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ABSTRACT

A COMPUTATIONAL ONTOLOGICAL MODEL FOR
MACHINE-UNDERSTANDABLE DATA IN ARTIFICIAL INTELLIGENCE

YARGAN, Dilek
Ph.D., Department of Philosophy

Supervisor: Assoc. Prof. Dr. Aziz F. ZAMBAK

October 2022, 383 pages

Big Data is believed to be one of the most important phenomena of the century

due to its transformative e�ects and those undeniable e�ects of the data deluge

in the �elds of industry, science, and the Web �the fundamental wheels upon

which today's world makes progress� are, however, hardly transformative. If Big

Data is to lead to revolutions in these �elds, the machine must be autonomous,

that is, to perform higher-order cognitive skills, such as making decisions, infer-

ences, and recommendations. The condition for an autonomous machine is its

ability to understand and process Big Data. So, this work aims to determine the

foundations for machine-understandability and accordingly determine the condi-

tions for an autonomous machine. In this respect, this work proposes a machine

ontology, Ontology 4.0, which represents phenomena in terms of their semantic

properties in a relation-based fashion and processes semantic properties accord-

ing to their types. Adapted from trope and type theories, this ontology forms

the basis for machine-understandability. However, due to computational limita-

tions from type theories, the semantic properties are discussed to be represented

with nonextensional ontological objects, viz., urtropes, which turn out to be the

building blocks of Ontology 4.0. Category theory is adapted as a formaliza-
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tion tool to implement this structure in the machine. Consequently, providing

basis for machine-understandability, Ontology 4.0 is a machine ontology that

harmonizes urtrope and modi�ed category theory.

Keywords: machine ontology, machine-understandability, urtrope theory, au-

tonomous machine, data science
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ÖZ

YAPAY ZEKADA MAK�NE-ANLAYAB�L�R VER� �Ç�N BER�MSEL B�R
ONTOLOJ�K MODEL

YARGAN, Dilek
Doktora, Felsefe Bölümü

Tez Yöneticisi: Doç. Dr. Aziz F. Zambak

Ekim 2022 , 383 sayfa

Büyük Veri dönü³türücü etkileri nedeniyle yüzy�l�n en önemli fenomenlerinden

biridir, ancak veri tufan�n�n tart�³�lmaz etkileri günümüz dünyas�n�n ilerleme

kaydetti§i temel çarklar olan endüstri, bilim ve Web söz konusu oldu§unda he-

nüz dönü³türücü etkiye sahip de§ildir. Büyük Veri'nin bu alanlarda devrimlere

yol açabilmesi için, makinenin otonom olmas�, yani karar verme, ç�kar�m yapma

ve tavsiye verme gibi üst düzey bili³sel becerileri gerçekle³tirmesi gereklidir.

Makinenin otonom olmas�n�n ko³ulu ise Büyük Veri'yi anlama ve i³leme ye-

tene§idir. Dolay�s�yla bu çal�³ma, makine-anlayabilirli§inin temellerini ve buna

göre de makinenin otonom olmas�n�n ko³ullar�n� belirlemeyi amaçlamaktad�r.

Bu ba§lamda, bu çal�³ma, fenomenleri anlamsal özellikleriyle ili³ki temelli bir

³ekilde temsil eden ve anlamsal özellikleri tiplerine göre i³leyen bir makine on-

tolojisi olan Ontoloji 4.0'� önermektedir. Trop ve tip kuramlar�ndan uyarlanan

bu ontoloji, makine-anlayabilirli§inin temelini olu³turur. Bununla birlikte, bu

çal�³mada tip kuramlar�ndan gelen hesaplama s�n�rlamalar� nedeniyle, anlamsal

özelliklerin, Ontoloji 4.0'�n yap� ta³lar�n� olu³turacak uzamsal olmayan ontolojik

nesneler, yani urtroplar ile temsil edilmesi gereklili§ini de tart�³acakt�r. Kate-
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gori kuram�, bu yap�y� makinede uygulayabilecek en belgin biçimsel araç olarak

uyarlanm�³t�r. Sonuç olarak, makine-anlayabilirli§inin temelini olu³turan Onto-

loji 4.0, urtrop ve de§i³tirilmi³ kategori kuramlar�n�n uyumla³t�§� bir makine

ontolojisidir.

Anahtar Kelimeler: makine ontolojisi, makine-anlayabilirli§i, urtrop kuram�,

otonom makine, veri bilimi
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CHAPTER 1

INTRODUCTION

The belief that Big Data is providing/will provide transformations in the course

of human history has made it one of the most important phenomena of the cen-

tury. However, when the three main �elds �industry, science, and the Web� that

shape human history are analyzed, it cannot be said there has been a genuine

transformation in these �elds. Since in order to talk about a transformation

that Big Data can provide in these �elds, it is necessary for the machine to

be autonomous, that is, to make decisions, make inferences, and make recom-

mendations. In other words, an autonomous machine means a machine that

can understand and process Big Data. This dissertation aims to identify rep-

resentational, namely, philosophical and computational principles of machine-

understandability, explore an appropriate data processing structure paving the

way for machine-understandability, investigate how data should be represented,

and �nd a formalization to implement and process the agreed-on data represen-

tation on the machine.

This chapter will introduce the work by �rst discussing what Big Data is and

the failure of its expected impact in the �elds of industry, science, and the Web,

followed by explaining that the real impact depends on creating an autonomous

machine. Then, it will discuss what structured data an autonomous machine

should process and how they should be formalized. Lastly, it will elucidate the

signi�cance and, �nally, the limitations of this work.
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1.1 Big Data, Data Science, Autonomous Machines

This part provides a broad overview of autonomous machines and the concepts

of machine-understandability. So, this part gives a foundational understanding

of the dissertation.

1.1.1 Small and Big Data

Data! Data! Data! I can't make bricks without clay.

� Sherlock Holmes

Data always come �rst.1 It is the indispensable component of any cognitive task.

As an engine cannot function without the appropriate energy source speci�c to

its usage, any scienti�c task cannot be conveyed without enough data on the

research topic. Or, a machine cannot compute anything if there is no data, even

if it has all the possible algorithms to solve any problem. Yet, what is data in

information systems?

Various data de�nitions are introduced from di�erent perspectives. The �rst

de�nition of data is from Acko� (1989, p. 3): �Data are symbols that represent

the properties of objects and events.� Objects and events can be symbolized

in various sorts: characters, numbers, audio and visual signals, images, and

alike. This de�nition is prevalent among information scientists, but there are

other popular de�nitions as well. Shannon (1948), a prominent information

theorist, de�nes data in terms of entropy as patterns of physical symbols/signs.

Besides several de�nitions of data, most of the time, it is de�ned in terms of

information as being units/morsels/pieces of information (Cf. Gitelman, 2013).2

Furthermore, Mealy (1967, p. 525) distinguishes three distinct realms in the �eld

1 In this work, `data' is often treated as a mass noun; when required, it is used in its singular or
plural forms.

2 This sort of approach is problematic since labeling something as data or information depends on the
perspective. Consider a timetable. When it is used for extracting a piece of certain information, it is
data. Since the table contains texts and numbers, some facts are based on records or observations.
On the other hand, a timetable can be information since it is re�ned data based on analyses and
used for making judgments on facts.
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of data processing in his work on the foundations of data modeling: the real world

itself, ideas about it existing in the minds of humans, and symbols on paper or

some other storage medium. Data can be de�ned as fragments of a real-world

theory, and data processing juggles representations of these fragments of theory.

Frické (2015, p. 652) also o�ers a di�erent perspective and introduces data with

a semantic value and in a machine-oriented way: �Data is anything recordable

in a relational database in a semantically and pragmatically sound way.� Lastly,

consider the perspective of Mayer-Schoenberger and Cukier (2013, p. 78), who

state, �[t]o datafy a phenomenon is to put it in a quanti�ed format so it can be

tabulated and analyzed;� accordingly, data is a description of something that is

�recorded, analyzed, and reorganized.�

The word `data' has become the most attractive term in our day. Popular

articles and books take data as the most valuable resource, �new oil of the

digital age� (Leonelli, 2014). What made data so trendy is the data deluge: the

exponential growth of data. We have generated 2.5 quintillion bytes per day

in 2017, and the number has increased dramatically since the global internet

population has increased 36.84% from 2017 to July 2021.3 We can think of our

daily life and �gure out the data sources we engage with, for instance, data from

sensors, social media, transactional applications, web searches, networks, instant

message services, and alike. Thus, the data generated and stored is growing in

depth and width. That is the essential feature of data coined `big:' here we have

Big Data.

Like data, Big Data also has several de�nitions. One approach that focuses on

the characteristics of data deluge de�nes Big Data in terms of some Vs: velocity,

variety, volume, veracity, variability, visualization, and value (Van Rijmenam,

2013).4 Mayer-Schoenberger and Cukier (2013), on the other hand, focus on the

opportunities of Big Data, and de�ne it as extracting �new insights or create

new forms of value, in ways that change markets, organizations, the relationship

between citizens and governments, and more.� Floridi (2012) points out the

ambiguous use of the term `Big Data,' and he addresses its de�nition from the

3 See https://www.domo.com/learn/infographic/data-never-sleeps-9 for up-to-date numbers.
4 Laney, enriched by Marr �rstly suggested the list of Vs, van Riejmenam puts it in the �nal form.
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document of Natural Science Foundation (NSF-12-499):

The phrase `big data' in this solicitation refers to large, diverse, complex, longitu-
dinal, and/or distributed data sets generated from instruments, sensors, Internet
transactions, email, video, click streams, and/or all other digital sources available
today and in the future.

Ward and Barker (2013, p. 2) have collated and analyzed de�nitions of Big Data.

They stress three common factors in de�nitions of Big Data: size, complexity,

and technologies. The �nal de�nition that they reach is as follows:

Big data is a term describing the storage and analysis of large and or complex
data sets using a series of techniques including, but not limited to: NoSQL,
MapReduce and machine learning.

boyd and Crawford (2012, p. 663) introduce Big Data as �a cultural, technologi-

cal, and scholarly phenomenon� that leads on the interaction between technology

�for maximizing computational power-, analysis � for drawing economic, social,

technical, and legal inferences, and mythology �for escaping the belief of the

more data, the more insight. The last de�nition is from Kitchin (2013, p. 262)

as a conclusion.

[A] number of key features of [...] big data are

� huge in volume, consisting of terabytes or petabytes of data;

� high in velocity, being created in or near real-time;

� diverse in variety, being structured and unstructured in nature;

� exhaustive in scope, striving to capture entire populations or systems;

� �ne-grained in resolution, aiming to be as detailed as possible, and uniquely
indexical in identi�cation;

� relational in nature, containing common �elds that enable the conjoining
of di�erent data sets and

� �exible, holding the traits of extensionality (can add new �elds easily) and
scalability (can expand in size rapidly).

According to these de�nitions, it is seen that the di�erence between data and Big

Data is not only �size.� The prominence and status of Big Data is its impact on all

areas of life. Most of the time, Big Data is thought of as the source from which we

can draw solutions to all of our problems/concerns/issues regardless of the �eld.

It has been thought to be a powerful tool that would surely provide discoveries

that even cannot be imagined by humankind (Cf. boyd & Crawford, 2012). À

la Mayer-Schoenberger and Cukier (2013, p. 19), �Big Data is all about seeing
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and understanding the relations within and among pieces of information that,

until very recently, we struggled to fully grasp.� Consequently, it has aroused

the interest of people from business to politics, science to philosophy.

There is a great deal of trust in Big Data, as it helps us gain insight that

we could not have with traditional scienti�c tools. As Rosling (2010, 37:23�

37:30) states that the more data there is the more discoveries can be made,

and Floridi (2012) argues that new patterns can be detected in data, which

results in the advancement of knowledge, and that studying Big Data is very

important in our era. It is often highlighted that there is no need for theories,

hypotheses, models, or human expertise in the data deluge era. We even do

not need to �nd any causation since the correlations are pro�cient in providing

�results.� One of the most famous articles in this line of thought is of Anderson

(2008), the then editor of Wired, whose article title lays bare his opinion on

Big Data, �The end of theory: The data deluge makes the scienti�c method

obsolete.� According to him, the desired outcomes emerge when better data

meet better analytical tools. The success of Google, for instance, lies merely in

statistical methods, which demand neither semantic nor causal analyses. The

scienti�c methods �constructing hypotheses and models, applying the data into

models, and verifying the hypotheses- are obsolete. That statistical algorithms

�nd the patterns where science cannot since correlations are enough for this task

(Anderson, 2008; Mayer-Schoenberger & Cukier, 2013), and it is legitimate to

analyze data without a hypothesis in data science. Prensky (2009) belittles even

educated guesses on understanding the world by constructing hypotheses and

models, and Big Data mining uncovers relations and patterns of the things we

did not even know to look for (Dyche, 2012). Steadman (2013), in his �Big Data

and the death of the theorist,� concludes that the true objective of Big Data is to

predict rather than understand the world; thus, prediction trumps explanation.

Data are not valuable in themselves, and analyses make them so; for instance,

companies can predict the future better and make a pro�t by correct analyses

of customer behavior and global �nancial trends. Hence, no one can ignore the
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stories of saving billions thanks to data analyses (Marr, 2016a).5 Then, it is not

due to only Big Data that data are so much valuable; rather, data deluge and

Big Data analytics enable us to take out the valuable outcomes: the more data,

the more discoveries. Then, the more powerful Big Data analytics we have, the

more value can be mined from the data deluge. In addition to all said, since the

dynamics of the data have changed, data analytics must also change. Here, the

�eld that includes traditional data analytics also develops and implements tools

that can process Big Data is called data science.

1.1.2 Data Science and Unstructured Data

Data science is an interdisciplinary enterprise requiring expertise in statistics,

modeling, machine learning, analytics, computer science, philosophy, and do-

main knowledge. Its main aim is to make sense of abundant data stored in

various forms that cannot be handled with standard terms. The statistics about

Big Data volume often denote the velocity : such volume of data is generated at

high rates. Velocity is an issue when there is demand for real-time analytics.

Thus, Big Data analytics, or data scienti�c tools, must provide solutions for

grappling with data processing at enormous speed. Moreover, the feature of the

veracity of Big Data, which is about trust and uncertainty regarding data, data

source, and the results of data analysis, is critical. Suppose that more than two

devices produce incorrect data in a system, and other connected devices per-

form their function according to those incorrect data, which eventually would

be a disaster. Then, data scientists have to think in advance about how trust

can be con�rmed in a data deluge that expands constantly and rapidly; further-

more, they also have to meet the need for data analytics to manage and analyze

uncertain data.

On the other hand, if the data is structured, none of the previously mentioned

issues would require a novel approach to data. In other words, the chief problem

that data science has to solve is that Big Data actually consists of unstructured

5 One can refer to these stories from Marr (2016a).
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data. The feature of variety of Big Data refers to the structural heterogeneity in

a dataset (Gandomi & Haider, 2015). Structural heterogeneity means that data

sets include the spectrum of fully structured data to unstructured data. Struc-

tured data refers to tabular data, e.g., CSV �les; semi-structured data does not

entirely accord with data standardization, e.g., XML documents; unstructured

data lacks structural organization, e.g., e-mails, videos.6

Structural organization is an essential notion for data analytics analysis. More-

over, this is not a brand new problem in information systems. The experts have

curated data to make them process-ready. Yet, we need Big Data technologies

to come into play since traditional data management techniques can operate on

structured or semi-structured data sets. In contrast, more than 90% of the data

is unstructured. Converting unstructured data into structured one is costly and

sometimes impossible with today's technology. That is even implausible since

data comes in huge volumes in continuous mode. In Big Data, there is nothing

like dispensable data since some results of the analyses in Big Data have shown

that each data could have a role in leveraging power in �product promotions,

placement, and sta�ng� (Gandomi & Haider, 2015, p. 138). Consequently, new

data techniques must be developed, and new insights should emerge in order for

Big Data to manage all kinds of data kinds, especially the unstructured ones,

which is the main issue of data science.

1.1.3 Big Data and Industy, Science, and the Web

The very fundamental wheels upon which the world makes progress are science

and industry. Developments in each �eld have resulted in new stages or revo-

lutions to shape the world's destiny. Speci�c to our age, the improvements in

hardware and software have changed how we produce: Big Data helps people

6 Consider the following analogy. The books in a library are structured. Each book and each
bookshelf is labeled, so by following the instructions, we can pick the book we want with ease. When
we know the genre of the book and the bookshelves are labeled according to the genre, then we look
for the book only on the related bookshelves. Then, this kind of library is semi-structured. When
neither books nor bookshelves are labeled, this full-of-books-room is unstructured: to �nd the book
we are looking for, we have to check each book until we �nd it.

7



in science and industry make discoveries. The Web, another �eld that domi-

nates our lives, has gained a challenging role in Big Data. The following lines

will de�ne three essential �elds of human life: industry, science, and the Web.

What the data deluge has changed in these �elds and what kind of revolution

the impact of Big Data can occur will be discussed.

1.1.3.1 Industry

The term `industry' points to economic activities that produce or provide �goods,

services, or sources of income� (Encyclopædia Britannica, 2011). New technolo-

gies, the latest scienti�c discoveries, and/or unexpected social phenomena (such

as the dramatic increase in population) spark industry revolutions. So, having

always been one of the foci of human enthusiasm since the eighteenth century,

Industry has gained another attention after introducing Industry 4.0 at Hanover

Fair in 2011. That indicates three industrial revolutions occurred from the eigh-

teenth century to 2011. Each industry revolution has reduced the need for a

workforce in the factories and produced devices that surpass humans' skills and

muscle power. For instance, robots have replaced workers on the assembly lines

with the advent of automation. Robots are, in general, machines that are pro-

grammed in order to carry out a series of actions automatically.

The present-day technologies of the Internet, data analyses, Big Data, robotics,

and alike introduce truly and fully automation from production to distribution

processes. Moreover, the assemblage of these technologies is believed to trans-

form automated factories into autonomous factories. That means increasing

pro�ts, decreasing costs, improving customer experience, maintaining newly in-

troduced raw materials, optimizing lifetime value, and other market issues are

held by the intensive assistance of the autonomous machines. This is Industry

4.0: �creating intelligent object networking and independent process manage-

ment, with the interaction of the real and virtual worlds representing a crucial

new aspect of the manufacturing and production process� (GTAI, n.d.). Such

intelligence paves the way for autonomous decision-making in all aspects of mar-

keting, namely in the design, production, operation, and service of products.
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1.1.3.2 Science

Science, one of the highest human enterprises that guides the course of the world,

is a complex system with methods to understand secrets of the phenomena. Its

characteristics are systematic observation, experimentation, reasoning, construc-

tion of hypotheses and theories, and testing. Data collection can be held in a

natural or laboratory setting or from simulations; reasoning methods can vary

in di�erent scienti�c works; the way of testing hypotheses can vary; yet the very

aim of science, knowledge production, stays the same. Since the advent of com-

puters and their involvement in scienti�c knowledge production, the machine

has become an indispensable tool that has changed the way of doing science:

without the software, some data could never be collected, and further, they

would never be analyzed or from which conclusions would be drawn. Scientists

have to rely on the results that the machine generates; therefore, the machine

has become an indispensable component of scienti�c knowledge production.

Current improvement in the technology of experimentation and measurement

yields a vast amount of scienti�c data. What has been revolutionary in science is

that the machine is involved in data generation and analyzing processes; in other

words, the machine has become indispensable in scienti�c knowledge production.

Furthermore, the impact of Big Data and data analytics in science, namely the

upcoming scienti�c revolution is when the machine behaves like a `scientist:'

it can systematically observe, conduct experiments, do the reasoning upon its

�ndings, construct hypotheses, and test hypotheses. In other words, the machine

becomes autonomous.

1.1.3.3 Web

Tim Berners-Lee dreamt that �all the information stored on computers every-

where were linked,� and every computer could be programmed to provide a

space in which everything could be linked so that �all the bits of information in

every computer at CERN, and on the planet, would be available to� everyone

(Berners-Lee & Fischetti, 2001, p. 4). In 1989, he realized his dream of creating
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a single, global information space: the World Wide Web, or the Web. The Web

is an indispensable component of our daily lives since then.

At the beginning of the Web, the `space' was small, and a few people, who

were professionals, created Web content. In those days, the users who knew the

webpage address could reach and only read the pages. However, the static nature

of the webpages changed when the `space' turned into a place where people-

to-people communication and dynamic data sharing could occur. However, a

dramatic increase in the number of webpages and usage required the `space' to

become searchable. Besides, the Semantic Web technologies were introduced

to organize the `space' so that the space would consist of meaningfully related

contents. Big Data has greatly impacted the `space' as well. As of May 26,

2022, there are at least 4.87 billion indexed webpages.7 The Semantic Web

technologies are too old to deal with the new space. Thus, the Web data should

be organized to warrant automation, integration, inferences, and integration

with data analytics that promise prediction, personalized web experience, and

alike. In other words, Big Data technologies aim to bring the pages that the

users are interested in or may be interested in.

1.1.4 A Bestow of Big Data and its Technologies: Autonomy

The e�ects of Big Data are so transformative in Industry, Science, and the Web

(ISW). The future of Industry is smart factories, where the machine automatizes

each stage from good productions to distributions. For this to happen, there

needs to be interoperability in human-machine communication and decentralized

intelligence in information-intensive manufacturing. It must be decentralized

since making each device talk in the same language is impossible. It is crucial

that the devices can understand each other and also understand the data in Big

Data.

7 See WorldWideWebSize.com.
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The machine will be both knowledge sources and agents determining the pro-

duced knowledge's status in science. The future of Science demands that the

machine contributes to scienti�c knowledge production by making recommen-

dations to scientists, answering queries, and explaining the patterns as an au-

tonomous workfellow. Otherwise, there would be no contribution of Big Data

to science.

The future of the Web, on the other hand, presupposes the machine to become

content managers and producers. In the former, the machine will answer the

natural language queries in any subject; in the latter, the machine will gener-

ate content for a task from the Web's voluminous information. However, the

task prerequisite is the machine's ability to classify the webpages for a given

search/query. To wit, the Web will be a giant knowledgebase upon which the

machine will classify the webpages and then make inferences and generate con-

tent for a given topic.

Accordingly, and in conclusion, the most signi�cant impact of Big Data on ISW

is that it transforms the machine into an actual agent : the more there are data,

the more in�uential the machine is. Therefore, data science aims to create

algorithms that can decide, make inferences, cluster the contents, predict, rec-

ommend, and exhibit alike higher cognitive faculties. Namely, they should make

the machine understand Big Data.

1.2 The Most Vital Issue of All: Processing Semantics

In the previous section, we found that machines need to be autonomous in order

for Big Data to bene�t ISW. We have mentioned that the autonomous structure

also depends on developing a system that understands the machine. This section

detects the problematic aspects of the last one.

We mentioned what role the machine should gain at this point: being au-

tonomous, which is associated with the machine-understandability of Big Data.

Now let us examine the processing of Big Data in these �elds and discuss whether

Big Data leads to a revolution.
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1.2.1 Processing Big Data in ISW

A shift from factories with automation to smart factories is said to be possible

with Big Data and its technologies. It is necessary to mention the Internet

of Things (IoT) here because the communication of electronic devices in the

factory and even outside the factory is provided by IoT technologies. So, these

devices generate and interpret a great deal of data. However, smart factories

cannot be limited to robots' communication in the factory. Since they are called

�smart,� they also interpret data from outside the factory, for example, data on

demand for what the factories produce. All these data are in the Big Data status

regarding volume and diversity. So, what the machines in smart factories do is

process Big Data and act accordingly.

We can utter similar things about the position of Big Data in producing scienti�c

knowledge. A scientist no longer looks at the sky with a telescope but at the data

on the computer screens sent to computers by telescopes in space. Moreover, this

scientist uses software to analyze the data coming from the telescope. Besides,

the machine is not only responsible for collecting phenomenal data but also for

producing them with simulations. In addition to the data, machines collect

and produce, and scientists write reports and papers on their subjects. Thus,

a massive collection of scienti�c data is stored in the machine. Processing that

much data, as a whole, is not something a human scientist can do. In that case,

the machine needs to be able to process these data to bene�t from Big Data.

For this reason, the machine should be expected to collaborate with scientists,

almost like a colleague: reviewing the literature, analyzing the data, forming a

hypothesis, and sharing the �ndings.

Undoubtedly, the Web is the �eld where the impact of Big Data can be grasped

most easily. While a certain number of webpages were coming for research

decades ago, now the search results listed in millions of pages come as images,

videos, gifs, audio, and text. However, in order for the Web to work more

e�ectively, it needs to go beyond just the classi�cation of images, videos, or

texts: it should classify all the sources on the Web related to the searched term
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according to their content. Thus, Big Data expands the Web; the machine for

the Web controls Big Data.

The following will discuss the limitations and biases of Big Data and question

whether smart factories, lab colleagues, and content controllers can grow up in

Big Data.

1.2.1.1 Biases of Big Data

�Big Data speaks for itself free of theory� is the motto for some scientists and

data scientists. The underlying understanding of this claim is that there is a new

epistemology of data, which is more comprehensive, objective, and productive.

Big Data is more comprehensive; the more data, the more discoveries. To this

end, and thanks to Big Data, there are data from any granularity, so nearly all

aspects of all domains can be captured. For instance, Rieder and Simon (2017)

claim that the complete picture of a domain is available, but before Big Data,

data gathering in scienti�c inquiries was limited by the hypothesis or models.

Moreover, such unrestricted sampling favors that the same phenomena can be

analyzed from various aspects, and the researchers bene�t from the comprehen-

siveness provided by the data deluge. New data analytics, thus, shed light on

more results, which were previously limited by speci�c data sets and modelings

(Mayer-Schoenberger & Cukier, 2013; Steadman, 2013).

Further, the data is believed to be raw, objective, and neutral.8 Data generated

by machines, by us, or both are not within the scope of narrow observations;

rather, they are gathered from various sources without a limitation. Thus, Big

Data is free of human bias and framing. Hence, data sets are inherently mean-

ingful (Kitchin, 2014). Indeed, not only is the data free of human bias but the

new analytics as well. Rather than being constructed for a particular domain,

�agnostic data analytics� are tools that can be applied to various data sets from

various �elds (ibid.).

8 See Gitelman (2013) for other beliefs. Cf. Rieder and Simon (2017).
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Hence, the same results that raw data meet agnostic algorithms are (i) data

speaking for themselves free of theory and (ii) patterns and relations being

meaningful and accurate. Since neutrality is sustained in data gathering and

analysis, this new empiricist way of knowledge production promises the triumph

of correlations. Thanks to a huge volume of data, �correlation is enough,� and

�data without hypotheses about what it might show� are analyzable (Anderson,

2008). In this respect, there would be no further need for causal explanations. It

is because we are not to understand the world as itself, but rather to predict the

phenomena in the world, as the correlations are pro�cient at providing �results:�

we moved away from the old-fashion search for causality. More precisely, in

scienti�c practice, correlations are taken as something to be interpreted, yet Big

Data surpasses these concerns: correlations are more informative and evidential

(Mayer-Schoenberger & Cukier, 2013). Even more elucidator since Big Data

reveals correlations, even the ones that we did not think of (Dyche, 2012) and

new analytics ��nd patterns where science cannot� (Anderson, 2008). Prensky

(2009) reads Anderson's-like claims as �scientists no longer have to make edu-

cated guesses, construct hypotheses and models, and test them with data-based

experiments and examples,� and �without further experimentation,� they can

reach patterns that should be taken as �scienti�c conclusions� from the data

deluge.

To summarise, Big Data analytics provide a new mode of knowledge production,

whose aim is making sense of the world by obtaining insights and knowledge em-

bedded in data; rather than the classical mode of scienti�c inquiry- hypotheses,

model, and test by analyzing the relevant data. Hence, (1) the machine knows

the patterns it draws and the predictions it makes. (2) Machine knowledge,

namely pattern �ndings and/or prediction power, is limited by data and the

algorithms we generate. Due to data deluge and powerful algorithms, on the

other hand, a machine can know anything.
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1.2.1.2 Limitations of Big Data

There is an indisputable truth here: there exists data deluge in all domains,

and continuous advances in machine power enable the use of those data that

was hitherto impossible. To wit, the impact of Big Data and its technologies are

crystal-clear. However, the previous motto should be substituted with �The data

is mute:� data cannot be comprehensive, objective, and productive by itself.

First, more data does not mean more discoveries or better inquiries (Symons &

Alvarado, 2016). Leonelli (2014) states that there is no revolutionary role of Big

Data in some �elds, e.g., in biology, because di�erent epistemic communities

use di�erent methods, materials, and background information for knowledge

production. This requires format standardization in various �elds within biology,

which is an expensive task. Moreover, such standardization also requires data

curation, which is both expensive and labor-intensive.

In light of the last paragraph, we can say that structuring Big Data is hardly

possible. We purport two reasons. Firstly, as Leonelli (2014) states, it is a tall

order. Any structured data representation, like databases, taxonomies, or on-

tologies, su�ers from interoperability problems. These representation products

are designed for speci�c problems, for speci�c domains, and/or from speci�c per-

spectives. As these are software products �not just an intellectual exercise, they

are required to meet the needs of the companies/tasks/customers. Thus, inte-

grating these representations means providing a constellation, which is hardly

possible. For instance, an extra ontology that glues others is required to provide

ontology interoperability. That ontology can be a bridge ontology that is de-

signed explicitly for the ontologies that are supposed to be uni�ed, or it can be

a reference ontology that rules over the domain. However, this approach is not

economical. Secondly, data structuring tools work on speci�c domains, and their

products, such as databases, ontologies, ER models, and cybernetic systems, are

static in their nature. On the other hand, Big Data is dynamic in its nature. For

instance, the introduction of a new device in IoT is inevitable. And accordingly,

data are structured in these systems as centralized. That means labeling the

entities and relations of a context is purposeful. However, Big Data requires a

15



decentralized structuring since the meanings of entities and relations can vary

inter contexts. Even if all people in the world come together, they cannot make

Big Data structured using existing technologies.

At this point, a caveat is needed. A big mistake is that `machine-readability' and

`machine-understandability' are used interchangeably in the literature. Such a

mistake is the opinion that machine understanding is possible by linking the

tagged terms. For instance, Tim Berners-Lee (2001, p. 185) de�nes machine-

understandability in the sense that building understanding enables to link `very

many meanings.' He continues that concepts are linked together by �frequent

contributions from independent sources� (ibid, p. 187). On the other hand,

linking concepts together is not enough to create a meaningful Web. Each

context speci�es the meanings of entities, and relations are speci�ed di�erently

in each context, which means an entity can be in di�erent contexts with di�erent

meanings. The collections of di�erent meanings cannot constitute the entity.9 Or

consider an example from the industry. A device receiving signals from various

devices is to understand what each signal means and then performs accordingly.

At this rate, signals have epistemic value, and the machine has to interpret them

and perform accordingly.

Secondly, the ideas that huge amounts of data can wipe out the need for a priori;

accessing large data sets secures the automatic elimination of human bias and

framing and error; the algorithms are so powerful to drive insights or knowledge

from the data deluge by data analytics are hardly provable. Marcus (2018,

p. 5) criticizes these ideas and mimics them as �in a world with in�nite data,

and in�nite computational resources, there might be little need for any other

technique.� However, Marcus analyzes the alleged dexterity of deep learning

and emphatically states that data are never in�nite, and algorithms are not

that powerful. Each deep learning algorithm is suited to a speci�c task, and

each can learn bias from the data they use. Moreover, algorithms may maintain

9 Here, `entity' refers to objects/things, not to relations or event. On the other hand, in this work,
the term `entity' refers to anything in the world; a quark, the beauty of a line of code, an irrational
number, swinging, a yellowish star, Uzun �hsan Efendi, to solve the issue of gender discrimination
in developed countries, and so on.
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the prejudices of their designers (Rieder & Simon, 2017; Cf. CIHR, 2015, cited

in Rieder & Simon, 2017). �[...] [S]ystems are designed to capture certain kinds

of data and the analytics and algorithms used are based on scienti�c reasoning

and have been re�ned through scienti�c testing� (Kitchin, 2014, p. 5), such

requires a theory behind it. Then, the algorithms are not agnostic at all.

Thirdly, it is incorrect to accept �the unrestricted correlation,� where correlations

are regarded as truths born from data (Symons & Alvarado, 2016). Correlations

cannot be taken as facts, and neither data analysis nor its interpretation is

intrinsically unbiased; rather, results driven by data are in some conceptual

framework. So, making sense of data is always framed. Leonelli (2014, p. 4)

states, �[...] no matter how large, [data collections] are diverse enough to counter

bias in their sources. If all data sources share more or less the same biases [...],

there is also the chance that bias will be ampli�ed, rather than reduced, through

such Big Data.� In light of this, one can utter that bias is indispensable in Big

Data analytics. To wit, the mechanical objectivity of Big Data is questionable

in both data deluge and its use.

Furthermore, data being raw, objective, and neutral are controversial. That

is counterintuitive because the machine just records data without an interven-

tion. Gitelman (2013), however, illustrates that objectivity, truth, and trust

are considered as situated in the history of science and technology. Data being

raw is also criticized by Bowker with the following words: Raw data is both

an oxymoron and a bad idea; to the contrary, data should be cooked with care

(2005, as quoted in boyd & Crawford, 2012). Hence, Big Data is not necessarily

raw and objective. All of that, the data provides a speci�ed view of the world

using particular tools, for collection of data starts with the identi�cation of the

conceptual framework of the inquiry. Data cannot be gathered together as they

are in themselves; hence, the data deluge is neither neutral nor free of bias or

framing.

Hitherto we have seen the alleged features of Big Data. Now let us dive into

whether Big Data tools tame and cope with unstructured data and meet the

needs of ISW.
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Today, machines not only record excessive observations and generate inductive

evidence through simulations. Nevertheless, the machines do methodologically

gather more data (Frické, 2015), which cannot be taken as scienti�c discov-

ery. Patterns are necessary but not su�cient for scienti�c development; strong

correlations are not the harbinger of causal links between phenomena. Marcus

(2018) urges us that deep learning � the dei�ed model for every task, a statistical

technique that uses neural networks with multiple layers to classify patterns- al-

gorithms learn from complex correlations between input and output values, yet

cannot represent any inherent causation between them. In Industry and Science,

we need causal explanations; this is how science works and how we can trust

the machine's decisions.10 Again, patterns are not inherently meaningful,�[a]ny

analysis would be better with priors, Bayesian prior probabilities, or similar, for

any hypotheses� (Frické, 2015). Pearl and Mackenzie (2018) argue that data by

itself is �dumb,� and it can only tell correlations and associations but can never

tell us why; this is the reason why we should dissuade ourselves from the charm

of the so-called superhuman discoveries of data analytics. That is, the machine

cannot cluster the Web contents according to searched terms when it is trained

with user habits. Consequently, no matter how large datasets we have, there is

nothing like the primacy of correlations over causality; Big Data cannot wipe

out this fact.

Marcus (2018) further challenges those who support those statistical and proba-

bilistic models are satisfactory in Big Data. Given its due in speech recognition,

image recognition, and other classi�cation problems, Marcus challenges deep

learning from several aspects. Firstly, deep learning is not able to learn abstrac-

tions through explicit, verbal de�nition; moreover, it needs to crunch millions

or billions of data to provide satisfying works (p. 7). Furthermore, the patterns

that deep learning extracted are too shallow, and deep learning cannot deal with

the hierarchical structure of the language (p. 9). Besides, such models cannot

relate the background knowledge or open-ended inferences (pp. 10�12). Above

all, deep learning models are black boxes, and their correlation-based nature

10 Pigliucci (2009) criticizes Anderson for being ignorant of science and the scienti�c method.
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makes them unreliable tools at all (p. 11; p. 13). As of 2022, no deep learning

model copes with these aspects.

Additionally, one may say that deep learning is about classi�cation and may even

criticize us for speaking about deduction. This relevant claim can be defended

by the fact that deep learning cannot classify abstract concepts (Cf. Marcus,

2018, p. 7), and the non-hierarchical structure does not allow property- and

relation-transfers. In order for the machine to employ deduction, algorithms

should construct classi�cations, which in turn enables the subsumption relation

to function so that the child class can subsume attributes of the parent class.

That is to say, deep learning algorithms cannot classify but cluster concepts.

Hence, the fabulous deep learning models can neither represent nor generalize

the rich structure of the world reliably. At last, Big Data analytics cannot

promise a revolution in ISW.

1.2.2 Structure of Big Data

Present-day machines are far from being active agents. They are just expert

systems constructed with structured data of a speci�c domain for a particular

task and/or statistical models using structured and/or unstructured data. Deci-

sions/recommendations of the machine are valid only in the domain represented

or trained for the machine. That is, the produced results can be inapplica-

ble to another domain, and/or the representations can be insu�cient for the

other. However, the machine is supposed to make decisions and recommenda-

tions from Big Data, which is not limited to a speci�c domain. Machines in the

smart factories have to derive decisions from various environments; the machine

has to cluster contents from various contexts on the Web; the machine has to

communicate automatically between various scienti�c works of di�erent aims.

The state-of-the-art methods are no longer feasible for processing knowledge in

the depts of Big Data; namely, they cannot go beyond knowledge retrieval or

extraction from shallow structured data. Some of the biggest challenges in front

of knowledge processing are that most data are unstructured; semantic proper-

ties are annotated manually; knowledge is represented in a centralized fashion,
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and formal tools are so limited for operating on various reasoning methods. As

a consequence, Big Data and its technologies do not have a transformative ef-

fect on ISW as they do not provide a framework on which the machine can be

autonomous. So, if the very nature of Big Data is unstructured, then how come

can an automated system make decisions and recommendations and provide ex-

planations with unstructured data? In other words, what should change so that

Big Data can be utilized and the machine be autonomous.

1.3 Building a Machine that Understands

For Big Data to revolutionize ISW, machines need to be autonomous; for ma-

chines to be autonomous, they need to understand Big Data and make inferences

from it. This research sought to foundations of a machine-understandable sys-

tem.

In the previous section, the di�erence between machine-readability and machine-

understandability was slightly mentioned. This issue is vital because we need to

clearly state what we mean by a machine-understandable system to identify the

foundations of establishing such a system. Machine-readability is the machine's

ability to process data; in other words, machine-readable data is structured

data. For instance, suppose that we need to inform the machine about faculty

members' personal and institutional information and ask the machine who lives

outside the city center and has morning classes. Writing all the information

as a text �le is not machine-readable since the machine sees just a bunch of

symbols, which the machine cannot employ operations; because it cannot detect

data values and types. However, creating a spreadsheet can solve the problem.

Creating columns speci�es what information is collected, and creating rows tells

the machine what values the columns get for each person in the faculty. From

this structure, the machine can employ an operation to �nd out person(s) who

has/have morning classes and live(s) outside the city center. Or the same sce-

nario can be structured with ontologies, in which each entity will be classi�ed,

and relations between classes and individuals will be speci�ed. This kind of rep-

resentation has semantic components, such as transitions between classes and
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relations can be re�ected here. Thus, machine-readable data is the data with

semantic values that are attached to data.

Machine-understandability is more than machine-readability. Here is why.

Machine-readable data has limitations in decision-making since decision-making

includes non-contextual and contextual-but-implicit relations. That means,

when a context is structured, the semantic values are �xed to entities so that

the machine operates on these static semantic values of data. A machine under-

stands when it can detect/choose/�nd other semantic properties of entities. For

instance, suppose that the context about faculty members is structured through

an ontology. A faculty member is known to have morning classes, but their ad-

dress information is missing. However, somehow in the ontology, they are linked

with Bus 589 �which goes directly outside the city. If there is information about

bus routes and numbers, the machine can infer that that faculty member comes

to the university in the morning from outside the city. When all this information

is structured, no worries; however, these are toy examples; we aim to structure

Big Data. Thus, machine-understandable data should be a data format that

includes all the potential semantic values an entity could take in any context.

Data are processed regarding their values and types. On the other hand, seman-

tic data, or structured data, are analyzed through their values, types, and at-

tributes/semantic properties. In other words, semantic properties are the tagged

aspects of the data. Tagging all the aspects of an entity is undoubtedly a daunt-

ing task; nevertheless, we have to change our perspective of attributing semantic

properties to entities. In that case, the machine should attribute semantic values

to entities according to context. At this time, the machine is said to process

entities dynamically.

Before moving on to the analogies we have for entity representation and process-

ing, it is necessary to pause here for a caveat. All data structures, for instance,

ontologies, are machine-readable software created in structures humans can un-

derstand. Machine-understandable does not have to be human-understandable.

In other words, humans do not need to understand the structure of Big Data.

Zambak (2014, p. 69) defends �the idea that machine intelligence does not nec-
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essarily process information in the way humans do.� In the line of this idea, we

claim that humans and machines do not necessarily share the same categorical

foundations for depicting the world; thus, we must carry out our work from a

machine perspective.

1.3.1 Representing Entities

We believe the real trick to creating a machine-understanding system is increas-

ing the representation power. The higher the number of semantic properties

that the machine can process, the stronger the inference ability. For example,

imagine that there were only natural numbers with which all the scienti�c works

were carried out. Scientists were only accepting computations and results of nat-

ural numbers. There were days when scientists could not, and today need not

operate with numbers other than natural numbers. However, if we only had

natural numbers, science would not have reached its glorious position in human

lives. However, when other kinds of numbers, such as real numbers or complex

numbers, were introduced, representation power increased, and science has pro-

duced much more profound information about phenomena. Thanks to science,

advances have been made in the history of humanity. So, if we expect the ma-

chine to take part in processing the meaning in Big Data �that is, in making

decisions, recommendations and analyses� it must process the semantic values

of the data, and thus the entities must be, in principle, represented in terms

of all their semantic properties. We suggest that semantics must be involved

at the data beginning of the data processing. In light of this, we purport that

entity representations must include all possible semantic properties so that the

machine can choose among them.

Consider the analogy that just as living things are the sum of certain features,

these features are represented in speci�c compositions in the DNA sequence,

so entities are represented as the composition of semantic properties, and the

machine can select the semantic properties from the composition according to

contexts. So, in this dissertation, it will be investigated how this representation

should be.
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1.3.2 Processing Context

We claim that the context determines the meaning of the entities. This has

twofold results. The �rst one is that the machine is supposed to process contexts,

not entities. The rationale behind this is that entities gain their meaning within

the interaction with other entities in a context. On the other hand, this does not

mean that keeping the same entities always yields to the same context since a new

context means the re-establishment of all forms of interactions. Think of a doctor

and a nurse in an examination room of a hospial. The roles and behaviors of

these people are clear. However, these roles/behaviors are about to change when

the nurse is a patient, and the doctor is taking care of him. The people and the

place is constant, but the form of interactions has changed. Thus, the machine

must be able to detect such interactions. That is, the machine determined the

ontological statuses of the entities in the context of their interactions. Let us

unfold this assertion.

The best way to understand an entity is to understand its relations to other

entities. Entities by themselves cannot exhibit their roles in a context. We can

use Figure 1.1 to illustrate what we mean.

Entity Relation Context

Data

Value Type Semantic Property

gg

ww

OO

��

77

''

Figure 1.1: A weird analogy mirrored by Data

It is the data value that is processed, and how that value is processed is decided

based on the type of data. For instance, imagine data whose value is `3.' If the

data type is integer, this data value can be added to another number. But if

its type is character, then the addition operation cannot be applied but rather

the concatenation operation. When the data is machine-readable, we expect

the machine also to process its semantic properties. In other words, the values
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are operated according to the type and semantic properties of the data. A kind

of relevancy appears between value and entity, type and relation, and semantic

property and context in Figure 1.1. Because in a structured system, which

rules/axioms are applied to an entity are determined by its relations, and its

meaning comes from within the context. When we use this analogy to a machine-

understandable system, the contextual relationship types decide which semantic

properties of an entity will be processed. However, since we claim that entities

are represented as the composition of the semantic properties, in this case, it will

be necessary to decide which semantic properties of an entity will be processed

through the semantic properties of other entities. This brings us to the second

result that entities must be represented in terms of interactions.

Determining and processing relations is the key aspect of this dissertation. In

other words, when the machine can detect and process relations, it can handle

the contexts. A paradigm shift is indispensable at this point: this work needs

to change the orthodox entity prioritization over context. This means that the

ontological status of the entities in the context is automatically determined by

the way they are associated, and inference can be made through this structure,

where all possible semantic properties of the entities can be represented. This,

above all, means that there must be a new kind of ontology that is particular to

machine-understandability.

1.3.3 A Machine Ontology

On the way to the research aim, �nding machine-understandability foundations,

we encounter a new research objective: creating a machine ontology. It should be

such an ontology that it would not be data without ontology, as in the early days

of informatics. Or, it would not consume human labor for labeling to transform

the entire data sources into a semantic structure; that is, it would also demolish

the data with ontology approach. Let this ontology be data within ontology. Let

it introduce the world in ontological relations, create ontologies according to the

context, and process these ontologies. Thus, let it transform phenomena into
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data, incapsulate background information, and �nally and above all, make the

machine understandable.

