türkeş, M., & Erlat, E. (2003). Precipitation changes and variability in Turkey linked 

to the North Atlantic oscillation during the period 1930-2000. International 

Journal of Climatology, 23(14), 1771–1796. https://doi.org/10.1002/joc.962 

Vaidya, S. S., & Singh, S. S. (2000). Applying the Betts-Miller-Janjic scheme of 

convection in prediction of the Indian monsoon. Weather and Forecasting, 

15(3), 349–356. https://doi.org/10.1175/1520-

0434(2000)015<0349:ATBMJS>2.0.CO;2 

Van de Walle, J., Thiery, W., Brousse, O., Souverijns, N., Demuzere, M., & van 

Lipzig, N. P. M. (2020). A convection-permitting model for the Lake Victoria 

Basin: evaluation and insight into the mesoscale versus synoptic atmospheric 

dynamics. Climate Dynamics, 54(3), 1779–1799. 

https://doi.org/10.1007/s00382-019-05088-2 

Vivoni, E. R., Tai, K., & Gochis, D. J. (2009). Effects of Initial Soil Moisture on 

Rainfall Generation and Subsequent Hydrologic Response during the North 

American Monsoon. Journal of Hydrometeorology, 10(3), 644–664. 

https://doi.org/10.1175/2008JHM1069.1 

Wang, W., Liu, J., Li, C., Liu, Y., Yu, F., & Yu, E. (2020). An Evaluation Study of 

the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of 

Storm Events with Different Rainfall Evenness in Space and Time. Water, 

12(4), 1209. https://doi.org/10.3390/w12041209 

Wang, Y., Yang, J., Chen, Y., De Maeyer, P., Li, Z., & Duan, W. (2018). Detecting 

the causal effect of soil moisture on precipitation using convergent cross 

mapping. Scientific Reports, 8(1), 1–8. 

https://doi.org/https://doi.org/10.1038/s41598-018-30669-2 



 

 

108 

Wehbe, Y., Temimi, M., Weston, M., Chaouch, N., Branch, O., Schwitalla, T., 

Wulfmeyer, V., Zhan, X., Liu, J., & Al Mandous, A. (2019). Analysis of an 

extreme weather event in a hyper-arid region using WRF-Hydro coupling, 

station, and satellite data. Natural Hazards and Earth System Sciences, 19(6), 

1129–1149. https://doi.org/10.5194/nhess-19-1129-2019 

Weisman, M. L., Skamarock, W. C., & Klemp, J. B. (1997). The resolution 

dependence of explicitly modeled convective systems. Monthly Weather 

Review, 125(4), 527–548. https://doi.org/10.1175/1520-

0493(1997)125<0527:TRDOEM>2.0.CO;2 

Xiang, T., Vivoni, E. R., & Gochis, D. J. (2018). Influence of initial soil moisture 

and vegetation conditions on monsoon precipitation events in northwest 

México. Atmósfera, 31(1), 25–45. 

https://doi.org/10.20937/ATM.2018.31.01.03 

Yilmaz, M. T., & Crow, W. T. (2013). The Optimality of Potential Rescaling 

Approaches in Land Data Assimilation. Journal of Hydrometeorology, 14(2), 

650–660. https://doi.org/10.1175/JHM-D-12-052.1 

Yousefi, K. P. (2020). Estimation of bias-corrected high-resolution radar 

precipitation maps using the radar and rain gauge network over Turkey. 

Middle East Technical University. 

Yucel, I., & Onen, A. (2014). Evaluating a mesoscale atmosphere model and a 

satellite-based algorithm in estimating extreme rainfall events in northwestern 

Turkey. Natural Hazards and Earth System Sciences, 14(3), 611–624. 

https://doi.org/10.5194/nhess-14-611-2014 

Yucel, I., Onen, A., Yilmaz, K. K., & Gochis, D. J. (2015). Calibration and 

evaluation of a flood forecasting system: Utility of numerical weather 

prediction model, data assimilation and satellite-based rainfall. Journal of 

Hydrology, 523, 49–66. https://doi.org/10.1016/j.jhydrol.2015.01.042 

Zeng, X.-M., Wang, B., Zhang, Y., Song, S., Huang, X., Zheng, Y., Chen, C., & 

Wang, G. (2014). Sensitivity of high-temperature weather to initial soil 



 

 

109 

moisture: a case study using the WRF model. Atmospheric Chemistry and 

Physics, 14(18), 9623–9639. https://doi.org/10.5194/acp-14-9623-2014 

Zhan, X., Zheng, W., Fang, L., Liu, J., Hain, C., Yin, J., & Ek, M. (2016). A 

preliminary assessment of the impact of SMAP Soil Moisture on numerical 

weather Forecasts from GFS and NUWRF models. 2016 IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS), 5229–5232. 