Let us mention some points to consider in creating this ontology. First of all,

this ontology should prioritize relations, not entities. That is, it must repre-

sent the phenomena itself in the machine through relations. Second, it should

de�ne entities as the composition of their semantic properties. Then, seman-

tic properties and their compositions should also be represented ontologically

through relations. Next, since this ontology is relation based, there must be an

axiomatic structure for how compositions are created. An example is isomerism

from chemistry. Isomerism is the phenomenon in which more than one com-

pounds have identical molecular formulae but distinct arrangements of atoms in

space. Isomers do not necessarily share similar chemical or physical properties.

Thus, entities cannot be represented as a bunch of semantic properties since

there can be entities having the same semantic properties, but they can be dis-

tinct. Of course, it must be reminded that all these claims are from a machine

perspective, and the machine cannot have to have a complete picture of the

entities. For this reason, this ontology should also bring together the semantic

properties in a certain rule/structure and de�ne the entities. Consider the fol-

lowing analogy. All humans have a DNA sequence; what makes each of them

the individual is the order of nucleotides in DNA. Moreover, humans and bono-

bos share approximately 98.7% of their DNA (Max-Planck-Gesellschaft, 2012).

Just a 1.3% di�erence in the DNA results in cognitively distinct creatures. This

example is provided due that even if this 1.3% di�erence did not exist, the ma-

chine ontology we aim to establish should be able to identify them as di�erent

entities by looking at how humans and bonobos relate to other beings.

The rest of the research objectives are a formalization of the mentioned ontology

and how the machine can make inferences through the ontology. Before our

exploration, let us note our �rst impressions of these objectives.

Whatever formalization tool will be used, some rules and axioms need to be

added to the formal system, as these tolls are not designed for the ontology we

intend to establish. Only then can an accurate inference system be obtained.
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The most crucial point to consider in the formalization of a machine ontology

is that a set-theoretic approach will not be accepted. Because in a set theory,

entities are prioritized. Then this work will �nd formal systems that have ab-

stractions through relations. Moreover, a formal system that can formalize a

machine ontology must have higher levels of abstraction since we aim at repre-

senting phenomena in data. Such a tall order has such high demand.

Creating autonomous machines is the prerequisite that Big Data bene�ts In-

dustry, Science, and Web. This work aims to understand the foundations for

machine-understandability, which is believed to pave the way for machine au-

tonomy. In this respect, this work aims to create a machine ontology, which

represents entities in terms of their semantic properties in a relation-based fash-

ion. This objective is twofold: an appropriate representational framework and

formalization tool will be found.

1.4 Some Facts About the Dissertation

This work will bene�t so many research and application �elds. First and fore-

most, this work has developed an alternative perspective to formal ontologies

and applied ontologies. The studies on these �elds prioritize objects over re-

lations and accordingly often use set-theoretical formalization. Hopefully, this

work will encourage those who work on formal and applied ontologies to escape

dependency on and boundaries from substance ontologies and set-theoretical

frameworks. Secondly, it has been pointed out that it is essential to establish

an ontology of machine-understandable, not human-understandable. Thus, a

new ontological perspective for general arti�cial intelligence is presented. This

study, an example of applied category theory, will also bring a category theo-

retical perspective to the ontology research and development of ontology-based

systems. In addition to these, it is also an example of the contribution of the

applications of philosophical teachings to information systems. In other words,

this work draws attention to the contribution of philosophical analyses to de-

veloping technologies in machine/general arti�cial intelligence. It highlights the

contribution of philosophical analysis to the development of technologies. There
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is still some knowledge to be taken from philosophy; however, it should be noted

that this is not one-sided. The needs for machine intelligence also enable the

enrichment of philosophical attitudes. So, this work provides an example of a

twofold contribution that will be used for further research.

In addition to the contribution to academia and research, the �ndings of this

work will elevate all the data-driven �elds. That is to say, and even more pre-

cisely, this work will bring about a revolution in data science. This work will

bene�t, for sure, Industry, Science, and the Web, and also other data ana-

lytics �elds, including content recognition, text generation, question-answering

systems, content clustering, to name some. The real impact of Big Data will

emerge with this study.

Said all, however, this dissertation has some limitations. First of all, this work is

a proposal rather than a full sketch of the architecture of Ontology 4.0. Conse-

quently, implementation of it can have unpredictable impediments. The reason

for this is the lack of experience in applied category theory. To make a possible

limitation more concrete, tropes and their compositions may be represented as

toposes with some extra features that are particular to the urtrope theory, or

another constructor can be found to represent urtropes that are speci�c to the

urtrope theory, or there can be other constructions that can represent tropes as

typed categories.

1.4.0.1 The Structural Outline

Chapter 1 has introduced the content of this dissertation.11 It provided the

background of the work by de�ning data, Big Data, and data science. It in-

troduced the three most important �elds that shape human history: industry,

11 The structure of this work was planned to construct a picture of industry, science, the Web, data,
and ontology about their gradual developments, changes, or kinds since the work is in the intersec-
tion of research areas of philosophy, mathematics, computer science, data science, and information
systems. However, the construction was changed due to the need to lead in the thesis immediately.
So, we recommend reading the �rst two appendices that have an introductory role. Moreover, the
ones who are not familiar with applied ontologies are strongly encouraged to read section Ontology
before Chapter 2.
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science, and the Web. Then, it discussed the failure of the expected impact of

Big Data in these �elds and explained that a revolution through Big Data and

related technologies could be achieved by �nding a solution structuring data in

the wild.

Chapter 2 will examine the e�ects of Big Data on the transformation of ISW

through the di�erence between the current situations and the situations in which

ISW pretend to be. That the machine being autonomous will create a real

revolution will be argued. Moreover, it will be shown that it will be possible

for the machine to be autonomous with the modi�cations to be made in the

data structure. In this respect, it will also examine the existing data structures

in classi�cation and search for the type of data in which the meaning will be

processed.

In Chapter 3, how the machine-understandable data should be represented will

be examined within philosophy. The �ndings will investigate how the created

data representations will be implemented on the machine and how they will be

processed. A philosophical foundation for a machine ontology, viz., the urtrope

theory, will be introduced in this chapter.

Chapter 4 will introduce category theory, a tool to formalize the urtrope the-

ory, and then give general information about it. This chapter will also assert

how to represent ontological categories in the urtrope theory in the category

theoretical parlance. Lastly, Chapter 5 will summarize the essential compo-

nents of this dissertation. Based on these components and the analyses on

machine-understandability thereof, the features of Ontology 4.0, the gist of the

dissertation, will be particularized to rectify the alleged revolution of Big Data

in ISW.
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CHAPTER 2

AUTONOMY AND DATA

Chapter Introduction brie�y challenged the impact of Big Data on Industry,

Science, and Web. This chapter addresses these challenges by �nding out where

they are actually about to reach under the spell of the transformative e�ect

of Big Data. The di�erence between their current situation and the situation

they pretend to be will be examined. Moreover, what features the machine

should have so that ISW can �nally reach the state they want to achieve will be

investigated. Then, the focus will be shifted toward data whose nature will be

examined.

2.1 Previous Versions of Industry, Science, and Web

This work attempts to divide Industry, Science, and Web into phases from the

machine and/or data involvement, generation, and/or usage perspectives. These

features cannot be taken rigid; rather, they help illustrate the current and future

positions of these �elds from the aims and boundaries of this work.1 Indeed,

there is a chronological aspect of phases, yet a new phase may not annul the

previous one(s). Said that, Appendix From 1.0 to 3.0: Industry, Science, Web

gives a complete picture of previous versions of Industry, Science, and Web. This

section summarizes it as to prelude to the fourth versions of ISW.

1 At this juncture, we declare that we are not directly committing to philosophy or history of science,
industry, or the Web; rather, we provide a picture that includes all the essential notions of the
purpose of this work.
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In general terms, industry is about providing services or producing goods for

sale. In this respect, the beginning of industry dates back to the story of civi-

lized humankind. On the other hand, the machine-involvement in industry and

the punched cards, as encoded data, in the earliest textile machines revolu-

tionized the industry. Known as the Industry Revolution, this is Industry 1.0.

The emergence of mechanization in Industry 1.0 led to factory systems where

electrical power was utilized, and new machines were invented. So, introducing

the assembly line that called forth mass production initiated Industry 2.0. The

third period is called the Digital or Computer Revolution, which started with

the advent of computers. The new roles and the characteristics of data and the

machine led to automation in factories.

Science is one of the highest human enterprises that shape the world. Dividing

the history of science into some phases or periods can vary from scienti�c and/or

philosophical points of view or di�erent approaches. Here, we are dealing with

the history of science from machine-involvement in the scienti�c knowledge pro-

duction approach. In this respect, in Science 1.0, the then scientists were passive

observers and conducted their experiments in vivo, and they generated scien-

ti�c results by reasoning alone. The scientists in Science 2.0 conducted their

experiments in both vivo and vitro since this phase began with the inventions of

measurement tools and the experimental instruments that enabled unobservable

becoming visible and also increased the volume of collected data. The scientists

in Science 3.0, on the other hand, depend on the machine to carry out their

experiments. The advent of computers caused them to measure the parameters

in the experiments, process data, and contribute to data collection. Moreover,

computer simulations have enlarged the scope of scienti�c experiments to in

silico.

The story of the Web starts with a dream of Tim Berners-Lee. The dream was to

create a `space' where the scientists in CERN could share information, keep track

of projects, reach technical details of ex-projects, or �nd recorded information

stored in personal computers. Historically, Web 1.0 is the �rst kind of Web where

all webpages are static; then, the users can only reach the webpage and read the

contents created by only the professional content generators. As the idea of the
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Web necessitates social interaction, Web 2.0 emerged so that people-to-people

communication and dynamic data sharing have occurred. The web content has

started to be also generated by the users. However, the considerable increase in

the volume of web content entailed a work of organization of the content on the

Web. Web 3.0 is the phase of the Web where the machine can read the content

to analyze the data on the Web.

Industry, Science, and Web are the most important �elds, so a paradigm change

in them has the power to change the world. Should Big Data cause a paradigm

shift in these, they need to reach their upper version. Now, let us examine the

fourth phase of each �eld in turn.

2.2 Industry 4.0

The industrial revolutions have freed us from muscle and skill-intensive labor. In

Industry 1.0, using steam power to mechanize the production process, we were

freed from works that demanded muscle power; in Industry 2.0, making use of

electricity in factories, we have been freed from the knowledge and skill-intensive

labors; lastly, in Industry 3.0, robot technology has freed us from our physical

abilities.

The present-day technologies of the Internet, data analyses, Big Data, robotics,

and alike are freeing us by introducing truly and fully automation in the pro-

duction process. In some sense, such truly and fully automation can be taken as

autonomy, where the autonomous industry is information-intensive manufactur-

ing. Inevitably, increasing pro�ts, decreasing costs, improving customer expe-

rience, maintaining newly introduced raw materials, optimizing lifetime value,

and other market issues are held by the intensive assistance of autonomous ma-

chines. Now, we will investigate whether or not these developments have caused

a revolution in the industry. In other words, we will examine the kept-harping-

on-about-Industry 4.0.

Hermann, Pentek, and Otto (2016, p. 3928) point out that there has been no

clear de�nition for Industry 4.0 and that we still lack its detailed account as of
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2021. Nevertheless, we can still argue that there are two main camps de�ning

Industry 4.0 distinctly. The �rst camp does not take Industry 4.0 as a revolu-

tion but rather as a continuum of Industry 3.0 with developments in automation,

productivity optimization, and data exchange in manufacturing. According to

this camp, digitalization in manufacturing follows an entirely new way �that is

why it is not Industry 3.0 no more�, which has been realized by machine learning

algorithms, data analytics, and Big Data. Eventually, the ultimate product of

Industry 4.0 is smart factories supported by Industry 4.0 components, such as

the Internet of Things, cloud computing, and cyber-physical systems. The sec-

ond camp, on the other hand, considers Industry 4.0 as a future revolution with

autonomous factories and decentralized intelligence in manufacturing. Industry

3.0 to Industry 4.0 is a technological shift from embedded systems �centralized

production� to a web of cyber-physical systems �decentralized production that

handles all the processes from obtaining raw materials to meeting customer satis-

faction. Regarding decentralized intelligence, Industry 4.0 is �creating intelligent

object networking and independent process management, with the interaction of

the real and virtual worlds representing a crucial new aspect of the manufactur-

ing and production process� (GTAI, n.d.). Such intelligence paves the way for

autonomous decision-making in all aspects of marketing, namely in the design,

production, operation, and service of products. Consequently, according to this

camp, smart factories are a part of Industry 4.0, and Industry 4.0 can be named

Smart Industry.

In either case, Industry 4.0 is de�ned a priori, unlike other industry revolutions:

we have an agenda to bring about a revolution. In other words, we are trying

to reach the recommendations of implementations or standards of so-called In-

dustry 4.0. Although there are many components of Industry 4.0,2 within the

boundaries of this work, we only focus on the two principal components of it:

Cyber-Physical Systems (CPS) and the Internet of Things (IoT) (Cf. Kager-

mann, Helbig, Hellinger, & Wahlster, 2013, p. 5). So, we have to ponder on

2 For instance, Internet of Services, Internet of People, smart products, M2M (machine-to-machine),
cloud technologies, integration of information technologies, and operational technologies. Note that
these components can be used interchangeably or refer to each other with di�erent names.
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whether or not we have the technology of information driven cyber-physical en-

vironment.

2.2.1 Cyber-Physical Systems

Cyber-Physical Systems (CPS) are the �integrations of computation, networking,

and physical processes� (The Ptolemy Projects, n.d.). The twins, the physical

and computational systems, which embody CPS, work reciprocally. The phys-

ical systems refer to the devices/machines, and the cyber systems refer to the

computational models of these physical machines. The physical machines are

monitored and controlled by cyber machines, whereas the computations in the

cyber systems are a�ected by feedback loops of physical processes. In a par-

ticular CPS, the twins communicate in a closed system; on the other hand, a

combination of those twins creates a network and enables manufacturing systems

that communicate with each other. In that case, in the network of such devices,

cyber machines can make some decisions on the manufacturing processes; and,

further, make the physical ones execute in a dynamic schedule.

2.2.2 Internet of Things

The Internet is the backbone of Industry 4.0. The Internet of Things (IoT), the

second fundamental component of Industry 4.0, consists of electronic devices

connected to the Internet. These devices are embedded or attached technologies

to perceive, collect and then execute the data for particular operations. In other

words, an IoT device collects data to serve a particular purpose in a network of

devices. An example can be a health monitoring system, say a watch. Let it be

connected to another device, say a smartphone. The watch collects data from

a patient, and the collected data is sent to the program that analyses the data.

The graphics of the data collected can also be visualized on the smartphone.

In the case of an emergency, this program can call the emergency ambulance

service by giving the patient's current position while sending the analyzed data

to the medical doctor, and the results can alarm the emergency contacts. That

is not rocket science, after all we have plenty of such systems. In the Semantic
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Web project,3 Berners-Lee, Hendler, and Lassila (2001, p. 43) predicted that �It

is not hard to imagine your Web-enabled microwave oven consulting the frozen-

food manufacturer's Web site for optimal cooking parameters.� The microwave

can withdraw such data, and the instructions are translated into the microwave's

understanding. The machine `knows' how to cook whatever frozen food is chosen.

However, we could not have reached the Semantic Web yet, as we will see in

Web 4.0. That, of course, a�ects the realization of IoT to a degree. So, we must

�nd out IoT's semantic aspect in industry.

2.2.3 Smart Factories

Smart factories, although they are often said to be a component of Industry 4.0,

are the realization of Industry 4.0, which mainly depends on CPS and IoT. CPS

provide a network of communication between physical and cyber machines and

enable decentralized decisions. On the other hand, IoT provides a giant network

for various CPS and other physical and virtual devices. Thus, the machines4

can cooperate in real-time. As a consequence, smart factories indicate value

chain organizations,5 which means the very aim of Industry 4.0 is to create

value/advantages in the areas of design, production, marketing, transporting,

and service. In that case, Industry 4.0 needs to provide various personalized

production and servicing models by enabling and analyzing customer/consumer

interactions.

The most signi�cant paradigm shift from a centrally controlled industry to a

decentralized production and distribution industry can occur only when human-

machine communication, multi-agent level planning, decentralized decisions are

taken at concise notice, and data generated and transmitted across companies

are held on the Internet. Thus, we can deduce that realizing Industry 4.0 faces

3 See section From 1.0 to 3.0: Industry, Science, Web.
4 Once again, we speak of both physical and virtual. In CPS, there are physical machines that
communicate with their cyber twins, yet over the IoT, cyber machines of CPS can communicate, as
well as software can connect with cyber machines.

5 Cf. Porter (2011).
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the problems of Big Data that we spoke of several times. The data tra�c between

the collection of machines, either of CPS or IoT, must be manageable in terms

that machines can `understand' the signals from a machine, an error report from

software, human inquiries, customer demands, and other potential causes in the

�ow of manufacturing. The role of IoT is enabling a myriad of devices of CPS

and other machines �both virtual and physical� to be gathered in a network

that communicates with each other. If IoT is founded on exchanging data or

information transfer �and it is� then it is evident that structured data limit both

CPS and IoT; in other words, they cannot utilize Big Data. Consequently, we

need to �nd novel ways to use unstructured data, and the information-driven

industry will be in the future.

2.2.4 An illustration of Industry 4.0

Lastly, we would like to tell a story that can illustrate an experience of Industry

4.0. Once upon a time, in a dark factory, DT1, a robotic arm breaks down;

however, the signals have already alerted Machine-A, the machine responsible

for a product line, that that speci�c robotic arm was about to be defunct.

Machine-A decides that the work of the production line cannot be completed in

due time, then it sends a message stating that there would be one day delay to

Machine B in the distribution section. That Machine-B rearranges the logistics

schedule, and it sends a message saying that the autonomous trucks will take

the products from DT1 one day later. Meanwhile, Machine-A orders a new

robotic arm. Machine-C, in another dark factory, DT2, producing robotic arms,

receives the message and checks the reports from the warehouse. Machine-C

sends a message to the autonomous vehicle, α15616. The message tells that the

robotic arm, AA-411-1511-REA, would be picked and delivered to Section H1

in DT1. However, the reports from the warehouse suggest that the sales of AA-

411-1511-REA are increasing. Then, Machine-C urges both the machines and

the human designers and engineers responsible for the design and production

of AA-411-1511-REA. It asks them to discover why AA-411-1511-REA breaks

down so often and what should be done to make them more durable. For the

sake of saving time, we stop the story here.
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The script tells that the machine manages all the decisions in the supply-

production-distribution processes. In a nutshell, the machine conveys all the

mechanisms and management.

2.3 Science 4.0

Previously, we indicated a belief that the widespread use of Big Data and the

prowess of new technologies in data analyses have shifted science into its fourth

era. In this part, we want to survey further and ask whether or not Big Data

has revolutionized science at all.6

Computer-aided science and digital science, which are often used to name the

third phase of science, highlight the involvement of machines in scienti�c prac-

tices. Many labels have been used to describe the last phase of science: eScience,

data-driven science, and data-intensive science. These names stress the data del-

uge that has transformed science. Then, could we state that the data deluge

from a new science- viz., machine science- or do all of these labels refer to the

same kind of scienti�c practice? The answers to these questions will be addressed

later; now, we want to emphasize that machines' doing science is not a new con-

cept. Regarded as the �rst programmer, Ada Lovelace dreamt of machine-made

science centuries ago: Machine-science was an agenda among scientists, and sci-

enti�c reasoning done by the machine lies at the heart of it (Boden, 2016, pp.

7�8). Turing's seminal question of whether the machine can think subsumes

the potentiality of machine-science; any a�rmative answer to this question then

yields machine-made science. Although predating this question by �ve years,

Bush ([1945] 1979, p. 40) speculates the following.

[. . . ] we can enormously extend the record [data]; yet even in its present bulk we
can hardly consult it. This is a much larger matter than merely the extraction
of data for the purposes of scienti�c research; it involves the entire process by
which man pro�ts by his inheritance of acquired knowledge. The prime action
of use is selection, and here we are halting indeed. There may be millions of �ne
thoughts, and the account of the experience on which they are based, all encased

6 Some excerpts of this part is published in Yargan (2020a) with minor modi�cations.
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within stone walls of acceptable architectural form; but if the scholar can get at
only one a week by diligent search, his syntheses are not likely to keep up with
the current scene.

Bush mentions the extent of bulk of data and the process of selection to highlight

that the cumulative growth of data is inevitable and that he calls for something

capable of pursuing the selection process for scholars. That thing Bush had

imagined was a machine called Memex, a hypothetical device that allows users

to navigate between books, records, and communication. These data were to be

stored in the device by the user. It would be fair to state that Bush was worried

about the amount of data in the Memex, and so should we be, as well. From

Bush's vision of the Memex until today, we have faced the problem of accessing

the data we request, the reason being, as Bush mentions, is selection. Selection

requires understanding; otherwise, how can the relations be set between what

is in the Memex and what the user inquires? A simple inquiry could take years

if it were not for the machine that can conduct extensive searching. Today,

there are search engines, and the successful ones list the related data based

on the inquiry's keywords. However, even today, we have to click links to check

whether the link includes a genuine answer to the inquiry. Therefore, considering

the bulk of the data, a simple search process cannot help scientists �nd relevant

documents that they are looking for. A simple search in PubMed, a life sciences

database, requires its users to select, which is impossible unless the user is lucky

enough that the document they are looking for is on the �rst page. In a nutshell,

searching narrows the search space; however, it is not that signi�cant in a data

deluge. Amid vast volumes of data, even the selection of the required document

is hardly feasible. Therefore, we need to �nd ways to reach the document we

need without a diligent search. That means there should be an infrastructure in

the silos, where searches are conveyed through the knowledge in the document

rather than through the documents' metadata. That is another way of stating

the requirement that the machine is supposed to answer queries automatically.
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2.3.1 Statistics, Explanations, and Machine Learning

In the course of the data deluge, data scientists have been studying ways to

extract data that can be used for solving the problems at hand. Tools are

tailored for speci�c problem sets; for instance, for image recognition, there are

several models that are used, or for text mining, there are di�erent models

that can be employed. These tools, developed and employed by data scientists,

are mainly statistical or probabilistic models. Statistics is the discipline that

aims at �nding relations between data sets and hypotheses. The data sets are

codi�ed and structured empirical facts, and hypotheses are general statements

about the target system, where the statements are expressed by probability

distributions over the data (Romeijn, 2017). Probability, on the other hand,

studies the likelihood or chance of the occurrence of events in a quantitative

manner (Demey, Kooi, & Sack, 2019). In other words, probabilistic models

in science deal with uncertain situations. Statistics is more about the past,

the probability is more about the future, yet both are to assist the researchers

in explaining the scienti�c problems quantitatively. Thus, data scientists use

statistics and probability to build models to evaluate hypotheses in light of the

structured data. One caveat must be added: in science, explanation refers to

many models, such as the deductive-nomological model, the statistical relevance

model, and the causal mechanical model (Woodward, 2017). Some of these

use statistics and probability as valid explanation methods.7 These models are

cordially welcome in all phases of science. However, the mentioned methods

that deal with Big Data use statistics and probabilistic models as if they were

the only scienti�c method that should be used. The crucial di�erence between

the third and the alleged fourth phase is that science uses these models as a

part of the scienti�c process. On the other hand, the alleged models that deal

with Big Data use statistics and probability as the only explanatory method.

In other words, data analytics unveil the answers to all scienti�c questions in

7 Woodward (2017) mentions that in some explanation theories, causation is identi�ed with explana-
tion, viz., explanation is subsumed by causation (Cf. pp. 79�). We favor the idea that explanation
theories should embrace both causal and non-causal explanations. For instance, functions are counted
as explanations primarily used in biological sciences.
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Big Data (Cf. Anderson, 2008; Mayer-Schoenberger & Cukier, 2013). Pearl and

Mackenzie (2018, p. 13) argue that data by itself is �dumb,� and it can only

tell correlations and associations but can never tell us why; this is the reason

why we should dissuade ourselves from the charm of the so-called superhuman

discoveries of data analytics.8 Pigliucci (2009) defends the same idea abrasively,

where he attacks the notorious article of Anderson. When Anderson argues

that science su�ces the correlations employing the data deluge, says Pigliucci,

he commits an error that the very nature of science is not �nding patterns

but �nding explanations for those patterns. No matter how powerful machine

analytics are, or the cloud technology provides superfast analyses, any scienti�c

practice must contain the formulation and testing of hypotheses (Cf. Pearl &

Mackenzie, 2018, Chapter 10). Considering this, science must be accountable;

numbers say nothing about the nature of phenomena.

Another challenge for those who support that statistical and probabilistic mod-

els for science is satisfactory in Big Data's era comes from Marcus (2018). Given

its due in speech recognition, image recognition, and some other classi�cation

problems, Marcus challenges deep learning � the dei�ed model for every task,

a statistical technique that uses neural networks with multiple layers to classify

patterns- from several aspects. Firstly, deep learning cannot learn abstractions

through explicit, verbal de�nitions; moreover, it needs to crunch millions or

billions of data to provide satisfying works (p. 7). Furthermore, the patterns

that deep learning extracts are too shallow, and deep learning cannot deal with

the hierarchical structure of the language (p. 9). Besides, such models cannot

relate the background knowledge or open-ended inferences (pp. 10�12). Above

all, deep learning models are black boxes, and correlation-based makes them

unreliable tools at all (p. 11; p. 13). As of 2022, no deep learning model copes

with these aspects.

8 Pearl and Mackenzie (2018) o�er Bayesian networks as the mathematical foundation of causal
inference in science. On the other hand, Pearl admits that Bayesian networks cannot understand
causes and e�ects. Pearl's Causal Revolution model will not provide any causality model in Big Data
because it lacks semantic aspects.
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Now, let us discuss Marcus' objections against deep learning models within sci-

enti�c practice. If the machine cannot learn abstraction, then how can it serve as

an inference system? If we assume that the machine can learn abstractions when

there are millions of data, could we conclude that such a volume of data actually

exists? As Leonelli (2014) stresses, structured or usable data is too limited in

some �elds because data are organized di�erently in di�erent research, and data

curation is labor-intensive expansive work. For instance, Leonelli insists that

there is nothing like a data deluge in some branches of biology. As Kahneman

(2011, pp. 109�118) elucidates, deciding on the sample size is troublesome in

statistics, researchers may not be con�dent in deriving intuition or results from

their sample space. If this is the case, how can we decide how many petabytes

of structured data, if the data exist, are enough to be used in scienti�c studies?

Moreover, abstraction also demands determining hierarchical structures, which

is crucial in meaning extraction; otherwise, how can the machine establish com-

plex relations? Suppose deep learning algorithms can only determine the �aw

in relational structures. In that case, the recursive feature of the language can-

not be represented by deep learning algorithms, which leads to incorrect or no

inferences.

Additionally, reasoning mandates background information and open-ended in-

ferences. For instance, when we say that all humans are mortal and that Laura

is a scientist, we know that a scientist is a human, and therefore Laura is mortal.

This inference cannot be made by deep learning algorithms since if the scien-

tists' being human is not provided explicitly; even if it is provided, it cannot

make such an inference. One may say that deep learning is about classi�cation

and may even criticize us for speaking about deduction. This relevant claim

can be defended by the fact that deep learning cannot classify abstract concepts

(Cf. Marcus, 2018, p. 7), and that the non-hierarchical structure does not allow

property- and relation-transfers. In order for the machine to employ deduction,

algorithms should construct classi�cations, which in turn enables the subsump-

tion relation to function so that the child class can subsume attributes of the

parent class. That is to say, deep learning algorithms cannot classify but cluster
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concepts. Hence, the fabulous deep learning models can neither represent nor

generalize the rich structure of the world in a reliable manner.

Above all, one of the most critical aspects of doing science is communication,

and since deep learning models do not have a transparent nature, they cannot

give an account of results. For instance, scientists need to know how the machine

comes to such a solution in medical diagnoses. The machine must scrutinize the

verbal clari�cations of the studies and the results if they are to be part of a

science team in the era of Big Data. That is to say, the black-box feature of the

machine should be eliminated. Moreover, potential biases cannot be detected

in such opacity. All that said, an explanation cannot be endowed with deep

learning (Pearl & Mackenzie, 2018). Not providing representations of causality

puts deep learning in a dangerous position. Albeit their victorious results in

perception classi�cations, deep learning, and other statistical and probabilistic

models used in Big Data analyses cannot give rise to a shift in science.

Further analysis can be surveyed in statistics. Shmueli et al. (2010) states that

explanatory and predictive statistical models are the most commonly used mod-

eling in sciences for the purpose of theory building and testing/generating the-

ories. They are not used to reveal the truth behind the operationalization but

are used to assist researchers. Shmueli also stresses the fact that neither can

predictive models provide explanations nor do explanatory models predict. The

main point of the distinction between these models is due to their having di�er-

ent practical implications. Thereby, even in statistics, we cannot and should not

expect predictive models to shed light on statistical explanations; those are just

used for guiding researchers about the issue, so how come can we generalize the

results of predictive models as solid truths of reality? She also highlights that

notions of �explaining� and �predicting� have been under debate in the philos-

ophy of science for many years (pp. 292�293), at di�erent granularities; these

are to point out various aspects of phenomena, even in science. We often fall

into error in equalizing these two notions due to our perplexity on the notion

of theoretical prediction. A theoretical prediction is an assertion that is driven

by a causal theory. However, the whole story we are discussing so far is that

accurate predictions often cannot be produced from causal-explanatory models.
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To sum up, Jim Gray distinguishes computational science and data-intensive

science (Hey, Tansley, & Tolle, 2009, pp. xix�xx). The former refers to sci-

ence as conveying simulations of complex phenomena, which is the computa-

tional branch of science. In contrast, the latter is about scienti�c explorations,

where the data is captured and/or generated and then processed by the machine.

Namely, in computational science, the machine extends meaningful data for sci-

entists; in data-intensive science, the machine also contributes to data analysis.

Considering Gray's distinction on the subject matter, we could claim that the

machine has become a crucial part of scienti�c discovery, which is undoubtedly

revolutionary for scienti�c endeavors. We admit the fact that the transition

from, say, computational ecology to eco-informatics is a signi�cant shift, yet, on

the other hand, we do not give enough credit to the fact that �almost everything

about science is changing because of the impact of information technology� (p.

xxx). As Gray mentions that scientists must codify their data and �ndings for

information exchange with other scientists (p. xx), standardization of represen-

tation is a must. Indeed, Gray is aware that such standardization is cumbersome,

and working on semantics may take in�nite time (p. xxix). In this case, our

understanding is that if computational ecology is data-intensive and technolog-

ically advanced, it is de�ned as eco-informatics, which is considered within the

boundaries of data analytics. Unless semantically enriched standardization is

introduced into computational scienti�c practice, it would not be easy to con-

tend that a fourth paradigm is emerging in science. We admit that scientists

must develop more skills to deal with data; accordingly, they must use certain

speci�c software e�ciently. From a scienti�c perspective, such a requirement is

a crystal-clear change; however, we insist that doing science with the machine

has not dramatically transformed how we produce scienti�c knowledge.

2.3.2 Big Data and Machine Science

Current improvement in the technology of experimentation and measurement

yields a vast amount of data, which is often called the data deluge. Researchers

are looking for new methodologies to digest such a vast amount of data in order

to o�er a novel framework for doing science. This framework is called eScience, or
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data-driven science. It is undeniable that this data deluge forms the future of all

sciences, and accordingly, scientists must acquire new data analytical skills. On

the other hand, the enhancements in computational power and algorithms and

the data, which have never been that immense, are just improvements in From

1.0 to 3.0: Industry, Science, Web. Two caveats were mentioned in this part:

Firstly, neither arti�cial neural networks nor Bayesian inference nor machine

learning algorithms, namely, no data analytics tools, can give an account of their

results. Explanation in science is vital: No explanation translates to no scienti�c

claim. It is only when the machine can answer the question �why?� can we trust

their results as scienti�c discoveries. As we have stressed, statistical models are

used in science to help researchers develop their theories. If we aim at creating

the machine that provides recommendations to researchers �humans who cannot

read all documents both directly and indirectly related to the research at hand�

then the machine could understand the content provided by the researchers.

That will only be possible when scienti�c Big Data has incorporated semantic

aspects in its analysis methods. That brings us to the second part: We need

to deal with Big Data semantically. Although computer simulations and data

from devices provide structured data, and so many taxonomies and ontologies

are used in speci�c areas of science, structuring scienti�c Big Data is a tall order.

Semantic work done so far is labor-intensive. It is hard to �nd scienti�c stan-

dardization since researchers are free to conceptualize their works. Semantic

standardization is often done by constructing ontologies. When each laboratory

or branch of science has its own ontology, then there must be other ontologies

to bridge together two di�erent ontologies representing the same domain and,

in turn, another to bridge a related ontology. Whether it is ad in�nitum or not,

data curation in Big Data is hardly possible. If the machine were to provide rec-

ommendations to researchers, how can they relate scienti�c documents? There

are millions of published papers in science, and it is impossible for us humans

to read and analyze them. We have to �nd ways to make use of data in dark-

ness. Unless we �nd ways to standardize data, Big Data will never be able to

revolutionize science. In order for this to happen, the machine must be capable

of data curation; it must automatically be able to represent unstructured data
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in a structured manner. In addition, the machine must be able to cope with

open-world systems since computer simulations, experiments, and scienti�c doc-

uments re�ect one aspect of science. It would be an open system when all of

these are brought together. Only when we can �nally achieve these points will

we actualize the dream of Ada Lovelace: Machine Science.

2.4 Web 4.0

Berners-Lee et al. (2001) portray the Semantic Web as the technology that can

manipulate the contents on the Web meaningfully and automatically. Accord-

ingly, it is possible by the machine's accessing the structured collections of data

and sets of inference rules; this way, automated reasoning can occur by applying

data to rules. Consequently, the machine could read the contents on the Web,

make relevance and cluster the pages, and then execute its intelligence on mak-

ing inquiries and generating contents. On the other hand, as Boden (2016) lays

bare the fact that the Semantic Web is a tall order, let alone being state of the

art. In this part, we discuss the current status of the Web, the search-inquiry

dichotomy in the Web and the notion of content classi�cation and generation,

and the limitations that encumber with the Semantic Web. Finally, we will

speak of the future of the Web as Web 4.0.

2.4.1 Big Data and the Web

The biggest e�ect of Big Data is on the Web. Daily-created data on the Web

exceeds petabytes: Per day, billions of photographs and videos are uploaded;

billions of comments are posted; millions of webpages are created or updated;

thousands of documents are uploaded. Search engines help to �nd the related

webpages based on the keywords in the inquiry. The results, on the other hand,

may be millions of pages! As of July 18th, 2019, our Google search on the mean-

ing of life resulted in about 1,360,000,000 pages and took just 0.67 seconds. Such

a huge number of pages can be listed in less than a second; alas, a lifetime is

insu�cient to read even a quarter of these pages. On the other hand, search
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engines of the day are skillful: Based on our previous web searches and webpage

visits, they can map our areas of interest, and then they provide a prioritized

and personalized list with respect to our traces. Suppose that one often searches

about Douglas Adams and then decides to search for the meaning of life. On

the �rst page, contents about the number 42 and The Hitchhiker's Guide to

the Galaxy inevitably occur. Let us consider the same issue from a specialized

website. On the PhilPapers,9 a comprehensive index and bibliography of philo-

sophical works, we searched �formal ontology + computation� as of July 18th,

2019; there were four results, which refer to books or articles. The keywords

in this search are �formal,� �ontology,� and �computation�; the results contained

these words either in the title, in the main text, or in the title of the journal.

Although what we asked was the pages containing �formal ontology� and �com-

putation,� there was a result containing �formal computation .� The results were

then just listed upon the case that the documents included the keywords. This

was not what we were looking for; there should have been at least a link di-

recting content that discusses both formal ontology and computation, or there

should be a remark that there was no such book, article, or journal. The links to

books, articles, journals, and blogs are categorized in PhilPapers. Such catego-

rization makes the searches manageable; nevertheless, it was not the content but

the titles were categorized, yet we want to do searches about the content. For

this reason, it is incorrect to introduce it as a database. In a genuine database,

on the other hand, data are ordered and labeled, upon which we can inquire.

For instance, bank account reports are ordered and labeled: when transactions

occurred, how much money was sent on a speci�c day, and when the money

was withdrawn can quickly be answered. On the other hand, when the report

was written as a text, then the machine cannot answer those questions unless

the whole story is structured as in Web 3.0. The amount of data is increasing

with accelerated velocity and immense variety, which is hard to categorize, if

not impossible. That means search engines are doomed to list millions of pages.

At the bottom, categorizing, labeling, and ordering the content is not unique to

9 https://philpapers.org
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the Web in the era of Big Data. The data deluge reminds us that structuring

the data in the Web is the �rst issue we need to deal with.

The grueling impact of Big Data on the Web explicitly manifests itself when

summary, insight, and analysis of thousands of webpages have become crucial

in areas such as economy, politics, or markets, which need to be analyzed al-

most in real-time. Investors, for instance, follow Bloomberg,10 which is a news

agency aiming to provide business-related news, including real-time and his-

torical price data, �nancials data, trading news, research, and expert reports.

The real merit of Bloomberg, however, is the Bloomberg Terminal (BT), or

Bloomberg Professional Service, which is software that provides real-time data

on markets; breaking news from various categories, which a�ect the market

-politics, currencies, or bonds to name some-; data analytics, and execution ca-

pabilities all-in-one. Financial professionals can track and analyze the relevant

breaking news that is accessible and reliable. Moreover, the news professionals

deliver their analyses on the news and can suggest the best possible decisions.

All these make Bloomberg a trusted source for �nance experts. Besides its Ter-

minal, Bloomberg embraces a television channel that broadcasts 24-hour global

business and �nancial news; a radio that broadcast news and talks; a webpage

that hosts articles, videos, and numbers; and social media accounts. It is not

only the data created outside Bloomberg but also the data Bloomberg has cre-

ated matters. What actually Bloomberg does is send the related documents to

BT users and leave the real analyses to be taken by the users. The end-users are

�nancial professionals who are the ones to take steps after the data provided by

BT. Therefore, it is legitimate to say that BT does not make the data analyses;

rather, it �lters the texts, videos, and transcripts and then sends the relevant

ones to the correspondents. In the data deluge, how can an expert read all those

texts, watch the related up-to-the-minute news, and act accordingly? Finance,

above the most, is an activity that requires an up-to-the-minute move, which

means instant analyses and interpretations are vital.

10 https://www.bloomberg.com
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2.4.2 An Alleged Solution: Deep Learning

Now, let us investigate a popular tool that is believed to cluster web contents

and summarise them. In May 2020, OpenAI,11 an AI research and deployment

company,12 announced the largest language model ever created. Called Gener-

ative Pre-trained Transformer 3 (GPT-3), the model has triumphed over many

NLP tasks, and benchmarks (Brown et al., 2020). GPT-3 can be applied for

all NLP tasks with few-shot demonstrations speci�ed via text interaction be-

tween the model-user and the model. This autoregressive language model with

175 billion parameters13 has gained remarkable accomplishments in translation,

generating computer codes, question-answering, mimicking literary styles, using

a novel word in a sentence, or generating news articles that human evaluators

had a hard time identifying them (Brown et al., 2020). The novelty of GPT-3

lies in that the model is fed raw data, then it generates structures based on

the raw data and with few-shot demonstrations. For instance, one can give

two words with their Turkish equivalences, such as �hope � umut� and �love �

sevgi.�14 When the user writes �joy� on the console, GPT-3 acts like a translator

and returns �ne³e.�15 Or when it is fed scienti�c data, it generates text scienti�c-

like response. Can such a powerful tool be Web 4.0? Maybe not GPT-3, but

GPT-n, where n > 6, will be a query engine over the Web. GPT-n will be able

to generate a screenplay of �nce Memed in Tarantino's directing style. That is

to say, the future of the Web hinges on deep learning-based language models

with gazillions of parameters. Nevertheless, we doubt it.16

Deep-learning-based language models cannot pave the way for Web 4.0 for two

11 https://openai.com
12 The company aims that arti�cial general intelligence bene�ts all of humanity by building safe and
bene�cial machine intelligence.

13 That is a lot.
14 This is a two-shot demonstration.
15 For a variety of examples, visit https://gpt3examples.com
16 In the scope of this work, we will only mention Web 4.0-related issues. For social concerns of
GPT-3, see Brown et al. (2020), pp. 34�39.
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main reasons. Firstly, the impressive achievements of deep learning amount

to curve �tting. That is, the deep learning algorithms produce almost-exact

parameters that suit the data best, which is nothing but identifying associations

between the nodes in the neural network. For instance, deep-learning language

models cause disaster when reasoning by association is replaced with causal

reasoning. The syntax they perform is unquestionably �uent, yet relating the

words to real life, namely providing a degree of semantics, is out of the question.

That is not a reliable representation of reality. As the manipulated data lack

comprehension, such models cannot make for trustworthy Web 4.0. Therefore,

they are unreliable interpreters of reality (Marcus & Davis, 2020).

Secondly, we cannot back up interpretations of the models. Speci�c to GPT-3,

the model seems to produce new contexts, summarize, and answer questions in-

geniously by manipulating heterogeneous unstructured petabytes of data. Nev-

ertheless, the Web is full of various contents with intolerable contradictions.

Deep-learning-based language models do not learn about reality; instead, they

learn about how content producers use words in relation to other words (Marcus

& Davis, 2020). Since such language models are grounded in frequencies of sets

of strings in the texts on the Web, outnumbered misleading statements can be

taken as the truth of the world. For instance, drinking disinfectants to treat

COVID-19 disease can be ordered by a deep-learning-based language model;

moreover, the con�dence of the recommendation increases when an authority

utters it.17 Although Brown et al. (2020, p. 34) utter lamely that decisions

of GPT-3 are not interpretable, any language model based on deep learning is

a black box. We cannot know how the conclusions are derived from a system

where meaning is distributed.18

17 See Trump's suggestion of using disinfectants against coronavirus https://www.youtube
.com/watch?v=HKCe8Pq_RUA, and its news on The Guardian: https://www.theguardian.com/us-
news/2020/apr/24/trump-disinfectant-bleach-coronavirus-claims-reaction.

18 Bender and Koller (2020) acknowledge that deep-learning-based language models can capture
semantic similarity but stress that semantic similarity cannot lead to the actual meaning. They
show that meaning cannot be learned from a form of language alone. The defenders of the neural
network architectures, however, insist that the machine can explain what led to the conclusion.
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2.4.3 An Automation of Classi�cation of Webpages

The main puzzlement in Web 4.0 concerning the machine's answering inquiries

and generating content is that most of the content on the Web is unstructured,

which is discussed at length in the appendix section From 1.0 to 3.0: Indus-

try, Science, Web. That is not only crucial for Web 4.0 but also for Industry

4.0 and Science 4.0 since data related to these �elds are also embedded in the

Web. Thus, the Web must behave just like an online agency. According to

the market, an agency's webpage categorizes its products and services, among

which one can make a choice. For instance, consider that one plans a vacation.

There are thousands of locations and millions of commercial lodgings. A success-

ful travel agency's webpage categorizes types of tourism (ecotourism, cultural

tourism, wildlife tourism, and alike), destinations (continents, counties, cities,

sites, and alike), commercial lodgings (hotels, B&Bs, condos, and alike), and

other categories. So, the person who wants to travel only looks at the results

narrowed down, afterward books the most appropriate one that �ts their pref-

erences. Thus, Web 4.0 must be capable of classifying all the available content

on the Web according to the queries. That is Web 4.0 structures the contents

according to the context of each query. For instance, �meaning of life� is a query

in Web 4.0. The machine reaches all the related web sources and classi�es them

so the user can choose the most convenient category. The automated classi�ca-

tion of the webpages narrows down the search space for the user. For instance, a

query page can o�er the following classi�cations: de�nition of life, the meaning

of life in philosophy, meaning of life in religion, meaning of life in philosophy,

meaning of life in biology, the meaning of life in philosophy, meaning of life in

psychology, �meaning of life� as an artifact. When �meaning of life in religion�

is chosen, then the machine can even narrow down the search space and of-

fers some subcategories: Creator-centered; nature-centered, individual-centered,

Zeitgeist-centered, and so on. Then, the user can click on the subcategories and

see the �to the point� webpages. Hence, Web 4.0 enables classi�cations that

narrow down the search space and customize the query so that users do not

need to skim all the pages.
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Let us give a vivid example. Suppose that one wants to learn that Ankara

is bigger than what. The machine categorizes all the webpages that include

information about the size of Ankara. Then, it can prepare a list that contains

some categories and their subcategories and the answers, such in Table 2.1, where

the counties in Europe whose population is lesser than Ankara are listed.19

Table 2.1: An example of Web 4.0 categorization of a query

Ankara is bigger than ...
landscape (cities) Europe ∥ Asia ∥ South America ∥ ...
landscape (countries) Europe ∥ Asia ∥ South America ∥ ...
population (cities) Europe ∥ Asia ∥ South America ∥ ...
population (countries) Europe ∥ Asia ∥ South America ∥ ...

Finland
Slovakia
Norway
Ireland
Croatia
Moldova
...
Holy See

...
...

To conclude, ontologies, as Berners-Lee et al. (2001) o�er as an integrated tech-

nology for coping with semantic issues, are not capable of hosting unstructured

entities. The future of the Web, or Web 4.0, is the Web as a giant database that

delivers trustworthy content. The machine, then, is supposed to read all the

related sources, interpret them, and classify them according to the search. The

next feature of Web 4.0 can be answering queries, as well. Such a trademark of

Web 4.0 will generate content based on a query, not based on a search. A query

process requires logical entailment, and so as a content generation. There may

be confusion with content or article generator tools, which create unique texts

from the existing content on the Web. A user provides some keywords, then as-

signs the text type -such as article, essay, comment, posts, research paper, blog

content, website content-, and the article settings -number of paragraphs, sen-

tences, and words-, and may choose the possible sources. Such software creates

19 The information is taken from http://www.ankara.gov.tr and https://www.worldometers.info,
on February 14, 2022.
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new content by rewriting, shu�ing, paraphrasing, and exchanging synonyms

from existing sources.20 The alleged genuine content may vary from Twitter

posts to a full-�edged article at length. However, Web 4.0 must be able to clus-

ter the existing contents in the webpages �rst, and then context generation on

the clustered webpages can be done.

2.5 Teleological Convergence

Since the conceptual construction of Calculus Ratiocinator, machines have been

developed to take over the intellectual activities of humans, such as solving com-

plex algebraic problems, recognizing patterns, and answering queries. To employ

new intellectual tasks to machines, we need to detect the common requisitions

to realize 4.0 versions of Industry, Science, and Web.

A recap of the previous parts is the following. The future of Industry requires

autonomous factories, in which the machine automatizes each stage of good

productions. For this to happen, there needs to be interoperability in human-

machine communication and decentralized intelligence in information-intensive

manufacturing. In other words, the machine does operate in an open system

as an autonomous agent. In Science 4.0, the machine will be both knowledge

sources and agents determining the produced knowledge's status. The future of

Science demands that the machine contributes to scienti�c knowledge production

by making recommendations to scientists, answering queries, and explaining the

patterns as an autonomous workfellow. The future of the Web, on the other

hand, presupposes the machine to become content managers and producers.

As the former, the machine will answer the natural language queries in any

subject; as the latter, the machine will generate content for a task from the

Web's voluminous information. However, the task prerequisite is the machine's

ability to classify the webpages for a given search/query. To wit, the Web will

be a giant knowledgebase upon which the machine will classify the webpages,

20 The ethical and commercial issues about these tools are not in the scope of this work.

51



and then make inferences and generate content for a given topic. Accordingly,

we can conclude that the machine is assigned a new role in all the 4.0 versions

of ISW: an actual agent.

The machine is an `agent' in the sense of machine intelligence: an autonomous

entity that acts purposefully to achieve a task in a context or, say, in an envi-

ronment. They are `actual' or `active' in terms of their involvement: Without

them, the mentioned tasks can never be achieved. Therefore, the realization of

4.0 versions of ISW is stipulated in an autonomous explanatory machine: the

machine that makes decisions, generates contents, makes recommendations and

provides reasons for their judgments under uncertainty due to incompleteness

and/or incorrectness of the representation of reality. Hence, we need to �gure

out the requirements that meet the requisition of the machine's becoming an

active agent.

Present-day machine is far from being an agent. They are just expert sys-

tems constructed with structured data of a speci�c domain for a particular

task and/or statistical models using structured and/or unstructured data. Deci-

sions/recommendations of the machine are valid only in the domain represented

or trained for the machine. That is, the produced results can be inapplica-

ble to another domain, and/or the representations can be insu�cient for the

other. However, all the 4.0 versions of ISW require that the machine makes

decisions21/recommendations from Big Data, which is not limited to a speci�c

domain. Put di�erently, the machine's new role empowers them in processing

Big Data, which embodies decentralized structures in open-world aspects. In

this direction, the �rst requirement for the machine's becoming an autonomous

decision-maker is the machine's operating in the open world, which refers to

the incomplete real-world representations that contain implicit knowledge. For

instance, a scienti�c paper produced by a laboratory re�ects the close-world of

that laboratory; on the other hand, a collection of scienti�c papers re�ects an

aggregation of those close-worlds that can legitimately be considered an open-

21 We are taking content generation as decision-making because the content is produced upon some
purposeful selections and arranged to answer a speci�c question or query.

52



world, to which we can make complex queries. Being directly related to the �rst

requirement, the second requirement is that the machine as an agent can cope

with the complex dynamic environment consisting of various contexts. That

means the new role of the machine strives for a decentralized system. In cen-

tralized systems, as in expert systems, a speci�c environment is represented; to

use the same environment for a di�erent task, another representation is usually

required. However, if there will be ISW 4.0s, machines in the smart factories

have to derive decisions from various environments; the machine has to gener-

ate context from the di�erently tagged documents on the Web;22 the machine

has to communicate automatically between various scienti�c works of di�erent

aims. Hence, if the machine should be an autonomous open-world reasoner and,

of course, explainer, the representations that the machine manipulates must

be in a decentralized system. A prompt objection may be on the way: if the

very nature of the Big Data is unstructured, then how come can an automated

system make decisions and recommendations, provide explanations, or gener-

ate content with unstructured data with which we cannot build a knowledge

processing system?

2.6 The Role of Data

As mentioned above, machine-learning systems cannot create a learning ma-

chine: pattern learning is not the same as scienti�c discovery. Nor can statis-

tical models explain the results: the machine cannot state the reasons for their

conclusion systematically.23 Then, machine-learning models cannot be taken as

active agents. Moreover, as highlighted several times, structuring Big Data is a

tall order, if not impossible. These methods are incapable of integrating data

from various sources, learning and operating in batch and real-time, and being

accountable for the generated results. In a nutshell, an active agent must have

the ability to learn and adapt as it makes decisions, suggests recommendations,

22 A fundamental feature of Web 3.0 is the content generators' ability to tag the entities as they like.
23 Once again, explanatory models are not designed to predict the results, and no model combines
both. See section Science 4.0.
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provides explanations, and creates content. Such an autonomous being then

must understand its wild environment, which is Big Data.

Data is a concept encountered in every �eld and is not that di�cult to de�ne

since data is a representation no matter what. In its simplest terms, a repre-

sentation is a kind of notation standing on behalf of an entity in a particular

way. Phenomena represented in the machine is possible through data�cation, a

process through which the machine can manipulate and/or analyze whatever is

recorded as a representation. Data�cation, in other words, is �depicturing� the

world into the machine. To what extent are we successful at providing these

depictions that empower the prowess of machine intelligence; accordingly, to

what extent can we represent knowledge indicating the prowess of the machine's

knowledge processing? In this respect, we claim that the focus should be on

data; otherwise, we had already had some glimpses of the realization of any of

ISW 4.0 versions. Because today's biggest problem is solving how unstructured

data can be processed together with its meaning. Data, tamed in all distinct

stages in ISW, is in the wild now: none of the previously-used representations

of reality can be employed in 4.0-versions, nor can we speak of the machine

operating statistical models to understand data. So, if we want to represent

knowledge in ISW 4.0, then we need to datafy the semantic components of an

entity, if there are any, even in the wild nature of Big Data.

The following section will investigate the nature of data and discover an appro-

priate path leading to machine understandability. To this end, it will cover how

data is de�ned in the literature and then de�ne data from a new perspective,

which sustains machine-understandability.

2.7 De�nitions of Data

The �rst de�nition of data is from Acko� (1989, p. 3): �Data are symbols

that represent the properties of objects and events.� Objects and events can

be symbolized in various sorts; characters, numbers, audio and visual signals,

images, and alike. Although this de�nition is prevalent among information sci-
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entists, the desired de�nition of data must be machine-oriented.24 Then, we can

consult Claude Shannon, a prominent information theorist. He de�nes data in

terms of entropy as patterns of physical symbols/signs. According to this quan-

titative approach, the semantic aspect is irrelevant (Shannon, 1948, p. 379).

Unfortunately, we believe that there must be the requirement of representa-

tions of semantic aspects of data for knowledge to be processed. Of several

de�nitions of data, most of the time, it is de�ned in terms of information as

being units/morsels/pieces of information (Cf. Gitelman, 2013). This approach

is problematic since labeling something as data or information depends on the

perspective.25 Further, in his work on the foundations of data modeling, George

H. Mealy (1967, p. 525) distinguishes three distinct realms in the �eld of data

processing: the real world itself, ideas about it existing in the minds of men,

and symbols on paper or some other storage medium. Data can be de�ned as

fragments of a theory of the real world, and data processing juggles represen-

tations of these fragments of theory. This de�nition is close to what we are

looking for, yet the semantic aspect of data is not emphasized. At this point,

Frické (2015, p. 652) succors by introducing data with a semantic value and in

a machine-oriented way.

Data is anything recordable in a relational database in a semantically and prag-
matically sound way. The semantics require that the recordings be understood
as true or false statements. The pragmatics suggest that we favor recording what
seem to be concrete facts (i.e., singular and relatively weak statements) and that
interpreted recordings be true statements. [Emphasis added.]

This de�nition, however, is a de�nition of structured data. Similarly, Mayer-

Schoenberger and Cukier (2013, p. 78) de�ne data�cation in terms of structured

data: �To datafy a phenomenon is to put it in a quanti�ed format so it can be

tabulated and analysed� [Emphasis added]. Accordingly, data is a description of

something that is �recorded, analysed, and reorganized� (ibid). As we stressed

24 Hence, we ruled out any non-machine-oriented de�nition of data. In addition, we �nd the data-
information-knowledge-wisdom (DIKW) pyramid misleading.

25 The main di�erence between data and information is that the former is self-standing, whereas the
latter requires the former for its existence. Consider a timetable. When we use it for extracting
speci�c information, the timetable is data. Because the table is full of texts and numbers gathered
some facts based on records about something. On the other hand, it can be information since it is
re�ned data based on analyses and is used for making judgments on facts.
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above several times, to grapple with Big Data issues, the crucial challenge is to

cope with unstructured data, to which the limitations of Science 4.0, Industry

4.0, and Web 4.0 boil down. On the other hand, this de�nition can encapsulate

the unstructured data as well, one may say. Indeed, we can tabulate unstruc-

tured data with analytical tools; yet these tools cannot operate on semantic

aspects of data�ed entities.

For our purposes, data must have processable semantic properties. In light of

this, data can be de�ned as computable semantic parts of the representations

of entities. In this respect, it has two indispensable aspects: semantic and

computational.

Firstly, the semantic aspect of data denotes that data representation inherits

`knowledge' from the real world. In other words, data are represented with

semantic properties along with data values and data types. Secondly, the com-

putational aspect of data denotes that the machine processes data. However,

we are not mentioning a set of pixels, which is processed to constitute a picture

in the machine. Since machine understandability is our concern, the machine

should compute the semantic properties of data. We will revisit these two as-

pects in Data 4.0.

Having said all these, we de�ne data as follows.

De�nition 1 Data is the essential notion of representation in the machine.

An eagle-eyed reader may discern that there is no mentioned semantic notion

in the de�nition; however, what inherits semantic properties is the representa-

tions. All of the data neither be structured nor semantically laded nor in the

human-understandable fashion. Thus, our de�nition encapsulates all sorts of

data. In this respect, we claim that there are four categories of data. Data 1.0

is machine data, the most basic category, which refers to any data that is pro-

cessable in a machine. Data 2.0, the machine information, includes data that is

transferable between devices/machines. Data 3.0, machine knowledge, is a data

collection in machine-readable form. Lastly, Data 4.0, machine discovery, con-

sists of data with processable semantic properties. This category is the ultimate

56



representation of phenomena, which paves the way for 4.0 versions of ISW.

Note that the traditional Data-Information-Knowledge-Wisdom pyramid does

not apply here. According to this pyramid, there is a gradual construction from

data to wisdom. More precisely, the DIKW pyramid o�ers that the bottom of

the pyramid is data that is bare and/or random raw facts; the layer on the data

is information that is re�ned facts gained through understanding the relations

between data. Knowledge is the top layer of information that is an accumula-

tion of re�ned facts gained through understanding the patterns of information.

Wisdom, at the top of the pyramid, is the value of knowledge gained through

understanding the principles. This pyramid is not only intellectually anthro-

pocentric but also its layers necessarily depend on the bottom layers. On the

other hand, Data 1.0 refers sine qua non to all data; yet, for instance, Data 3.0 is

not an upgrade of Data 2.0. We have to ask what it is to be machine knowledge

rather than modify this pyramid for already existing machine processes. On the

other hand, we highlight four categories of data that can be labeled according

to their representational notions. Data 1.0 is called machine-processable data

since data is represented in a way that a machine can process it; Data 2.0 is

called machine-transferable data since data is represented for enabling machine

communication; Data 3.0 is also called machine-readable data, in which data is

represented with labels as in Web 3.0; Data 4.0 is called machine-understandable

data since data should be represented such that the machine can process seman-

tic properties. That is, Data 4.0 enables us to build a robust discovery system.

After this succinct de�nitional introduction of data categories, let us issue them

one by one.

2.8 Data 1.0

The most basic category of Data is Data 1.0, which refers tomachine-processable

data, viz., machines process the data in a de�nite way. More precisely,

De�nition 2 Machine Data: A formally structured collection of representations

appropriate for processing.
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In the early eighteenth century, paper types with punched holes were used to

control a loom in textile machines.26 Each line of the paper types is punched,

which means each hole represents digital data (as punched and not-punched)

as instructions for a machine to perform the desired pattern to be woven. This

automation of loom operation is often considered the �rst step in our digitalized

world.

Charles Babbage is famous for using punched cards for computational purposes,

and thus he is regarded as the pioneer of digital computational machines, viz.,

modern computers.27 Babbage adapted the punched cards mechanism to reach

his goal, a general-purpose machine, the Analytical Engine. In this machine,

which was realized after Babbage's death, the cards were used as input for rep-

resenting formulae, which specify the arithmetical operations that the machine

should perform; and as controlling iteration and conditional branching mecha-

nisms for executing the algorithm. Within the years, these digital computing ma-

chines became electro-mechanical (Randell, 2013). For instance, Zuse released

Z3 as the world's �rst general-purpose program-controlled machine (Copeland,

2017).28 Until the advent of electronic computers and then digital computers,

only arithmetical operations, statistical calculations, or complex mathematical

problems were represented to be processed by the computers at those times.

The brilliant ideas of Turing �the Turing Machine�, and von Neumann �the von

Neumann Architecture� gave rise to digital computers and then personal com-

puters.29 From then on, the number of processable data has excelled: we can

represent sounds, images, movements, texts, and others. Like in human cogni-

tion, in the machine, di�erent physical phenomena are represented in a di�erent

fashion: A music piece is represented in 0s and 1s di�erently from a text �le.

Like our specialized sense organs, special programs process di�erent kinds of

representations. As long as we develop e�ective tools to represent phenomena,

26 See section From 1.0 to 3.0: Industry, Science, Web.
27 However, Semen Korsakov used punched cards for computation and information storage for the
�rst time in 1832 (Shilov & Silantiev, 2016, p. 85).

28 Moreover, the scope of usage of these machines was increasing. These calculating devices were
utilized as totalisators, ballistic calculators, and cryptanalysis machines.

29 For more information about the historical background, see Copeland (2017) and Randell (2013).
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phenomena can be processable by the machine. Returning to the subject, data

represented in the punched cards in digital units are ancestors of Data 1.0.

To sum up, processable data is data that represents a phenomenon, and that

representation is executable by a machine in a particular way. Data processing

is a manipulation of data by a machine that can convert raw data to machine-

readable format (in the sense of syntactic operations), transferring data through

CPU and memory to output devices, and formatting or transforming output

(Encyclopædia Britannica, n.d.). In this sense, any input from input devices

(a �gure, a mouse click, a character typed in a word processing document), a

�le to be run (an MP3, a PDF document, a movie), a program, and even a

compiler is data (M. Davis, 2000). Having said that, in principle, any data that

is processable by a machine is in the scope of Data 1.0.

2.9 Data 2.0

Data 2.0 refers to machine-transferable data. The simplicity of this de�ni-

tion, however, may be misleading. `Data transferring' and `transferable data'

are used interchangeably, and both have several senses. Data stored in a storage

medium, e.g., a punched card, a �oppy disc, an external memory, or the cloud,

can be transmitted to a memory device, e.g., to another punched card or an

SSD card. Data that moves from one place to another without being executed

by a program is not in the Data 2.0 format. Neither is the reproduction of data:

For instance, burning a DVD, the data in that DVD being transferred to the

other one, is not in the realm of Data 2.0. Thus, copying data is not a process

of transferable data. Another consideration of Data 2.0 may be that inputs

are transferrable data. It is quite reasonable to think that the �rst telegrams

transmitted the data from a sender to a receiver. It must have been transferable

data that telegrams forward those processable data. However, it is trivial that

Data 1.0 and Data 2.0 would be the same things. Telegrams, cables, and signals

are all doing together, converting mechanical or electrical impulses into another

kind of impulse that the receiver can process. Hence, such conversions cannot

be regarded as machine-transferable data.
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The sender-message-receiver pattern approach, where the message is the in-

formation in a transferable format, can be used to understand the machine-

transferable data. In general terms, information is useful processed data (Acko�,

1989), yet the usefulness of the processed data for a machine hinges on the pro-

gram it runs. Shannonian approach to data can be recognized as the identi�er of

Data 2.0. According to Shannon, information is a sheer quantity, and how much

data is transmitted/transferred can be calculated. The intentions of these two

de�nitions di�er from ours, although we all want to de�ne information from a

machine perspective. Let us combine these two perspectives: Acko�'s informa-

tion needs to be processed, and Shannon's information needs to be transferred.

Acko�'s information is by itself data to be processed, viz., is a Data 1.0; Shan-

non's information is the quantity that remains after the transfer; that is, data

is not processed within the machine. If the fundamental aspects of information

are processable and transferable, machine information must be data that is both

processed and transferable.

The last paragraph echoes with Industry 4.0, alas, whose realization is not pos-

sible solely through Data 2.0. Information driven cyber-physical environment of

Industry 4.0 can be taken as a collection of dynamic networks. The dynamism

emerges due to the interrelatedness/interactions of the components of the envi-

ronment. In other words, it is more like an environment where the components

are in communication. Nevertheless, communication is nothing but a transfer of

information. At this point, we can refer to cybernetics, the science of commu-

nication �among other things, such as interrelatedness- in the machine.30 That

said, Data 2.0 is more than what Acko� and Shannon de�ned because their com-

prehension of information is linear: a sender sends data to a receiver. This linear

process is often illustrated in the input-process-output format. However, cyber-

netics advocates a connection between outputs and inputs. That is, a feedback

mechanism is one of the essential aspects of cybernetics. Consequently, to our

understanding, machine-transferable data is closer to understanding information

in cybernetics. So, we de�ne Data 2.0 based on the science of communication.

30 The term `cybernetics' was �rst coined by Norbert Wiener, who de�nes it as above.
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De�nition 3 Machine Information: A formally structured collection of repre-

sentations that �ow inter machines.

2.9.1 Data without Ontology

To take a concrete example, consider a device that records the heart rates of a

patient; each record is data. When these data are transferred to other devices,

say to an application, they are considered information on those devices. One

may argue against it and say that the data that the application is processing are

of Data 1.0. We would not object to this claim; nevertheless, such data has a

novel feature: communication. With this in mind, Data 1.0 is processable data,

yet Data 2.0 transferrable processed data. Still, a caveat may be necessary here.

Machine information needs not to be processed by other devices; rather, it could

be processed in the same device but by a di�erent program. Besides, remember

that when we call `machine,' it may refer to virtual machines or programs.

This interchangeable usage is widespread in Computer Science. For instance,

an intelligent machine needs not to be a robot; instead, it can be a software

program.

The machine information has the feature of being data-without-ontology; the

feature will be understood better in the following pages. Su�ce it to say that

the crucial aspect of Data 2.0 is being processable and transferable; there is no

speci�c room for the meaning of data used in machine communication.

2.10 Data 3.0

Reading can be de�ned with concepts like looking -as through which we get the

input data-, or understanding/grasping/discovering the meaning of the symbols.

The symbols can be letters, images, or sounds that refer to or designate some

meaning our reason can decipher. Let us take `reading' in the context of reading

a book. The letters come up to construct meaningful letter sets, which are words,

and the words come together to set a sentence to express meaningful judgment,

feeling, or a question. While reading, we make connections between the words
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and then between the sentences. Those connections end up with understand-

ing/grasping the meaning of the text as a whole. Reading is a complex cognitive

skill, however. Each day, we experience things as categorized phenomena, and

those categories have been connected from our birth, if not earlier. Namely, the

novel things inevitably are connected to the existing knowledge network.

When the machine is considered, reading is the machine's ability to connect the

labeled data. The Semantic Web is a web of data processed by the machine,

the data that have been tagged, categorized, and connected so that the machine

can `read' the data. So, Data 3.0, machine-readable data, is data that the

machine can read. More precisely,

De�nition 4 Machine Knowledge: A formally structured collection of repre-

sentations appropriate for linking together through their metadata.

2.10.1 Data with Ontology

Machine knowledge cannot be thought of without an ontology since the machine

can categorize and connect data upon tags in a meaningful way. Ontologies are

the tools that bring data to semantics. When machine-readable data is regarded

as processable a web of data of a domain, the semantics of the Web is guaranteed

by an appropriate ontology that serves as a backbone.

2.10.2 Machine Knowledge vs. Understanding

One may argue that the machine's ability to read data can result in understand-

ing since the Reasoning Layer in the Semantic Web Stack reveals the implicit

from the explicit, where the inference rules are applied only to structured data.

Understanding, on the other hand, is the ability to use data from di�erent do-

mains in order to make the implicit explicit. That means understanding is

the ability to reach and utilize the data with their all-possible meanings. At

the same time, there are two issues to consider. First, the nature of data is

mostly unstructured, and second, the machine cannot utilize unstructured data
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semantically. That is why we need to introduce a novel kind of data, which is

machine-understandable data.

2.11 Data 4.0

Data 4.0 refers tomachine-understandable data. Let us begin with a caveat.

A big mistake is that `machine-readable data' and `machine-understandable

data' are used interchangeably in the literature. As a wise saying, �Readers

are plentiful, thinkers are rare,� suggests that reading does not always lead to

understanding; thus, the machine should not be an exception. Such a mistake is

the opinion that machine understanding is possible by linking the tagged terms.

For instance, Tim Berners-Lee (2001, p. 185) de�nes machine-understandability

in the sense that building understanding enables to link `very many meanings.'

He continues that concepts are linked together by �frequent contributions from

independent sources� (ibid, p. 187). We have already explained that linking

concepts together is not enough to create a meaningful Web. Townsend et al.

(2004, p. 3294) speak of machine-understandable data as �highly structured

data with varying degrees of curation and annotation� whose characters are not

only read by the machine � otherwise, it would only be machine-readable data

� but also whose semantics allow autonomous actions. The alleged autonomous

actions suggested by Townsend et al. (2004) are the very automated features of

the Semantic Web, such as aligning sequences or �nding binding sites.31 To illus-

trate the confusion between machine-readability and machine-understandability,

we need to refer back to the Semantic Web technologies and Data 3.0. In doing

so, we can �gure out the distinctive features of machine-understandable data.

31 In the conclusion section, indeed, it is written that �[u]nstructured text is currently [in 2004]
impossible to analyze� (p. 3299). In 2022, we are barely getting closer to analyzing such texts.
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2.11.1 Things Before: Data with Ontology

Any data is represented in the machine with two fundamental components: data

value and data type.32 When we attain a variable, we name it, like �x,� and

then assign a value to it, �x = 3�.33 In order machine to understand which

operations can be applied on �3�, we need to specify its data type. There is

another component of data in the Semantic Web: a semantic property. Semantic

properties declare the meaning of data in the given context.

In linguistics, semantic properties or features34 are de�ned as the components of

meanings of words and sentences. For instance, �human� is a semantic property

of �student,� and �sense� is a semantic property of �feel.� So, semantic properties

help to de�ne the semantic �eld of a word or a set of words; that is, �the semantic

properties of words determine what other words they can be combined with�

(Fromkin, Rodman, & Hyams, 2018, p. 147). Let us illustrate the semantic

properties with a well-known example of Fromkin et al. (2018, p. 152): �The

assassin killed Thwacklehurst.� We know that assassin is a person who murders

someone important. A human held the killing action, and Thwacklehurst was

not an average citizen. Moreover, we can claim that the assassin performed

that act in exchange for money or due to a fanatical adherence. Thus, the

semantic �eld of �Thwacklehurst� includes �human,� �important person,� �dead,�

and �murdered.�

Fromkin et al. (2018, p. 152) state that �[t]he meaning of all nouns, verbs,

adjectives, and adverbs�the content words- and even some of the function words

such as with and over can at least partially be speci�ed by such properties.� For

instance, the semantic property �location� can be found in many verbs such as

�stay,� �dwell,� �live.� A distinction in meaning between the content and function

32 Data types declare a set of values and operations on these values. In other words, they express
elements of a collection, and at the same time, they de�ne a particular access pattern to these
elements.

33 We are not using a speci�c programming language for the sake of simplicity.
34 There is no consensus on the meaning of the term `semantic feature.' Cruse (2017, p. 239) notes
that `semantic features' are also known as semantic atoms, semantic components, and semantic
markers.
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words is made more delicate by introducing additional semantic properties. For

instance, �run� and �walk� share the same semantic property, �motion,� and �run�

is distinguished from �walk� by the semantic property �fast.�

In light of this, we explain how data get their semantic properties with respect

to layers of the Semantic Web Stack in the following.

<motion>walk</motion> This is an XML expression. In plain language, it states

that �motion� describes �walk.� Note that there may be other instances of motion

like <motion>squeeze</motion>.

<MyLibrary>
<book ID= �TR2�>
<title>Ermi³</title>
<author>Halil Cibran</author>
</book>
<book ID= �LAT1�>
<title>Epistulae Morales ad Lucilium</title >
<author>Seneca</author>
</book>
</MyLibrary>

This XML expression gives the structured data of one's library. The �rst item

in the library is labeled as �TR2�, whose title is �Ermi³,� and the author is

�Halil Cibran.� The titles of the books in this library are �Ermi³� and �Epistulae

Morales ad Lucilium.�

<xs:element name="MyLibrary">
<xs:complexType>
<xs:sequence>

<xs:element name="book_title" type="xs:string"/>
<xs:element name="author" type="xs:string"/>

</xs:sequence>
</xs:complexType>
</xs:element>

This XMLS expression says that <xs:element name="MyLibrary"> de�nes the

element called �MyLibrary". <xs:complexType> signi�es that the �MyLibrary�

element is a complex type, because it is a sequence of elements, which is denoted

65



by <xs:sequence>.

<xs:element name="book_title" type="xs:string"/> and

<xs:element name="author" type="xs:string"> indicate that the elements

�book title� and �author� have string data type.

Here we know that the data type �string� is a built-in simple data type from

XML Schema, abbreviated as xs.

<relations>
<author name= �Halil Cibran�>
<wrote>Ermi³</wrote>
</author>
</relations>

These lines express �Halil Cibran wrote Ermi³� with XML codes.

So far, we have seen how the data of our concern take value, data type, and

semantic properties. RDF, RDFS, and OWL are the primary representation

languages,35 and RDF is the foundation since their ultimate role is managing

distributed data. Recall also that URIs uniquely identify each resource on the

Web, and RDF determines triples in the order of subject, predicate, and object.

That means each resource is put in the appropriate position of the triple, and

the triples are connected to create a meaningful graph of resources. A graph

node can be merged with a node from another graph only when the two have

the same URI.36

<rdfs:label> Computational Ontology</rdfs:label> expresses that �com-

putational ontology� is a label, which is stated for human understandability.

The term �label� is taken from the rdfs namespace, where the label's properties

are de�ned.

geo:lat �39.925533� ^^xsd:float expresses that �39.925533� is of �oat data

type, and it stands for a latitude value. The properties of latitude are de�ned

under the namespace �geo,� where �latitude� is shortened as �lat.�

35 For details, see section From 1.0 to 3.0: Industry, Science, Web.
36 For the sake of simplicity, we are presenting neither URIs nor RDFS/OWL expressions.
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:hasChild owl:inverseOf :hasParent This means the relation �hasChild� is

an inverse relation of �hasParent.� In other words, the domain of one relationship

is the range of the other one.

academy:instructor rdf:type foaf:Person. This RFD triple says that

what is �instructor� in the namespace academy is of type �foaf: Person,� where

�foaf: Person� is an RDFS class de�ned under the namespace foaf (an acronym

of Friend of a Friend ontology).

instructor:Laura
rdf:type foaf:Person ;
rdfs:label �Laura Phaenerate�.

This RDF resource represents Laura, de�ned under the namespace instructor, is

the type of foaf:Person, and labeled as �Laura Phaenerate� for human readability.

:isBrotherOf rdfs:subPropertyOf :isSiblingOf This RDF triple states that

all the resources related by �isBrotherOf� are also related by �isSiblingOf.�

Further, consider the following XML expression:

<person><gender>female</gender></person>. Here, gender is a child ele-

ment of person. If parent elements were semantic properties, then �female� has

semantic properties �gender� and �person.� Besides, the same expression can be

written as

<person gender="female"> </person>. Here, �gender� is de�ned as an at-

tribute of a person, and �female� is the attribute value. In this case, we can say

that gender is an attribute of �person,� and �female� is a gender. However, there

are no de�nite rules about when to use elements instead of attributes in the

XML; thus, �both examples provide the same information� (W3Schools, n.d.).

That is to say, XML tags cannot provide semantic notions; there is no mean-

ingful relation between �person� and �female.� On the other hand, RDFS and

OWL expressions provide such meaningful derivations. Consider the following

schema and the assertion.

:Mother rdfs:subClassOf :Woman.
:parentOf rdfs:domain :Mother.
:hasChild owl:equivalentProperty :parentOf.
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:Laura :hasChild :Daphne From the given schema and the assertion, we can

infer that Laura is a woman. Because, ::Laura :parentOf based on

:owl:equivalentProperty; ::Laura rdf:type :Woman based on

:rdfs:domain; and ::Laura rdf:type :Woman based on :rdfs:subClassOf.

In plain language, the semantic properties of Laura are parent, mother, and

woman, and having a child. All these examples show that semantic properties

are constructed in data by semantic annotations.

The semantic properties of data become processable by a series of de�ned inter-

pretations. In the �rst place, the graph structure of Ontology 3.0 roots in RDF;

thus, the semantics of RDF constitutes the fundamental base for all the oper-

ations. Then, all the interpretations of RDF and RDFS vocabulary and data

types are prede�ned along with their entailment rules. Further, the axioms and

annotations of the domain at hand are speci�ed with an implantation language,

for instance, with OWL. The whole representation then becomes processable

with respect to its semantic conditions. This procedure will be explained in

detail a little later.

Nevertheless, what is machine-understandability? Why do we disagree with the

idea that when all the entities are de�ned in all contexts with all their semantic

properties in ontologies, machine-understandability is going to be realized?

2.11.2 Things Should Be: Data within Ontology

The machine-readability roots in annotating semantic properties and process-

ing them in graph structure along with the rules of RDF, RDFS, OWL, and

alike, and the constructed knowledgebase. Once everything settles down, the

machine just manipulates the data following the inference rules. This means

the machine can �nd explicit facts in the domains and contribute to knowledge

production. Is not producing knowledge or �nding explicit from implicit a sign

of understanding?

The trivial way of measuring an agent's capacity of understanding is asking

questions about the context that is supposed to be comprehended. Figuring
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out the interactions among the context components, the agent who answers the

questions is said to have understood the context. That said, for the agent's

comprehension, one thing is a prerequisite: background knowledge, the knowl-

edge that is crucial for understanding the case or question. For this reason,

background knowledge plus the context must be in the process of making infer-

ences. Moreover, the agent can reorganize their knowledge when something is

changed in the context or background knowledge. This change can be that there

are black swans, or a single atom can be divided. Consequently, the capacity

for understanding requires in- and o�-context knowledge, the ability to de- and

re-compose the components of context and background knowledge, and making

inferences.

For instance, consider the following analogy. In a chess game, each player knows

the pieces, the moves speci�c to each piece, and the object of the game. Each

game, however, is di�erent from the others since the movements can vary from

game to game. Even a single di�erent movement does a�ect and change the

other movements. Thus, each movement creates a new composition/context up

to which the players need to reorganize their strategies. Such a dynamic envi-

ronment can also be shaped by the background information about the players,

such as there might be a characteristic opening of a player so that the oppo-

nent can think of the chess compositions before the game. According to this

analogy, an agent, who understands, behaves according to the changes in their

environment. For instance, suppose that we are to explain arti�cial intelligence

to a child and an adult. The words we use for each collocutor change; more-

over, any contributions, comments, or objections of the interlocutors change the

structure of the explanation. We, humans, then, construct new sentences whose

components are chosen and organized in the course of communication. The idea

is that, in the case of chess, there are pieces, each of which has its own rules. In

communication, there are words, each of which has its own meaning and struc-

tural property, such as being an adverb or a conjunction. The players choose a

piece and move it following the rules while having the strategies of winning cir-

culating in mind; similarly, the interlocutors choose some words and utter them

in a correct composition that re�ects what the interlocutors want to mean. As
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a result, understanding is a state of ability to re-combine at least two distinct

components of a structure in the scope of a given context.

2.11.3 Machine-understandability

Suppose an agent is given a set of words containing �heavy rain,� �river �ood,�

�the top �oors,� and �two days continuance.� Indeed, suppose that all these words

are given in Turkish and whether or not the agent speaks Turkish is unknown.

It is only when the agent can conclude -like �as an emergency, the residences of

the ground �oors may need to move to the top �oors of the building, as the �ood

will continue two more days�- it is ensured the agent comprehends Turkish. In

light of this, machine-understandability can be de�ned as the machine, as an

agent, can manipulate the context-data within some broader contexts and make

inferences in such an environment for the sake of a/some purpose(s). When the

previous word set is given to the machine, it is supposed to reason and provide

a result like the above.

It is always legitimate to de�ne other kinds of machine-understandability; on

the other hand, none of them has paved the way for realizing 4.0 versions of

ISW. This bold claim leans on the nitty-gritty that realization of ISW 4.0, and

thus machine-understandability, lies in the ability to manipulate data concerning

their semantic properties according to a given context. Let us unpack this issue.

The machine is supposed to be an autonomous decision-maker that can interop-

erate di�erent devices to realize Industry 4.0. We observed that there must be

a unifying system that enables the machine to operate in an open world, viz.,

among several environments. Such a system is supposed to enable the machine

to understand needs, demands, and situations, and then it can make decisions

according to the changing needs, demands, and situations. For a scienti�c shift,

the machine behaves as a colleague who can analyze previously generated scien-

ti�c knowledge; observe in vivo, in vitro, and in silico, and generate hypotheses

from the observations in light of the previous knowledge. In other words, the

realization of Science 4.0 depends on the machine's ability to produce scienti�c

knowledge that requires �guring out possible implicit relations among the phe-

70



nomena. Lastly, Web 4.0 is hoped to provide results where the users can see that

their queries are categorized according to some contexts, and the machine can

generate content. Namely, the machine is supposed to generate a categorization

according to the query. The categorization process is conveyed according to the

intended usage of the entities in the query and the sources. As a result, the users

can see the websites listed for each category. Similarly, generating content from

existing sources requires understating the content of the sources. Thus, all the

4.0 versions of ISW are looking for a machine that can manipulate data beyond

the given properties of entities of a context and can reason in changing situa-

tions to discover, recommend, generate context, and decide in an open-world.

Indeed, all these activities are not limited to well-de�ned contexts: they emerge

whenever new evaluations over the contexts emerge.

Further, consider the following example. The machine detects the malfunction

caused by a robotic arm on the production line and does the necessary things for

troubleshooting, such as sending a message that speci�es the situation to a tech-

nician or switch-o� and -on the robotic arm. This is nothing but signalization.

Nevertheless, in Industry 4.0, the machine is responsible for all the stages of

production. That is to say, troubleshooting the robot is just a part of the work;

indeed, the machine is responsible for deciding what is to be done at all the pro-

duction stages during the downtime, for example, to not retard transportation.

It may be that the machine delegates some work to other robots to save time or

orders some pieces from another company to fasten the production. Hence, the

machine does react upon and beyond the situation of a malfunctioning robot.

Under these circumstances, machine-understandability demands that all the pos-

sible states of entities be known, in principle. Why is that? The answer is

twofold. Firstly, if the machine knows all the possible states of entities, it also

knows their possible roles in di�erent contexts. Concerning that, the machine

can also �nd out the departures of meaning and roles of the entities in inter-

acting with other entities. That results in the machine's ability to de- and

re-compose context and background knowledge components. Accordingly, and

secondly, knowing all the possible states of entities guarantees the establish-

ment of background knowledge; since the machine can relate in- and o�-context
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knowledge when making inferences. However, how can the machine know all the

possible states of everything? How can all the possible semantic properties of

an entity and the possible interactions between entities be determined? It seems

that the machine should have background knowledge in advance to understand

the case or the question and then �gure out the possible states of an entity. Be-

sides, representing the background knowledge in advance sounds untenable for

two reasons. Firstly, it means that the machine would have a monolithic struc-

ture, which makes background knowledge static. Secondly, there is nothing like

representing background knowledge in an open world. A problem can be solved

in various ways, where each way has its own structure and principles. Even the

number of solutions is considered numerable; the ways to approach a problem

are not easily predictable. This seems a taller order than the Semantic Web.

We need to simplify our perspective towards what [machine-]understandability

means.

Let aside all the previous examples of understanding, and let us put it in a sim-

pler form: an agent understands what emerges when two states come together.

Consider the following examples.

< fire|wood >: �re has the property of burning among others, and wood

had the property of being burned, again among its other properties. When

these two entities interact, the mentioned properties will be in action, and

ash will emerge.

< chair|sleeping >: a chair has the property of having a �at surface,

and sleeping has the property of lying on a surface that covers the body

boundaries of what lies. According to these properties, a cat can sleep on

a chair.

< water|hairdryer >: water has the property of being an electrical con-

ductor, and a hairdryer has the property of being powered by electricity.

In the context of having a shower, these two properties reveal that using

a hairdryer in the shower can be fatal.
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All these examples show that, indeed, this is nothing but operating the semantic

properties in a speci�c context. This is where machine-understandability rests.

Thus, we can conclude that machine understanding is the ability to process

semantic properties of data in a given context. Now, let us explain how the

machine has been and should be processing semantic properties.

2.11.4 Processing Semantic Properties

Let us begin by providing little information about data processing. A program-

ming language de�nes an object with a value and a data type. The data type

states what operations are to be performed on the objects and to which type

the value of the object changes with respect to operations. For instance, let us

de�ne x of string data type and set its value �laura.� The machine can capitalize

or reverse the letters of the string; concatenate two strings to form one string;

returns the length of a string. All these are examples of operations the machine

performs on the string data type. When we ask the machine to capitalize all the

letters of a string, or simply to perform capitalize(x), it returns �LAURA.� Let

us de�ne y of integer data type and assign it �5.� The machine can perform the

prede�ned operations and functions on y along with other objects. For instance,

when the �+� sign is de�ned as the mathematical operation of addition, it can

operate on numeric data types. Thus, y + 2 gives 7. On the other hand, x + y

will error since adding a string to a number is nonsense. The machine cannot

do mathematical operations on characters.37

That is, the machine can operate on data with respect to their values and data

types. Hence, data processing means that the value(s) of object(s) change(s)

under a speci�c data type.

The Semantic Web adds semantic properties as a new data component to become

operable. A collection of such properties of entities is represented by annota-

tions/tags speci�c to the context since Semantic Web's ontologies provide data

37 Please exclude the languages, e.g., Python, where the addition sign (+) also operates as string
concatenation.
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organizations prede�ned. The inference rules for RDF, RDFS, and OWL are

introduced to process these semantic properties. For instance, consider one of

the previous examples where Laura being a woman was inferred from the schema

and the assertion provided in the example, which is

:Mother rdfs:subClassOf :Woman.
:parentOf rdfs:domain :Mother.
:hasChild owl:equivalentProperty :parentOf.

:Laura :hasChild :Daphne

Now let us show how the machine processes the semantic properties according

to the inference rules.

An OWL rule says that if {?P, owl:equivalentProperty, ?Q . ?x, ?P, ?y},

then {?x, ?Q, ?y}. Thus, from

{:hasChild owl:equivalentProperty :parentOf .

:Laura :hasChild :Daphne}, the machine infers that

{:Laura : parentOf :Daphne}.

An RDFS rule says that if {?P rdfs:domain, ?R . ?x, ?P, ?y},

then {?x, rdf:type, ?R}. Thus, from

{:parentOf rdfs:domain :Mother . :Laura : parentOf :Daphne},

the machine infers that {:Laura rdf:type :Mother}.

Another RDFS rule says that if {?P rdfs:subClassOf ?Q .

?x rdf:type ?P}, then {?x rdf:type ?Q}. Thus, the machine infers that

{:Laura rdf:type :Woman}, from

{:Mother rdfs:subClassOf :Woman . : Laura rdf:type : Mother}.

This is how the semantic properties of a data component are processed along

with data type and data value.

In the case of machine-understandability, we claimed that the machine, as an

agent, is to understand what emerges when two states come together in a con-

text. Recall the example (Fromkin et al., 2018): �The assassin killed Thwackle-

hurst.� Suppose that we ask the machine some questions about Thwacklehurst.
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Only if the machine understands the statement can it answer the questions. As

mentioned before, we can talk about machine-understandability whenever the

machine can process the semantic properties. Thus, in this example, any ques-

tion about Thwacklehurst can be answered from the semantic properties of an

assassin and of killing, but primarily from an assassin. The semantic properties

of an assassin -being a person, murdering someone important, planning, per-

forming the act of killing in exchange for money or due to a fanatical adherence,

and so on- give some facts about Thwacklehurst � human, important person, an

opponent of something crucial; and the semantic properties of an assassin and

killing together tell that Thwacklehurst is murdered, ergo dead. In this example,

we aimed to show that the interactions between the semantic properties of an

entity are crucial for understandability. Thus, machine-understandability hinges

on processing semantic properties.38

Let us elaborate more on some of the previous examples. When ��re� and �wood�

come together, ash emerges because the speci�c properties of �re and wood in-

teract, resulting in ash. However, this interaction may be taken from another

perspective, such as the need to get warm. The interaction between the property

of realizing heat of a �re and the property of ignitability of wood emerges heat.

Nonetheless, a caveat is in order. Straw also catches �re; it has ignitability prop-

erties, yet the straw �re lasts seconds and cannot be used for warming. Thus,

the39 essential properties of having ignition resistance and a low heat release rate

of wood make it be used for warming. In the example of < water|hairdryer >,
the speci�ed properties were important in the context of having a shower and

safety. On the other hand, the property of being an electrical conductor is not

signi�cant in the context of drying; instead, the property of being wet or making

things wet (whichever is the preference) plays a role. Moreover, instead of being

38 The relations between context relevant semantic properties guarantees the machine process. How-
ever, we will explain how this happens in the coming chapters.

39 For the sake of simplicity, take these properties are the one that provides heating for more extended
periods. Other related properties of wood play a role in heating, such as transferring heat or being
composed of timber. Indeed, all these properties are in interaction, which we will mention in the
following chapter in detail.
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powered by electricity, the property of speeding the evaporation of the water of

the hairdryer is signi�cant for drying.40

Lastly, let us mention the intimate relationship between background knowledge

and semantic properties. In his famous example,41 Zambak gives three sequential

statements as follows.

- A puts a book in a box.

- B takes the box and puts it in a car.

- C drives the car to Ankara.

According to this context, the place of the book can be asked. In a machine-

readable system, the only information provided for the book's place is being in

a box. On the other hand, in a machine-understandable system, the book is in

Ankara because

- A puts a book in a box. The property of storing objects in a box and the

property of being solid of a book say that the book is stored in the box.

- As B takes the box and puts it in a car, the property of storing the box

and the common property of moving and taking means that the book is

taken and put in the car along with the box. So, the book is now in the

car.

- Since C drives the car to Ankara, the property of storing objects and of

moving of car result that the book is in Ankara.

Lastly, suppose that there is another statement given:

- D takes the box and burns it.

The machine with a good sense of humor can say, �Which book?�

40 Besides, iron can do the work in some circumstances since it also has the property of speeding
water evaporation.

41 These examples are taken from Zambak's lectures.
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Therefore, the transformation of information given in the context is conveyed

through the semantic properties of the entities, the properties that are crucial for

the context. For instance, the property of having a color of a box or the property

of having page numbers of a book has no interaction with other properties in

this context. Hence, there are no inference rules in a machine-understandable

system that processes the semantic properties; rather, the system itself operates

on the semantic properties, and such operations themselves are inferences. The

operations on the semantic properties held by the machine are to be asserted by

semantic types; yet, let us discuss semantic types and how they function in the

following chapters.