Zhang, F., Odins, A. M., & Nielsen-Gammon, J. W. (2006). Mesoscale predictability 

of an extreme warm-season precipitation event. Weather and Forecasting, 

21(2), 149–166. https://doi.org/10.1175/WAF909.1 

Zhang, H., Liu, J., Li, H., Meng, X., & Ablikim, A. (2020a). The Impacts of Soil 

Moisture Initialization on the Forecasts of Weather Research and Forecasting 

Model: A Case Study in Xinjiang, China. Water, 12(7), 1892. 

https://doi.org/10.3390/w12071892 

Zhang, J., Lin, P., Gao, S., & Fang, Z. (2020b). Understanding the re-infiltration 

process to simulating streamflow in North Central Texas using the WRF-hydro 

modeling system. Journal of Hydrology, 587, 124902. 

https://doi.org/10.1016/j.jhydrol.2020.124902 

Zhang, Z., Arnault, J., Laux, P., Ma, N., Wei, J., & Kunstmann, H. (2021a). Diurnal 

cycle of surface energy fluxes in high mountain terrain: High‐resolution fully 

coupled atmosphere‐hydrology modelling and impact of lateral flow. 

Hydrological Processes, 35(12). https://doi.org/10.1002/hyp.14454 

Zhang, Z., Arnault, J., Laux, P., Ma, N., Wei, J., Shang, S., & Kunstmann, H. 

(2021b). Convection-permitting fully coupled WRF-Hydro ensemble 

simulations in high mountain environment: impact of boundary layer- and 

lateral flow parameterizations on land–atmosphere interactions. Climate 

Dynamics, 1–22. https://doi.org/10.1007/s00382-021-06044-9 

Zhou, Y., & Mu, Z. (2018). Impact of different reanalysis data and parameterization 

schemes on WRF dynamic downscaling in the Ili Region. Water (Switzerland), 

10(12), 1729. https://doi.org/10.3390/w10121729 



 

 

110 

Zittis, G., Bruggeman, A., Camera, C., Hadjinicolaou, P., & Lelieveld, J. (2017). The 

added value of convection permitting simulations of extreme precipitation 

events over the eastern Mediterranean. Atmospheric Research, 191, 20–33. 

https://doi.org/10.1016/j.atmosres.2017.03.002 

 

 

  



 

 

111 

CURRICULUM VITAE 

 

Surname, Name: Düzenli, Eren  

 

EDUCATION  

Degree Institution Year of Graduation 

MS  METU Civil Engineering 2017 

BS METU Civil Engineering 2015 

High School Mehmet Emin Resulzade Anatolian 

High School, Ankara 

2008 

 

WORK EXPERIENCE 

Year Place Enrollment 

Feb 2020 – Current METU Research & Teaching Assistant 

Sep 2018 – Sep 2021 METU (Granted 

by TÜBİTAK) 

Project Assistant 

Mar 2017 – Jun 2018 METU Project Assistant 

 

FOREIGN LANGUAGES  

Advanced English 

PUBLICATIONS  

1. Afshar, M. H., Bulut, B., Duzenli, E., Amjad, M., & Yilmaz, M. T. (2022). Global 

spatiotemporal consistency between meteorological and soil moisture drought 

indices. Agricultural and Forest Meteorology, 316, 108848. DOI: 

10.1016/j.agrformet.2022.108848. 

2. Pilatin, H., Yucel, I., Duzenli, E., & Yilmaz, M. T. (2021). Sensitivity of WRF-

derived hydrometeorological extremes to sea surface temperatures in regions with 

complex topography and diverse climate. Atmospheric Research, 264, 105816. DOI: 

10.1016/j.atmosres.2021.105816. 

3. Kilicarslan, B. M., Yucel, I., Pilatin, H., Duzenli, E., & Yilmaz, M. T. (2021). 

Improving WRF‐Hydro runoff simulations of heavy floods through the sea surface 

temperature fields with higher spatio‐temporal resolution. Hydrological 

Processes, 35(9), e14338. DOI: 10.1002/hyp.14338. 

https://doi.org/10.1016/j.agrformet.2022.108848
https://doi.org/10.1016/j.atmosres.2021.105816
https://doi.org/10.1002/hyp.14338


 

 

112 

4. Bağçaci, S. Ç., Yucel, I., Duzenli, E., & Yilmaz, M. T. (2021). Intercomparison 

of the expected change in the temperature and the precipitation retrieved from 

CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, 

Turkey. Atmospheric Research, 256, 105576. DOI: 

10.1016/j.atmosres.2021.105576. 

5. Duzenli, E., Yucel, I., Pilatin, H., & Yilmaz, M. T. (2021). Evaluating the 

performance of a WRF initial and physics ensemble over Eastern Black Sea and 

Mediterranean regions in Turkey. Atmospheric Research, 248, 105184. DOI: 

10.1016/j.atmosres.2020.105184. 

6. Duzenli, E., Tabari, H., Willems, P., & Yilmaz, M. T. (2018). Decadal variability 

analysis of extreme precipitation in Turkey and its relationship with teleconnection 

patterns. Hydrological Processes, 32(23), 3513-3528. DOI: 10.1002/hyp.13275. 

 

HOBBIES 

Astronomy, Documentaries, Movies, Theatre, Acting, Literature, History, 

Philosophy, Football, Basketball, Tennis, Pilates, Hiking, Camping, Biking, 

Photography, Brainstorming 

https://doi.org/10.1016/j.atmosres.2021.105576
https://doi.org/10.1016/j.atmosres.2020.105184
https://doi.org/10.1002/hyp.13275