Consequently, machine-understandability means that the machine's ability to

manipulate data concerning their properties that exhibit their meanings within

a context. The machine-understandable data, Data 4.0, is the data that the

machine can manipulate according to the context and process them with their

semantic properties related to the context. This, however, means that entities

are represented in the machine with all their semantic properties. According

to context, the machine can choose the relevant semantic properties of entities,

and the machine processes the relations between those selected properties. This

new type of data is indispensable for realizing 4.0 versions of ISW.

De�nition 5 Machine Discovery: A collection of formally structured represen-

tations of phenomena through their semantic properties.

According to this de�nition, Data 4.0 is data that the machine can manipulate

meaning in- and o�-context; namely, all possible contexts. That is why it is

also called machine discovery : the machine can manipulate non-mechanically

represented data; such processes end up with non-predetermined consequences.

2.12 Conclusion

In the �rst part of this chapter, we spoke of the new versions of Industry, Science,

and Web when Big Data could cause a paradigm shift in these �elds. Then, we
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came to a point where such a shift requires machine autonomy. While discussing

machine autonomy, we declared that the machine must understand and process

Big Data. Accordingly, in the second part of this chapter, we claimed that

none of the data de�nitions were made from a perspective that would lead to a

machine-understanding system. Our di�erence was to make a classi�cation by

conceiving what data should be that the machine could discover without ignoring

the existing data categories. Although we know that the data classi�cation is ad

hoc, we have also examined the available data categories. We also showed that

we could not move to a machine-understood system without another category.

As it stands, the most straightforward data category would be Data 1.0, as we

de�ne it as anything that the machine processes. Thus, we have ensured that

the focus is on what the data could be from the machine perspective rather

than an empirical approach. In the second category, we put communication be-

tween machines at the center and de�ned Data 2.0 as the data category in which

data �ow between machines. The position of Data 3.0 was to point to machine-

readable systems. Apart from the importance of human-machine communication

in forming this data class, we have also seen that processing semantic data is

obliged to human support and control. However, as explained in ISW 4.0s, all

that is desired is for the machine to gain the feature of understanding. We ar-

gued that the machine would only be an active agent using Data 4.0. However,

we evaluated neither understanding nor being an agent from a human perspec-

tive. Since what we understood from understanding was that existing concepts

could be used with brand new combinations in new contexts. If de�ned through

language, understanding brings words together in di�erent contexts by following

grammatical rules. A language speaker can utter an expression, putting together

certain words in newly introduced contexts. The manifestation of this expres-

sion shows us that the person understands. So, we can say that the central issue

of repositioning toward a machine-understandable data category is to automate

how entities are handled in new contexts. In other words, the main reason for

introducing Data 4.0 is to structure the existing phenomena in the machine; as

such, ISW 4.0s can be realized. As a result of our work, we ended that Data 4.0

is a data category representing entities through their semantic properties.

78



However, there are four critical points to consider: How can the entities be

theoretically and formally represented? How does the machine know which

semantic properties to be processed? Assuming the machine can decide which

properties to process, how can it operate on them? How can all of these be

implemented? The following chapters deal with all these questions.
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CHAPTER 3

DATA WITHIN ONTOLOGY

The previous chapter classi�ed data into four categories and then dealt with the

properties of Data 4.0, the only data category that can realize ISW 4.0s. The

critical aspect of Data 4.0, the machine-understandable data, is that an entity

is represented through its semantic properties. Representing entities in terms of

their semantic properties has been introduced in the Semantic Web, yet it was

just a part of the representation dependent on the context. However, we claim

that entities are to be represented in terms of all their semantic properties, and

the machine is to decide which of these to be chosen according to the context.

When this is the case, it is required to �nd an ontological perspective that

explains how properties de�ne everything in the world.

Property is a fundamental category in philontologies. They are constituents of

the intelligible aspect of everything; they even make themselves intelligible. For

instance, a dress is green; green is a color; color is an attribute; an attribute

is a category, and so on. So, we believe that the category of property must be

studied philosophically; furthermore, an appropriate one should be utilized for

this dissertation. Appendix Categories that Depict the World does the former.

It analyses how ontological categories, particularly relations and properties, are

studied in philosophy. Its purpose is to investigate the philontological charac-

teristics of properties and other related categories. This chapter, on the other

hand, studies the most suitable guiding ontological theory for a machine on-

tology found in light of appendix Categories that Depict the World. Then,

this chapter o�ers utilization of trope theory, a philontological perspective for
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representation in which entities are compresence of their properties. To put it

more clearly, this chapter starts by explaining trope theory and why it is chosen

for Data 4.0. Then, it will deal with computational aspects of utilizing trope

theory, such as selecting properties according to a context and operating these

properties. Lastly, it will introduce a new theory speci�c to machine discovery:

the urtrope theory. We will see that the urtrope theory is machine ontology's

philontological and computational foundation.

3.1 Phenomena into Data

3.1.1 Representing Everything with Tropes

Representation of entities with properties is not a novel idea. As a philontological

stance, a trope theory defends that properties are the building blocks of reality;

thus, everything is a particular combination of properties. In this part, we

will provide an introductory level explanation of trope theories that suit the

representational model of reality that we pose for machine-understandability.

The trope-only theories,1 now on trope theories, state that tropes are the only

ontological category that furnishes the world (Williams (1953), Maurin (2002),

Campbell (1990)). More precisely, tropes are the single entity type, whereas

other types of entities are accounted for in terms of tropes. Paul (2017, p. 33)

states that �everything there is, including concrete objects like persons or stars, is

a quality [property], a qualitative fusion, or a portion of the extended qualitative

fusion that is the world-whole.�2 That is, concrete objects, abstract objects,

spacetime, and relations; the world is constructed from properties. Hence, the

one category out which the whole world can be constructed is properties, viz.,

tropes.

1 There are other kinds of trope theories that acknowledge universals or substances. For details, see
appendix Categories that Depict the World.

2 Paul declares that she uses the term �properties� interchangeably with �qualities.�
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Anything �an object, an event, a property� is not an ordinary collection of

tropes; rather, tropes are composed in a determined way to form entities. G. F. Stout

(1940) de�nes objects as character complexes and states that �the complex unity

of a character-complex is of a unique kind, di�ering from any other kind of

complexity� (p. 126).3 On the other hand, we do not know how to point out

those relations. For this reason, although there are speci�c internal interactions

of tropes for each entity, we can only talk about the emergence of the entity.

The names given for the totality of the interactions vary; for instance, Paul ut-

ters �fusion� to indicate composition; Stout uses �concresce� in the meaning of

interpenetration of tropes;4 William speaks of �compresence.�

We use the term �composition� to refer to the totality of the interactions of

tropes, the interactions that emerge the entity. It may be helpful to make

this concept concrete with some analogies. Firstly, let us take a tangram. A

tangram consists of seven �at polygons, called tans, that are combined, without

an overlap, to build various shapes. For instance, as in Figure 3.1, a combination

of tans pictures a goose, and another combination pictures a cat. The tans

have no meaning by themselves; they are just geometric entities; only their

distinct combinations give rise to some meaning which are pictures of concrete

entities. The colors of the tans have no signi�cance other than making the units

di�erentiable for humans.

Figure 3.1: A set of tangs and some tangram �gures

Another analogy is from chemistry. An allotrope is an element that can exist

in di�erent structural forms. These forms are di�erent from each other not

only in their forms but also in their physical and chemical properties. For

instance, graphite and diamond are the allotropes of carbon. Moreover, the same

3 Please note that his ontology is not trope-only.
4 �Characters concresce in a concrete thing.� G. F. Stout (1940, p. 128)
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structural di�erences can also be observed in molecules called isomers, each of

which has identical molecular formulas yet distinct combinations of atoms. Like

allotropes, isomers can di�er in their physical and chemical properties. These

analogies help us describe how di�erent compositions of the same units give rise

to di�erent entities.

We can further elaborate on the trope composition. From the previous examples,

we can conclude that di�erent trope compositions give rise to di�erent entities.

Moreover, an occurrence of a di�erence in a trope composition ends up with

di�erent facts about an entity. For instance, the cat �gure in Figure 3.1 can

be thought of as the cat standing and looking toward us. However, when the

composition of tans changes, the cat can be thought of as lying on the ground,

as seen in Figure 3.2.

Figure 3.2: Several tangram �gures for a cat

These analogies suggest two things: (1) from basic units, complex things emerge,

and (2) the way basic units compose characterizes the complex things. Tropes

are simple in the sense that their compositions can construct everything that

exists: an event -to rain- is a trope composition; a state -being happy- is a trope

composition; Socrates -a particular-s is a trope composition; wet-trope, pleasure-

trope, wise-trope are in these trope compositions, respectively. Consequently,

trope theory can be chosen as the philosophical representational model of Data

4.0, where entities are represented by their semantic properties.

3.1.2 Trope Theory for Machine Discovery

Representing reality with properties is a well-established theory in philosophy,

and taking tropes as the elements of being and representing the world with tropes

and their compositions is philosophically grounded. Thus, we can legitimately

abandon depicting the world with entity-relation dichotomy along with others.

However, we still need a concrete explanation for this choice.
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Our primary consideration is representing and processing entities in terms of

their properties. We have arrived at this concern from the necessity that entities

should be represented in a way that the machine can recognize them in all

contexts. Otherwise, ISW 4.0s cannot be realized since all the data categories

except Data 4.0 represent things in speci�c contexts. Further, a collection of

semantic properties in a collection of contexts cannot portray the world in terms

of properties since a brand new context may emerge new relations between

semantic properties. In other words, a collection of representations of entities

in terms of their properties only in speci�c contexts cannot be a solution to

representing the world. For this reason, trope theory can help us represent

everything in terms of its semantic properties.

The �rst reason for choosing trope theory is that, obviously, it provides philo-

sophical foundations of phenomena into data. It is the closest philontological

stance to Data 4.0. In addition to this, trope theory comes along with crucial

virtues. First, tropes are compositional elements: entities are trope composi-

tions, and they can be decomposed into tropes. A bene�t of this virtue is that

the machine can detect the possible contexts in which an entity can be. For

instance, a person will be in the context of the plant consumer from the fact

that they have a herbivore-trope, or in the context of politics from the social

being-trope.5 Secondly, vice versa is also possible: the machine can detect an

entity in a possible context. For instance, the semantic properties of entities

are pre-determined in the context of cloth washing. An Armani dress can be in

this context because of its washable-trope, not because of its expensive-trope, or

bungee-jumping cannot be in this context because there is no reasonable trope

of it can be in the context. Consequently, in principle, trope theory allows the

emergence of possible contexts of given entities and entities in contexts.

However, a virtue of trope theory contradicts our purposes: it represents enti-

ties in terms of properties, so it represents properties in terms of other prop-

erties. That causes an in�nite regress, so this computational and philosophical

5 How these contexts are determined will be explained soon.

84



issue must be addressed. Nevertheless, it su�ces to say, for the time being, we

can represent phenomena with properties and manipulate them on the machine

thanks to trope theory. Phenomena into data is a revolution.

3.2 Selecting The Right Semantic Properties

Recall that a collection of semantic properties of an entity is represented by

annotations speci�c to the context at hand in Data 3.0. To make this concrete,

suppose we would like to create an application ontology of furniture. There is a

furniture world that consists of everything about furniture, and the entities of

this world are to be categorized. The classi�cations of ontologies start with a

purpose, so �rstly, we need to specify a task. The classi�cations of a furniture

ontology built for an online selling site, that for production, and that for a

warehouse, must vary. Each domain has its own constraints, related entities,

relations, properties, etc. For example, a furniture ontology designed for an

online selling site categorizes furniture according to its usage in a home, such

as a study room furniture is grouped separately from the kitchen furniture.

On the other hand, in a warehouse, furniture can be grouped according to its

sizes: chairs, armchairs, tables, and so on. Thus, dining chairs would be in

distinct categories in these ontologies. Consequently, the category labels draw

the boundaries for entities so that Data 3.0 represents entities that gain de�nite

roles or behaviors. Semantic properties of entities are set in advance; namely,

they are prede�ned.

A chair can be used in the kitchen, study room, dining room, and garden; it

can have di�erent colors; it can denote some status; it can be made out of

steel, wood, composite, and so on. As a Data 3.0, along with its �xed de�nition,

�chair� has a collection of properties that shows up within a context that speci�es

the interaction of the other entities. To make this claim more concrete, please

consider the following. �Chair� is �a seat typically having four legs and a back
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for one person.�6 On the other hand, a chair can be used as a co�ee table, bed,

or step stool; a chair with casters can be further used as a serving cart. All these

chair functions emerge from the interactions with other entities that are barely

represented in a domain.

When the data is represented within a trope-based ontology, the perplexity

begins by �guring out which roles of a chair come to the scene. On the other

hand, the answer is quite apparent: the related properties pop up when the

context is known. In other words, when the context is known, the roles and/or

behaviors are also known. Indeed, representing the world in terms of entities

and their interrelations is always context-dependent, as choosing the proper

properties of entities is also always context-dependent. Thus, when the machine

processes the semantic properties automatically, it must be context-sensitive.

Nevertheless, how can the machine become context-sensitive? Suppose we would

like to represent things that can be done in the kitchen in the old fashion.

When the task is washing the dishes, the list of entities does not include the

co�ee machine; if the task is making co�ee, then the list of entities does not

include a dirty pan. Hence, in this representation fashion, the entities and their

interrelations are prioritized to specify the context. On the other hand, a dirty

co�ee mug may be an entity of making co�ee-task; namely, the context should

include other entities in some situations. When a change occurs in the context,

the whole representation must be reconsidered; that means the context is static,

thus the representation. At this rate, we �nd a direct way to prioritize the

context; that is, the machine should recognize the context �rst. Then, any

change in the context modi�es the properties to be processed, not the entities.

Moreover, there would not be another context to be represented; instead, there

would be a dynamic context that �ts a change.

Under these circumstances, we need to ask what determines a context. Previ-

ously we have mentioned domain ontologies and the Entity-Relationship (ER)

6 De�nition is taken from https://www.merriam-webster.com/dictionary/chair, on August 14th,
2021.
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models as an elementary model similar to domain ontologies. Domain ontolo-

gies, designed for expressing meaning, are context-laden. That is to say, all the

entities have speci�c senses/behaviors/roles within the context; furthermore, the

entities determine the context. Suppose that two persons are traveling by the

same train. They get o� at the same station and walk through the same restau-

rant. One starts to work, and the other sits at a table and waits for the waitress.

The passenger ontology of the former and the restaurant ontology of the latter

categorize these two persons distinctly, for, in the former, they have the same

roles. Yet, in the latter, they have totally distinct roles: the context changes,

then the roles change. However, it seems there occurred a contradiction since we

uttered at the beginning of the paragraph that entities determine the context.

However, the roles are attributed to the entities; they are not considered by

themselves. This toy example may seem redundant, but it signi�cantly impacts

the overall world representation. Secondly, an ER-model represents interrelated

entities of a speci�c domain. A basic ER-model consists of entity-types that cat-

egorize the entities of interest and relationship-types that specify the interactions

between the entities. An ER model is particularly useful for explaining the logi-

cal structure of databases, and each ER model is a domain standardization; they

are not designed for expressing meaning. The fundamental di�erence between

an ER-model and an application ontology is that the former focuses on data and

the latter focuses on meaning. However, this does not change the fact that they

prioritize entities to draw a domain's boundaries. Consequently, representations

of data models or application ontologies mean specifying the roles/behaviors of

entities that cannot lead to a dynamic context representation; thus, prioritizing

the entities must be changed.

3.2.1 Relations determine a context

In order to realize machine ontology, so far, we have found that (1) everything �

solid or abstract things, object or event, signal or textbook � must be represented

in terms of semantic properties; the idea of which lies in trope theory, and (2)

in order to process semantic properties the machine must be context-sensitive.

Previous studies show that the machine cannot be context-sensitive when the
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entities of a context are prioritized. We cannot prioritize semantic properties

since they are found according to the context. However, we can survey from the

notion of semantic properties. Consider some roles of a chair: its seat provides a

surface for sleeping and providing a level surface. Since having a surface above

the ground on which a human can step is a common property of both a chair

and step stool; thus a chair can be used as a step stool. Alternatively, a chair

functions as a bed for a cat since a chair has the property of having a surface

whose area encloses a cat's body. Alternatively, the property of being solid

makes a chair a doorstopper. Thus, we can �gure out how a chair can function

in a context thanks to its properties, yet what determines which properties

are activated is the relations in the context. That is to say, it is not the chair

and the counterpart entity that determine which semantic properties of them are

activated; rather, the relations between them determine which semantic property

of the chair is to be processed for the given context. Before explaining our

solution to what determines a context, let us refer to two inspirational sources

that shed light on our exploration of making the machine context-sensitive.

The �rst inspirational guidance is from philosophy. In his Tractatus Logico-

Philosophicus (from now on TLP), Wittgenstein represents a contingent world

in the sense that it is mutable, conditioned, and not necessary (Barroso, 2014).

This dynamic worldview hinges on the idea that the world is everything that is

the case (TLP: 1), which necessitates the facts being the basic structures of the

world (TLP: 1.2). The crucial point here is that such a dynamic world is resolved

in facts, not in things/objects (TLP: 1.1). An object can occur in various facts,

in each of which the object gains its meaning. In other words, we cannot speak of

the objects in themselves; their occurrence in a fact makes them knowable. The

ontological and epistemological status of an object is based on a relation. Thus,

this idea paves the way for talking about, for instance, using an instrument out

of its functionality. For example, that a shoe can be used for opening a wine

bottle is representable and thus meaningful in some contexts. Consequently, as

TLP starts with the declaration of �the world is everything that is the case,�

the traditional categorical perspective that acknowledges entities as the building

blocks of the ontologies is displaced. In other words, representing the world in
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terms of entities and their interrelations is substituted with representing the

world in terms of relations.

The second guiding inspiration is from theoretical physics. In his book Hel-

goland, Rovelli (2021) speaks of the world as a web of interactions and relations

rather than objects. Everything in the universe � including electrons, humans,

and planets � exists only in their interactions with one another (p. 59). For

instance, think of a chair that is pink, has arms, and weighs 10kg. According to

Rovelli, these properties do not emerge unless it interacts with something else.

The chair is pink because it interacts with us, light, and alike. If there were

an object without interaction, it would be devoid of all its properties: no inter-

actions, no properties. Rovelli (2021, p. 62) states that �[t]he gist is that the

properties of objects exist only in the moment of their interactions.� He, then,

continues �they can be real with respect to one object and not with respect to

another,� which means when no properties of an object are activated in some

relation, the object is never there in that context. Consequently, the world is

fundamentally made of relations rather than entities, or the entities are nothing

but their interactions.

We want the machine to operate on the semantic properties to process meaning.

To this end, we purported that representing entities with tropes is the most

convenient ontological approach. Then, we claimed that �guring out which se-

mantic properties of two entities are involved in a context is within the realm of

machine-readability since the context is prede�ned; that is, the source and tar-

get entities and their interrelation are given. For machine-understandability, on

the other hand, the context must be prioritized so that the semantic properties

become automatically processable. Thus, it is not �guring out which seman-

tic properties of `human' and `chair' should be processed when the relation is

`sitting;' it is rather �guring out which semantic properties should be processed

when the relation is `sitting.' Let us turn back to chair example, where the

entities are chair, cat, human, and door, and `chair' is the source entity, and the

rest are the target entities. The relations between the source and the targets

di�er; thus, the relations determine which aspect of the chair is of concern. That

is to say, a relation determines which semantic properties are activated. Con-
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sequently, relations determine which semantic properties of source and target

entities should be operated. This is the basic illustration of the relation-based

approach, which must be extended to the context level.

Suppose that there is an unstructured science document. In order to machine

understand it, all the entities7 in the document are represented in machine un-

derstandable format, namely in Data 4.0. in accordance with the relation-based

approach, the relations of the raw context must be listed so that the context is

recognized through the relations. In such a setting, the meaning, namely the

ontological statuses, of the source and target entities has no priority since their

meaning will be determined after the context is determined. Here, it would be

a mistake to determine their meaning by referring to the relation between them

since the same relation may activate di�erent semantic properties of the source

and the target in di�erent contexts. Thus, the relations of the raw context must

be erected so that their combination would give meaning to the context. That

is to say, relations determine the boundaries of a context, not the source and

target. So, we purport that the machine can recognize a context through the

relations, which determine which semantic properties of the source and target

are activated based on the context. Consequently, relations tell us the bound-

aries of a context and which semantic properties of entities are activated in the

context.

In sum, machine-understandability depends on processing semantic properties.

Once the machine can operate on semantic properties, discovery, reasoning,

recommendation, and content generation occur. To this end, we employed trope

theory for representing data. On the other hand, we encountered the machine's

problem recognizing which properties are to be operated. Data 3.0 consists of

data representing entities with their annotated semantic properties that indicate

speci�c roles or behaviors that depend on the context. On the other hand, Data

4.0 is the data representing entities via their semantic properties, which are

operable by the machine. Thus, can the machine recognize which semantic

7 Pay attention that all the literal objects are entities.
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properties of the entities are in the process only when it recognizes the context.

For this reason, context recognition must be prioritized. That is, the machine

automatically �nds the status of a context. We claim that the status of a context

occurs when the combination of relations is �gured out; thus, we seek a setting

that realizes such occurrences.

3.3 Processing Properties/Tropes

In the previous parts, we slightly mentioned that types are crucial for processing.

At �rst, we discussed that data types specify the behavior or the intended usage

of objects, so a data type determines what operations are to be performed on

the objects and constraints on the value transformations. Then, we mentioned

that the meta-data, viz., annotations, determine the semantic types of objects;

those types specify the behavior or intended usage of objects and semantic con-

straints on objects. In both cases, objects' values or semantic properties become

computable thanks to typi�cation. That is to say, a type assignment provides

computational aspects to objects.

Following the same line of thought, we will purport that we need to typify prop-

erties; viz., tropes: Data 4.0 must have computable semantic parts; typi�cation

provides that semantic properties become computable. In the following, we will

�rst investigate what a type is, then provide examples from logic, mathematics,

and programming. Lastly, we will focus on utilizing types for processing Data

4.0.

Before moving on, a caveat is in order. De�ning tropes, properties, and rela-

tions may not be very clear. Firstly, tropes are properties, and properties are

tropes. They are the same thing for our machine ontological perspective. Indeed,

�semantic properties� are the same thing. Relations, however, seem to be dif-

ferent from them. In appendix Categories that Depict the World, the di�erence

between properties and relations is discussed at length, but here we will give

only our machine ontological understanding of relations. We decided to utilize

trope theory as the philontological foundation of machine ontology, according
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to which there are tropes and everything is a composition of tropes. So, what

are relations? Philosophically, relations are considered as more-than-one-place

properties; that is, machine ontologically, the other way around, as we said ear-

lier, properties are unary relations. As the whole machine ontology story relies

on the relation-based approach, we conclude that relations are either tropes or

trope compositions. We will return to this matter while discussing their formal

descriptions.

3.3.1 Typi�cation and Type Theory

In philosophical parlance, type has several senses, such as universal, a species

of universal, a law, or the sets of its tokens (Wetzel, 2018). Putting aside

its metaphysical connotations, types are beyond classes and categories since

they de�ne not only the speci�c characteristics of terms but also their allowable

interactions. By the allowable interactions, we mean that types highlight the

states of a�airs or say possible facts about the terms/objects. For instance,

restaurant types specify what kind of dishes to be served along with what to

wear, or hair types specify what kind of hair conditioner is to be chosen. In a

nutshell, types are useful for the classi�cation of entities along with specifying

constraints on them.

Russell �rst introduced the idea of type to eliminate paradoxes in the set theory,

such as the set of all sets cannot and must be an element of itself. Russell's type

theory distinguishes properties into a hierarchy of types so self-predication can

never happen. For instance, the types of numbers are di�erentiated by the types

of sets of numbers, the types of functions from numbers to the sets of numbers,

and so on (Benzmüller & Andrews, 2019). Thanks to such distinctions, para-

doxes in the set theory are abolished. The initial purpose of the type theories,

then, was to de�ne mathematical objects with the previously de�ned objects in

order not to commit impredicative de�nitions, viz., self-referencing de�nitions.

Thus, type theories in logic and mathematics aim at formalizing terms and op-

erations on them as well as formalizing types for each term.
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The idea of types was utilized outside of these �elds, especially in programming

languages. In programming languages, every term has a type, which de�nes

the meaning of the term and the operations that can be applied to it. For

instance, when a variable, say �3�, is de�ned as an integer type, then arithmetic

can be applied to it. However, it has no further mathematical features when it is

de�ned as a character type. Thus, a type in a type system de�nes the expected

properties of the type and operations on the objects.

In a type system, the de�nitions of the expected operations on objects are of

the most importance. Such a system executes constraints on object interaction;

in other words, a type system allows only consistent interactions between ob-

jects (Cardelli & Wegner, 1985). Thus, type systems enable that developing a

program and verifying its correctness can be proceeded in a single system so

that the quality of the systems by optimizing memory e�ciency and enabling

the detection of errors before they become run-time problems improves. For

instance, in the C programming language, an integer is of one of the following

types: integer, long integer, long-long integer, short integer, or unsigned integer.

These types save memory usage. Or, in Java, the compiler returns incompatible

type error when a value is forced to be stored into an array of a mismatched type.

To summarize, a type system introduces types and their terms and formalizes

reasoning with such typed variables.

In ontologies, types are de�ned like universals, as the things that classify. ? (?,

p. 535) says that �Aristotle� is classi�ed and described by types of �human� and

�philosopher.� As types de�ne the classes of entities, the semantic properties

that entities carry are in the form of types. More precisely, in Ontology 3.0,

tags typify entities and relations, and those tags are operated according to the

inference rules. On the other hand, typed properties are processed concerning

a speci�c domain. For example, �Aristotle� is of philosopher-type, which is

of human-type. In another context, he can be typed as �male� and �founder

of the Lyceum.� Or consider the following. We cannot know the ontological

statuses of 011, 11, and 0011. We need to know the context in advance; namely,

we need to know their interactions. For instance �11+11= 22,� �11+11=110�,

and �011=11=0011� are of di�erent contexts. Indeed this is not even enough:
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�11+11=22� and �11+11=22� may be of di�erent contexts; think that the former

calculation is conveyed on the octal system and the letter is in the decimal

system. That is, a type de�nes the allowable interactions; each typi�cation

de�nes entities' context-based roles/behaviors.

Consequently, types are used to draw boundaries between entities; such as in

the realm of arithmetic, there are three types of integers; zero, negative, and

positive. These kinds of boundaries o�er a convenient formalism to entities and

their implementation. Thus, type systems impose constraints that guarantee

consistency of the systems. As in the case of Ontology 3.0, tagging is a kind of a

type system that speci�es the semantic properties of entities and the operations

on entities in a context.

Let us recap some critical arguments of this work. We argued that everything in

the world gains meaning within an interaction. An entity by itself alone is un-

knowable, thus unde�nable. In other words, an entity gains its ontological status

with relations that relate it to other entities. For this reason, it will be futile to

typify the entities for our aim of machine-understandability, although typifying

objects has worked for several tasks, such as machine-readability. Because anno-

tations typify entities, the metadata is operated through the inference rules, all

of which are speci�c to a domain. This is valid for both data types in program-

ming languages and machine-readable systems: the entities are typi�ed for some

expected behaviors/roles. Nevertheless, for machine-understandability, the ma-

chine is supposed to assign types automatically; yet, this has to be done through

semantic properties that are determined by the relations. In this respect, the

entities cannot be typi�ed, but the tropes and their compositions, because only

then can the operations on semantic properties be speci�ed. It bears repeating

that the entities are trope compositions; viz., an entity is represented by its

actual and potential semantic properties, or tropes. Thus, not the entity high-

lights which semantic properties to be processed, but the relations determine

which semantic properties to be processed. In short, machine-understandability

postulates the typi�cation of tropes and trope compositions. On the way to

machine-understandability, �rst, tropes are to be typi�ed; second, the rules for

operating tropes and trope compositions must be speci�ed; and lastly, a com-
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putational model for operating the rules must be promoted. Let us explore the

typi�cation needed for machine discovery.

3.3.2 Typi�cation of Relations

Typi�cation is at the center of this work because representation is not enough

alone; processing the representations is required. In this part, we will investigate

relation types and typifying relations. We have chosen relations types since

everything else gains meaning through relations.

In a machine-readable system, all the entities are supposed to be typi�ed by

human power; or in logic or programming, every variable should have a type

assigned by logicians or programmers. It seems quite impossible to typify all of

the relations for all domains.

We argued that trope theoretical representation of reality does pave the way for

machine-understandability. As everything can be represented with tropes, so do

relations. At this rate, it is legitimate to claim that some trope compositions

must be typi�ed. We uttered �some� since some trope compositions are relations,

some trope compositions are events, and some are numbers. Thus, the focus is

on the trope compositions that emerge relations. In other words, tropes are the

elements that determine the relation types.

We are speaking of a type system that speci�es interactions between semantic

properties and the operations on those semantic properties in a context, and re-

lation types are assigned to trope compositions to distinguish between relations.

For instance, the relation type of locomotion is di�erentiated from the relation

type of motion with respect to their trope compositions.8 As the type theo-

8 One may object that locomotion is not a relation, yet it is spoken of as a relation type. For the
time being, please do not let nominalization perplex you, and please beg this usage. We will see
that intensional logics are of importance in our work. The principle of substitutivity of equivalent
formulas fails in intensional logic; thus, self-predicable and non-self-predicable properties seem to not
co-exist in a system (Bealer & Mönnich, 2003). For instance, �being an abstract is abstract� can be
presumably a valid statement, yet, �being gold is gold� cannot. Indeed, being-gold is a trope, and
gold is an object, that is, a trope composition; the trope composition of gold contains a being-gold
trope. On the other hand, gold can be a trope that is of color type. So, being a complex or primitive
relation hinges on the type of trope or the trope composition. Bealer and Mönnich (2003) solve this
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ries o�er, typi�cations provide relation hierarchies; in other words, the relation

types subsume their subrelations. Yet, a relation type is a trope composition, so

as its subrelation. Therefore, there must be partly structural identity between

types and their subrelations; such a structural identity must exhibit itself in the

trope composition at hand. This reminds Simons (1994)'s work, �Particulars in

particular clothing: Three trope theories of substance,� where he deals with the

problem of particulars and universals and develops his Nucleus Theory on the

combination of aspects and thus advantages of both bundle theory and substra-

tum theory. Leaving aside all the metaphysical debates, let us concentrate on

how he constructs a collection of tropes as an individual. Simons suggests two

constituents of a particular. The �rst one is called nucleus, which is �a collec-

tion of tropes which must all co-occur as individuals� (Simons, 1994, p. 567). In

other words, a nucleus is made up of mutually dependent de�nite tropes. This

is the foundational system of a particular. The second one is supplementation

by tropes, a collection of tropes of certain determinable kinds, whose tropes rely

speci�cally on the tropes in the nucleus. This is the contingent system of a

particular. The crucial di�erence between the nucleus and its complementary

is that every trope in the nucleus is foundationally related to every other trope

in the nucleus, and none of the tropes is foundationally related to any other

trope that is not in the nucleus; and the contingent part, whose tropes depend

on other tropes in the nucleus speci�cally, is connected to the nucleus.

To elucidate this crucial di�erence, ponder on the following. The tropes in the

nucleus necessarily depend on each other and do not admit a trope to come

in or go out. The tropes in the supplement are dependent speci�cally on the

nucleus, namely, the tropes in the nucleus. That is to say, as the supplementary

consists of tropes of certain determinable kinds, we can speak of a certain kind

of tropes, but not an individualized trope in that kind, so some tropes in the

perplexity by showing that intensional logic is committed to the existence of intensional entities and
that �intensionality is a necessary feature of a type-free system that allows for unlimited self-reference
in the form of an unrestricted abstraction principle� with a �rm claim that failure of substitutivity is
the best criterion for characterizing intensional logic (p. 239). Unfortunately, tropes are extensional
entities. Nevertheless, in a formal system for type-free property theory, properties can occur in both
subject and predicate position (Orilia, 2000). Thus, a trope can be a subject and predicate in a
type-free property theory, and its valid self-reference is guaranteed.
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supplement can be replaced, yet the particular preserves its identity.9 Hence,

the nucleus acts as the core to the contingent tropes, and accounts for their all

being together (Simons, 1994, p. 567).

Simons asserts several advantages of his Nuclear Theory, which is said to be

�exible. The �rst source of �exibility is about nuclei, which can be di�erent

sizes and complexities. There can be particulars without a supplement; they are

all nuclei. Or, there can be a substantial collection of tropes without a nucleus.

In this case, an individual trope is associated with some particular tropes in

the course of its life, and each association is necessarily contingent. This means

that such a trope cannot exist alone and can be associated with di�erent tropes

in its lifetime. Thus, this is not a case for free single tropes but a substantial

collection of tropes. Lastly, there can be a single nuclear trope that serves as a

genuine substratum to its supplement. Recall that the supplement system is a

collection of certain determinable kinds of tropes. So, a trope in the supplement

can be replaced by another trope from the same determinable kind; however,

the nuclear trope cannot be replaced: its annihilation dispels the supplement.

The second source of �exibility is about the supplement. A supplement may con-

sist of clumps, each having its own subnucleus. In other words, some properties

are complex, which have their own nuclei. Moreover, there may be clumps asso-

ciated with each other in the contingent system. Thus, there can be tropes with

nuclei either in the foundational or contingent system of a particular (Simons,

1994, p. 569).

This vein can be used for elucidating the typi�cation of relations. Like any other

entity in the trope theory, we claim that a relation type consists of two parts:

core and peripheral. The core is the foundational trope composition that ever

changes, and the peripheral is the contingent trope composition; the di�erent

con�gurations yield the subrelations. Thus, composition di�erences in the core

and the peripheral specify the subrelations, and all subrelations have identical

9 Simons (1994) also solves the problem with Bradley's regress by introducing contingency in a part
of trope compositions. For details see Maurin (2018).
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tropes in the core of the relation-type. For instance, there is a locomotion-type,

two of whose subrelations are `walk' and `trot.' The trope composition of `walk

`and the trope composition of trot have in common the tropes in the core of

the trope composition of locomotion, and they necessarily have di�erent trope

compositions from locomotion. It may be a brisk-trope that is not at the core

of `walk,' but `trot.' A caveat is needed here: the core of locomotion is not

the same as the core of its subrelations. Each subrelation has its own core and

peripheral.

Now that we understand the relationship between a relation-type and its sub-

relations, we can move on to elucidating how relation-types work and how this

type theory contributes to computation. Without further ado, a relation-type

speci�es (1) operable semantic properties (thus, which entities can interact), (2)

operations on those properties, and (3) their constraints. (1) Recall that an

entity cannot give its types by itself. A water bottle and a hand-sized rock do

not share the same typi�cation in the context of containing liquid. On the other

hand, both share the same typi�cation in the context of being a doorstopper,

as both of their trope composition includes solid-trope, for instance. That is

a relation-type highlights which semantic properties are to be operated. Thus,

each typi�cation is of a contextual usage, de�ning the operable semantic proper-

ties, not the entities. Suppose a seeing-type activates having-capacity-of-seeing-

trope and re�ecting-light-trope; rather than an eye and a diamond. Moreover,

(2) the allowable interactions between semantic properties are determined by the

trope composition of the relation-type or one of its subrelation. When a relation-

type is decomposed into its tropes, the machine can �gure out the allowable

interactions between semantic properties and what emerges after the interac-

tions. Additionally, invoke-type of cause and occasion-type of cause have dif-

ferent trope compositions, so they activate distinct semantic properties. Lastly,

(3) the trope composition of a relation-type speci�es the constraints on oper-

ations. Consider the following statements constructed with the same relation:

�Laura lives in Ankara� and �Lemon lives in Ankara.� The trope composition of

the relation-type of `live' determines whether or not these two statements are

valid, such that the relation-type allows a transition from a trope composition
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of Laura and a transition from a trope composition of lemon. Here are the al-

ternatives: the relation-type of `live' in these two statements allows a transition

between Laura/lemon and Ankara for either, or neither, or both of the state-

ments. Consequently, typi�cation of relations paves the way for constructing

type structures, which are computable.

How about determining a context concerning the relations. The relation types

determine the computable aspect of a context. That is to say, a relation can be

of di�erent types; however, the relational compositions can occur only among

speci�c types. Recall one upmost important aspect of machine ontology: it is a

relation-based approach. Thus, relations have types, and the operations between

relations are de�ned. So, a context is nothing but a web of operable relations.

For instance, the relation type-A can occur only if there is the relation type-B.

If a context has two relations a and b, and it is known that a is of type-A, then

b should be of type-B. The types of the rest of the relations are determined in

rapid succession. Eventually, the context is determined when all relations gain

their types.

3.3.3 The Need for Types of Types

In the scope of this work, a type theory is crucial for computing semantic prop-

erties. Relation-types set boundaries between relations, specify operations with

relations and put some constraints on these operations. Nevertheless, this is

just the beginning: for machine-understandability, the machine can typify the

types repeatedly when necessary. Think of machine-readable systems, where

metadata contains types of entities, and all the semantic operations are held

through those types. The machine cannot go one step further since there must

be another collection of metadata about the metadata that may need to be spe-

ci�c to the context. For instance, consider that we are given two statements:

�Socrates is a philosopher� and �All humans are mortal.� If the machine were

to infer �Socrates is mortal,� it would have annotated `human' to `philosopher'
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precisely for this context.10 Thus, the machine must be able to interpret types

speci�c to the context, so that it can be generative.11

In the machine-understandable systems, thus, the machine can interpret dif-

ferent types by decomposition. To make this more concrete, please consider

the following examples. A location-type has several subrelations, such as stay-,

live-in-, dwell-, and settle-type. O the other hand, `stay,' as a location-type

relation, has its own type, so there are subrelations of `stay;' `romantic-stay;'

`compulsory-stay;' `home-stay,' to name some. Indeed, there can be several kinds

of `compulsory-stay,' such as `custody-stay' and `intensive-care-stay.' These rela-

tion types occur in di�erent contexts and activate di�erent semantic properties.

Furthermore, `location' can be of a type; for instance, it has a supertype: is-in-

type.12 As subtypes depend on supertypes (recall the nucleus theory), operations

are performed on subtypes when necessary and on supertypes when necessary.

The machine can decide which one is on the scene by �guring out the context

from the web of relations, each of which is on the web due to their types. Thus,

it is legitimate to consider the following interwoven types. Exempli�cation-type

has `illustrate,' `explain,' and `describe' as subrelations; and `exempli�cation,' by

itself, is a subrelation of is-a-type, along with `subsumption' and `speci�cation.'

And, there are genus-subsumption and determinable-subsumption as subtypes

of `subsumption.' Yet, there are more: `subsumption' is a subtype of both `is-a'

and `Brook's architecture.' For instance, `subsumption' and `exempli�cation'

can be contrasted and compared via their tropic compositions, and similarities

and di�erences between is-a-type and Brook's-architecture-type of subsumption

can be elucidated by decomposing the trope compositions.

All these investigations have brought us to an essential turning point: the ma-

chine needs to manipulate types. In other words, on the way to realizing ISW

4.0s, we need to �nd a way that the machine can process types, types of types,

10 Another possible annotation of `philosopher' can be `profession.'
11 However, we have already mentioned that entity-based annotations cannot pave the way for a
generative system. The machine requires annotations inserted by humans for each context; thus,
neither can it generate types of types nor make inference intercontexts.

12 Another subrelation of is-in-type is `contain.'
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and types of types of types. Thus, once the machine can process types of types,

it can also process types of types of types, and so on. Moreover, it can also

decide whether sub- or supertype to be processed. It is worth reminding that

the machine's ability to typify the typi�cations provides a generative system by

enabling interpreting types from various dimensions; it gives a computational

aspect to any trope composition; consequently, the machine discovers explicit

interactions.

On the other hand, the mentioned type theories o�er a hierarchy of types that

enlarges properties ad in�nitum; as such, the objects of each type form a new

domain of the next type. For instance, the objects are of type 0; the �rst order

properties are of type 1; the totality of �rst-order properties is the second-order

properties that are of type 2; and the totality of second-order properties is the

third order properties that are of type 3; and so on. In such a hierarchy, there

is quanti�cation over relations and relations of relations; but over types. Yet,

machine-understandability requires not only regimenting relations into types but

also types into types. Thus, we need a type theory to de�ne and compute types

over types. Fortunately, there is such groundwork for speaking of types of types

to which we can refer.

3.3.3.1 Expressing Types of Types

The Entscheidungsproblem was one of the problems in Hilbert's Program that

surveys whether there is an algorithm that can decide the truth or falsity of

any statement. While dealing with functions as rules in his λ-calculus, Church

introduced his de�nition of e�ectively calculable, Church's thesis, and showed

that the Entscheidungsproblem has no λ-de�nable solution. Besides, he encoun-

tered the inconsistency of λ x.xx: a predicate can be applied to itself. Church

borrowed Russell's solution to solve a similar inconsistency: terms are to be

typi�ed. Then, the simply typed λ-calculus was developed.

The part that concerns us begins now. Curry discovered that there is a corre-

spondence between types of functions and propositions. That is, every proposi-

tion in propositional logic can be read as a type of a function in the simply typed
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λ-calculus. On the other hand, Howard extended this correspondence to predi-

cate logic and showed a correspondence between the simply typed λ-calculus and

natural deduction (Wadler, 2015). That means representing and computations

on the predicates of predicate logic can correspond to formations and operations

on the dependent types. The combination of these two results is known as the

Curry�Howard Correspondence, or the Curry�Howard isomorphism, which iden-

ti�es propositions as types.13 For instance, the predicate Even(x) is the type of

proofs that �x is even.�

The Curry-Howard correspondence has a great repercussion among the construc-

tivists, who assert that to prove the existence of an [mathematical] object is to

construct that object explicitly (Çevik, 2019).14 In other words, asserting the

existence of an object is just constructing that object. For instance, a method

for �nding such a number must be provided to say that there exists a number

with a property. A repercussion in logic of the correspondence among construc-

tivists is intuitionistic type theory or Martin-Löf's constructive type theory, or

simply Martin-Löf type theory. In Dybjer and Palmgren (2020)'s wording, �a

proposition is the type of its proofs is fundamental to intuitionistic type theory.�

According to Martin-Löf, so to intuitionistic type theory, all the logical con-

nectives and quanti�es are instructions for constructing a proof of a statement

that includes the logical expressions; as such, the identi�cation of propositions

and types follows that logical constants as type formers, predicates as depen-

dent types, and relations are families (Dybjer & Palmgren, 2020).15 Moreover,

he de�nes a type-theoretic universe U , which is closed under all type forming

operations. On the other hand, as U is itself a type, it cannot contain itself;

otherwise, a paradox familiar to Russell's would emerge. Then, he expands this

idea to a countable hierarchy of universes: A universe, say U0, is a type that

13 The one-to-one correspondence between propositions and types preserves between proofs and
programs, and simplifying proofs as evaluation of programs (Wadler, 2015). This correspondence
has tremendous results in proof theory, semantics, and logic, to name some; however, the limits of
this work cannot allow us to elaborate further on this observation.

14 As such, they accept neither excluded middle nor double negation.
15 An exploration of Martin-Löf's type theory is beyond the limits of this work. The crucial point is
to grasp that there is a formal system that includes the typi�cation of types.
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includes all the types, but it is not contained in itself; the larger universe, say

U1, is a type which contains all the types of U0 and the type U0; similarly, the

larger universe, say U2, is a type which contains all the types of U1 and the type

U1, and so on. Thus, this computable hierarchy of universes, U0: U1: U2: U3:

. . . ,16 is nothing but a hierarchy of types. In this way, each type has a type;

namely, typi�cation of types is possible (Dybjer & Palmgren, 2020).

There are two takeaways from Martin-Löf's type theory. (1) New types can be

de�ned without committing paradoxes, and (2) de�nitions of the types and com-

putation in types, but also in types of types, became possible. Consequently,

Martin-Löf's type theory can be the formal basis for relation typi�cation in the

trope-ontological approach for machine-understanding. Any valid trope compo-

sition can be expressed as a type, and according to its compositions, there can

be super- or subtypes of the type in question. De�ning and computing the types

hinge on the trope compositions. Although the compositions are not formally

de�ned yet, Martin-Löf's type theory provides axioms and rules of inference for

types. Hence, Martin-Löf's type theory is a productive type system in which

any trope composition can be expressed as a type, and new types can be de�ned

whenever necessary.

3.4 Tropes as Types

In the last part, the puzzlement of typi�cation of types is solved. On the other

hand, the mentioned type theories are known for admitting the sharp distinction

between objects and properties. However, this approach is not valid in a machine

ontology, as everything is either a trope or a composition of tropes. In this case,

types must be attained to tropes and trope compositions. Indeed, in a machine-

understandable system, the relations must be typed according to their trope

compositions. However, no property is not a relation: to typify relations, in the

most profound sense, is to typify tropes. Namely, the relation-based approach is

16 a : X means that a is of type X.
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nothing but a trope theoretical approach. Now let us investigate tropes as types

more.

A trope can be of di�erent types, so as a trope composition. For instance, a 23-

trope has di�erent types in di�erent settings: as a character for Michael Jordan's

jersey number; as an integer for the total number of candies Laura ate today. A

green-trope has many types as well. For instance, it is of color-type, fresh-type,

or environmental-friendly-type. `Student' as a trope composition also has many

types: a human; an occupation. Even individuals, such as Socrates, exemplify

many types: have-ugly-nose; put-to-death. That is, each typi�cation occurs in a

context that has its own ontological structure. Put di�erently, a trope or a trope

composition behaves di�erently in di�erent contexts. However, we know that

the relation types specify di�erent behaviors of tropes or trope compositions,

and we can say that trope types specify di�erent behaviors of tropes. Moreover,

considering that as in a type theory, all properties are typed, so are tropes, it

is legitimate to generalize the relation-based approach to the trope theoretical

approach. That is, relation types are based on trope types intrinsically.

The gist of the above discussion is here: relations specify a context. Their

occurrence in a context must be a priori organized. The otherwise cannot be

reasonable since the otherwise means that there is no context at all but a bunch

of representations. Thus, relations are in a context with speci�c roles/behaviors,

and typing rules specify those roles/behaviors. The machine then detects the

relations, �gures out their types, and speci�es the context. Once the context

is speci�ed, the semantic properties of the source and the target entities are

activated. Nevertheless, relations must be considered on two grounds, which

are often interweaving. At the �rst ground, it is an entity in a context; the

standard annotation is seen in Ontology 3.0 and Web 3.0. in a statement, for

instance, a relation is an entity between a source and a target entity. The

machine speci�es a context with the help of relations at this ground. On the

second ground, however, relations are tropes. This is the machine ontological

status of relations. Thus, when a type of a relation is spoken of, we must

be aware of which ground of relation is considered. A relation is of the �rst

ground when the contextual level of examination is surveyed; a relation is of
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the second ground when the entity level of examination is surveyed. However,

determining the ground of the relation is not always easy and even unnecessary:

the relation types can be reduced to trope types, and tropes are the building

blocks of everything. Consequently, trope types are the computational units.

Types of types are again trope types, as types of types of types. For the sake of

simplicity, when we say a relation type, it refers to a trope type that operates

at the contextual level.

3.4.1 Extensionality of Tropes

Super- and subtypes of relations can be easily detected due to their trope compo-

sitions, where the composition di�erences in the peripheral specify the subtypes,

and all subrelations have the identical core of the supertype. We have seen that

the relation types can be reduced to trope types, and there are types of types of

tropes as there are types of types of relations. However, this results in puzzle-

ment: can there be types of types of tropes, the building blocks of reality that

cannot have any part?

Ponder on the following cases. Firstly, think of a yellow-trope that can only, for

the sake of simplicity, be of either warm color-type or primary color-type. How

can the machine determine the type of the trope within the trope compositions?

Secondly, assume that triangular-trope and trilateral-trope behave the same in

all circumstances. Then, should the machine take triangular-trope and trilateral-

trope to be identical?17 And next, recall that a green-trope can be of color-type,

fresh-type, or environmental-friendly-type. Indeed, a green-trope is of subtypes

of color-types, such as a cool color and, at the same time, a secondary color.

How can the machine determine super- and subtypes of tropes? Lastly, without

any information on the type of a 23-trope, what does the machine give as a

result for �23+23� if it can calculate it?

17 In the scope of this work, please, ignore the metaphysical analysis of the hyperintensional identity
of properties. Besides, we will mention intentional theories in the following parts.
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That tropes are typed makes them extensional (Cf. Moltmann, 2013). So,

tropes of the same type behave the same; then, two tropes must be the same

when they interact with the same tropes in the same way in all cores of the trope

compositions in the same way within the constraints that the type speci�es. For

instance, a yellow-trope of a warm color-type always interacts with the same

tropes in the same way in all cores; and a yellow-trope of a primary color-type

always interacts with the same tropes in the same way in all cores, where there

must be at least one di�erent trope or interaction in the former and the lat-

ter. Thus, it may be the case that the trope(s) that interact(s) with and/or

the interaction(s) between tropes in yellow-trope determine(s) the type of it. In

this case, the tropes that specify the type mutually depend on each other in all

cases. For instance, the trope(s) that specify/speci�es a yellow-trope as a type

of primary color interact(s) with yellow-trope in the same way in all trope com-

positions. This is untenable since what determines a yellow-trope interacts with

should be its type; not (an)other trope(s) that interact(s) with a yellow-trope

determine(s) the type of a yellow-trope. That is, the types are computationally

prior to trope interactions. Similarly, a triangular-trope and a trilateral-trope

have the same extension. On the other hand, a having-side-trope should have

a di�erent kind of interaction than that of a having-angle-trope. Because the

spotlight is on the feature of having-side for the former. Bealer and Mönnich

(2003) discuss this issue within the intentional entities approach, where for any

object x, the proposition that x is triangular is a di�erent proposition from that

x is trilateral, even if it is absolutely true that anything that is triangular in

any world is trilateral in that same world. Just like the sense of Morning Star

is di�erent from the sense of Evening Star, the senses of the property of being

trilateral and the property of being triangular. Thus, saying �it is trivial that an

equilateral triangle is an equilateral triangle� is not that trivial (Fitting, 2020).

Next, there are several results for �23+23� according to the elements' types. If

either of the 23s is of character-type, and �+� only operates on number types,

the result is a type error. If �+� operates on character-type as a concatenation

operator, then the result is 2323, when both 23s are of character-type. If �+�

operates on number-types, then the result is 46 when both 23s are of integer-

type. In all of these examples, the types need to be known in advance to reach
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the result. However, for machine-understandability, the machine is supposed to

assign types to tropes so that it can operate them with respect to the context.

Lastly, in the example of a green-trope, we saw that there are sub- and super-

types of tropes. As tropes are typed, again, the machine cannot decide which

type the trope is unless it is annotated manually. Of course, typing rules provide

a list of types of types of tropes; however, we are discussing the `primitive' trope

types, primitive in the sense that such tropes are not a composition of any other

tropes. Therefore, such trope types, which typify primitive tropes, are just U0

in Martin-Löf's theory, which is given in advance.

The type constructors and type assignment axioms can be specialized for the

case of tropes, as it has been practiced for many years in logic and computer sci-

ence. Hence, a system in which tropes are automatically identi�ed with types is

constructed, then a type assignment system occurs that includes types of tropes.

The idea that tropes as types are theoretically conceivable thanks to intuition-

istic type theories; however, the very same theories are notoriously known for

that the type-theoretical hierarchy multiplies tropes ad in�nitum. For instance,

a green-trope is of environmental-friendly-type; an environmental-friendly-trope

can be of construction-style-type; a construction-style-trope can be of cultural-

identity-type; and so on. However, the realization of machine-understandability

hinges on the machine's ability to assign types automatically. Thus, the fact that

U0 is given in advance is not the primary issue here; it is rather if the machine

cannot decide the types automatically because the `primitive' tropes got their

roles in advance. It means that we have not taken a step forward from Ontology

3.0. Hence, the tropes must be untyped so that the machine can automatically

decide the `primary' trope types. It needs to be untyped; it is only when the

machine can automatically assign a role to it. However, this is contradictory as

the tropes are extensional from their very nature.

3.4.2 Self-reference of Tropes

Consider a well-known self-reference example: the property of being a property

is itself a property, or the property of being abstract is itself abstract that is a
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property, presumably. Besides, recall that type theories forbid self-reference in

the very �rst place for eliminating paradoxes. So, what is the case of types of

tropes?

Self-reference is inevitable in typi�cation. Being a property is a property, or

presumably, being abstract is abstract. One may claim that being abstract-

trope is not the same as abstract-trope as the former is a relation �a trope

composition- and the latter is a property �can be a primitive trope.18 However,

this is not the prerequisite that tropes must be self-re�exive. The gist of this issue

is the fact that self-reference is a crucial feature for machine-understandability.

In a self-referential system, each unit in the whole has its identity so that each

part in the whole can be di�erentiated from another. Then, self-reference can

construct the basis for a complexity index, which is crucial for �guring out deeper

complex structures and processes in the whole of the system (Hempel, Pineda,

& Smith, 2011). Thus, the representation system of the machine should be self-

referential so that interactions between entities in any context can be designed

and described by the machine. On the other hand, tropes are the building

blocks of the representation system of the machine, and they dwell in a type

theoretical realm where self-reference is forbidden. A further issue concerning

this feature of tropes is their building blocks of reality. If the building blocks of

reality were typed, for each context, we would need to specify the content of the

building blocks. This is nonsense since this idea is against the meaning of the

concept of �building block.� A building block/a unit, an atom (in Democritus'

sense), is used for designating things that do not behave di�erently in a di�erent

space-time. Only its compositions give rise to something that can be named.

Hence, the extensional feature of tropes is, again, untenable from a machine-

understandability perspective.

In conclusion, tropes, as they are typed, are in a context with their speci�c be-

haviors/roles. Each role/behavior solely represents one aspect of a trope. Rep-

resentations, on the other hand, should encompass all possible states, which are

18 Of course, being yellow is not yellow.
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determined by the possible interactions in a context. Moreover, not only poten-

tial interactions of tropes but also self-reference cannot be represented in a type

theory where tropes are typed. Consequently, the proposed trope and type the-

oretical approach is necessary but not su�cient for machine-understandability.

Tropes are extensional, and any explanation about their whatness goes ad in-

�nitum. If tropes were not extensional, they could be self-referent and atomic.

So, we must invent something new for Data 4.0: non-extensional, viz., untyped

ontological things.

3.5 The Urtrope Theory

We have seen in the above study that type theory is essential for making semantic

properties processable, and further, automatically �nding the types of the types

is essential for machine-understandability. This section lays the foundations for

constructing an ontological type theory that will lead to generating types of

types. At this rate, �rst, how the properties of an untyped system should be

will be examined, then a theory will be presented while preserving the trope-

theoretic ontological structure.

3.5.1 Untyped Formal Systems

A solution for the mentioned issues arises when the tropes are stripped from their

types; however, this is untenable since the aim of employment of a type theory

is to assign types to tropes to make them computational units. Thus, tropes

are dressed representations, in the parlance of Cardelli and Wegner (1985), and

such dresses determine which tropes are to interact with each other: a type

preserves the underlying representation. In the following, we will investigate

type-free property theories that allow naked representations and then lay out

how we should construct an untyped system for machine-understandability.

Type-free property theories are introduced in order that properties can be self-

predicated. (Orilia, 1991). There are two interrelated, but can be separately

suggested, purposes for introducing a type-free property theory. The �rst one
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is developed in order to circumvent Russell's paradox. This issue is signi�cant

for logicians since (1) in a type theory, some assertions cannot be stated, e.g.,

�identity is identical to identity,� within the theory consistently; and (2) theories

that are capable of describing their own semantics can be developed within a

type-free approach (Bealer, 1994). The latter highlights the fact that the system

can be self-re�exive when built on an untyped basis. Moreover, Orilia (2000)

mentions a natural theory of properties that Gupta and Belnap suggest while

dealing with predication paradoxes. According to Gupta and Belnap's natural

theory of properties, predication, �as a `circular concept,' can be captured by

circular de�nitions� (p. 267). That is to say, properties are per se circular,

which is strictly forbidden in a type theory. Besides, Orilia (1991) insists that

the classi�cations and principles in all these works have their own intuitive value,

and their raison d'etre is independent of Russell's paradox.

The second one is adapted in intensional logic, an extended �rst-order logic that

allows quanti�ers to range over terms that may have extensions as their value.

In other words, an intensional logic aims at formally representing intensional

features that related to the distinction between sense and reference (Fitting,

2020). Bealer (1994) underlines that a type-free intensional logic has more rep-

resentational power than a type-theoretical intensional logic, such as Montague

grammar, because a type-free intensional logic can represent not only �our the-

oretical thought and talk - including our theoretical thought and talk about

our theoretical thought and talk� (p. 165). Consequently, either to circumvent

Russell's paradox regarding properties and predication, to construct a system

whose complex properties and relations are built up from simpler properties,

or to construct a formal system that can represent the sense-reference distinc-

tion, a type-free property theory regards properties as untyped in order to be

meaningfully predicated of themselves (Orilia & Paolini Paoletti, 2020). Hence,

freedom of types emerges in a single universe of discourse closed under a variety

of operators.

Previously, we have shown that a typed theoretical framework has superiorities

over a set theoretical framework; and a type-free theoretical framework over a

typed theoretical framework. That is, a framework based on type-free theory
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provides more abstraction so that it represents subtle expressions. The account

starts with the fact that λ x.xx is computable in type-free property theories.

That means, properties can occur in both subject and predicate position (Orilia,

2000). Moreover, in a type-free property theory, entities can be modeled in

various ways. For instance, the number zero can be represented as λ f(¬∃ x)

(f(x)), or as λ fg ∃ x((f(x)∧ g(x)),or as λ fg ∀ x((f(x)→ g(x)), or as λ f(¬∃
x) (I2(f, x)), where where I is instantiation function (Orilia, 1991) (Cf. Orilia

& Paolini Paoletti, 2020). All these representations can be typed.19

Replacing typed properties with untyped ones proposed more abstraction so

that type-free theories play crucial roles in mathematics and natural language

semantics as their foundations, in formal ontology as a handy tool for appli-

cations (Orilia & Paolini Paoletti, 2020; Orilia, 1991, 2000). Besides, untyped

systems are crucial for computation. Cardelli and Wegner (1985, p. 473) state

that

As soon as we start working in an untyped universe, we begin to organize it in
di�erent ways for di�erent purposes. Types arise informally in any domain to
categorize objects according to their usage and behavior. The classi�cation of
objects in terms of the purposes for which they are used eventually results in a
more or less well-de�ned type system. Types arise naturally, even starting from
untyped universes. [· · · ] Untyped universes of computational objects decompose
naturally into subsets with uniform behavior. Sets of objects with uniform be-
havior may be named and are referred to as types. For example, all integers
exhibit uniform behavior using the same applicable operations. Functions from
integers to integers behave uniformly in that they apply to objects of a given
type and produce values of a given type.

Accordingly and counterintuitively, it is natural there be computational objects,

which are unknown to us whether they actually denote entities, that have their

own types (Galmiche, 1990). Thus, a type-free system based on symbolic ex-

pressions is obtained by a type theory interpretation (Galmiche, 1990). That

is, an untyped system provides a level of abstraction where there are unlimited

symbolic expressions; then, symbols turn into types, and types are executed in

a type theory (Cf. Cardelli & Wegner, 1985, p. 473). Creating a new level of

abstraction pertains to creating new types with untyped objects. That is tenable

19 This is where polymorphism arises. So, polymorphism is a natural putcome of emplyig untyped
units.
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since even if we have no idea if the terms denote something, by interpretation,

each typed term is associated with a speci�c expression of the logical theory;

thus, a type-free theory can furnish a basis for typed constructions (Galmiche,

1990).

As mentioned, typed systems guarantee a consistent system, provide expected

properties of data types and operations on objects, impose constraints to en-

force correctness, and preserve precise and indented uses of the representations.

However, untyped systems account for self-reference and contingency; in the

end, they o�er what type systems o�er and more. The objects without content,

then, protect losses in representations. That is to say, for instance, a yellow-

trope should be represented in a contentless fashion, as it behaves di�erently

in two distinct contexts. Speaking of, there may be several yellow-tropes �like

number zero-that is why inde�nite articles are used for tropes. Namely, there

is nothing the x-trope. In the same vein, for instance, there can be several `lo-

comotions.' Each `locomotion' has its own trope composition. Thus, di�erent

contentless units end up referencing the same trope name, and di�erent con-

tentful units can end up referencing the same trope composition name. Thus,

similar to the famous example that `the Morning Star' and `the Evening Star'

both designate the planet Venus but do not share the same meaning: the trope

can have di�erent meanings; viz., di�erent types. As the types determine the al-

lowable interactions, the machine could di�erentiate the intended usage of tropes

by looking at their inner structure and external interactions. Therefore, tropes

must be composed of simpler logically empty units (Cf. Orilia, 2000); in other

words, tropes as types approach must be based on an untyped system.

3.5.2 An Untyped Theory

Here is a list of things essential for trope theory modi�cation.

• Contentless abstraction of entities is required so that their unrestricted

combinations are used to generate contentful entities.
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• Self-reference must be allowable in a machine-understandable system so

that the machine can design and describe interactions between entities in

any context.

• The building blocks must be organized in di�erent ways for di�erent pur-

poses to avoid losing any facts about the world.

• The machine should produce super- and subtypes within a

machine-understandable system. That is to say, the machine can list super-

or subtypes of, say, integer type.20

� �Untyped universes of computational objects decompose naturally

into subsets with uniform behaviour� (Cardelli & Wegner, 1985, p.

473).

The conclusion we reached hitherto is that the way for constructing machine

discovery is in the power of an untyped system. As tropes are typed, so as exten-

sional, we suggest a theory that is based on untyped computational and, at the

same time, non-extensional ontological objects: the Urtrope Theory. The pre�x

�ur-� is borrowed from German that is an equivalent of the pre�x �proto-� mean-

ing that earliest form of, primitive, or original.21 In the urtrope theory, tropes

are compositions of urtropes, which are contentless. In this sense, urtropes are

the building blocks of reality; thus, now we do know the building blocks of the

relation-based ontology. Namely, primitive tropes are compositions of urtropes;

complex tropes are compositions of urtropes and primitive tropes, or primitive

tropes; all the entities are compositions of primitive and complex tropes.

To clarify the theory, consider an analogy to think of urtropes like the strings in

particle physics. The analogy of string theory is not accidental, as the tangram,

allotrope, and isomer analogies. We already know the atoms in an isomer;

geometrical �gures in tangrams. That is, the analogies used for introducing

tropes are also extensional, just like tropes. On the other hand, as we will

20 Those types are generated for semantic processes, not for human conception.
21 The origin of the idea of employing this pre�x to tropes is the set-theoretical notion of urelement.
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see, the existence of a string is only known when it causes the emergence of a

subatomic particle; that is, strings are non-extensional as urtropes. Strings are

one-dimensional entities that construct subatomic particles; then, the string the-

ory describes how the strings constitute the phenomena in the world. According

to the theory, strings propagate through space. However, it is only when they

undergo a particular mode of vibration and/or interact with each other (which

vibrate as well) that they correspond to a particle with speci�c properties such

as charge (Greene, n.d.).

Both the string and urtrope theory promise an intensional or non-extensional

universe. In the string theory, vibrating strings twist and turn in various ways

so that particles occur; in the urtrope theory, urtropes compose in various ways

so that tropes occur. A string twisted in a particular way and vibrating with a

frequency can correspond to a quark; another string twisted in the same partic-

ular way but vibrating with a di�erent frequency can correspond to a photon;

similarly, di�erent compositions of urtropes give rise to di�erent tropes. The

analogy can be summed up with the following illustration, Table 3.1.

Table 3.1: An analogy between string theory and urtrope theory

Strings → quarks→ atom→ molecules→ matter → · · · → world
Urtropes → tropes → entities → facts → context → · · · → world

From the computational perspective, urtropes are ontologically fundamental

units that have no meaning at all. Consider them NULL; Unit or () or void

in C++ in programming language; singleton set in set theory. No information

can be taken from urtropes; there is no elimination; they just exist. For instance,

consider the sequence of 0s and1: 01000011, which has no content at all. This

symbol can represent the integer 67, the character `C,' the 67th decibel level

for a part of a sound, the 67th level of darkness for a dot in a picture, or an

instruction to the computer, such as �move to memory,� or else. Urtropes are

like these 0s and 1s, and their combinations are like constructing a sequence.22

In addition, we know that a letter can be represented with two di�erent symbols

22 Remember that we have not discussed a mathematical model suitable for urtrope and trope
representations.
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in two distinct representation schemas. For instance, 01011010 and 5A represent

the letter `Z,' whereas 5A can also be represented in 0s and 1s.

3.5.3 Interim Conclusion

Generating types of types was the reason for the road that took us to the urtrope

theory. Thus, the primary motivation for introducing urtropes is to de�ne

types with non-extensional ontological things. In other words, the invention

of urtropes is for generating and typifying extensional things.

That an urtrope is non-extensional means, it has no meaning at all. Their

compositions, on the other hand, give rise to extensional things that have no

meaning. Recall that an extensional thing gains its meaning only in a relational

form. Furthermore, the urtrope theory does not specify propositional roles for

urtrope compositions. That is, an urtrope composition does not assign static

roles like a source entity or a relation in a context; a composition can be any of

them. That is because the types can determine the interactions among the tropes

that the machine can assign to tropes: there are axioms, in principle, that de�ne

the operations between urtropes and their compositions, viz., tropes. Hence, as

Cardelli and Wegner (1985, 273) explicitly declare that �[t]ypes arise naturally,

even starting from untyped universes[,]� constructing a machine ontology based

on urtrope theory is absolutely legitimate.

3.5.4 A Machine Ontology as a Self-Representable System

The ontologies in Ontology 3.0 and the models similar to those are incapable of

representing all possible interactions of all entities. As mentioned, an ER-model

represents interrelated entities of a speci�c domain; thus, each ER model is a

domain standardization. ER-models represent entities and relations in a very

rigid, static manner. Similarly, each domain ontology is context-laden, which

means all the entities have speci�c senses/behaviors/roles within the context.

Entities and relations can be labeled di�erently in distinct domain ontologies,

as they might have entirely distinct roles: the context changes, then the roles
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change. Furthermore, we claim that even the upper-level ontologies (ULOs)

are context-laden in the sense that entities are represented in the actualized

domains.23 That is to say, all the possible states of an entity cannot be rep-

resented by the totality of domain ontologies that are constructed on the same

upper-level ontology. One may reject that upper-level ontologies are used as a

schema so that the domain ontologies built on a ULO contain all the possible

interactions of all entities.

We take the risk of repeating ourselves: each domain ontology is constructed

for a purpose; when the purpose of the construction changes, the way the en-

tities are categorized changes. Moreover, all these processes are for actualized

domains. Even if domain ontologies are built on the same ULO, several other

domains are there to be represented. We mean that the machine is destined for

human annotations; we need to liberate humans and the machine from human

annotations that specify semantic properties. Besides, a practical solution used

in Ontology 3.0 and Web 3.0, merging ontologies is not enough to �gure out

the possible roles of an entity: there is a need to process the categories that

categorize the entities. This is required since each categorization determines

a class of roles and whose categorization also determines a new class of roles.

Interactions between the classes expand the semantic properties of entities and

provide a new class of possible interactions.

In Ontology 3.0, we humans need to build another ontology with other cate-

gories to process the categories. However, to process the categories of the latest

ontology, we need to build another ontology whose categories categorize the cat-

egories of the latest ontology. Therefore, no ontology built by the Ontology 3.0

approach can cross the boundaries of the contexts, nor can it �gure out higher

and lower categories. If identifying upper and lower ontological categories is es-

sential for getting rid of boundaries of contexts, then an ontology must be able

to represent itself in its own ontological structure. Because, again, only then can

it go out of context. This is nothing but the ontology itself becomes processable.

23 For details of upper-level ontologies see section Ontology.
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For instance, in order for the BFO to process itself, it needs to be represented

in its own form of representation. However, the BFO cannot be represented in

its representational form.

That an ontology can represent itself within its own representational form signi-

�es that it is processable, just as the contexts it represents are processable. On

the other hand, enabling an ontology processable is not su�cient for naming it a

machine ontology. A machine ontology is also supposed to represent background

knowledge; such a feature, however, requires in�nitely many representations of

the ontology. This is possible only if the representational form of the ontology

is based on an untyped system; otherwise, the ontology is static, just like the

ontologies in Ontology 3.0.24 Hence, the urtrope theory is the foundation for a

machine ontology.

Consequently, the urtrope theory enables an ontology to become a self-representable

system. A self-representable system is a system that can represent itself in the

same way in which it represents. As urtropes bring together in�nitely many

forms, the system can represent itself innumerable by staying within its repre-

sentational form. The self-re�exive feature of the ontology, then, means that

it is processable, and its processability enables possible semantic properties to

be extracted with background knowledge. Lastly, note that the urtrope theory

obliges a machine ontology to let it determine its own semantics (Cf. Bealer,

1994). In other words, syntax and semantics are on the same level of examina-

tion. So, the gap between operating in syntax and making sense of semantics

will disappear. This is a feature of a creative and generative system.

24 Thus, we are speaking of a dynamic picture of the world that cannot be attained by any typed
system used in Ontology 3.0. Sat�o§lu [Yargan] (2017) attacks the alleged feature of dynamicity in
applied ontologies, where she de�nes dynamicity in a domain as the capacity to generate changes. In
other words, a dynamic ontology means that the hierarchical structures are reorganizable according
to a context. She argues that such ontologies are tailored for customers' needs and/or preferences,
for the ontologies are designed for human-and-machine readability. Yargan criticizes Sowa (2010) for
building a `dynamic' ontology on the grounds of polycategorical systems and set theory. Both the
syntax and the semantics are open to conceptualizations of ontology designers, which are devised in
accordance with the application �elds and the customer needs. Ontology 3.0 is not dynamic per se
and cannot be dynamic in theory. Said that a machine ontology is not to be constructed single-use
solutions or humans either: just let the machine itself know what the types are.
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3.6 Ontology 3.0 vs. Ontology 4.0

The primary reason for constructing ontologies in Ontology 3.0 is categoriz-

ing entities of interest. Domain ontologies are built to represent entities and

their interrelations of a speci�c domain, whereas upper-level ontologies repre-

sent overarching categories of entities and their interrelations. These ontologies

are crucial for representing meaning in the machine with tools RDF, RDFS,

OWL, and others.

Domain ontologies can only re�ect the entities of the domain; that is, all the

entities in a domain ontology have �xed roles/behaviors. For instance, a `book'

has di�erent relations with other entities in a library ontology than a school

ontology. In order to represent meaning in reality, it would be cumbersome to

construct domain ontologies, as each domain ontology has its own reason for

existence. So, entities and relations gain their meanings through annotations,

which are the roles/behaviors speci�c to the domain in which they are de�ned.

In other words, all the RDF or OWL classi�cations re�ect just some aspects of

entities and relations.

Can a collection of all these domain ontologies re�ect the world so that the

machine can understand, namely, make a reasonable connection between entities

in Big Data? There is an a�rmative answer that all these ontologies should

be of the same form of upper-level ontologies, which we will visit in the next

paragraph. The answer is negative if the domain ontologies are of di�erent or

not upper-level ontologies. As we have claimed so many times, Big Data o�ers

an open-world view in which an entity can be one of its possible states. However,

there may be some unrepresented roles/behaviors of entities and relations. Their

new interactions emerge when a new entity is introduced in a context. Suppose

such an interaction has not been represented in any domain, which is highly

probable. In that case, the machine cannot relate the roles and make inferences

in the collection of domain ontologies. In addition, none of the Semantic Web

technologies can process metadata. In other words, if it is not represented

separately, the machine cannot relate metadata and make inferences through

them. So, there must be representations of interactions among annotations,
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and another one for the interactions between those representations, and there

can be a need for another. That is to say, not only should the interactions in

a context be represented, but the interactions between the annotations of the

entities should be represented. When this need is expanded to a collection of

domain ontologies, there must be several other representations for metadata and

representations for metadata of metadata. So, for instance, how can the machine

�gure out that a person with long hair can put their hair up with a pencil? The

machine can discover such a role of a pencil when all these representations are

implemented in the machine, which is de�nitely a Herculean task.

Besides, constructing upper-level ontologies cannot be a solution either. A de-

sign of a ULO di�ers in philosophical and implementation aspects. An ontologist

must set their ontological positions beforehand; thus, they need to answer many

questions, such as what an entity is, whether the ontology gives room for the

events, whether there are abstract entities, and whether a time theory should be

based on time intervals or time points. Meanwhile, the ontologist must ponder

on theories of space and time, the relations between entities (which can be ob-

jects and processes, and both), dependency relations, independent entities, and

alike. Determining particular philontological perspectives is crucial for identi-

fying the uppermost categories of both reference and upper-level ontologies.25

Nonetheless, employing these perspectives gives a solid representation of the

reality depicted by humans, who have con�icting world views. If there are no

abstract entities, what is π? Or, is π an independent entity? Which represen-

tation of π is correct? When the machine uses these depictions to `understand'

our reality, we need to wonder whether our depictions are suitable and su�cient

for the machine to make inferences about our realities. As a solution, one can

o�er to build an upper-level ontology of upper-level ontologies. This, however,

is implausible.

Another remark is on the formal languages we use for knowledge representation

and implementation. Ontology 3.0 is capable of representing any entity, from

25 See Sat�o§lu [Yargan] (2015) for detail where she investigates the philosophical aspects of upper-
level ontologies.
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lollipops to Pegasus or metamorphosis. All these entities are represented with a

set-theoretical approach and interpreted with model-theoretic semantics. Now,

suppose that reality was classi�ed and tagged, and we have had perfect domain

ontologies for speci�c applications and the overarching domain-independent on-

tology. Would the mathematics we use for knowledge representation be good

enough for automating reasoning?

Set theory, a �or the�logical foundation for mathematics, has been used as

a medium for dealing with philosophical problems, for instance, by Russell,

Quine, and Whitehead (Simons, 2005). Putting aside all the complexity is-

sues, we need to highlight a severe pitfall in determining ontological structures

with a set-theoretical approach. Set theory cannot re�ect structural di�erences.

Let us compare three di�erent sets: the set of apples, the set of sheep on Ali

Baba's farm, and the set of auto parts. Each collection has its own member-

ship, causal powers, locations, and non-extensional identity conditions (Simons,

2005). That is to say, each has a di�erent ontological treatment that is indepen-

dent of mathematics. For instance, the ontological structure of auto parts has

speci�c interrelations with each other, whereas a bunch of apples does not have

such a complex interrelational web. Set theory is not capable of showing such

a di�erence. Thence, we need to represent the structure of the collections, not

their abstraction.

One may doubt whether classifying, determining the types of relations, and tag-

ging the entities cannot mirror reality in the machine. An a�rmative answer

would be when we would have collections of entities of given types and in given

contexts and/or locations. On the other hand, it is evident that we can list all

such contexts neither in science nor on the Web due to their dynamic nature.

Everything can be an element of a set, but not everything can be a part of a

structure. When we utter about a context, we determine the entities by their

roles/functions or properties, not by their names. Context building requires the

selection of entities by their relations with other entities that play a role in the

context. Set theory cannot provide a foundation for a self-organizational struc-

ture, which is pivotal in knowledge generation. Hence, set-theoretic construction

cannot be a proper method of ontology.
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Boden (2016, p. 39) mentions the tremendous labor of ontology design which is

a present-day Herculean task as follows:

One aspect of [...] lack of understanding is programs' inability to communicate
with (learn from) each other because they use di�erent forms of knowledge rep-
resentation and/or di�erent fundamental ontologies. If semantic web researchers
can develop a highly general ontology, this Tower of Babel situation might be
overcome.

However, Ontology 4.0 challenges this Tower of Babel approach. Unlike On-

tology 3.0, Ontology 4.0 represents everything �objects, relations, and events�

in terms of their semantic properties. In order to talk about autonomous ma-

chines, this approach is necessary. The dichotomy of entity and relations may be

handy for humans to make sense of the world; however, this dichotomy does not

help the machine understand the phenomena. So, from the machine intelligence

perspective, understanding requires �guring out the semantic properties of both

entities and relations. Consequently, the Semantic Web technologies cannot be

used for such a representation.

Ontology 4.0 provides a solution to the open-world problem. Data 4.0 is data

that has a new component, viz., semantic properties, along with its type and its

value. The machine can know which semantic property of an entity is at work

thanks to �guring out interactions among entities in the context. The typing

rules determine the allowable interactions, so the machine can automatically

assign entities' proper roles/behaviors in any context.

Computationally speaking, the mechanism of types of types in Ontology 4.0

allows the machine to �gure out implicit interactions. In Ontology 3.0, types

of types, namely metadata about metadata, is an extra work done after the

context structure is determined. Illustrating types of types in Ontology 4.0, on

the other hand, is inherited from the system. Everything can be decomposed

to their urtrope and/or trope compositions so that all the possible interactions

are unfolded. So, once the context is given, all the interactions, including super-

and subtypes of entities, automatically emerge, and the typing rules con�rm the

appropriate ones. Lastly, the formalization tool of Ontology 4.0, viz., category
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theory, is the theory of structure. It can solve all the pitfalls of the set-theoretical

approach.

3.7 Conclusion

In this chapter, we purported that a trope theory, a philontology, was the most

suitable ontological approach for machine ontology. We have modi�ed trope

theory to select properties according to a context and operate these properties.

Then, we discussed that typifying the semantic properties was essential for pro-

cessing, and we found that intuitionistic type theories were helpful to a certain

extent. However, the fact that the process of typi�cation must be conveyed by

the machine automatically, trope and type theoretical approaches must be recon-

sidered once again. If the ontological basis is constituted upon non-extensional

things, and the computational basis is constituted upon an untyped system,

then a machine ontology can be possible. Consequently, we introduced urtrope

theory as the ontological and computational basis for a machine ontology. So,

we come to the point where we should �nd the appropriate formal theory that

represents urtrope theory and executes the compositions. What formal system

best suits the urtrope theory?
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CHAPTER 4

AN ORCHESTRATION OF THE URTROPE AND

CATEGORY THEORIES

This work claims that there must be a shift towards constructing machine ontolo-

gies, which serve for the machine intelligence. Machines and humans are of dif-

ferent categories, so as their intelligence and their intellectual agency (Zambak,

2014): the way humans interpret the world is di�erent than the machines do

or can do. However, studies in machine intelligence, or arti�cial general intel-

ligence, are focused on how the machine can perform, just like how humans

capture the phenomena, understand the world, communicate with their envi-

ronment, employ reasoning and solve problems, and perform other intellectual

operations. Nevertheless, the machine crunches symbols, the symbols that refer

to things in the world. Thus, being and data must be orchestrated for the ma-

chine. For this reason, we started out to represent phenomena into data, that is

nothing but data within ontology. More precisely, we aim to transfer entities in

a formal realm where syntax and semantics share the same ground. As a result

of our research, we found that if we want to establish a machine ontology, we

need to de�ne the world through relations and represent the building blocks as

contentless beings. Consequently, we assert that formalization of the urtrope

theory is the machine ontology that can realize the machine intelligence and

solve the presented problems/issues of ISW 4.0s.

This chapter will show how the urtrope and category theories are brought to-

gether to create Ontology 4.0; in other words, we will show that category theory

is the formal language of Ontology 4.0.
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4.1 The Urtrope Theory and Representation

This part will explore how the urtrope theory represents the world. Let us

recall its de�nition: Urtropes are the independent building blocks from which

everything else is constructed. As urtropes are [�]ontologically[�]1 independent,

they just exist. So, there are entities (please take an entity as anything that

is an urtrope composition) ontologically dependent on urtropes. Besides, from

a computational point of view, urtropes present an untyped universe, yet their

compositions present a typed universe. So, take that urtropes' being ontological

objects and their being computational objects is one and the same thing.

Tropes, from philontological speaking, are the building blocks of reality; from

the urtrope theoretical perspective, they are urtrope compositions. Accordingly,

in a machine ontology that we propose, trope compositions de�ne all the other

entities. Recall that tropes are n-ary relations, n ≥ 1 and that anything in the

world is to be represented in terms of relations. Thus, anything represented in

the machine is ultimately urtrope compositions. As the ontological aspect of the

world in the machine is settled, then it comes to settle the primary reason for

building a machine ontology: representing reality in the machine. To paraphrase,

the formal representations of facts are trope representations. As the facts are

nothing but relations; thus, a fact is a composition of compositions of tropes.

One step further, a totality of facts gives a context; similarly, a totality of

contexts gives an aspect of the world; lastly, the totality of the aspects of the

world gives all the possibilities. Consequently, everything boils down to urtrope

compositions. So, due to the realization of ISW 4.0s depends on the machine's

ability to operate semantic properties, viz., tropes, we need to formalize this

ontological and computational setting: We need a formal system that operates

on urtropes so that tropes and their n-times compositions become processable.

1 The intext air quotes are used for emphasizing that a machine ontology is spoken of, instead of a
philontology.
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4.1.1 A Formalization Tool for the Urtrope Theory: Category The-

ory

It should be started by saying that none of the formal systems that can be studied

are speci�c to the urtrope theory. Formal systems have their goal to be solutions

to problems in formalization, and accordingly, they all have their own ontological

commitments. So, since there is no formalization system speci�c to the urtrope

theory, we must choose the one that best �ts the ontological commitments of the

urtrope theory among many formal systems. That is, whatever we choose will

not be speci�c to the urtrope theory, and we will choose according to whether

the formal structure can represent the urtrope theory, not what it solves or what

it aims in mathematics.

In investigating a machine ontology, recall that we concluded that everything

that can be said about entities could be said by using relations. There is a

formal theory telling a similar thing: everything can be said about objects can

be said by using arrows. Such a reminiscent seems to signal that we have found

the formal system we are looking for. Without further ado, this theory is called

category theory, and we suggest that category theoretical formalization of the

urtrope theory ensures a machine ontology that realizes ISW 4.0s.

We refer to category theory without mentioning other formal systems since it

provides such a higher level of abstraction that it is regarded as the foundation

of mathematics. Category theory (from now on CT) is the best abstraction tool

to represent the urtrope theory since objects in CT are contentless and non-

extensional. Also, CT has a relation-based approach: everything is represented

from a relation-based perspective. This is precisely in line with the urtrope the-

ory. Nevertheless, we will not use CT as it is. As we use CT to represent the

urtrope theory, we will limit its employment with some axioms and rules. For

example, type forming or concurrency rules require additional principles to CT.

So, we will construct the formalization of urtrope theory with such additions to

CT.
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In the following, we will explore the birth of the theory and then give its math-

ematical de�nition along with some of its essential constructions. Later, we will

talk about how the category theory can be used as a formalization tool for the

urtrope theory. Please, bear with us till the end of this part since an explanation

of an application of such an abstract theory su�ers from a late closure.

4.1.1.1 An Apology for the Urtrope Theory formalized in Category

Theory

As mentioned above, the implementation of the urtrope theory cannot admit

the category theory itself. The introduction of CT and its usage in mathematics

is proof oriented; for this reason, the primary purpose of the usage of CT is

to bring di�erent mathematical theories together and prove things in the best-

known theory/theories. For instance, a complex topology problem can be proved

in algebra, where handling the algebraic objects is more straightforward than

topological ones. So, CT provides a sort of platform where di�erent languages

are translated into a common language in which communication can take place.

However, as CT studies have been done for proof-oriented purposes in math-

ematics, using CT other than studying di�erent theories together is not very

common. That is why CT has no dominance in philosophy, computer science,

modeling, information systems, and alike.

On the other hand, we will employ CT for its prowess in representation power,

resulting from its higher level of abstractions. As mentioned above, CT and the

urtrope theory have the same approach of representing things; however, they

are not the same. CT has di�erent ontological commitments/assumptions that

have nothing to do with the urtrope theory and vice versa. Thus, there will be

particularized axioms speci�c to the urtrope theory and accordingly to Ontology

4.0.
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4.1.2 An Interlude: Abandoning Set Theories

Before we explore category theory, a few notes of caution are in order. We want

to remind and highlight some reasons for abandoning formalizations of set the-

ories and, accordingly, any formal system that depends on set theories. First of

all, a set theory is not an appropriate tool for theory construction, which hap-

pens to permit a framework for any context. Vickers (2010) highlights that a set

theory cannot o�er a theoretical framework; rather, it o�ers contextual model-

ing, where a uniform ontological account of negation and universal quanti�cation

cannot be discussed. Moreover, Simons (2005) states that set-theoretical con-

struction cannot be a proper method of ontology because a set theory has no

natural interpretation as numbers do and because a set theory allows inappro-

priate attributions to properties, such as causal powers. Secondly, a set theory

cannot re�ect any structure of compositions. Simons (2005) criticizes set the-

ory for its maximal promiscuous use of the term `element,' which happens to

combine arbitrary elements. An alleged economy of reduction of entities into

sets causes detriments to ontologies: �everything can be an element of a set, but

everything cannot be a part of a structure.� Thus, any fact about a structure of

a set cannot be exhibited from such an arbitrary collection; so, analogies cannot

be driven, such as an analogy between the solar system and an atom is driven

by their structure.2 Thirdly, a set theoretical approach cannot formalize an un-

typed framework since everything is a set that is extensional in a set theory;

thus, an untyped entity, an urtrope under our usage, cannot be a set.

Further, the very fundamental notion of a set is derived from the notion of el-

ements, which are de�nite and well-distinguished objects of a collection. The

fundamental relation in a set theory is the element relation, viz., being an ele-

ment of, that necessarily requires a distinction between objects and this relation.

On the other hand, we claimed that, for a machine ontology, there should be no

ontological distinction between objects and relations. In addition to this, the ele-

ment relation is inherently not compositional in nature (Healy & Caudell, 2006),

2 That said, category theory is the science of structures.
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on the other hand, the representation of the world in machine relies on compo-

sitions of relations. Finally, although some other reasons can be listed as well,

type theories o�er more abstraction, namely more representational power than

set theories, and the paradoxes of set theories are eliminated in type theories.

To summarize, set theory is not an appropriate tool for implementing machine

ontology. As a �nal note, since Cantor, set theoretical language has permeated

into mathematics, as well as in philosophy, as a lingua franca, besides the fact

that whether a set theory is the fundamentals of mathematics is controversial.3

The purpose of this work, however, is not to discuss the foundation of mathe-

matics or whether topos theory presupposes a set theory; instead is to provide

a formalization that can implement urtrope theory into the machine.

4.2 The Birth of Category Theory

The basic concepts of category theory were born in the 1940s when Samuel

Eilenberg and Saunders Mac Lane were working on the phenomenon of natural

equivalences (Mac Lane, 1998; Ku±, Skowron, & Wójtowicz, 2019). These two

mathematicians constructed some mathematical objects called natural transfor-

mations, functors, and categories (in chronological order) in order to study and

describe di�erent kinds of mathematical structures in terms of their allowable

transformations (Awodey, 2006). Then, they applied their theory of natural

equivalences to study more complicated problems of topological spaces using

tools from abstract algebra. Later on, these auxiliary notions became important

concepts. Then category theory (from now on CT) exceeded being a theory of

natural equivalences and emerged as a conceptual framework that uni�es various

branches (Mac Lane, 1998), if not all of mathematics (Krömer, 2007).

3 For instance,Feferman (1977), Bell (1981), and Hellman (2003) �ercely defend the superiority of set
theory over category theory, whereas Lawvere (1964), Mac Lane (1986), and Lambek (2004) claim
the opposite.
Blass (1984)'s work �The Interaction Between Category Theory and Set Theory� is a good starting
point for comparing these theories.
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4.3 Fundamentals of Category Theory

This part investigates the de�nition of a category and mention some crucial

categorial4 constructions. Then, to provide a �avor of CT, it examines the

category of sets, Set. Let us ful�ll these in turn.

A category, C, consists of objects andmorphisms and a composition law satisfying

identity and associativity axioms. More precisely,

De�nition 6 A category, C, consists of

1. A collection of objects of C, denoted as Ob(C),

2. A collection of morphisms, denoted as MorC(X, Y ), or Hom(X, Y ) signi-

�es that X and Y of the same category, where a morphism5 corresponds

to every pair of objects X, Y of C,
A morphism f of MorC(X, Y ) is denoted as f : X // Y .6

3. For every object X, there exists a morphism MorC(X,X), which called the

identity on X, and denoted as idX ,

4. Given any three objects X, Y, Z of C and morphisms f : X // Y and

g : Y // Z , there is another morphism which is a composition of f and

4 Echoing Goldblatt, we use �categorial� instead of �categorical� as the former emphasizes the intended
use.

5 Morphism has various names: Map, mapping, functions, transformation, and arrow. In order not to
evoke any set theoretical atmosphere (since the term `function' is a reserved term in the set theory),
we disagree with using `function' in CT. The term `map,' according to us, is a generic term, and
the term `transformation' has problems, such as the idempotent morphism does not transform the
state of a dynamic system. Under our usage, the term `morphism' is a categorial generic term that
refers to arrows, functors, and natural transformations. An arrow is a morphism between two objects
of a category; a functor is a morphism between two categories, and a natural transformation is a
morphism between two functors. As such, morphism is used interchangeably with arrow, functor,
and natural transformation.
NB: A relation is a mapping with sense.

6 A caveat to this notation. f : X // Y does not mean that the elements of X are mapped to
the elements of Y according to some rule called f . Rather, it means that there are two objects X
and Y , and a `morphism' called f between them: the morph of X is represented in Y . This is due
to the fact that the primary intentions of introducing category theory were to o�er a language for
stating certain mathematical concepts in abstract nonsense (Biss, 2003, p. 577). Thus, all the known
mathematical notions similar to the notions used in category theory must be set aside, especially the
set-theoretical notions, such as `function,' `being an element,' and alike.
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g, such that f ; g : X // Z . This composition, call h, is also a morphism

of C.7

In order this quadruple to be a category the following laws must be satis�ed:

1. Associativity: For all objects X, Y, Z, and W , and all morphisms

f : X // Y , g : Y // Z , and h : Z //W , the equality f ; (g;h) =

(f ; g);h holds.

2. Identity: For all objects X and Y , and all morphisms f : X // Y , the

equalities idX ; f = f and f ; idY = f hold.

This is the de�nition of a category, which can be used for constructing or exam-

ining a category.8 In the following, categories of some mathematical structures

are given for gaining familiarity, which are taken from Awodey (2006), Mazur

(2008), Adámek, Herrlich, and Strecker (2004), Biss (2003), and Roman (2017).

The category Mon of monoids, whose objects are monoids and whose arrows

are monoid homomorphisms,

The category Grp of groups, whose objects are groups and whose arrows

are group homomorphisms,

7 The morphism composition can be showed as g ◦ f , (f, g), or g · f . We use diagrammatic order
�f ; g� to ease reading and make distinct notation than the classical orders.

8 In order to specify a category, the following must be speci�ed (Lawvere & Schanuel, 2009, p. 166):

1. The objects,

2. The morphisms,

3. Which object is the domain of the each morphism,

4. Which object is the codomain of the each morphism,

5. Which morphism is the identity of each objects,

6. Which morphism is the composite of any two composable morphisms.

After these are speci�ed, the accurate compositions of morphisms must be veri�ed. Further, the
following laws must be checked.

1. The identity law

2. The associativity law

If all of these are satis�ed, then the construction is a category.
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The category AbGrp of abelian groups, whose objects are abelian groups

and whose arrows are group homomorphisms,

The category Top of topological spaces, whose objects are topological

spaces and whose arrows are continuous functions,

The category SmoothMan of manifolds with smooth maps, whose objects

are manifolds and whose arrows are smooth maps,

The category Rng of rings, whose objects are rings with unit and whose

arrows are ring homomorphisms,

The category Field of �elds, whose objects are �elds and whose arrows

are ring embeddings,

The category Set of sets, whose objects are sets and whose arrows are

functions,

The category Poset of groups, whose objects are partially ordered sets and

whose arrows are monotone functions,

The category Rel of relations, whose objects are sets and whose arrows

are binary relations; viz., cartesian products,

A deductive system T , whose objects are formulae and whose arrows are

proofs,

The category Aut, whose objects are automata and whose arrows are sim-

ulations.

4.3.1 The Category of Sets

The categorial framework can be applied to any branch, and the subbranch

of mathematics is just exempli�ed above. The most crucial point to consider

while applying this framework is �guring out how a theory's concepts and their

combinations can be expressed in terms of morphisms and compositions of mor-

phisms (Lawvere & Schanuel, 2009). In this part, we will explore the category

of sets, denoted as Set or S. The purpose of choosing this category is twofold.
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The �rst is its overt recognition: set theory as a mathematical branch is famil-

iar even to a high school student. As such, it is an example of a quick opt,

and there would not be any extra e�ort to contemplate the category theoretical

properties and constructions. The second one is that Eilenberg and Mac Lane,

the forbears of category theory, introduced categories as an auxiliary purpose

to construct concepts of functors and natural transformations that are in set

theoretical background and language (Marquis, 2021).

The category of sets consists of sets and functions and a composition law, and

satis�es identity and associativity axioms. More precisely,

De�nition 7 The category of sets, Set or S, is a category of which

1. Objects are sets,

2. Arrows are functions between sets,9

3. Composition of arrows are composition of functions,

4. For every set X, there exists a function, called the identity function on X,

and denoted as idX ,

Associativity and identity laws are satis�ed, since compositions of functions are

associative, and for any function f : X // Y , the equalities idX ; f = f and

f ; idY = f hold.

Informally speaking, contrary to a set theory, the elements of sets are not of

concern but rather the functions between the sets in Ob(Set). However, this

does not mean that the elements of a set cannot be shown. As the key of CT,

everything is expressible in terms of morphisms so that the elements of a set

are to be shown by morphisms.10 Adequately, there are other facts about sets,

9 In some settings, an arrow of Set can be de�ned as a triple (X; f ;Y ), where X and Y are sets
and f is a function from X to Y . As such, other morphisms, such as identity arrow (X; idX ;X),
are indicated as triples. However, this notation becomes more complicated when indication further
categorial constructions.

10 The work is an intricate one, so we will not fully recount it here. Su�ce to say that the very �rst
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such as the empty set, set intersections, or set products. All of these, some of

which we will see below, are translated into a categorial framework; for instance,

the empty set is a particular object of Set called an initial object,11 and any

singleton is a terminal object of Set.

4.4 Further De�nitions and Some Categorial Constructions

Hitherto, functors, natural transformations, or initial objects were mentioned

without their de�nitions. In this part, we will examine the categorial concepts

from the beginning, then show the important constructions less formally.

4.4.1 Morphisms

The networks of relations determine the entities in the world, says Rovelli (2021),

as the network of morphisms determines the mathematical objects in category

theory. A category is characterized only by its morphisms. We can even say

that the networks of morphisms can replace the objects (Mazur, 2008). Just as

relations in real life help us understand and learn more about the phenomena,

CT helps us understand and learn more about mathematical objects by looking

at how they are related to each other. Further, it is legitimate to claim that

morphisms are the primitives of CT as they are the only information source

about any mathematical object. In other words, the collection of morphisms to

and from the objects and the algebra of composition of morphisms specify the

objects and pave the way for discovering properties of objects (Krömer, 2007).

thing to do is to transform the set-theoretical concept of `element,' which is considered a singleton
set. That is, any element of X is to be represented as a singleton set. Then, when a function that
maps each singleton set to its corresponding element in X is found, it can be represented in terms
of CT. To make the long story short, the elements of a set can be expressed in terms of morphisms,
which are points.

11 Indeed, the empty set is the initial object of Set. This point has the utmost importance in CT,
which will be explained in the following paragraph.
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4.4.2 Objects

The objects of a category play a minor role, as a category is characterized by its

morphisms, not by its objects. The properties of an object cannot be discovered

by studying the object. Thus, the only thing of concern about objects is their

existence, and the only thing of concern about categories is �the list of morphisms

between all pairs of objects and of the rules for composing these morphisms�

(Biss, 2003, p. 576). Well then, what is an object when �no object is known in

complete isolation from others�? (Peruzzi, 2006).

Eilenberg and Mac Lane admit the secondary role of objects, which can even

be omitted entirely (Marquis, 2021). As a matter of fact, there is no explicit

de�nition of it, but rather an implicit one: objects are characterized by the

morphisms going in them and/or the morphisms coming out of them, and up

to (unique) isomorphisms (Marquis, 2021). Krömer (2007) claims that the term

�object� has traditional uses outside mathematics, so its connotations in every-

day language and philosophical discourse must be surveyed. The most familiar

one is set theoretical use, which often goes with the predicate �is an element of.�

Or, in everyday language, an object is an entity with an extension. However,

in CT, a mathematical construction is an object that �shrinks to a point which

cannot be penetrated and of which one knows only the traces left by its inter-

action with other objects� (Krömer, 2007, p. 218). Only through the means

of the constitution can an object be characterized; thus, we should unlearn the

traditional semiotic tenets. As we could not refer to an object but rather know

it from the traces of its interactions, an investigation of an object is open-ended;

in other words, such traces give only some aspects of the object. As such, any

information about an object is present in the totality of the morphisms arriving

at, and departure from the object (Krömer, 2007). Now, we arrive at one of the

most crucial aspects of CT: the morphisms arriving at and departure from an

object enable process objects without knowing their internal structure. It should

be clear that the objects of the theories, e.g., a set theory, are not the objects

of CT; in other words, the theories are the objects of CT, and the objects of

the theories are of no concern in categorial constructions (Krömer, 2007). Then,
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CT deals with the objects of the theories without penetration, namely, without

tearing them apart or interrupting them (Lawvere & Schanuel, 2009).

An object of a category is characterized in categorial terms. A vital challenge

of this process is that objects are de�ned without referring to their internal

structure. For instance, in the category of sets, the empty set must be de�ned

without referring to its set-theoretical structure, or, say, the empty set must

be de�ned without referring to elements. As highlighted before, an object is

characterized by the morphisms arriving at and/or the morphisms coming out

of it, morphisms of the respective category. There are universal notions in CT,

which are determined by speci�c properties of morphisms that satisfy certain

properties of the category at hand. For the case of empty set in Set an initial

object, which is a universal construction, is of Set refers to the empty set. Hence,

the objects of theories can be described in terms of universal constructors, such

as limit, pushout, and others.

In addition to all, consider the illustration. In the category of sets, the sets,

namely the objects of the category, may have precise ways of a�ecting each other,

special characteristics, and are internally attached together, such as a set and

its power set, the empty set, and the intersection of two sets, respectively. The

arrows of Set not only allow construction and study of such sets and operations

but also enable comparing these sets and operations without penetrating the

sets. Moreover, by applying speci�c functors, we can even study and compare

these sets without interrupting them; for instance a speci�ed forgetful functor

between Top and Set can be used for comparing two sets of Set.

The implicit de�nition of an object in CT reads, �objects are characterized [...]

up to (unique) isomorphism.� In other words, almost all mathematical objects

can be described in various ways, some of which are equal up to isomorphism

(Biss, 2003). This statement is directly related with the use of indeterminate

article for categorial constructions; e.g. a limit or a terminal. Consequently, for

instance, there is no object as the natural numbers, rather there is the concept

of natural numbers. Mazur (2008) de�nes natural numbers as an object is an

initial object of the Peano category; the concept of natural numbers, on the other
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hand, unambiguously given in each category. In other words, each category as a

context determines how this concept will be interpreted in a de�nite way. Thus,

theoretical constructions are unique for the theory but not for CT: objects can

have other representations with di�erent categorial contractors. For instance,

there is �the� unit element for multiplication in algebra, but there is �a� unit

element for a categorial construction for multiplication in algebra in CT. Put

another way; a given object can be substituted by its isomorphic object in any

situation that it is categorially expressible (Krömer, 2007).

Said all, a caveat is in order. The identity criterion is fundamentally distin-

guished between category theory (CT) and set theory (ST). In ST, mathemati-

cal objects are identical if and only if they satisfy the axiom of extensionality. In

contrast, in CT, as we mentioned just above, the mathematical objects are iden-

tical, or say equal, up to unique isomorphism. A crucial di�erence between CT

and ST arises from thinking of mathematical objects as types instead of de�ning

them uniquely and giving their reference directly (Marquis, 2021). Mathemat-

ical objects as types can be de�ned in di�erent senses in di�erent categorical

contexts, and each sense is taken as a term. Moreover, the type-term relation

cannot be taken as a membership relation. So, again, there is nothing like the

natural numbers, but the concept of natural numbers:12 N is a type of initial

object type in the category of Peano or the pairs of (ω, F ) in the category of

topological spaces.13

Here are some counterintuitive facts about CT. For instance, some characteristics

mentioned earlier of CT admit to dynamic ontologies, in which an object and an

arrow can be equal up to an isomorphism. That is, a complex construction in

one category has its own ontological status, but this is not written in stone: it

can shrink to a simple object in another category (Krömer, 2007). Alternatively,

being property is not an absolute ontological status; in one categorial setting,

12 Similarly, there is nothing like the set theory. Instead, there is a set theory and the category of
sets.

13 The explanation of ω and F is omitted for the sake of simplicity. Those who want to learn more
about limit spaces and �lter spaces and how the natural numbers are de�ned in these structures
can refer to Asperti and Longo (1991), pp. 55�58, pp. 103�104.
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it might have characteristics of a property, and in another setting, of an object.

Or, consider this: morphisms of a category can be considered objects of another

category, or objects of a category can be considered morphisms of another.

These seem untenable at �rst glance, but in CT, they all sum up to a �strategy

of relativization� that paves the way for dynamic representations. Krömer (2007,

pp. 219�220) expounds all these as

[G]iven objects can be considered in extension in one category and as points
in another; in some cases they can be categories themselves and simultaneously
objects of a category and arrows of another and so on, where in every case
another type of �rapports entre les choses� is accentuated.

Thus, ontological statuses of mathematical entities are not rigid but rather vary-

ing, and they hinge on the chosen level of thematization. The distinction between

objects and morphisms is �exible since a relativization strategy determines the

most appropriate construction. So, what are the natural numbers? Although

there is the concept of natural numbers, there are various natural numbers con-

structed in di�erent categories; they can be a morphism, a category, or an object.

4.4.3 Functors

Although the term `functor' is used several times in this work, we su�ced to

de�ne it as a morphism between categories. Now, we will give its mathematical

de�nition and discuss its importance in theory.

De�nition 8 A functor, F : C // D , is a morphism between categories C
and D, such that, for any object X of C, there is a well-de�ned F (X) of D, and
for any arrow f : X // Y of C, there is a well-de�ned morphism

F (f) : F (X) // F (Y ) between corresponding objects of D.
The compositions and identity morphisms of C must hold the corresponding com-

positions and identity morphisms of D.

More precisely, let X, Y and Z be objects, and f : X // Y and g : Y // Z

be arrows of C. If F is a functor between categories C and D, the following must
be hold.
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1. F (f : X // Y ) = F (f) : F (X) // F (Y ) ,

2. F (f ; g) = F (f);F (g),

3. F (idX) = idF (X)

Figure 4.1: F preserves composition and identity.

CT is often labeled as the theory of functors �the structure preserving mor-

phisms between categories� via which structures are studied (Krömer, 2007).

Indeed, while Eilenberg and Mac Lane were working on natural equivalences,

they came up with the idea of functors long before the concept of categories.

However, in order to de�ne them formally, the mathematicians needed to intro-

duce categories before the functors. There are various types of functors, such

as identity, forgetful, faithful, representable, amnestic, embedding, homology,

cohomology, or homotopy K-theory (Marquis, 2021). Namely, the studies of CT

can be boiled down to typifying functors. Nevertheless, what makes them so

unique?

Functors are special since they reveal and/or transfer and/or interpret knowl-

edge between categories. For instance, they can be used as a vehicle to transfer

problems from one branch to another, where solutions are often easily reached.

The facts of abelian groups help solve some problems in topological spaces, and

the work is conveyed by cohomology -a kind of functor- reveals the structural re-

lation between these categories (Adámek et al., 2004; Marquis, 2021). Functors

also provide integrity of structures, as Spivak (2015) utters �a functor between

two categories is also required to align the multifaceted relationships that ex-

ist within the categories� [italics in the original]. More generally, functors are
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responsible for revealing how di�erent kinds of structures are related to one an-

other; more speci�cally, they are to o�er new knowledge about the structures

by forming and layering them. In other words, they represent one theory in

another: any structural constraints expressed in a category can be translated

into another category by functors. Once a category is known, it can be used to

reveal the facts of an unknown category via a systematic study of the functors

between them (Biss, 2003): functors represent one theory (category) in another

(category), such as group theory can be represented in topology by creating

functors. Since the structure of the known category is preserved through the

functors, the structure of the unknown or little-known category becomes elu-

cidated. Hence, the known, the unknown, and the little-known among various

categories are used for understanding the categories themselves.

For the time being, make do with the following fact, which we will visit in

the coming parts. In the programming realm, functors correspond to the type

operators in generic programming, that is, indeed, functorial programming, in

which algorithms are written in terms of types (Harper, 2016). Thus, types are

speci�ed functors and categories express type compositions.

4.4.4 Natural Transformations

Natural transformations are structure-preserving morphisms between functors.

According to this de�nition, it seems that functors are objects, and the natural

transformation between them is a morphism. Using the very basics of categorial

algebra � of objects, arrows, and functors-the de�nition of natural transforma-

tions was introduced, even if the �rst intension of the work of Eilenberg and Mac

Lane was to de�ne natural transformations formally. That is, a natural trans-

formation is a special kind of morphism between morphisms. More precisely,

De�nition 9 Given two categories C and D, with two functors between them,

F,G : C // D , there is a morphism, called a natural transformation,

η : F // G .
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C D

F

G

η

For each object X of C, there is a morphism ηX : F (X) // G(X) of D. Thus,
the following commutes:

X F (X)

G(X)

F //

G

��

ηX

��

The power of natural transformations lies in their ability to preserve structures.

The focus is on the structures of functors, a novel idea for non-categorially ori-

ented minds. To unpack the idea that morphisms have structures, consider that

a natural transformation reveals the structural relation between the functors by

forming and layering them. Functors are objects whose characteristics are deter-

mined by natural transformations and are to be processed just like the objects of

a category. Nevertheless, natural transformations do more than provide means

for thinking and analyzing the functors: they provide myriad interpretations

from multiple perspectives. That is, they can also o�er many studies on the

categories in question by providing di�erent levels of abstraction. This feature

is the supreme power of natural transformations.

De�nition 10 The category of functors, Fun(C,D) or DC has as objects the

functors, F : C // D , and as morphisms the natural transformations between

the functors, η : F // G .

4.4.5 Duals

Another concept that is of utmost importance in CT is duality. In its simplest yet

most straightforward explanation, a dual is obtained by reversing the directions
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of all morphisms of a construction. The result of such a simple modi�cation

is, indeed, enormous. Adámek et al. (2004, p. 12) praise the duality in these

words: �[...] in category theory the �two for the price of one� principle holds:

every concept is two concepts, and every result is two results.� Healy (2010,

p. 494) states, �half the theorems of category theory are obtained for free.�

Well, what has a dual? A category has a dual when the direction of arrows

is changed, in other words, C and Cop have the same objects and arrows, yet

they have reverse directions. A property has a dual; for instance, the dual of

an initial property is a terminal property. A statement also has a dual, such

that if it is true in C, then the dual of the statement is true in Cop. Finally, the

Duality Principle for Categories states that whenever a property P hold for all

categories, the property P op holds for all categories.

The duality principle allows us to move between the duals without loss of in-

formation and simultaneously investigate the same structure from di�erent con-

structions. For instance, the pushout diagram allows us to examine a structure

as a bottom-up construction, and the pullback diagram does it as a top-down

construction (Neuman & Nave, 2008).

4.4.6 Universal Properties and Constructors

Category theory helps us understand and learn more about mathematical ob-

jects by investigating how they are related to each other within a category, mak-

ing analogies between di�erent categories, investigating facts about a category,

probing the more complicated constructions, and many others. Additionally,

category theory can be thought of as a language describing similar phenom-

ena, or properties, occurring in entirely di�erent mathematical theories. The

categorial de�nitions o�er abstractions over mathematical theories to study the

similarities and relations among distinct mathematical structures and theories.

Such abstractions enable a concurrent investigation of similar properties in dif-

ferent mathematical settings. For instance, the property of product is found in

many theories, e.g., sets, groups, and vector spaces. Although a product con-

struction is di�erent in the mentioned theories, the property of product stays
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the same; it is CT that studies such properties, namely universal properties, and

speaks of such universal constructions. Let us unpack universal properties in

what follows.

The concept of universal property is no less important than the foundational

concepts of category, functor, and natural transformation. However, universal

properties are not particular to CT; for instance, product is also considered a

universal property in algebra and set theory. But, the abstraction of universal

properties is particular to CT: CT studies universal properties to point out

similarities between di�erent mathematical theories, some of which may seem

totally irrelevant. In other words, universal properties, such as product, tensor

product sum, or quotient, have their own constructions in di�erent theories,

and they all behave similarly in those theories; what CT does formalize such

similar behaviors, or say, provides a template of a universal property, upon which

properties of other objects can be recognized. Now, let us explain universal

property with the following example.

As mentioned before, product is a universal property in mathematics. In set

theory, it is de�ned as the set of ordered pairs, (A × B) = {(a, b)|a ∈ A and

b ∈ B}; in group theory it is de�ned just like in set theory with further group

theoretical characteristics, such as the operations in each group is preserved

component-wise in the product; such that, G is a group with �◦� operator, and
H is a group with �⋆� operator, (G×H) is the ordered pairs (g, h) and binary

operation is de�ned as (g1, h1) · (g2, h2) = (g1 ◦ g2, h1 ⋆ h2). Product can be

constructed in another mathematical theory as well. Said that, the concept of

product is abstracted in CT, and it is de�ned as a template ready to be applied in

any mathematical theory. So, the property of product is constructed in the most

general form. As everything in CT is de�ned in terms of morphisms, product

is not an exception. There must be a unique arrow that de�nes product, such

that the construction of product with such a unique arrow must be true in any

category.

De�nition 11 A product of two objects A and B of any category C is an ob-

ject of C with two arrows, generally called projections, π1 : A×B // A and
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π2 : A×B // B such that for any object Xof C with f : X // A and

g : X // B , there is a unique arrow h : X // A×B such that h; π1 = f

and h; π2 = g, and such that the following diagram naturally commutes:

X

A×B A

B

π1

//

π2

��

h

""

f

&&

g

��

So, the product of two objects (e.g., sets, groups, and topological spaces) is

speci�ed by the property. What is `natural' in this composition is that if h

corresponds to f and g, and h1 : Y // X is an arrow, then h1;h corresponds

to h1; f and h1; g, so that h1 and h are isomorphic. Moreover, suppose that there

is an object P with arrows π1 : P // A and π2 : P // B . For any pair of

arrows f : X // A and g : X // B , there is unique arrow h : X // P ,

which makes the diagram commute (nLab authors, 2021c). And consequently,

A×B and P are equal up to the unique isomorphism. Thus, product is uniquely

determined by categorial terms.

That said, the existence of isomorphism is necessary but insu�cient for the

constructed object to be a universal property. Nevertheless, before moving on,

let us give the categorial de�nition of isomorphism here.

De�nition 12 Let X and Y are objects of C. They are called isomorphic if there

is a morphism f : X // Y and g : Y // X of C, such that f ; g = IdX and

g; f = IdY , f and g are said to be isomorphism.

Accordingly, the equality of two objects of a category is studied by determining

if there is a speci�c isomorphism between the objects. So to say, from the def-

inition above, X and Y are equivalent objects of C; from the product example,

A×B, X, and P are isomorphic, or equal objects, when all above-stated arrows
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commute. Consequently, universal properties are always unique up to isomor-

phism. A caution is here: there are some universal properties that do not exist in

some theories; for instance, partial order categories without smallest and largest

objects do not have universal properties. Then, let us turn back to the issue of

why isomorphism is not su�cient for the existence of universal property. For the

isomorphism to be `natural,' universal properties are formulated by `universal

morphism.' When objects A and B are universal objects (this is another way

of telling that these objects have universal properties), then there is a unique

arrow between these two that corresponds to P . Indeed, this unique arrow,

called universal morphims, emerges the property. Hence, a universal property is

a property that is satis�ed by a universal morphism. More precisely,

De�nition 13 A universal morphism from A to F is a pair (X, h), where X is

an object of C and h is an arrow h : A // F (X) , such that for every arrow,

g : A // F (Y ) , of D, there is a unique arrow of C, f : X // Y with g =

h;F (f).

Thus, objects with a universal property are de�ned up to a unique isomorphism

in the appropriate categories. This points out that some of the objects of a cat-

egory are characterized by means of universal properties. Further, the de�nition

of a universal object also de�nes a universal property, and a unique morphism

indeed de�nes a property. Here comes new information about such objects: a

universal object is either an initial or terminal object. Alternatively, if an ob-

ject satis�es either initial or terminal property, it is called universal. Strictly

speaking, a universal object is an initial or terminal object depending on the

theorem.

De�nition 14 An initial object,A, of C is an object with the property that given

any object X of C, there is a unique arrow iX : A // X of C.

De�nition 15 A terminal object, A, of C is an object with the property that

given any object X of C, there is a unique arrow iX : X // A of C.
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When the de�nitions are examined closely, one can recognize that initial and

terminal objects are duals of each other. Thus, a universal object is a dual of

another universal object. A category might have more than one initial/terminal

object. Yet, there is a unique isomorphism between initial/terminal objects, and

what matters is not the objects by themselves but the specialty of the uniqueness

of the isomorphism. As we noted before, a category does not necessarily have

a universal object or objects. For instance, the category of topology has the

empty space as the initial object and the one-point space as the terminal object;

the category of rings has an initial object Z, yet has no terminal object; the

category of �elds has neither an initial nor a terminal object (Biss, 2003, p578).

A universal construction is the de�nition of a universal object. To be more pre-

cise, it is a construction in the sense that the object's existence must be shown

�rst, and then the object is characterized by a universal property. So, while

constructing the object, the de�nition of the universal object is shown simulta-

neously. The importance of universal constructors is their role in providing con-

ceptual uni�cation of di�erent mathematical theories (Peruzzi, 2006). To name

some universal constructors, CT includes representable functor, adjoint func-

tor, limit/colimits, end, Kan extension, and dependent sum/dependent product

(nLab authors, 2021c).

We have spoken of universal properties and constructions at length since they

are as essential as the basic notions of category theory due to their tremen-

dous bene�ts. Firstly, universal properties are everywhere in mathematics. As

such, once its abstract properties are illustrated, a universal property provides

knowledge about the objects that satisfy it. In other words, universal properties

transfer the knowledge of an object �satis�es a universal property- in a theory

into an object � also satis�es the same universal property- in another theory,

so there would be no need to study objects further. For instance, the universal

property of initial object is known to be satis�ed by the empty set in set theory.

What we know about the empty set can be transferred to an initial object of

any category at hand; without proof, we say that �such and such characteristics

belong to this object,� as we know that characteristics from the empty set. For

instance, an initial object of the category of set is the empty set, whose proper-
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ties in the categorial sense are the same as the initial object of the category of

matrices. This bene�t brings us to the second one: as universal properties de�ne

objects up to a unique isomorphism, it su�ces that two objects satisfy the same

universal property to show that they are isomorphic. Thus, there would be no

extra labor for investigating isomorphism within a theory and among theories.

For instance, when that the empty set of Set and the ring of Z of Ring are both

initial objects is known, then it is also known that they are isomorphic. Accord-

ingly, and thirdly, objects can be studied from various perspectives thanks to

universal properties. That is to say, a construction can be de�ned and investi-

gated in many di�erent ways. For instance, open or closed sets, neighborhoods,

convergent �lters, or closure operations can de�ne topological spaces (Adámek

et al., 2004). The next bene�t is that universal properties save us from dealing

with, or getting lost in, details of a construction. For instance, suppose that two

objects and an operation between them are de�ned in a theory. If these satisfy

the universal property of product, the new object, namely the construction, be-

comes free of complicated and messy proofs. That is, if a construction at hand

satis�es a universal property, then the details of the construction can be forgot-

ten, and/or using universal properties make proofs shorter. Finally, universal

properties bolster up de�ning new constructions. For instance, the product of

sets satis�es the universal property of products, and its de�nition in a categorial

setting is just the implementation of this universal property (Cf. nLab authors,

2021c). Further, by choosing a category whose universal properties are already

acknowledged, a totally new category can be constructed.14 That is, a new cat-

egory can be constructed with the aid of universal objects in categories already

known at full length. Consequently, universal properties and constructions help

to �detect analogies and connections to familiar �elds, to organize [a] new �eld

appropriately, and to separate the general concepts, problems and results from

the special ones, which deserve special investigations� (Adámek et al., 2004, p.

12).

14 This is what we can do while formalizing urtrope theory.
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4.4.7 Adjoints

In the previous part, it is noted that adjoint functors are universal constructors

that provide conceptual uni�cation. Of various types of functors, adjoints have

a crucial place for CT; even they can be called �the cornerstone� of CT (Marquis,

2021). The cruciality is twofold: adjoints help investigate not only mathematical

theorems but also category theory in itself. Let us start with its formal de�nition

before a journey to investigations with adjoints.

De�nition 16 Let F : C // D and G : D // C be functors.15 F is the left

adjoint to G and G is the right adjoint to F , if there exists natural transforma-

tions η : idC // FG and ξ : GF // idD ,16 such that the compositions are

the identity natural transformations:

G GFG

G

G;η //

idD

��

ξ;G

��

F FGF

F

η;F //

idC

��

F ;ξ

��

Peruzzi (2006, p. 425) explains the �rst part of cruciality of adjoints as

What is central to any foundational project proper is the role of universal con-
structions that serve to unify the di�erent branches of mathematics, [...] Such
universal constructions are best expressed by means of adjoint functors and rep-
resentability up to isomorphism.

Moreover, Awodey (2006, p. 179) moves the state of cruciality to another level:

The notion of adjoint functor applies everything that we have learned up to
now to unify and subsume all the di�erent universal mapping properties that

15 Generally F is de�ned as a functor from D to C, for ease of reading. Here we adhere our consistent
usage of F : C // D .

16 Functor compositions are di�erent that arrow compositions. The arrow compositions are denoted
as f ; g in this work, so as functor compositions F ;G. However, when an object is of concern things
need to change. For instance, an object, X of C under F is of D �that is F (X). Then, this object
can be transmitted by G into C, then the corresponding object is G(F (X)). Thus, god is in the
details.
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we have encountered, from free groups to limits to exponentials. [...] Indeed,
I will make the admittedly provocative claim that adjointness is a concept of
fundamental logical and mathematical importance that is not captured elsewhere
in mathematics.

The introduction of adjoints17 has expanded horizons in CT. The applications of

CT realized that adjoint functors could de�ne many fundamental mathematical

notions (Awodey, 2006). For instance, �rstly, consider the universal construc-

tors in CT: every universal constructor can be de�ned in terms of adjoints.18

All kinds of products, limits, and pullbacks, namely, all the fundamental con-

structions and their duals, can be described as adjoints (Peruzzi, 2006; Marquis,

2021). Furthermore, mathematical theorems can be described as adjoints, and

even more, adjoints adhere to syntax and semantics: logical operators can be

described as adjoints (Marquis, 2021). More precisely, adjoints can de�ne propo-

sitional logical operations; and further, quanti�ers as adjoints and introduction

and elimination rules as the adjoint rules form a complete deduction system

for quanti�cational logic (Awodey, 2006). But this is not the end of the story:

adjoints also formulate a Heyting algebra and de�ne its quanti�ers! That is, ad-

joint inference rules formulize the intuitionistic propositional calculus (Awodey,

2006). That is to say, di�erent logical models can be de�ned in terms of adjoints.

A second craft that adjoints bestow is that every free construction can be de-

scribed as adjoints; in other words, free objects are characterized by adjoints

(Peruzzi, 2006). A construction of free functor, a widely used free construc-

tion, can be an example here. Actually, the star of this example is a forgetful

functor, denoted mostly by U . A forgetful functor is a functor that �forgets�

the structure of the category that relates to the other category. That means U

still preserves the structure of the �rst category yet forgets extra structures that

the second category does not have.19 For instance, there is a functor U from

the category of complex vector space to the category of real vector space, such

17 Although it is controversial, the introduction of adjoints is credited to Kan.
18 We will not distinguish between left and right adjoints unless otherwise stated.
19 One may use the notions of domain and codomain in order to specify the categories. Nevertheless,
we believe this usage is set-theoretically loaded, which we avoid.
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that U : VectorC // VectorR . U �forgets� any operation by i, since VectorR

knows nothing about imaginary numbers (Biss, 2003). Or, there is a functor U

from the category of groups to the category of sets, such that U : Grp // Set .

U forgets the group structure and the fact that arrows of Grp are group homo-

morphisms. The multiplication law is an extra structure in group theory that is

not in set theory. The forgetful functor forgets this extra structure as well. That

said, U is elementary; namely, it is trivial and non-informative. Said all, but

what is the point of applying a forgetful functor and its relation with adjoints?

Adjoint functors can be taken as conceptual inverses (Marquis, 2021). In other

words, a left adjoint can be considered the conceptual inverse of the associ-

ated right adjoint. As mentioned above, adjoints can describe universal prop-

erties; as such, there is a functor, which is a dual of forgetful functor, which

can be described in terms of adjoints. Here comes free functor, conceptual in-

verse of forgetful functor.20 Eventually, if a set A is given, there must be a

way to de�ne group structure in a non-isomorphic means, as there is a con-

ceptual inverse of a forgetful functor from Set to Grp. Thus, this functor is

to construct a group �freely� from the given set A. In other words, F (A) is a

group. And, f : A // B of Set corresponds to the group homomorphism,

F (f) : F (X) // F (Y ) of Grp. As, U and F are not isomorphic, rather they

are conceptual inverses, for the given set A, U(F (A)) cannot yield the initial set

A. On the other hand, there is a fundamental relation between A and U(F (A)):

for an object, G of Grp, there is a morphism called the unit of the adjunction21

η : A // UF (A) such that given any function g : A // U(G) , there is a

unique group homomorphism h : F (A) // G such that η;U(h) = g. More-

over, ξ : F (U(G)) // G , called counit of the adjunction satisfy the following

universal property: for any group homomorphism g : F (A) // G , there is a

unique function h : A // U(G) such that F (h); ξ = F (U(G)); g. Thus, h

that is a group homomorphism is de�ned freely in terms of adjoints. Conse-

20 A caveat is needed: one must be aware of the fact that Grp and Set are not isomorphic, or say,
U cannot have an inverse functor, as it forgets some structure of groups, that do not persevere in
Set. Forgetful functor has conceptual inverse, which is free functor.

21 A pair of adjoint functors.
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quently, adjoints determine an object or construction in terms of its relation

to other given constructions. This is another way of saying that most of the

constructions are just adjoints (Awodey, 2006).

The mentioned facts and the beauty of adjunctions can make them the focus of

CT (Awodey, 2006), with their irresistible feature being �determination through

universals� (Ellerman, 2007). Such a feature is not limited to mathematical

theories: a third crucial aspect of adjoints is their ability to determine the struc-

tures of category theory within itself. In other words, the notion of adjunction

has internally developed CT as giving rise to nontrivial questions about the the-

ory in itself (Krömer, 2007). For instance, adjoints apply to provide conditions

for the existence of limit in a category. Consequently, the notion of adjunction

plays a central role in solving issues raised within CT, as well as the issues raised

within mathematics, so that it helps CT develop itself.22 Lastly and above all,

this feature of CT can be named self-inspection.

In conclusion, the notion of adjunction is central in constructing a rigid theory

of categories and investigating the other mathematical theories (Krömer, 2007).

It applies every universal property to unify and subsume all the distinct uni-

versal properties (Awodey, 2006). In other words, adjoints can unify and/or

subsume categorial constructions. Moreover, many mathematical theorems can

be rewritten as statements about the existence of adjoint functors (Marquis,

2021). Hence, adjoints are the vital objects in CT.

4.4.8 Other Constructions

Many other constructions exist, such as cocones, pullbacks, and free monoids.

In the following, formal de�nitions of the constructions will be provided when-

ever necessary -which is hardly- because giving categorial de�nitions of such

constructions is of complexity even for a mathematics graduate. Then, for the

22 Krömer (2007) interprets such development as an interplay between the development of the theory
itself and the development of its applications. Nevertheless, the role of adjoints in developing both
the theory and the practice is undeniable.
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sake of simplicity and being within the limits of this work, from now on, we will

only mention the names of the constructions, and we will focus on how these

constructors are applied in several tasks.

4.5 Category Theory and Ontology 3.0

Employing category theory in knowledge representation is not a new idea. Healy

(2010, p. 489) pronounces the value of category theory by presenting it as �a

vehicle for the formalization of ontologies with mathematical rigor.� As such, re-

searchers focus on formalizing notions used in knowledge representations -such as

in Entity-Relation (ER) systems or ontologies- with categorial constructions; for

instance, a pushout over an alignment used for ontology merging and a natural

transformation used for instantiation. The constructions,23 such as a pullback,

are not canonical; thus, they can be de�ned di�erently in each formalization. In

other words, a pullback can be used for ontology merging in one setting, e.g.,

(Hitzler, Krotzsch, Ehrig, & Sure, 2005), in another, e.g., (Neuman & Nave,

2008), it can be used for concept formation. Furthermore, each framework has

its own philosophical stance. For instance, philontological universals or set theo-

retical instantiation are de�ned in many category theoretical frameworks, which

will be shown below; on the other hand, urtrope theory omits such things from

the framework, which will be seen in the following part.

This part provides a limited number of researches on the employment of CT in

knowledge representation, although the literature has myriad models for knowl-

edge representation, ontology alignments, or constructions through CT. The

works that we will not mention in this part can be found in the Bibliography,

such as Colomb, Dampney, and Johnson (2001), Vickers (2010) or Schorlemmer

and Kalfoglou (2005).

23 Recall that in order not to overburden this work with technicalities, we are not giving categorial
constructions in their full de�nitions; instead, we make do with their names and a fair amount of
explanations.

151



Let us start with some business applications. Colomb et al. (2001) show that an

enterprise model can be de�ned as an abstraction of the implementation model

that instantiates it by employing cartesian morphisms and �brations. The fact

that the semantics of an enterprise model is closely related to the semantics of ER

modeling exhibits an alignment between models. Another business application

is from Wojtowicz (2016) who uses sketch theory24 as a knowledge management

framework for its ability to support modular development, uncertainty manage-

ment, and dynamics in both metadata and instance data, to name some. He

shows how to de�ne models of a sketch, operate inferences on them, align dif-

ferent knowledge systems, and map between distinct knowledge representations

in category theoretical terms.

Here are some examples of formalizing ontology generation and alignment25 with

CT. Kent (2010) takes ontologies as logical theories, and develops a metathe-

ory based on category theory, called the theory of institutions for representing

ontologies. In the theory, �brations and indexed categories are used for repre-

senting logical theories, in other words, for building ontologies. Johnson and

Rosebrugh (2010) focus on building ontologies in a category theoretic approach,

creating new ontologies from the existing ones, and developing interoperating

ontologies. Later, Johnson, Rosebrugh, and Wood (2012) develop their view

and propose update processes as functors. Furthermore, Seremeti and Kougias

(2013) target a network of ontologies whose components, viz., domain ontolo-

gies, interoperate and interact so that meaningful results can be extracted from

aligned distinct ontologies. For this purpose, they initially represent an ontology

as a path category and the category Ont of ontologies, in which the compositions

of morphisms between ontologies render new ontologies, namely, a network of

aligned ontologies.

Zimmermann, Krotzsch, Euzenat, and Hitzler (2006) propose a solution for

merging disjoint ontologies by employing pushouts over alignments, which is

24 A sketch is a graph-based KR that is actually a category together with some properties. More
precisely, it consists of a directed graph together with a set of commutative diagrams in the graph.

25 Ontology alignment, or ontology matching, is the process of determining conceptual equivalences
between ontologies.
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an attempt to meliorate ontologies of Ontology 3.0. Hitzler et al. (2005) follow

the same line of thought and argue that the pushout constructions from category

theory are a natural approach to the merging ontologies.

Healy and Caudell (2006) also de�ne ontologies via category theoretical construc-

tions. Their study of ontologies starts with the introduction of the category of

Concept, whose objects are concepts, and morphisms are associations of the

syntax of a concept T with a part of the syntax of a concept T , viz., s : T → T ′.

The work continues by introducing an interconnected hierarchy of theories that

unify knowledge-based systems. Moreover, Healy and Caudell (2006) formalize

the incremental acquisition and representation of ontologies through adaptation

in neural network architectures in category theory.

Probably one of the most famous ontology generation frameworks is o�ered by

Spivak and Kent (2012) who introduce the olog, or ontology log, a category-

theoretic model for knowledge representation. An olog is a category in which

the objects are labeled phrases that refer to types of things, the arrows are,

again, labeled phrases that refer to set-theoretical functional relations, and the

commutative diagrams that are valid compositions refer to facts. For instance,

the diagram in Figure 4.2 commutes, and the composition shows that a DNA

sequence codes for a protein (Spivak, 2014, p. 34).

Figure 4.2: An example of a commuting diagram

On the other hand, not every as-if commuting diagram gives a fact. Consider

Figure 4.3 from Spivak (2014, p. 35):

It seems legitimate to say that this diagram commutes, and the obtained fact is

that every person lives in a city. However, it is false in many aspects. The most

important aspect is that not everyone has to live in a city where their father

lives. Thus, this is an example of a non-commuting olog.
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Figure 4.3: An example of a noncommuting diagram

Spivak and Kent (2012) also present an olog as a categorical database schema

whose superiorities to a relational database schema are also shown. Later on,

Spivak (2015) re-highlights a fundamental connection between categories and

databases and develops a model based on CT that simpli�es how we think about

and use databases and that can solve classical database problems. As such, a

schema is modeled as a category and data as a set-valued functor. Inspired by

Spivak and Kent's work, Patterson (2017) introduces relational ontology log, or

relational olog, that interpolates between ologs and description logic; by which

a general recipe for constructing a categorical knowledgebase is proposed.

Lu (2005) proposes a typed category theory for representing knowledge. A typed

category consists of a class of objects, a class of typed morphisms, along with

type composition rules. He highlights that his typed categorial framework is

representation independent; that is, the essence and properties of knowledge are

category theoretical. Based on the work of Lu (2005), Wang and Rong (2007)

introduce a knowledge model based on CT for the �eld of transferring emergency

knowledge. They propose `the knowledge pieces' that are micro-ontologies that

are to be reorganized according to an emergency context. In other words, they

aim to construct a category theoretical knowledge representation for the �elds

of emergency ontology construction and emergency knowledge reorganization.

Here are further employments of CT in KR. Bench-Capon and Malcolm (1999)

work for developing an algebraic framework for specifying ontologies; and simi-

larly, Cafezeiro, Haeusler, and Rademaker (2008) introduce a formal algebra for

manipulating entities, ontologies, and contexts (See also Cafezeiro and Haeusler

(2007) and Cafezeiro, Viterbo, Rademaker, Haeusler, and Endler (2014)). Their

primary goal is to sustain the �exibility of the models; that is, the meaning
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of entities can vary according to their context, and dynamic changes in the

context can shape the indented use of the entities so that new forms of repre-

senting context are a requirement. For instance, from the formal framework,

they propose that pullbacks and pushouts are the operations for entity and con-

text integration, respectively. Besides, Coecke, Sadrzadeh, and Clark (2010)

employ category theory along with vector space models in order to realize the

proposition that when the machine can understand the meanings of individual

words and grammatical rules, it can compute the meaning by using the principle

of compositionality; that is, the meaning of a sentence rises from the meanings

of its constituents that are combined with the grammatical rules.

Johnson and Rosebrugh (2010, p. 569) summarize an empirical observation

as �over a wide range of practical studies �nite limits and �nite coproducts

have su�ced to specify ontologies.� That observation suggests that categorial

constructions, even a few of them, are enough for knowledge representation tasks

and ontology building, ontology alignment, and ontology merging in particular.

However, all these applications are of Ontology 3.0. None provides an ontology

that could pave the way for machine understanding, but this work. So, in the

next chapter, we will answer the question of how the urtrope theory is to be

implemented and explain the realization of the machine understandability in

terms of urtrope and category theories.

4.6 Realization of the Urtrope Theory

We have introduced that Ontology 1.0, Ontology 2.0, and Ontology 3.0 mainly

represent the world in terms of entities and relations in one way or another.

This picture shows us that the main representational form of these ontologies is

set theoretic: entities as concepts and functions as relations. To illustrate this

form, let us examine the Ontology 3.0-style of ontology generation in particular.

Representing the world or a portion of it starts with �guring out what the en-

tities are. So, the very �rst thing an ontologist does is list the entities: the
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upper-level categories26 in the case of upper-level ontologies or the entities in

the context in the case of domain ontologies. Then comes the second task of

�guring out the network of relations. Relations are determined according to

the context. Since the semantic properties of entities are pre-determined, the

boundaries set by the context cannot be exceeded, even if there can be some

other relations between the listed entities. The second step of ontology genera-

tion is to choose a formal system for implementing the ontology in the machine.

Mazur (2008, p. 6) states that a formal system representing a mathematical

theory must have all its mechanics and vocabulary to argue and produce proofs.

However, we have already examined that the formal systems mainly used in

Ontology 3.0 are set theoretical in their nature and whose implementations are

troublesome in many aspects. To solve the consisted puzzlements, we noted that

another ontological stance that is particular to the machine must be taken and

that another way of implementation is required to eliminate the problems of a

set-theoretical approach. Consequently, upon our examination, urtrope theory

is the best candidate for a machine ontology, and category theory �ts very well

to implement it. Accordingly, prioritizing relations over entities, Ontology 4.0

comes into existence in the machine via a mathematical theory whose mecha-

nism and vocabulary argue and produce proofs in a distinctive, if not absolutely

distinctive, way than Ontology 3.0 does. Additionally, Mazur (2008, p. 6) con-

trasts a categorical system with a set theoretical system by stating that the

former says nothing about proofs but captures the essence of what a mathe-

matical theory consists: of within the works with category theory, proofs just

emerge simultaneously. That is a considerable distinction, indeed.

The roadmap in line with the aim of this thesis is as follows. Relations represent

the world: everything, either an object or an event, must be de�ned and under-

stood in terms of relations. To this end, we �rst discussed this issue ontologically

and concluded that trope theory is the best to be adopted. On the other hand,

we realized that we need non-extensional building blocks to empower the repre-

sentational form. Thus, we proposed the urtrope theory, which is trusted to be

26 The realist perspective is taken.
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the best ontological perspective that paves the way for machine understandabil-

ity. Then, we introduced category theory, which is also trusted to be the best

formalization tool that vivi�es the urtrope theory. As such, we purported that

category theory applies the urtrope theory with some modi�cations. So, in this

part, we will show that the urtrope theory can be realizable mathematically on

the categorial foundations. If this is done successfully, we will legitimately name

the marriage of the urtrope theory and category theory as Ontology 4.0.

4.6.1 Introduction:

Categorial Constructions and Their Equivalences

Applications of category theory are not limited to mathematical theories. Vari-

ous applications of CT are developed in logic, computer science, linguistics, and

philosophy. Investigations in these �elds, including ours, reveal or discover facts

that are speci�c to the �elds in light of the triple correspondence: category the-

ory, intuitionistic logic, and lambda calculus; in other words, category theory,

logic, and computing.27

A detailed correspondence is given in Table 4.1 by Peruzzi (2006, p. 448) (See
also Awodey (2006)).

Table 4.1: Basic correspondence between logic and category theory

This table guides us to realize the urtrope theory: the correspondence between

untyped λ-calculus and C-monoids -without terminal object- can lead to a for-

27 Here is another way of stating it as computational trinitarianism: categorial rules, Gentzen logical
rules, and typed programming. Or, the triple is called Curry�Howard�Lambek correspondence that
refers to the three-way isomorphism/analogy between intuitionistic logic, typed λ-calculus, and
cartesian closed categories. According to which, propositions as types or as objects, and proofs as
terms or as morphisms.
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malization of urtropes. Thus, there should be an architecture that is founded

on C-monoids -without terminal object- and erected through cartesian closed

categories that gain new properties on each level of construction of Ontology

4.0, which is the realization of urtropes via category theory. Then, tropes are to

be de�ned in terms of C-monoids �without terminal object-which are cartesian

closed categories that provide calculations with types. Nevertheless, recall from

typi�cation discussions, Martin Löf's type theories were admitted for generating

types of types. So, tropes must have some additional properties, and at the end

of the day, they should be regarded as toposes. Let us examine these purported

equivalences and representations, starting with urtropes.

4.6.2 Urtropes in CT

Our investigations on Data 4.0 showed the need for an untyped universe, on

which the introduction of urtropes was hinged. This section shows how CT

represents non-extensional ontological objects in an untyped fashion.

Table 4.1 shows the correspondence between C-monoids �without terminal object-

and untyped λ-calculus, where urtrope formalization is based. Before diving into

this correspondence and its consequences, let us introduce what a monoid and

a C-monoid are and announce that from now on, we are not going to deal with

formal de�nitions of these constructions, along with exponentials, (�nite) limits,

(pre)sheaves, evaluation maps, or sketches. Even though providing their de�ni-

tions would enlighten our categorial understanding, their glare can make one,

who has limited category theory knowledge, blind.

A monoid is a category with one object: C is a category of a monoidM , such that

M is the only element of C; all the morphisms are of the form f : M //M ;

the unit element of the monoid is the same as the identity arrow of C; and for

any f and g of C, there is h, such that f ; g = h : M //M with the property

that composition of arrows corresponds to multiplication of monoid elements.28

28 That is composition is a binary operation: f ; g = f × g; LHS is an operation of C, and RHS is an
operation of the monoid.
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A C-monoid is a monoid with extra features, such that C be a cartesian closed

category, with an object M which is isomorphic to MM and M , and not isomor-

phic to the terminal object (Scott, 2000; Lambek & Scott, 1984). Meanwhile,

M ∼= MM ∼= M ×M are satis�ed.29

Every monoid brings about a category. That is to say, an object with its identity

arrow and arrows, if there are any, can form a category that satis�es the laws

of associativity and composition. When an urtrope is identi�ed as a C-monoid,

an urtrope is a category whose relations with other urtropes make them and

their arrows visible. Moreover, employing C-monoids realizes a typed space out

of untyped representational units; indeed, types naturally emerge from untyped

(Cardelli & Wegner, 1985). This brings us to the Curry view of typing.30 More

precisely, untyped terms come together to form typed terms by using type in-

ference rules for assigning appropriate type schema (Scott, 2000).31

Without further ado, we have adopted the C-monoids as a categorial model of the

urtrope theory, an untyped system.32 Our adaption can be integrated with Hines

(2016)'s theory of self-similarity where a C-monoid, say M , M satis�es M ∼=
M ×M . This approach can be utilized for illuminating urtropic constructions,

as a category generated by a self-similar object or the category freely generated

by a self-similar object allows to use the isomorphisms freely to play with the

typing of arrows. That can pave the way for producing untyped analogs of many

categorical properties.

We neither know nor care about the object of a C-monoid, so identifying an

urtrope hinges on its functorial relations with other urtropes. Moreover, in light

of the Curry view of typing, we claim that the types are determined by the

patterns of arrows between urtropes. Urtropes by themselves cannot determine

a type, but a particular morphism composition between urtropes emerges a type;

29 For the historical introduction of C-monoids see Hines (2013).
30 As opposed to Church, who suggests starting with �typing� the untyped terms.
31 For details, search on the categorial combinators.
32 For a detailed investigation of C-monoids, untyped systems, and untyped λ-calculus, refer to
Lambek and Scott (1988), pp. 101�.
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that will be investigated in the following part. Lastly, it is worth mentioning that

the crux of this matter is that both urtrope theory and an untyped system take

everything on the same level: urtropes are the building blocks of everything, and

untyped monoids are the building blocks of a type system. Now, let us explore

tropes in CT.

4.6.3 Tropes in CT

From the background of the urtrope theory, we know that tropes, the primitive

ones, are compositions of urtropes, and the complex ones are compositions of

urtropes and primitive tropes, or primitive tropes. They, machine-ontologically,

are relations out of which every philontological and whatever object is con-

structed. As such, urtropes are the non-extended, whereas tropes are the most

primitive extended building blocks of reality.

Let us illustrate a trope in categorial language and start with de�ning a primitive

trope.

De�nition 17 A primitive trope is a category consists of

1. A collection of urtropes,

2. A collection of types,

3. A collection of typed arrows between urtropes, where a typed arrow f is

denoted as f : X
t // Y , where X and Y designate urtropes, and t is the

type of f ,

4. For every urtrope X, there exists an identity arrow, idX ,

5. There is a unit type, u, such that for any urtrope X, Mor(X,X, u) = idX :

X
u // X ,
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6. For types t and s, there is a type w = t× s that is the composition of types

t and s,33

7. The composition of arrows is de�ned as follows. Let f and g be arrows

with types t and s, respectively. If f : X
t // Y and g : Y

s // Z , then

h = f ; g : X w // Z ,

Associativity and identity laws hold.

A complex trope is a trope that contains at least one primitive trope. Here is

its de�nition:

De�nition 18 A complex trope is a category consists of

1. A collection of urtropes and primitive tropes,

2. A collection of types,

3. A collection of typed arrows between urtropes and primitive tropes, where

a typed arrow f is denoted as f : X
t // Y , where X and Y designate

objects, and t is the type of f ,

4. For every object X, there exists an identity arrow, idX ,

5. There is a unit type, u, such that for any object X, Mor(X,X, u) = idX :

X u // X ,

6. For types t and s, there is a type w in the collection of types, such that

w = t× s that is the composition of types t and s,34

7. The composition of arrows is de�ned as follows. Let f and g be arrows

with types t and s, respectively. If f : X
t // Y and g : Y

s // Z , then

h = f ; g : X
w // Z ,

Associativity and identity laws hold.

33 The collection of types is closed under composition. For the sake of simplicity we omit the details
of composing rules.

34 The collection of types is closed under composition. For the sake of simplicity we omit the details
of composing rules.
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Let us start with a caveat. Urtropes and primitive tropes are categories per se;

thus, there are two di�erent kinds of morphisms between urtropes and primitive

tropes. Either in the de�nition of primitive or complex tropes, the objects �

urtropes and primitive tropes� are categories, and the morphisms are arrows.

On the other hand, they are taken as categories outside a trope category. The

morphisms are functors, which examine the structural relations between these

categories, and whose nature and function are thoroughly di�erent from arrows.

Once again, a morphism in a category, namely an arrow, tells how the objects are

connected to each other. In contrast, a morphism between categories, namely

a functor, tells things about the structures of categories. Therefore, primitive

tropes as objects are connected to each other precisely in a complex trope, and

any investigation between primitive tropes through functors is another story.

Consequently, urtropes or primitive tropes as objects are processed without

penetration, namely, without tearing them apart or interrupting them. As far

as the de�nition of complex category is satis�ed, no concern would be left.

Looking at what the tropes will be represented in the CT by looking at Table

4.1, we can say that they are cartesian closed categories. More precisely, as we

de�ned tropes as typed categories and there is a correspondence between typed

λ-calculus and cartesian closed categories, a trope can be represented by a carte-

sian closed category (CCC). Indeed, C-monoids, which are the correspondence

of urtropes, are also founded on CCCs. So, the following de�nition lies at the

heart of the formalization of the urtrope theory.

De�nition 19 A cartesian closed category, C, is a cartesian category, i.e. a cat-

egory with all distinguished �nite products, for all whose objects, X,the functor

(˘˘)×X : C // C has a speci�ed right adjoint. Thus there is an isomorphism

for any Y and Z of C, MorC(Z ×X, Y ) ∼= MorC(Z, Y
X).35

35 See Scott (2000) for details.
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A CCC is a category of map objects/mapping objects/exponential objects de-

noted with Y X . Such objects are important because they are used for construct-

ing objects satisfying a universal property in categories.

Although a CCC is the main category to be used in the formalization of the

urtrope theory, from Table 4.1, one can derive that if type theories are indis-

pensable for the urtrope construction to occur, as it is, representation by toposes

is required. In other words, it is seen that a more speci�c formalization of tropes

is required than the representation of the CCCs, which is of toposes.

A topos, singular form of topoi or toposes, is a cartesian closed category with an

extra structure that produces subobjects for each objects. More precisely,

De�nition 20 A topos is a category that has all �nite limits and all exponentials

with a subobject classi�er.36

4.6.3.1 What is a Topos?

The notion of `topos' was introduced by Alexander Grothendieck, whose aim was

to �provide a mathematical underpinning for the `exotic' cohomology theories

needed in algebraic geometry� (Caramello, n.d.). The works of Grothendieck

suggest that a topos can be regarded as a generalized space, where categories

of sheaves of sets can replace topological spaces.37 Based on the studies of

Grothendieck, William Lawvere and Myles Tierney transform the notion of

`topos' into a mathematical universe (ibid.). That is, each topos can represent

its own mathematical framework. These two developments in category theory

cultivate the topos theory, where di�erent mathematical theories can be sys-

tematically studied through di�erent settings of toposes. So, topos theoretical

36 Alexander Grothendieck invented the concept of `topos' during his studies on algebraic geometry.
However, the notion of `topos' we are dealing with comes from Lawvere and Tierney's work. In
order to di�erentiate these distinct notions, the former is called a `Grothendieck topos,' and the
latter is called an `elementary topos' (Baez, 2021). On the other hand, every Grothendieck topos is
an elementary topos (Caramello, n.d.).

37 Although the notion of `sheave' is not complicated to explain, its explanation is too long and not
essential for this work.
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techniques allow �nding out deep connections through which a context can be

studied in a di�erent context. Furthermore, they also allow comparing di�er-

ent mathematical theories or objects. Such comparisons help �nd out relations

between such theories or objects.

Bridging representations Thanks to the notion of Grothendieck toposes,

di�erent mathematical theories can be related to each other, and it is possible

to study them from various points of view: A topos can behave as a bridge that

connects di�erent theories (Caramello, n.d.). This is possible by representing

di�erent theories, which can be in di�erent languages, are isomorphic to a topos.

That is to say, a topos provides a framework in which relations between di�erent

theories can be expounded.

Theoretically, let A and B be di�erent theories, and A
′
and B

′
represent the

classifying toposes of A and B, respectively, which are constructed by charac-

terizing them for the same invariants. D is a common classifying topos when D
is equivalent to both A

′
and B

′
. So, D can be used as a `bridge' for transferring

knowledge between A and B (Caramello, 2018, p. 69). Figure 4.4 illustrates

this feature of toposes.38

A

A
′ ≃ D ≃ B

′

B

A
′ ≃ D ≃ B

′

Figure 4.4: D as a briding topos between theories A and B

Toposes and Logic The typed λ-calculus is the internal language of CCCs, so

toposes have an internal type theory in the λ-calculus (Patterson, 2017). That

means, indeed, any logical theory can be understood in a topos. Ω, the subobject

classi�er, provides di�erent degrees of truth-values to be de�ned in a topos.39 It

38 Theoretically, A
′
and B

′
are equivalent, so there is no need for a topos, D when the same invariants

characterize both theories.
39 But what is a subobject? As we mentioned, CT generalizes mathematical ideas, and the idea of the
subset can be generalized in topos theory by introducing subobjects; moreover, it is a generalization
of parts, pieces, and inclusion. Inclusion is de�ned di�erently in di�erent theories; CT abstracts
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relates certain arrows of a category with notions of truth in the same category.

As notions of truth are changeable from context to context, truth-values of a

system are not limited to a two-valued system of classical logic. For instance, in

category of sets truth-value object is de�ned as Ω = {0, 1}; in category of graphs
there are intermediate truths, where 0 is True, ∞ is False, and the rest have

gradual degrees. In categories representing a dynamic system, some objects in

the subdynamical system will be true after some update, yet some discrete ob-

jects cannot be in the subdynamical system; they can never be true no matter

how many updates occur (Lawvere & Schanuel, 2009). So, in a sense, toposes

can be interpreted as categories with an internal system of truth. Various logical

systems with di�erent degrees of truth, even the dynamical ones or informal log-

ics, can be represented in topos theory (Vickers, 2010). Thus, toposes provide

the bedrock for various sorts of logics. Translations between logics, comparing

or bridging them, and transforming one logical style into a collection of styles

are possible (Cf. Vickers, 2010). For instance, a problem in a category having

geometric logic as its internal logic can be solved in another category having

�rst-order logic as its internal logic; or vice-versa, one can manipulate the for-

mer category and do non-classical logic based on the reasoning in geometric

logic, even without admitting double negation. Consequently, toposes are an

algebraic encoding of deductive systems, and various categories correspond to

well-de�ned logical systems with their deductive systems and completeness the-

orems (Marquis, 2021).40

In addition to these, logical operators and quanti�ers can also be modeled by

morphisms. That is to say, the alleged primitive operations and quanti�ers in

di�erent sorts of logic are constructed using a truth-value object, and universal

constructors (Awodey, 2006). Having said that, set theoretical concepts, such

as intersection and union, can also be translated into the categorial language

and de�nes it as a subobject. Subobjects are de�ned through monomorphism. Moreover, CT can
also de�ne arrows in arrows: x is in α, if x = α ◦ k where x : T // X , α : A // X there

is unique k such that k : T // A .
40 For a list of categorical logic see Marquis (2021). This proves that regardless of the philosophical
view of mathematics, categorial tools in logic can model any logical system. Above that, there can
be translations between those logical systems thanks to their categorial settings.
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thanks to Ω (Asperti & Longo, 1991).41 Furthermore, objects in a topos can

be described as if they were sets so that statements can be proved in a topos.

Anything in a logical theory can be represented in a topos theoretical setting.

However, in logical theories �those based on set theories are not exceptional�

ontological commitment is an issue: operators, quanti�ers, and rules are inter-

preted within some philosophical stances. Since topos theory is an abstraction,

it can provide �a neutral common frame for the formalist, intuitionist, Platon-

ist perspectives, because di�erences in ontological commitment� (Peruzzi, 2006,

p. 450). For instance, a �nitist can build the topos of �nite sets and func-

tions between those to work with only �nite sets; a physicist can build the

�smooth topos� to do calculus with in�nitesimals; or a constructivist can build

the �e�ective topos� to work with �e�ectively constructible� sets and �e�ectively

computable� functions: great numbers of toposes can be built and hand-crafted

to meet speci�c needs (Baez, 2021).

The Computational Trinitarianism The statement of Peruzzi (2006, p.

432), �[a]s the 21st century opens, it is of paramount importance to indicate a

direction along which mathematicians and philosophers can collaborate so as

to regenerate trust in understanding, objectivity and explanation,� has a miss-

ing component: computation. In other words, we believe that the twenty-�rst

century demands the collaboration of philosophers, mathematicians, and com-

puter, information/data scientists to �regenerate trust in understanding, objec-

tivity and explanation.� Moreover, we also believe that category theory is the

study of the century: the representation language is the formal representation

that can also be used as an implementation language. Therefore, choosing CT

as a bedrock of representation and computation solves three problems with one

solution (Cf. Wojtowicz, 2013).

41 For this reason, toposes are considered more fundamental than ST, since simpler structures can
express its primitives. For instance, conjunction of propositions in a deductive system is an instance
of a product (Marquis, 2021). Of course, standing alone, this cannot be the only reason for replacing
ST with CT, in particular topos theory, or even acknowledging it as the foundations of mathematics.
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Category theory is known to provide not only an ontological neutral frame but

also a self-contained and uni�ed approach to information systems. Lambek's

proposal of the category of graphs42 is an example of a deductive system (Cf.

Lambek, 1980). The components of a deductive system are formulas, deduc-

tions/proofs, and the rules of inference, and their correspondences in category

theoretical notions respectively are objects, arrows, and the operations on the

arrows (Marquis, 2021). As mentioned before, a topos can be taken as an alge-

braic encoding of a deductive system, which is at the heart of computation. In

this part, then, we will explicitly account for the inseparable the computational

trinitarianism: categorial rules, Gentzen logical rules, and typed programming,

which is based on the basic correspondence shown in Table 4.2.

Table 4.2: Basic correspondence between logic, category theory, and proof theory

In Gentzen's approach, namely in natural deductions, logical connectives get

their meanings from how they are used in inference. That is to say, in order

to understand the meaning of a connective, one must understand the inference

rules that govern its use. For instance, grasping the meaning of ∧, and, requires
grasping the rule that from X ∧Y one can derive X.43 In this respect, the focus

is shifted from the study of truth to the study of inference. A topos, the internal

formal language of a category, presents a natural deduction system. For instance,

both in λ-calculus and combinatory logic, functions are taken as computational

processes that take an argument and return a value; so, in this sense, functions

are rules. In this vein and based on basic correspondences, morphisms are rules,

and rules of natural deduction, e.g., elimination rule, on morphisms and their

compositions �along with the fact that a natural deduction system is a decidable

and syntactically decidable proof system, which makes it be called an automated

42 A category whose objects are arrows and dots, and whose morphisms are arrows between them,
as s : Arrows // Dots and t : Arrows // Dots , where `s' for the source and where `t' for
the target.

43 That is
X ∧ Y

X
.
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proof system� is the inference system of Ontology 4.0. Thus, Ontology 4.0 is

a system whose inference system is within its representation. This is another

saying that its syntax and semantics are the same things.

There is no getting away from the untyped aspect of computation. Scott (2000,

p. 24) highlights this by uttering, �there is an underlying untyped aspect of

computation, already going back to the original work on lambda calculus and

combinatory logic in the 1930s, which often underlies concrete machine im-

plementations.� This fact is the base of Ontology 4.0, where urtropes can be

represented as C-monoids that are cartesian closed categories. That is to say,

a typed system springing from an untyped system is tenable in a urtrope theo-

retical framework. The close connections of cartesian closed categories to typed

λ-calculus admit theoretical foundations of Ontology 4.0; indeed, and above

all, the close connections of CCCs to intuitionistic proof theory admit practical,

namely implementation foundations of Ontology 4.0. Just as the Curry-Howard-

Lambek isomorphism is �the cornerstone of modern programming language se-

mantics� (Scott, 2000), implementation of the equivalence between these three

notions is the key to the realization of the machine-understandability.

Consequently, CT guarantees that all the mathematical theorems can be de-

�ned as categories; thus, any mathematical model of a representation can be

translated into a category. Thanks to topos theory, two di�erent mathemati-

cal theories can be studied, compared, and analyzed by constructing a common

classifying topos. Tshe concept of subobject classi�er, or sometimes called as

truth-value object, Ω, is signi�cant, as it is a great tool for discovering and

constructing logical aspects of toposes. Hence, topos theoretical methods al-

low �guring out deep connections between mathematical theories, and via those

connections, knowledge transfers are possible (Caramello, n.d.).

4.6.3.2 Tropes as Toposes

At the end of all this, we have seen what a topos is. Its unique place in our work

primarily represents the tropes: urtropes are C-monoids, and tropes are toposes.

There is only one caveat here. Just as we do not take the theory of types as it is,
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we cannot take the topos theory as it is. The topos theory, within the framework

of this study, must always be based on the urtrope theory. Therefore, objects

in topos theory must ultimately be rendered as C-monoids.44 So, our primary

purpose of using topos theory is to represent tropes.

The Category Type Cardelli and Wegner (1985, pp. 483�484) highlight that

using a type system inhabits relations between types:

The usefulness of a type system lies not only in the set of types that can be
represented but also in the kinds of relationships among types that can be ex-
pressed. The ability to express relations among types involves some ability to
perform computations on types to determine whether they satisfy the desired
relationship. Such computations could, in principle, be as powerful as computa-
tions performable on values. We are concerned, however, only with simple, easily
computable relationships that express uniform behavior shared by collections of
types.

We use and interpret this explanation to elaborate on how type-composition

rules are determined. Type composition rules must be de�ned in a categorial

framework, for which the category Type of types can be proposed. The objects

of Type are types, and the arrows of Type are typing rules. Thus, arrow compo-

sitions are type composition rules. As types specify the constraints, namely the

consistent interactions, Type would specify the allowable morphisms. In other

words, Type would specify the constraints on compositions.

This category is a perfect tool for constructing new types, which are, by de�ni-

tion, objects of Type that must satisfy all the laws of the de�nition of a category.

For instance, assume that most of the tropes of a virus and a living system are

known. Type can provide a list of semantic relations between them, and it helps

to check whether a relation is allowable between these entities in either direc-

tion, namely from virus to living system and vice versa. Thus, the machine

can automatically decide a network's possible interactions and derivations with-

out other hierarchies or axioms. In sum, type constructions provide new types

of occurrences and satisfy the axioms and laws pronounced in the language of

CT. This tool, Type, will be used throughout Ontology 4.0 in di�erent levels

44 Our purpose in this study is not to show how to do this, which will be the subject of future work.
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of abstractions and for di�erent tasks, for instance, in type checking and type

inference.

Starting with an untyped universe provides the opportunity of constructing the

universe in di�erent ways for di�erent purposes since �[t]ypes arise naturally [...]

from untyped universes� (Cardelli & Wegner, 1985, p. 473). Recall that di�erent

usage or behavior of an entity arises from the context at hand, and the context

is determined through the relations between the entities it involves. Thus, from

the urtrope theoretical perspective, arrow types determine the structure of a

trope: classi�cation of arrows and their compositions results in a well-de�ned

type system.45 Consequently, we can say that this system is based on the topos

theoretical perspective, and Type is used where there is typi�cation.

We have seen the relationship of toposes, which represent tropes, with type.

So, what we call the structure of a trope will be the structure of a topos. In

this case, we can say that we are talking about the types of topos. This is how

we integrate topos theory into urtrope theory: we have found a way to make

topos theory, type theory, and urtrope theory work together. Consequently, this

whole system should be based on the topos theory. That is to say, one of the

very fundamental components of Ontology 4.0 is the category of types, which is

supposed to be grounded on the topos theory.

4.6.4 Entities in CT

In the urtrope theory, anything extensional consists of the most primitive ex-

tensional building blocks, viz., tropes, which consist of urtropes that are the

non-extensional building blocks of all reality. The term `entity' refers to any-

thing in the world; a quark, the beauty of a line of code, an irrational number,

45 However, one can raise �How are the arrows typed?� or �How can the collection of types of arrows
determined?� Well, we leave these questions for the time being and will attempt to solve the problem
of determining the types of arrows in the category of a trope with the help of the Yoneda Lemma
in a future study.
Simply, the Yoneda Lemma says that a category can be reconstructed in terms of functors to sets,
of which objects and arrows alike. That means reconstructing a category in terms of networks of
relations is dealing with the entire category at once (Mazur, 2008). Moreover, it implies that an
object can be studied basically by analysing the functor that it represents (Biss, 2003).
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swinging, a yellowish star, Uzun �hsan Efendi, to solve the issue of gender dis-

crimination in developed countries, and so on. In addition, (1) entities are trope

compositions, and (2) we purport that they can be represented as toposes. Are,

then, tropes46 to be considered as objects, arrows, or both?

Recall that we spoke of �strategy of relativization,� which refers to the idea that

a methodological framework depends on the maxim of relativity, which says that

the distinction between arrow and object is a matter of perspective (Krömer,

2007). Thus, we admit that an entity is a topos whose objects and arrows are

both tropes. For instance, Soctares was known to have a �at turned-up nose

and bulging eyes; he was notoriously ugly. Based on this information, some of

his semantic properties are `having a �at turned-up nose' and `being ugly.' Now,

consider the following diagram.

Here, the arrow intensify has a certain type in the trope composition of Socrates.

That also means that all these objects and arrows are urtrope compositions.

Similar to the above, consider the diagram below.

Laura is getting

married

F //

G

��

is getting

""

This diagram is a context,47 (we will see soon) where both ⌜LAURA⌝ and ⌜IS

GETTING⌝ are objects, and is getting is an arrow.48 Tropes that constitute

⌜LAURA⌝ or ⌜IS GETTING⌝ are connected to each other via tropes. Unlike set

theories, to which we are accustomed, the following should draw our attention

at this level: in a philontological parlance, properties and relations between

46 `Trope' is a generic term for referring to primitive or complex tropes unless otherwise stated.
47 Contexts are represented as categories as well.
48 The ⌜ ⌝ notation is used to denote the corresponding entity is taken as an category. How it is used
will be explained soon.
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properties are tropes. It is essential to get that things other than urtropes are

toposes and their objects and arrows are either primitive or complex tropes.

What distinguishes the role of a trope is its type. For this reason, a trope

can be considered a topos, an object, or a morphism. Although this type of

representation may sound counterintuitive, it gives us evidence of the richness

of the representational system, viz., CT. And �nally, it is helpful to remember

that this ontology is not created for humans but for machine-understandability.

Only this kind of ontology can make machines autonomous.

Representing urtropes as C-monoids and tropes as toposes is evident from Table

4.1, from which we cannot tell anything for entities. We chose to represent enti-

ties as toposes better to represent them by their internal structure and external

relations. Because it is more reasonable for the machine to revise the semantic

properties for the associations in di�erent contexts instead of knowing an en-

tity as a whole, this is why all the structures we represent as toposes, with the

exception of urtropes, must be ready for structural change. It is only a topos

theoretical approach that will allow us to make a direct analysis/comparison

between tropes in di�erent entities and entities in di�erent contexts. Hence, the

transfer of knowledge between two entities (resp. contexts) with respect to a

trope (resp. entity) can straightly take place.

The bridging technique is not the only thing topos theory bestows to us. The

existence of the exponential object will allow us to know more about the tropes

within an entity. Because the condition of being able to know an entity, that is,

to identify its trope compositions, will be a cumulation of crumbs of informa-

tion coming from its relations with other entities. Let us unpack this with an

example.

Consider the tropes in an individual, say, Socrates. ⌜SOCRATES⌝ denotes that

Socrates is an entity category whose inner structure is under examination. We

have chosen this representation instead of Socrates, which refers to the intext

categorial representation of Socrates; in order to di�erentiate that the latter

denotes `Socrates' as an object or a morphism of another category. Recall that

an object is studied in a category without penetration. Knowledge of the inner
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structure of the object, comes from Hom(Socrates,−) and Hom(−, Socrates),
end even from Het(Socrates,−) and Het(−, Socrates).49 In what follows, such

knowledge can reshape ⌜SOCRATES⌝. At this juncture, it is worth reminding that

an entity category must be considered a construction that will expand. For this

reason, entities, and even contexts, should be taken as pseudo-categories as Lu

(2005) does. That will expand the machine's knowledge of semantic properties

and entities.

On the other hand, since an entity is a trope composition, we can obtain infor-

mation about its relationship with other entities in a context by using the infor-

mation from its internal structure. At this very point, the exponential objects

will provide information on all trope compositions in the context. So, the topos

of ⌜SOCRATES⌝ will also give information about the types of Hom(Socrates,−),
Hom(−, Socrates), Het(Socrates,−), and Het(−, Socrates).50

4.6.4.1 A Hierarchy of Semantic Properties

An entity includes many roles/behaviors, which are compositions of arrows, de-

termined by trope compositions. A role/behavior is a composition of arrows.

As the arrows are typed at the categorial level, then a role/behavior requires a

categorial level investigation of arrows. We use this fact to determine a hierarchy

of semantic properties. For instance, ⌜SOCRATES⌝ includes a man-trope.51 The

trope composition of ⌜MAN⌝, which necessarily contains trope composition of

⌜HUMAN⌝; moreover, it contains trope composition of ⌜LIVING BEING⌝. That

is to say, trope compositions, namely the types, will eventually give a hierarchy

of semantic properties. Unlike the previously mentioned frameworks, where a

hierarchy must be mentioned manually, each type necessarily exhibits its sub-

49 Heteromorphims refer to morphisms between two objects of di�erent categories. This kind of
morphism will be investigated in sectionAutonomy/Active agency

50 The Yoneda Lemma is a powerful tool for examining such knowledge transfers.
51 When this trope is not in the collection of arrows of the category of Socrates, it is because
either there is missing information; viz., some arrows or the typing rules that cannot allow a trope
composition with a man-trope in the case of ⌜SOCRATES⌝, or something that we have not
recognized so far.
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types via the patterns of the trope compositions. Accordingly, and consequently,

background knowledge is already there.

4.6.4.2 Possible Semantic Properties

Possible semantic properties of an entity are also expressible in its trope com-

position. For instance, a man is potentially a husband, and from the other way

around, a husband must be a man �of course, in the scope of the old-fashion

classi�cation of the institute of marriage. A trope composition of ⌜HUSBAND⌝

includes a trope composition of ⌜MAN⌝; and further, a trope composition of

⌜HUSBAND⌝ is potentially included in a trope composition of ⌜MAN⌝. This is

reasonable since every trope composition consists of two parts: the core is the

foundational trope composition that ever changes, and the peripheral is the

contingent trope composition. As such, the core and a part of the peripheral

of ⌜MAN⌝ are included in the core of ⌜HUSBAND⌝, whereas the peripheral of

⌜MAN⌝ contains some arrows and their compositions that end up with a husband-

trope.52 That said, it is not necessary to know that the structures of one entity

are inherited by another in advance. Since they are both categories, a functor

between them can reveal such properties.

4.6.4.3 Constraints on Entities

Constraints on entities are also expressible in trope compositions. Let us illus-

trate detectable constraints on individuals. Suppose that one wants to know

whether Laura is getting married is possible. Let us use the previously given

context:

52 Thus, a husband-trope is more complex than a man-trope.
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Laura is getting

married

F //

G

��

is getting

""

F , G, and is getting are arrows, and Laura, is getting, and married are

objects. The existence of F ;G, namely is getting, depends on types of F and G,.

However, for this diagram to commute, there need to be additional conditions,

such as Laura being older than 18 to get married. Thanks to the decomposition

facility of the urtrope theory, every object and arrow can be represented at the

urtrope level so that whether the arrow composition is allowable or not can be

�gured out. In other words, philontological interactions between sources, targets,

and relations can be examined either at the trope level or at the urtrope level,

namely at the same existential level. This example illustrates not only that the

possible sources and targets can be matched with the relation is getting, of

some type, but also that is getting emerges when the constraint of Laura's age

is satis�ed in the context. That is, if ⌜LAURA⌝ has no trope of older-than-18,

then there is no functor of F ;G from ⌜LAURA⌝ to ⌜MARRIED⌝. Furthermore,

it is detectable that a morphism links two entities. For instance, given that

sublimation refers to the process of changing from a solid state to a gas state

without passing through a liquid state, it is a fact that milk cannot sublime.

milk sublimes
F //

Thus, there is no F at the trope level examination since there are no possible

trope patterns that allow such a morphism between the categories. Moreover,

a trope-level examination denies the existence of a context category, �my cat

sublimes milk,� as the context entities cannot have allowable arrows.

my cat sublimes milk
F // G //

So, there are no F and G since there are no possible trope patterns that allow

such transitions between the categories. It cannot be detected that the pattern
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of change-directly-from-the-solid-to-the-vapor-state neither in ⌜MILK⌝ nor ⌜MY

CAT⌝, even though it can be detected so many possible morphisms that provide

F ;G; spills, hates, steals, or drinks to name some.

The last two examples examine entities in propositions since they are only known

within interactions. Based on these examples, one can say that entities with

the same type have the same trope composition internally, and when they are

used as objects externally, they behave similarly. That is to say, the types of

entities depend on their internal and external relations: the internal relations are

gained through trope compositions, and external relations are gained through

the departing and arriving arrows in a category.

4.6.5 Contexts in CT

Let us begin with a declaration: for the sake of simplicity, we delimit our inves-

tigation to propositions and facts, yet other types of sentences can be studied

in a machine ontology; a representation and its inference system are one and

the same thing in CT, thanks to Curry-Howard-Lambek correspondence. For

instance, an interrogative system in CT that deals with propositions and ques-

tions includes its composition rules per se.53

A context consists of at least one proposition. An entity alone, such as `Laura,'

means nothing, just like `think' has no meaning at all by itself. On the other

hand, �Laura is thinking� expresses a sense. That said, a context contains the

source and target entities and relations that are precisely connected to each

other. For instance, �a vase is typing� has no sense. If we want to give the

structure of this precise way, then we can construct a category for a context. A

context as a category consists of entities as objects and relations as arrows.54

Moreover, as explicitly declared, a context is represented by a topos. In its

53 This issue of composition rules will be visited at the end of this part.
54 Compared with the other frameworks, the objects-arrows are mathematical abstractions of OWL's
classes-properties, Sowa's concepts-conceptual relations, Quillian's nodes-links, Chen's entities-
relationships, and Allen's events-time interval relations (Lu, 2005).
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simplistic explanation, a proposition is a structure in the form of source-relation-

target, where in some cases, the source and target can denote the same thing.

In machine ontology parlance, a proposition is an arrow in a context category.55

Suppose we are given a context consisting of two propositions: �The book is in

the box� and �The box is in the car.� Using only these two propositions, one can

reach a conclusion that �The book is in the car.� This inference can be shown

as a commuting diagram:

the book the box

the car

is in //

is in

��

is in

""

Therefore, arrow compositions in this category are inferences. Alternatively,

Spivak (2014) uses the term `fact' instead of `inference' and de�nes it as �a

commuting diagram.�

Type compositions are structured in Type by the rules f : X t // Y and g :

Y s // Z , then f ; g = h : X
t×s // Z . Type includes (is in:physical);(is in:

physical) = (is in: physical), where �physical� is a type of is in relation, as in

the above example.

Consider another example:

Laura Ankara

Turkey

is in //

is the capital of

��

is in

""

This diagram commutes since the typing rules allow the transition through

55 Laura apple
eats // is a proposition, so as Laura

eats // , since the blank

category, which is inde�nite pronouns, is determined by the functor. So, here the blank category is
⌜SOMETHING⌝.
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(is in:physical) and (is the capital of : physical), and the transition is (is in:physical).

Of course, the trope compositions of ⌜LAURA⌝, ⌜ANKARA⌝, and ⌜TURKEY⌝ have

roles in �guring out the types of the morphisms. Nevertheless, there would not

always be commutative diagrams, or say, there would not always occur facts.

Lu (2005, p. 755) provides two situations. The �rst one says the type product

t× s does not exist necessarily, as in the following example.

Laura Ankara

Turkey

loves //

is the capital of

��

?

""

The second one says that even if the type product t × s exists, there would be

no such h necessarily. See the following example.

Laura Daphne

Stockholm

has as daughter //

is in

��

is in

''

has as daughter; is in may compose to is in, but not necessarily. In such a

scenario, the composition morphism cannot be determined by typing rules, but

when all the entities are examined at the trope level or some other entities come

to the scene, whether Laura is in Stockholm can be �gured out.

In conclusion, an entity, as an object, is in the proposition for one of its aspects.

That is, each aspect of an entity is privileged in some propositions and not in

others. Moreover, some aspects of an entity are privileged in some contexts

and not in others, for a context may include several aspects of an entity. The

semantic properties of an object can be represented as a quotient/slide/partial

category, whichever is the most appropriate, and the machine can �gure out

the relation type with adjoints and/or some constructions. It is the context

that glues semantic properties of entities and that expels entities that have no
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appropriate semantic properties, and it is the typing rules that make this whole

idea work.

4.6.5.1 Typed Objects in Contexts

Consider the following context: �The book is in the movie� and �The movie is

in the festival.� These propositions cannot yield a fact, for it may be either that

there is no such type product or that even if there is such a type product but

no such arrow for this context. However, such situations are not problematic,

as Lu (2005, p. 755) o�ers a pseudo-category, an algebraic structure similar to

the typed categories with some modi�cations.

In the above example, the reason a fact did not occur was the output from arrow

compositions. Nevertheless, one can reach the same conclusion from the types

of objects. As such, the type of `movie' in the �rst proposition is di�erent from

`movie' in the second one, so there is no transition through the object `movie.'

However, the objects are not typed in CT. Recall what Mazur (2008, p. 19) states

�an object X of a category C is determined by the network of relations that the

object X has with all the other objects of C� [emphasis added]. From another

perspective, as we have seen in the examples of Ontology 3.0 implemented in

CT, objects can be taken as types, with which we disagreed.

There seems to be a contradiction here: can we speak of typed objects or not?

Well, one can speak of a type of an object either by looking at its trope com-

position or by examining Hom(A,−) and Hom(−, A) since types belong to

morphisms and their compositions only. A type is not assigned to an object

by intellectual categorization of humans, as done in the implementations of CT

in Ontology 3.0. As a matter of fact, at the context level, it is not true that

an object indicates its name. CT allows the examination of categories through

arrows, functors, natural transformations, and universal constructions. On the

one hand, thanks to CT's abstractions, many details are neglected, so deeper

insights into various structures are gained. On the other, thanks to the ability of

CT to objectify entities, especially concepts, as arrows in a category, combining

concepts and propositions becomes a composition of arrows. That is to say, an
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entity, such as `movie,' can behave as an arrow in a category, as is in can behave

like an object. Furthermore, there can be a morphism between is in : physical

and is in : conceptual, or between ⌜BOOK⌝ of a context and ⌜BOOK⌝ of another

context. We are not talking about a type system in that objects are classi�ed

in a sense we understood in Ontology 3.0. Again, types are about morphisms;

since entities can be morphisms, we can talk about them being typed.

The dream/aim of Leibniz, Ada Lovelace, and other great minds have had that

calculating a complicated argument with philosophical algebra has been searched

into abstractions and objecti�cation as expressions in morphisms. Nevertheless,

this work o�ers a novel step in this endeavor and searches for the answer to how

the machine knows the type of entities in advance at di�erent levels.

4.6.5.2 Decomposition Levels in a Context

The most important feature of the urtrope theory is its ability to reduce ev-

erything to the same existential ground. This feature guarantees the semantic

analysis of a context. For instance, think of a context category whose objects

are propositions, arrows are typed morphisms, and one of whose objects is �a

pen is blue.� This proposition can be studied as an object of the hypothetical

context, so it is studied by the arrows arriving at and departure from it. Figure

4.5 illustrates the contextual status of �a pen is blue,� where where X, Y , Z,

and W are propositions as well.

Figure 4.5: Contextual level representation of �a pen is blue�

180



When a more profound analysis is required, it is necessary to move to the propo-

sitional level representations. Figure 4.6 only shows the category whose objects

are the source and target entities, and the arrow is the relation. Of course, the

propositional analysis can be expanded so that other propositions of the con-

text are also represented at the propositional level. So, functors and natural

transformations can yield facts.

a pen blue
is //

Figure 4.6: Propositional level representation of �a pen is blue�

The objects of a category in Figure 4.6 can be unfolded from the propositional

level to the entity level. Since, at the propositional level, the arrow is an allow-

able/valid type so it can also be taken as an object at the entity level. That

means the composition holds at the entity level, and each word of the propo-

sition is taken as an object.56 Beware that not only the objects but also the

arrows of the proposition level are represented as categories as in Figure 4.7.

a pen is blue
f // g //

Figure 4.7: Entity level representation of �a pen is blue�

When every proposition of the hypothetical context is expanded to entity-level

representation, then it may be possible to set up compositions between all en-

tities in the context. Nevertheless, this is not the �nal level of representation.

The penultimate representation is at the trope level. Each entity is represented

as trope compositions; namely, each entity is represented as a topos. The trope

level analysis is then between categories. Figure 4.8 illustrates hypothetical

functors between categories.

Everything in Ontology 4.0 can be de�ned in terms of urtropes and beginning

from urtropes everything can be constructed. To no surprise, the last level

representation is at the urtrope level. At this level, all the constituents of the

hypothetical context are decomposed, and type rules speci�c to urtropes are

56 For the sake of simplicity, the indeterminate article is not separated from the noun.
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Figure 4.8: Trope level representation of �a pen is blue�

employed. Thanks to this level of analysis, the machine can be called under-

standable.

Just as the category Type of types is constructed, the category of Proposition

of propositions and even the category of Context of contexts can be constructed.

So, a theory can be an object of another theory; a proof can be a functor be-

tween two theories, or observation can be a category. Consequently, the entities

of Ontology 4.0 can be studied on the base level, on higher levels, between these

levels, or on the highest level, where knowledge is in its most abstracted form.57

By doing so, a search space narrows down as the machine continues its investiga-

tion at detailed levels whenever morphisms attain their types without a doubt.

Obviously, attaining types with a doubt is a statistical matter: the machine war-

rants the morphism type upon a trash hold, for example, between 90%-100%.

Thus, whenever the morphisms get their types, Type is utilized to draw implicit

morphisms. Note that a rigorous analysis of such categories is beyond this work.

We omit careful examinations of the above since this work only aims to point

out the need for a machine ontology and discuss and propose it.

These illustrations are not limited to some textual context. Consider the follow-

ing example from Industry 4.0, for which relating the data coming from signals

are of the most importance. Think of an application generated for smart cities

that collects data from anywhere related. Let us narrow down the data collec-

57 It would be a signi�cant challenge to construct such a category that may be called the category
of knowledge. Here is a try: Knowledge contains knowledgebases as objects and logical operators
of any kind as arrows. The arrow compositions are possible worlds. Of course, that Knowledge is a
category must be shown.
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tion of the means of transportation where identi�ed public transport cards are

used without noti�cation of the economic status of the card-owners. With clas-

sical tools, the data is clustered and then analyzed concerning some questions.

However, the sensor data is ready to be queried in Ontology 4.0: the background

knowledge is already in the machine. Who uses public transportation? Who uses

identi�ed public transport cards? What is an economic status? The machine

knows the answers thanks to the urtrope representation of reality. Moreover,

there would be no need to give a question to the machine. For instance, decom-

posing and recomposing tropes can relate entities and come up with facts only

by raw video data, such that people who travel around 08:30�09:00 are in busi-

ness attire; or more people travel before 08:30 than 09:30. Suppose the machine

is asked �Why are there no children aged 15 using means of transportation at

noon?� According to the visual data, the machine would say: that most of them

are at school. That happens thanks to the machine's ability that independently

relates so many entities, tropes, and urtropes at many levels.

4.6.5.3 Flexibility in Contexts

Flexibility in contexts means that the facts gained through the commuting di-

agrams of a context category are not rigid. Whenever something is changed

in the context, new facts can occur. For instance, a new semantic property is

attached to the trope composition of an entity, or a morphism type is changed.

To make this concrete recall the previously given kitchen-tasks example.

In a kitchen,58 when the task is washing the dishes, a co�ee machine is out of

the context, for washing has nothing to do with a co�ee machine. In urtrope-

theoretical parlance, washing cannot activate any semantic property of ⌜COFFEE

MACHINE⌝. When the task is changed to making co�ee, a dirty pan is not in the

context for the same reasons mentioned above. In contrast, a dirty co�ee mug

may be an entity for making co�ee-task, as a mug is needed for drinking co�ee.

Then, the process of washing becomes a constituent of this context. Again, in

58 Think of `kitchen' as a supercontext, where subcontexts interact.
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urtrope-theoretical parlance, the semantic property of dirt of the `mug' necessi-

tates washing morphism to transform it into ⌜MUG⌝ so that the morphism can

activate the appropriate semantic properties of the mug in the context of co�ee

making.

Clinging on this analogy, the machine can generate new facts when the context

undergoes a change. Pay attention that any change in the context modi�es the

properties to be processed, not the entities. So, the machine must be able to

determine the context by �guring out the semantic properties of entities and the

relation types along with gathering information about objects by studying all

arrows arriving at and departing from the object concurrently. That means, at

the level of a context category, at least two dimensions work simultaneously: a

context category where objects are processed through typed arrows and an entity

category where all the objects and the arrows of the context are penetrated with

a consideration of di�erent categorial constructions.

However, we do not want to sound as if we already know the mathematics behind

these constructions, but we do know that all of them are feasible and tenable.

Typing rules and urtrope-theoretical axioms tell us the arrow composition of a

fact, an entity, a semantic property, or even a trope. There is always a way

down to the base level, urtrope level, and a way up to higher levels, which are

constructed through objectifying categories as objects. That is to say, CT al-

lows decomposing and recomposing structures; as Marquis (2021) puts it, �once

a type of structure has been de�ned, it is imperative to determine how new

structures can be constructed out of the given one [...] [and] how given struc-

tures can be decomposed into more elementary substructures.� Thanks to the

tools that topos theory provides, the machine can go as high as possible and

as deep as to urtropes; so that, it can organize and layer structures with ease.

Hence, category theoretical innovation in terms of the structure lies in the com-

position and decomposition, if possible, of the structure whose type has been

de�ned. That how structures of a certain type compose new structures and can

be decomposed lies at the heart of CT (Marquis, 2021).
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4.6.5.4 Figurative Meanings in Contexts

Think of that one is said to think of `yellow,' `lemon,' `crying,' `yellow lemon,'

`crying lemon,' or `crying yellow lemon.' Without going into the diversity of

opinions about or the depths of the views on human cognitive processes, we

can say that all these entities trigger the human mind separately, causing some

mental formations. Humans can imagine a crying yellow lemon picture or even

start salivating when hearing the word `lemon.' Furthermore, a human can un-

derstand that `crying lemon,' `crying yellow,' and `crying yellow lemon' are used

�guratively. They do not think that crying is a semantic property of a lemon.

On the other hand, in order for the machine to understand, the entities must be

given in a context; viz., neither `lemon' nor `yellow' corresponds to anything in

the machine. In other words, `yellow lemon' is understandable since the com-

position of these entities creates a context. The same holds for `crying lemon,'

`crying yellow,' and `crying yellow lemon.' However, how can the machine �gure

out that the last three are �gures of speech?

A syntactical analysis gives that both `yellow' and `crying' are adjectives. How-

ever, the type of morphism between `yellow' and `lemon' di�ers from the one

between `crying' and `lemon.' That is, yellow as an adjective has a structural cor-

respondence to `lemon,' just like `fresh,' or `chopped;' whereas a property, viz.,

a trope, of `crying' is attributed to `lemon,' that property does not correspond

to the trope compositional structure of lemon. Thus, a structural correspon-

dence is a morphism type between two entities, which can be constructed as a

semantic property of either entity. In our case, `yellow' can be structured as a

trope composition in `lemon.' On the other hand, �gurative correspondence is a

morphism type between two entities, which cannot be constructed as a semantic

property of either entity. As such, propositional- or entity-level decompositions

provide to �nd structural-semantic properties of entities so that the morphisms

of �gurative types can be detected.

Another example of structural and non-structural relations is `blue pen' and

`blue voyage:' in the former, `blue' has structural correspondence to `pen,' the

correspondence is known through the tropic composition of `pen;' whereas in the
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latter, `blue' stands with some �gurative meaning, which does not correspond to

the structure of `voyage.' The question arises: does any adjective connected to

the noun `voyage' form a �gure of speech? The answer is negative, although it

is syntactically a�rmative. For instance, there cannot be a morphism between

⌜VOYAGE⌝ and ⌜PET⌝ or ⌜ODD: integer⌝. So, a �gurative morphism type refers

to one of the structural correspondences of an entity. For instance, `blue' is a

structural correspondence of `sea;' ⌜SEA⌝ has `blue' as a semantic property. So,

the meaning of `blue' is transferred through `sea,' then, a blue voyage refers to a

sailing vacation, or more precisely, it is the vacation along the Turkish Riviera.

Alternatively, a purple voyage can refer to a stroll through the lavender gardens,

as purple is a semantic property of lavender.

To sum this part up in one sentence, categorial/topos theoretical representations

of contexts provide frameworks in which �gurative meanings can be drawn. All

these examples show us that CT enables de�ning relations between entities and

relations, which is not possible in the previously utilized frameworks of Ontol-

ogy 3.0. Thus, in Ontology 4.0, morphisms between entities, between relations,

between contexts and relations, between relations and entities, between facts

and relations, and alike can be de�ned. Ontology 4.0 is the most potent repre-

sentation and form of association so far we examined.

4.7 Conclusion

The limited representation of ontology systems in Ontology 3.0 operating only a

fraction of the world took us on the journey to search for a machine ontology. We

have also witnessed that upper-level ontology studies, which are at the forefront

of e�orts to ensure the presentation of background information, cannot present

the diversity of representations in the �eld of logic and again o�er a limited

representation as they are based on human power. Based on all of these, we

claimed that it is necessary to move the being into a formal �eld �phenomena into

data� and that this would be possible with a relationship-based approach. Thus,

standardization would be provided as well as formally representing the being in

the machine. We have demonstrated the ontological basis of this structure,
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namely of Ontology 4.0, with the urtrope theory. What remained, then, was to

show its computational basis. We have determined the computational basis of

Ontology 4.0 as the category theory since it is the formal structure representing

the urtrope theory. In light of this, in this section, we examined both category

theory and how it would formalize urtrope theory. Knowing what category

theory is and how it is used in ontology has an important place in our research.

Therefore, at the conclusion of this chapter, we would like to include why CT is

necessary both today and future of informatics and in our study.

CT is mainly regarded as the new foundation for mathematics, although it is

controversial. As such, a category is an abstraction of a mathematical theory

so that it can model a mathematical theory, such as the theory of sets or the

theory of rings (Biss, 2003). Moreover, a category encapsulates fundamental

aspects of some mathematical �elds, such as Abelian categories encapsulate the

structure of homological algebra (Marquis, 2021). Being a lingua franca between

mathematics �elds, CT also relates, compares, and contrasts categories, so the

distinct mathematical �elds. This most magni�cent power of CT springs from

its ability to model a mathematical theory in terms of its structure. Take the

�rst example of CT: the relationship between algebra and topology is shown

thanks to speci�c functors that relate the structures among real numbers and

topological spaces, and continuous functions and continuous mappings. Or, the

category of sets and partial functions is shown to be equivalent to the category

of pointed sets; the category of �nite Boolean algebras is shown to be equivalent

to the opposite of the category of �nite sets (Awodey, 2006).

The competence of CT is not limited to mathematics, and it also stands out in

science. Spivak (2015) provides some examples of applications of CT throughout

science. For instance, CT is used for modeling the relationships between geome-

try and algebra in mathematics, functional programs in programming language

theory, the hierarchy found in protein structures in materials science, the rela-

tionship between local and global behavior in various �eld theories in physics,

the symmetry groups of crystal structures in crystallography. Moreover, Spivak

(2015) reports that the National Institute of Standards and Technology (NIST)

recognizes CT as a potential mathematical foundation for Big Data; for instance,
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CT �as applied to sensor-actuator data in the Internet of Things, or as applied to

supply chains which must account for multiple levels of granularity.� On the one

hand, each database has its own aspects and ontological commitments that bring

out some theories; on the other hand, each programming language has its own

aspects and ontological commitments. Queries, data migration, optimization,

and others su�er from the discordance between database schemas and program-

ming languages (Spivak, 2010). For instance, how the NULL values are de�ned

is up to programming languages, and the implementations of those values in

databases create a mess. It is plodding, if not impossible, to merge di�erent

databases written in di�erent languages. Understanding a schema and migrat-

ing data in it is di�cult, prone to errors, and quite tedious. Nevertheless, CT

brings out a unity between programming languages and representing data.59 CT

ful�lls the need for a single language and protocol for a schema. Therefore, CT

serves as a �rm foundation for semantics in linguistics and programming lan-

guages in a �powerful, expressive, and scalable, yet axiomatically simple� way

(Spivak, 2010). Note also that since data and their representation are uni�ed,

and morphisms preserve structures, there is no information loss. Ontology 4.0

solves the problem of structuring data but also brings about a unity between

programming languages and data management. That is to say, CT is not just

a formal system that best suits the urtrope theory. Just as the urtrope the-

ory is the best ontological approach for a machine ontology, CT is likewise the

best representation system of all computational processes concerning the ma-

chine. So, CT is handy not only for representing data but also for programming

languages, protocols, and other data processing techniques.

The marriage of the urtrope theory and category theory above all gives us the

possibility of phenomena into data realization. Accordingly, everything becomes

representable by relations through contentless building blocks. In other words,

all beings become data, and all the data are further represented by the same

ontological type, viz., urtropes. Since everything is represented on the same

59 An application of CT to programming languages is called functional programming. Functional
programming languages as categories are the key aspect of representing and implementing everything
with a single tool. See Harper (2016) for details.
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level, there is no longer the separation of source, target, and relation as in

philontologies: a target can be processed as a relation, and a relation can be

processed as a source. In fact, even the processing of operators is now at issue

since the logic operators can be reduced to category theoretical ground. In

addition to these, the semantic properties of entities become critical according

to the context where they are.

Thanks to the decomposition and recomposition ability of urtropes, static role

assignment is not a destiny anymore. It is dynamic in the sense that there is an

ability to create an exponential representation space. Thus, this marriage, called

Ontology 4.0, seems to be the key to realizing Science 4.0 and Web 4.0 since CT

is a tool to provide new knowledge when inference is de�ned as manipulation of

the structured data to produce new formula (Biss, 2003).60

At the end of this chapter, we can easily say the following: It is possible to

construct Ontology 4.0, and structure-analysis-interpret-and-inference sequenc-

ing, which we claim to be necessary for machine-understanding, can be achieved

thanks to formalizations of CT. Ontology 4.0 is the very ground on which con-

texts of ISW 4.0s can be processed. Bringing everything down to the same

ground in terms of contentless constructors, which is its trademark, indicates a

system where ontological classi�cation and computation are one and the same.

Thus, Ontology 4.0 both represents and processes the phenomena in the ma-

chine.

60 However, the impact of Ontology 4.0 on Industry 4.0 may be in the shadows of knowledge represen-
tation. To our understanding, knowledge representation is not limited to contextual data; rather,
it includes Data 2.0, but its understandable version.
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CHAPTER 5

CONCLUSION: FEATURES OF ONTOLOGY 4.0

The conclusion of this dissertation is threefold. The �rst part will summarize

what has been done and will be an introduction to the second part, where the

features of the product of this dissertation, viz., Ontology 4.0, will be explored.

Lastly, we will mention some future works following this work.

5.1 The Road to Ontology 4.0

One of today's most striking and top-raking topics is undoubtedly Big Data

and its contributions. At the beginning of this dissertation, we conferred the

promises of Big Data over three signi�cant areas at the center of our lives. We

discussed how the industry would undergo a new paradigm shift with Big Data.

This paradigm shift is smart factories, where all the machines are interoperable;

they can communicate by speaking the same language. We claimed that Big

Data and the machine would create a similar paradigm shift in science, where

the machine would act as if a colleague would be able to analyze all previously

produced scienti�c data, make observations, and develop hypotheses using the

scienti�c data previously produced with these observations. Next, we discussed

the necessity of �nding a solution to getting lost among the millions of webpages.

We mentioned that if there were a paradigm shift in how the Web worked, it

would start with classifying all existing contents according to the searched terms.

Finally, we claimed that the machine must be autonomous in order to obtain

these paradigm shifts that would guarantee the 4.0 versions of each domain.

We declared that the common feature of the way to realize ISW 4.0s was that
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the machine could comprehend existing entities in contexts with their possible

interactions and make inferences from them.

5.1.1 What Needed for the Realization of ISW 4.0s

Once again, the common feature of the way to realize ISW 4.0s was that the

machine could comprehend existing entities in contexts with their possible in-

teractions and make inferences from them. That is what we mean by machine-

understandability. We say a human can understand a language when they can

put some words together by obeying the grammar rules. In other words, un-

derstanding means knowing what to do with the pieces of something in a new

context; the pieces are numbers when the new context is calculation; the pieces

are words when the context is a conversation; the pieces are keys when the con-

text is playing the piano. In this respect, the machine needs to be inferential:

it needs to structure and decompose the given situation, interpret the structure

and decomposition, and then make inferences. When something can do all these

processes, it is called autonomous. That is to say, the machine needs to be

autonomous in order for there to be a paradigm shift in Industry, Science, and

Web.

An autonomous agent can respond the new situations by considering all the

possible meanings and usages of the pieces of the given situations. But, what

about the machine? How can it consider the entities in a context? Recall that

it is through the semantic properties of entities. An entity is in a context with

some highlighted semantic properties. For instance, the semantic property of

intelligence is essential in the context of �Laura is a Nobel laureate;� this property

has nothing to do with the context of �Laura eats bread.� When the machine

knows the semantic properties of entities and, selects some of them particular

to a context, and processes them, then it is called to behave autonomously.

The questions to be answered are (1) how the machine can know and (2) select

the semantic properties and (3) how it can process them. The answers: (1)

the machine knows the semantic properties of entities by the representation

of them: all the entities are represented in terms of their semantic properties.
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(2) The machine highlights the right semantic properties of entities by their

interactions in a context. (3) It can process them in a relation/process-based

formal framework. Let us remember how we have reached these answers.

5.1.1.1 Representation in terms of semantic properties

As a matter of fact, what we are trying to do is structure entities. Because

dealing with Big Data is dealing with unstructured data in an open system.

ISW 4.0s also get their fair share of this. At this point, two solutions can be

proposed with existing technologies: (1) structuring data or (2) processing data

without structuring them. Our research has shown that these two approaches are

unsuitable for processing unstructured data to realize ISW 4.0s. Let us explain

this situation by adding new ones to our research and begin with ontologies, a

tool for structuring data.

The homepage of the website of Cyc opens with a catchphrase �Cyc: Logical

Reasoning with the World's Largest Knowledge Base� (Cycorp, 2018). Initiated

in 1984, Cyc has become one of the leading upper-level ontologies in information

systems. Behind this success lies laborious determination to represent everything

and master machine intelligence. On the way to such a huge success, Douglas

Bruce Lenat, the father of Cyc and the CEO of Cycorpt, and Ramanathan

V. Guha, one of the co-leaders of the Cyc Project, wrote a book called Build-

ing Large Knowledge-Based Systems: Representation and Inference in the Cyc

Project in 1989. Of many prominent contemporary computer scientists who

reviewed the book, Drew McDermott (1993, p. 58) wrote the following:

If we want to be able to represent anything, then we get further and further
from the practicalities of frame organization, and deeper and deeper into the
quagmire of logic and philosophy. It seems impossible to get an overarching
scheme of representation without solving problems like the nature of causality
[. . . ], identifying events in di�erent possible worlds [. . . ], the relations among
intentionality, rights, and duties [. . . ], the distinction between voluntary and
coerced actions [. . . ], the distinction between de re and de dicto belief [. . . ], and
the theory of defeasible reasoning [. . . ]. What's frustrating is that the project of
representing consensus beliefs seems to require the assumption that everyone is
already in possession, at an unconscious level, of solutions to these knotty.

Although Cyc is released as if it can structure any data set, even today, it

could not have escaped from the old critiques. Along Cyc, many other on-
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tologies are claimed to solve the abovementioned problems. The main problem

with the label-based approach is that all these constructions are hinged upon

set-theoretical approaches, and all of these ontologies, either philosophically

grounded or modeled for commercial/computational purposes, re�ect human

understanding, and such re�ection is converted into machine `understanding.'

However, we claim that there must be a shift towards constructing machine

ontologies, which serve for the machine intelligence. Machines and humans

are of di�erent categories, so as their intelligence and their intellectual agency

(Zambak, 2014): the way humans interpret the world is di�erent than the ma-

chines do or can do. However, studies in machine intelligence, or arti�cial gen-

eral intelligence, are focused on how the machine can perform just like humans

capture the phenomena, understand the world, communicate with their envi-

ronment, employ reasoning and solve problems, and perform other intellectual

operations. Along with these, such overarching schemes of representation is

impossible to construct since there is always something, a scene, a belief, a rela-

tion, an event, left to be represented. That is to say, it is impossible to represent

every actual and possible context; consequently, the machine cannot know the

semantic properties of an entity that has not been labeled until now.

So, if structuring data through ontologies is impossible, what about the ma-

chine's ability to process data without specifying or structuring semantic prop-

erties? Here, we would like to survey this investigation through statistical meth-

ods, especially machine learning techniques. There are four impediments that

statistical models cannot remedy ISW 4.0s. The �rst one is that current machine

learning algorithms lack the ability to identify and respond to new circumstances

they have not been trained for. That means the alleged �autonomy� of the ma-

chine cannot be achieved through statistical methods. The second impediment is

that a constructed system cannot explain its choices. We cannot get an answer

to �why did this autonomous car accelerate instead of break?� The black-box

nature of these systems is not good fellows in industry and science. The third

one is that these models require big data to be constructed, and the amount

of the necessary data is hardly detected. For instance, GPT-3's training data

size is about 45TB, and 175 billion parameters are used (Radford, Wu, Child,
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et al., 2019). If there were more data and parameters, could GPT-4 perform

better? Even if it could, it cannot escape from the second impediment. The last

obstacle is the lack of understanding of cause-e�ect connections. Nevertheless,

Pearl (2019) purport that his structural causal models (SCM) framework could

overcome impediments of statistical models; for instance, it allows transparency

and testability, and causal discovery. However, the SCM framework works with

structured data, yet �the theoretical limitations of model-free machine learning

do not apply to tasks of prediction, diagnosis, and recognition� (p. 60). To

sum up, statistical methods are crucial in data science, and no one can deny

the powerful results that machine learning algorithms create. That said, struc-

turing data is the real impediment before machine-understandably and making

inferences in open systems. Once the unstructured turn into structured, these

methods can produce much more successful results, even in open systems.

Then, we came to the idea that if processing semantic properties are at the core

of machine understanding, entities would be represented from the beginning as

a collection of their semantic properties. Before moving on to the characteristics

of such a representation system, let us answer the second and third questions.

5.1.1.2 Gaining meaning through interactions

As an autonomous agent, the machine can highlight the right semantic properties

of entities by their interactions in a context. That means the machine knows

which semantic properties are active when at least two entities interact. In old

fashion triple method, RDF, for instance, semantic properties are attached to

entities as metadata which determines the ontological statuses of the entities.

The inference rules of OWL, for instance, operate on the semantic properties,

and so on the entities. If the entities are to be represented as a composition

of their semantic properties, the machine will go through the selection of the

semantic properties by semantic types. Semantic types will assign the legitimate

interactions gained from the relations in a context. In other words, an entity is

not assigned a type, but its semantic properties have types. Then, we can say

that if the entity has a semantic type, that is, a semantic property, it is in a
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relationship because we cannot talk about a semantic property of an entity by

itself. Whenever an entity in interaction a semantic type occurs, when a semantic

type occurs, the ontological status of the entity will emerge. Therefore, there is

no need for inference rules like RDFS or OWL.

Zambak (2013) notes that such an agent has the ability to �choose and shift

di�erent set of rules according to its situation.� The machine can choose and

shift the semantic properties of entities according to contexts. That is to say,

the changing situations occur in contexts where di�erent semantic properties,

accordingly, di�erent semantic types are chosen to be processed. Thus, the ma-

chine will determine the semantic types through the relations in a context, and

this determination is the process of highlighting the right semantic properties.

5.1.1.3 Process-based computation

On the way through autonomous machines, entities are represented in terms of

their semantic properties, and the inference system is embedded into transitions

through semantic types. Such representation requires a di�erent approach to

computation. Most of the representations that has been implemented so far has

prioritized the entities. Both representation and computation are modeled in

an object-oriented fashion, but now there is a need for a framework of represen-

tation and computation where the relationship takes priority. Hence, semantic

properties must be processed in a relation/process-based formal framework.

5.1.2 Why a Machine Ontology Needed

All the ontologies in Ontology 3.0 are context-dependent; hence, the machine

cannot cross the understandability barrier. It is doomed to be called a �reader.�

To create a machine that understands, there needs an ontology that automati-

cally organizes the entities in a context and prepares semantic properties to be

ready for processing. Besides, this machine ontology should be a framework for

automatically constructing domain ontologies. It is not for satisfying human

intellectual curiosity but rather for providing an ontological infrastructure nec-
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essary for machines to be autonomous. Building a machine ontology approach

is also a paradigm shift in knowledge representation studies.

As supported by philosophy and quantum mechanics, whose evidence was pro-

vided in this dissertation, relation-based representation portrays reality. In light

of and courage from these, we adopted a trope theoretical approach for the

philosophical basis of the machine ontology we wanted to construct. Tropes, in

the philontological sense, are properties whose compresences establish entities.

The adopted version of trope theory in our machine ontology says tropes are

semantic properties whose compositions give rise to entities. By doing this, we

have laid the representational foundations of machine ontology.

5.1.3 The Role of Typi�cation in Processing Tropes

Since the representation foundations of machine ontology have been laid, it has

now come to how this representation system will be processed. We just talked

about how semantic types would work in the previous paragraphs. Therefore,

a type theory does the job. Types are abstractions of representations that can

help the machine to specify the operations for a collection of representations.

Semantic properties become processable by assigning types to tropes and for-

mulating type rules. For this reason, we examined in this dissertation that a

system that operates the tropes on the machines is type theoretical.

5.1.4 A Must: Contentless Building Blocks

We can also describe the machine's being autonomous as follows: the ability

to process contexts. For example, let us consider a doctor and a nurse in an

examination room of a hospital. The job descriptions of these people are clear.

However, let us think of such a context that the place and people are the same,

but this time the nurse is the patient, and the doctor is taking care of him. The

way these two people relate varies as the roles change in contexts. So, when the

semantic types change, the meaning of the context will also change.
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It seems that the representation and process we have said so far can be more

or less in Ontology 3.0. However, the processing of semantic properties should

not end there. No ontology of Ontology 3.0 can process semantic properties of

semantic properties. In other words, types also need to be processed to make

the representation system closer to reality. Suppose we have two propositions

�All humans are mortal� and �Socrates is a philosopher.� A human can conclude

�All philosophers are mortal� or, more precisely, �Socrates is mortal.� Once that

`philosopher' is of a human type is known, these two propositions can be merged

through a meta-type of `philosopher,' viz., `human.' So, the machine is not only

capable of processing di�erent semantic properties of entities in an identical

setting but also processing types of types. Thus, not only semantic types but

also their types must be computable. Said that type theories are notoriously

incapable of representing this structure.

Although a type theoretical approach is essential for a machine ontology, ad-

hering to this approach will cause problems in automatically creating types of

types. We must modify our type theoretical approach because there are two

crucial impediments to applying type theories. The �rst impediment is that

type theories commit in�nite regress. A trope can be represented with another

trope, then that trope with another one. We always have to come up with a

new trope to represent another, which cannot be calculated. To break this, we

can say that it comes to a point where it becomes self-re�exive. However, there

is no self-reference in type theories from the beginning. So, it is not out of

type theories that types of types can be constructed without falling into in�nite

regress.

In fact, when we look at computer science, we witness that contentful things

are produced from contentless ones. At its simplest terms,0s and 1s represent

numbers, letters, and even operations. Untyped formal systems, which have

an important place in computer sciences, will guide us. So, to summarize, we

cannot use type theories as they are because types are always contentful, and

their extensional nature causes in�nite regress in calculating the types of types.

As semantic properties are speci�ed from the beginning in the representations,

other semantic properties of entities are sacri�ced. This creates losses in rep-
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resentations. The targets of ISW 4.0s cannot a�ord such losses; as such, the

types of types must be constructed by a machine ontology. Therefore, we need

to represent entities with semantic properties but their types with contentless

units.

Will reducing the entire machine ontology to contentless units allow us to bene�t

from the blessings of type theory and get rid of its troubles? We know from the

untyped theories that their combination will give the types. So there is no

obstacle to creating types of types, which is actually the creation of semantic

types. Because a type's type is also a type, and this is a semantic property. In

the dissertation, we showed that what we call untyped units is the ontological

being that creates everything. Just as semantic properties come together to

form entities, their coming together will create typed beings. In that case, their

in�nite composition will lead to the formation of an in�nite number of types.

Thus, contentless building blocks allow the type system to be modi�ed without

looping and self-re�exive and saves the establishment of a machine ontology.

5.1.5 Ontological Foundations: The Urtrope Theory

We called the contentless building blocks urtropes, and the ontological founda-

tions of the machine ontology the urtrope theory. Borrowed from German, the

pre�x �ur-� means that earliest form of, primitive, or original. In the urtrope

theory, urtropes are contentless building blocks of representation, tropes are

compositions of urtropes, and entities are compositions of tropes. Thus, the

machine can represent any data in terms of urtropes.

The urtrope theory allows self-re�exivity; namely, an urtrope can be represented

by other urtropes. But how can an urtrope or a composition of some urtropes

represent an urtrope? The solution we o�er is typifying identities. This system

works as follows: urtropes are classi�ed according to identity types, and at

another level, an identity type is typi�ed by other identity types; viz., subtypes

of identity are created. The urtropes in the question are represented at the

di�erent levels of identity types. That is to say, an urtrope, say, ua is represented

by ub, since they are identical in type t1. The urtrope ub is represented by uc
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since they are identical in type t2. Lastly, the urtrope uc is represented by ua

since they are identical in type t3. When this loop ends and if the typing rules

allow the transactions through these types, we can say that ua is represented by

uc. Moreover, in light of this, we can generalize that a machine ontology based

on the urtrope theory is also self-re�exive. Again, an isomorphism between

two distinct trope compositions of identity types guarantees that the system is

self-re�exive.

5.1.6 Computational Foundations: Category Theory

After introducing the urtrope theory, we need a formal theory for implementing

the machine ontology. As we have noted before, although there may be some

other formal systems to �t the urtrope theory, we chose category theory to

formalize the urtrope theory. The motivation behind our choice is that both

theories share the same foundations: the objects are contentless, and all the

computations take place over the relations.

Our research led us to formalize urtropes with C-monoids-without terminal ob-

ject, and the rest of the machine ontological categories �tropes, entities, con-

texts�with toposes. As category theory (CT) was not introduced with any

urtrope theoretical intensions, we also noted that some axioms and rules must

be introduced into the employment of CT.

Although controversial, CT is mainly regarded as the new foundation for mathe-

matics. Being a lingua franca between mathematics �elds, CT relates, compares,

and contrasts categories, which refer to distinct mathematical theories. So pow-

erful in mathematics and so needed for the formalization of the urtrope theory,

CT has gained importance in science and data science. Spivak (2015) reports

that the National Institute of Standards and Technology (NIST) recognizes CT

as a potential mathematical foundation in the era of Big Data; for instance, CT

is applied to sensor-actuator data in the Internet of Things, supply chainsthat

account for multiple levels of granularity, and functional programs in program-

ming language theory. We hope that CT will catch the attention of information

systems.

199



5.1.7 Ontology 4.0 as a Machine Ontology

So far, we have just mentioned the most important headlines of this work, which

covers all the substantial research and contemplation collected under the head-

lines. So, we will mention what an ontology Ontology 4.0 is.

Ontology 4.0 is such an ontology that, like all ontologies, it provides standardiza-

tion in representation. It does this standardization with the power of represent-

ing everything as urtrope compositions. Ontology 4.0 also provides automatic

structuralization. In other words, it gives the ontological structure, such as

which semantic properties are activated, what are the types of interactions, and

alike. In fact, this means that Ontology 4.0 is an ontology that generates on-

tologies. Although it can be compared to upper-level ontologies at this point,

Ontology 4.0 has the power to represent itself. No ontology of Ontology 3.0 can

represent itself in its own representation language. Hence, Ontology 4.0 is the

only ontology that presents both itself and the ontologies of all contexts. Addi-

tionally, Ontology 4.0's power to handle syntax and semantics on the same plane

di�ers from all other human ontologies. That is, representation and inference

are in the same framework.

Ontology 4.0 is such an ontology that it is not limited to natural language stud-

ies. When knowledge representation is mentioned, it can be thought that it

includes only Science and Web, but Industry is also involved. Although state-

ments produced in Industry have di�erent epistemic types than statements of

Science and Web, knowledge representation includes machine communication

and interoperability. Thus, Ontology 4.0 can represent not only textual data

but also models, data types, data structures, and others.

This part of this chapter just skimmed the course of this dissertation, where

each part was explained in detail in a corresponding chapter. The second part

of this chapter will examine the features of the machine ontology, aka. Ontology

4.0. These features exhibit the prowess of our theoretical construction. We

believe that the following part, where the basic and beyond conditions of/for

machine-understandability are listed, is the actual conclusion of this research.
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5.2 The Features of Ontology 4.0

This part of the conclusion explores the features of Ontology 4.0, which are

crucial for crosschecking our thesis. While discussing those features, we will see

how Ontology 4.0 meets the needs of the realization of ISW 4.0s.

Philontologies, Ontology 1.0 and 2.0, seek to provide a complete description

and explanation, and exhaustive classi�cation of all entities in all spheres of

beings, Ontology 3.0 seeks to provide a standardization of entities and relations

so that knowledgebases are created for standardization, information retrieval

and extraction, and knowledge extraction. However, we unfolded that Ontology

3.0 is incapable of the demands for the realization of ISW 40.s, whose features

were explored in the chapter Autonomy and Data. Moreover, studied them,

we purported that the approach for representation should be shifted towards a

new paradigm in which being and data must be orchestrated for the machine;

namely, an approach that sues data should be inherently represented in a ma-

chine ontology. As far as Ontology 4.0 is claimed to be a machine ontology, in

the following paragraphs, let us �rst recall the most crucial features of ISW 4.0s

and then explore the features of Ontology 4.0; the features that deal with the

features of its environment belonging to ISW 4.0s.

The very �rst feature of ISW 4.0s is their being open systems. A system is

open if it is interactive and vice versa (Wegner, 1998); that is, what determines

a system's being open is its external interactions with its environment. Smart

factories are open systems, as the machine manipulate data coming from various

sources in real time; scienti�c exploration is a process of an open system, as it

requires examining a phenomenon from di�erent settings that re�ect myriad in-

teractions; the Web is itself an open world; thus, any work that encapsulates the

Web as a whole must operate among various sources with di�erent structures.

Note that ISW 1.0s-3.0s have been dealing with the issues of a domain whose

structure is de�ned in advance of the machine operations; on the other hand,

ISW 4.0s need to deal with the issues of a domain whose elements are in inter-

action with other elements of other domains. That is to say, indeed, knowledge

of domains is incomplete per se and roles/behaviors of the entities in a domain
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can vary. This incomplete and contingent nature of ISW 4.0s is related to their

feature of being open systems.

The second feature of ISW 4.0s is being dynamic and evolving. As they are

interactive, each interaction creates a dynamic environment; with each interac-

tion, these systems change. For instance, a new machine sends particular signals

to other machines, which are to be interpreted in a novel way; or new concepts

can be introduced in a �eld, with new connections must be �gured out. Note

that interactions are not linear necessarily; they can be concurrent. Thus, the

dynamicity and evolution of ISW 4.0s are directly related to the representation

of concurrency.

The last feature we would like to mention is that ISW 4.0s are complex systems

in terms of interaction and, of course, in terms of computation. The more there

are interactions, the more there is interactive complexity (Wegner, 1998). The

interactions of concern are from the data level to the context level: the machine

cannot limit its data manipulation capacity to a restricted domain but must up-

grade it for the intercontextual level. Thus, the machine has to manipulate data

with distinct roles/behaviors that arise from dynamic, nonlinear, and emergent

interactions. For instance, tra�c is a complex system by its nature. A task in

Industry 4.0 integrated with tra�c has a complex component that makes the

task complex. Hence, the machine should not only deal with the complexity of

components, but also the complexity that emerges from the interactions between

components.

In a nutshell, the features of the environment in which Ontology 4.0 survives

can be summed up to be open, incomplete, contingent, dynamic, and complex.

Now, let us explore the features of Ontology 4.0 and analyze which deals with

the issues of this environment.

5.2.1 A standard of representation

In the absence of the machine ontology, data standardization has been based on

other data, called metadata. Even standardization of standardization might be
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required since each standardization gives one extensional aspect of the entities,

which have various aspects that gain signi�cance in other domains. On the

other hand, Ontology 4.0 provides standardization of representations thanks to

non-extensional urtropes that are the standardization of data: entities and their

interrelations are represented independently from any single world state in a

formal fashion that deals with them on the same level. These untyped building

blocks of Ontology 4.0 guarantee the standardization of representation in the

machine.

It is worth mentioning a caveat. That urtropes can be represented by other

urtropes in circularity may be thought as if urtropes were represented on stan-

dardization of some urtropes. However, that urtropes are representable by other

urtropes does not lack their non-extensional aspect; it does not give them an

extensional status. This very feature of urtropes that is representable by other

urtropes provides many levels of urtrope compositions. Thus, the urtrope level

is the standardization level, at which everything becomes comparable.

5.2.2 A uni�cation of syntax and semantics

Traditional semantics depend on the interpretations of the logical constants

important in reasoning. As such, meanings of propositions and logical constants

are inhabited in their interpretations, such as in Tarskian semantics, where ∧
means and and True ∧ False is false, for instance. Accordingly, semantics

hinge on external rules speci�ed in syntax. This approach, however, comes

along with hindrances, e.g., one cannot track what can be computed and cannot

be. Accordingly, and furthermore, one cannot execute de�nitions following the

traditional semantics perspective (Constable, 1991). For instance, Dedekind cuts

and Cauchy sequences both de�ne real numbers, but neither is computable. This

situation shows that even such basic concepts, which frequently arise in computer

science, cannot be related to each other. That is to say, traditional syntax-

semantics distinction may cause computational impossibilities. Thus, there must

be a system in which syntax and semantics are uni�ed, and the constructions

are computable. Indeed, the introduction of Martin Löf's type theory as a
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foundation for computation guaranteed the existence of such a system. Martin

Löf's type theory makes de�nitions computable. Thus, semantics is located

within the inference system, and computability is prior to de�nitions. That

is to say, de�ning external rules for interpretation is ruled out from semantics

computation (Cf. Constable, 1991), and both logical and extra-logical de�nitions

are intrinsic to the inference system so that computation is just a part of the

theory (Schroeder-Heister, 2018).1

Lambek and Scott (1988) show that a category itself can be taken as an abstract

proof theory, such that an arrow A // B in a category C is an abstract from

of B from A: this representation is more than the derivation of B from A since

the arrow has its own epistemological and ontological status (Schroeder-Heister,

2018). Moreover, as shown by Do²en (2003), the identity of arrows means the

identity of proofs; thus, proofs are not just vehicles to establish consequences, but

at the same time, they have their own existence. Let us unpack this: The Curry-

Howard correspondence suggests propositions-as-types, according to which a

proposition P has a certain proof that can be constructed as a certain term t

is of type P . That is, the proposition P is identi�ed with type P . In order to

show that t is of type P , that t is a proof of P must be shown. In Martin-Löf's

type theory, there are twofold senses of proof (Schroeder-Heister, 2018). Firstly,

there are proofs of statements of the form t : P , in which the term t represents

a proof of the proposition P . Secondly, proving t : P is showing that t is a proof

(object) for P . The argumentations are done in the �rst sense of proof, whereas

in the second sense of proof, the meanings are explored.

Topos theory provides perfect execution in the machine, as its structure equates

symbolic expressions and their inferences (Cf. Galmiche, 1990). So, the twofold

sense of proof has its machine ontological status and innate epistemic value.

Consequently, thanks to that theory of urtropes that are the building blocks of

a typed categorial system where topos theoretical constructions name the types,

Ontology 4.0 is a uni�cation of syntax and semantics.

1 What has been said is all about proof-theoretic semantics. Thus, Ontology 4.0 is a sort of proof-
theoretic semantics.
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As a �nal note, we would like to turn back a game we have proposed that is as

follows. One who does not know a single Turkish word is given a Turkish text.

They are supposed to operate the text with the help of the machine. Ontology

4.0 is the best tool for this task: the person writes the text, which is nothing

but a bunch of symbols to the machine. However, those symbols carry some

meaning along with themselves: operations on the symbols are just inferences.

That shows that Ontology 4.0 is for what ISW 4.0s long.

5.2.3 A process-based framework

Understanding a mathematical structure requires understanding the process of

preserving this structure,2 and CT formalizes a relation between structures and

the processes preserving these structures (Singh, Isah, & Ibrahim, 2012). That

is to say, a representation in CT is a formalization of processes. So, Ontology

4.0 o�ers a process-based framework. Let us see how it does it.

Consider the calculation 1+2×3
4−5/6

. The result indeed depends on the order of re-

lations, namely the process. Mathematicians agree on the order of operations,

abbreviated as PEMDAS: Parentheses, Exponents, Multiplication, and Division,

then Addition and Subtraction�from left to right�, in order to expel computa-

tional disambiguation. So, the order of processes is of the greatest matter. For

instance, one may know the ingredients in a dish, the equipment used, and the

relationship between the ingredients and the equipment. In Ontology 3.0 par-

lance, one knows the entities and relations. They can only cook the dish when

they know the order of the relations. Only the order of the processes preserves

the structure.

Ontology 4.0 o�ers a framework in which everything is represented in terms of

relations. The type forming rules determine the order of the trope composi-

tions. That is, the typing rules construe more than a relation-based framework:

a process-based framework. Although it is totally legitimate to name this frame-

2 This idea belongs to Amalie Emmy Noether, an in�uential �gure in mathematics, especially in
abstract algebra and CT.
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work as a process ontology �relations represent everything, the computations are

only on relations�, a caveat is needed: process ontologies or process-like ontolo-

gies in Ontology 3.0 prioritize relations over entities, whereas Ontology 4.0 has

no such dichotomy at all: urtropes construct the world. A �nal note is that On-

tology 4.0 is not a process-based system itself; instead, it builds process-based

systems.

5.2.4 A dynamic and evolving system

Ontology 4.0 is dynamic and evolving, as it stands by alteration, transforma-

tion, and update. The feature of dynamicity arises from the fact that urtropes

are reorganizable: their di�erent compositions give rise to di�erent semantic

properties in di�erent contexts and types. At this rate, the reorganisability of

urtropes and even of tropes�as their di�erent compositions give rise to di�erent

entities, and so di�erent types�, enables them manifest potential compositions.

It is like wood is potentially a table and potentially a picture frame; what makes

it a table or a picture frame depends on the workshop. So, depending on the

context, an urtrope/a trope actualizes its potential compositions. However, the

contextual roles/behaviors of urtropes/tropes can be changed when interacting

with other urtropes/tropes. That is to say, unlike wood, once they actualize

their roles/behaviors in a context, there can still be unactualized, viz., poten-

tial, interactions that can appear when something new-a trope, a morphism, an

object- is introduced to the context; because what determines it to be dynamic

is the knowledge of which potential interactions can be established under what

conditions. Hence, urtropes and tropes are dynamic, so as Ontology 4.0.

That said, recall the �strategy of relativization� that paves the way for dy-

namic representations. Krömer (2007) utters this strategy by highlighting that

being an object, an arrow, a category, or a functor depends on the relations

between things: a category can be an object of another category, or a natural

transformation can be an arrow of a category. Thus, the changeable statuses

of trope compositions also represent the dynamic aspect of Ontology 4.0. De-

pending on the chosen level of thematization, the distinction between objects
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and morphisms is �exible since a strategy of relativization determines the most

appropriate construction.

Zambak (2014, p.72) states that

The occurrence of mental activity in machine intelligence does mean a new kind
of action of the highly dynamic representational system capable of making in-
ferences from its experiences in order to achieve new results of action and form
novel systems directed towards the future.

In light of this, we can say that Ontology 4.0 is not only dynamic but also

evolving because each new contextual level analysis can ensure new trope com-

positions so that new semantic properties are involved in entities. In other words,

unlike Ontology 3.0, where entities interact in a prescribed manner, Ontology 4.0

provides a framework in which structures in entities yield a meaningful network

that can represent new trope compositions. Understanding the interactions be-

tween entities (which are urtrope compositions in a profound sense) and their

exchanged semantics (which are preserved in categorial compositions; viz., in

type theoretical approach) amount to merging dynamic facts from dispersed en-

tities. That is the evolving feature of Ontology 4.0: it not only can re-structure

the ontologies of contexts but also itself. It is because a part of the formaliza-

tion of Ontology 4.0 is based on CT that models evolution and dynamic systems

(Lawvere & Schanuel, 2009). For instance, natural transformations are used for

ontology updates, or more generally, arrows expressed as dynamic inclusions are

constituents of evolving and dynamic categories.

5.2.5 A theory of concurrency and interaction

Processing semantic properties is the gist of machine understandability, in which

semantic prosperities are not limited to entity de�nitions of some domains. In-

stead, interactions among entities, or when we look more closely, interactions

among semantic properties enlarge the possible inferences so that the machine

can draw reliable conclusions. Moreover, the machine must compute concur-

rently since, for instance, in a context, several semantic properties and/or sev-

eral types of relations can need to be processed, or in a factory, several machines
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must communicate simultaneously. In this respect, interaction is required for

handling open world issues, and showing that Ontology 4.0 is capable of rep-

resenting any possible interaction is required. Thus, Ontology 4.0 must be an

interactive system that allows concurrent computations. Thus, the marriage

of features of being concurrent and interactive ends up with that Ontology 4.0

expresses interactive and concurrent computing.

We follow how Milner (1993) investigates modeling interaction and semantic ba-

sis of concurrent computation. He shows that entity-relation distinction does not

work for modeling interactions so that λ-calculus is not the right tool for math-

ematizing interaction since its term-variable distinction o�ers modeling static

structures. Even if λ-calculus is capable of representing any calculation, there

must be another mathematical system that is capable of representing any in-

teraction. To make the story short, Milner (1993, p.81) introduces π-calculus

that is capable of representing any interaction: the key aspect of π-calculus is

treating interactions and interactors, or agents, alike. Besides, he does not limit

his investigation of the elements of interaction to entity-relation or program-

memory interactions but rather extends it to any interactions at the discrete

level; as such, the investigation includes real-life phenomena, such as the inter-

action with communication protocols and radio channels in a mobile telephone

network.3 In this respect, continual interactions include concurrency since it is

quite unexceptional that an interactor interacts with di�erent parties simulta-

neously. Thus, interaction and concurrency are taken as the constituents of a

communication system, in which semantics play a crucial role. λ-calculus can

handle concurrency with a functional structure but cannot deal with seman-

tics and concurrency simultaneously. That is to say, modeling interactions and

concurrency requires an investigation �n the semantic basis of interactive and

concurrent computation. His investigations end up with the introduction of the

Calculus for Communicating Systems.

3 Of course, the mentioned mobile telephone technology goes back to the 1990s.
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We will not discuss Milner's Calculus for Communicating Systems; instead, we

use the features he found to show that Ontology 4.0 is a theory of interaction

and concurrency by which various models can be developed. Urtrope theory

treats interactions and interactors alike: everything is an urtrope composition.

This feature enables the machine to process semantics concurrently. Moreover,

category theory can represent π-calculus with functor categories4 (Scott, 2000),

that is to say, it is proven that there is a mathematical ground for Ontology 4.0

as a theory of interaction and concurrency. At this rate, representing everything

with urtropes creates an exponential realm in which all the possible states reside.

This space produces the capacity of both representing knowledge and processing

that knowledge.

Last words on the interactive foundations of computing. Interactive systems are

non-algorithmic, as they accept external inputs while they compute and express

dynamic external behavior (Wegner, 1998). That is, dynamic and multiple in-

puts and outputs are key features of interactive systems. So, the machine must

perform non-algorithmic or non-sequential computations if it is to handle works

of ISW 4.0s. In principle, Ontology 4.0 solves this issue since it is formalized by

category theory, which works with interactions rather than objects, as it is the

structure language.

Several examples promise that CT meets the requirements for realizing the in-

teractive foundations of computing. For instance, Goguen (1992) provides one

of the earliest studies that explain phenomena in concurrent systems by uti-

lizing sheaf theory�whose categorial abstraction is topos theory�and presents

that limit can be the representation of behaviors of the individual objects and

their interactions. Or consider, Abramsky, Gay, and Nagarajan (1997) deal with

asynchronous concurrent systems by utilizing category theory. Furthermore, as

a �nal note, a concurrent system needs not to be interactive; the same is true for

an interactive system. However, the nature of ISW 4.0s includes all these two

features. The machine can manage interactions and concurrency without omit-

4 Note that it can also be represented with some other construction.
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ting semantics, thanks to the urtrope and category theory. Thus, as Ontology

4.0 is a uni�ed theory that underlines various models, the machine can handle

interactions and concurrency.

5.2.6 An open system

Ontology 4.0 is constructed to deal with ISW 4.0s, which are open systems;

besides, Ontology 4.0 is itself an open system. As we have explained being an

open system at length, it su�ces to state the following. Since all its components

are in interaction, the semantic properties of entities are thought of as free

variables. That is to say, a trope composition does not have a �xed type but

rather is of a �nite set of typed variables (Cf. Scott, 2000).

5.2.7 An interoperable system

Interoperability is �the ability of two or more software components to cooper-

ate despite di�erences in language, interface, and execution platform� (Wegner,

1996, p. 285). Interoperability is the result of compatibility, which can be

provided in many ways. For instance, bridge ontologies make distinct ontologies

compatible; virtual machines provide interoperability of programming languages

so that a system can utilize multiple languages at the same time, or interoper-

ability APIs are created for integrating multiple data sources to be processed

together. We purport that Ontology 4.0 provides interoperability in all these

structures.

Any structured data representation, like databases, taxonomies, or ontologies,

su�ers from interoperability problems. These representation products are de-

signed for speci�c problems, for speci�c domains, and/or from speci�c perspec-

tives. As these are software products-not just an intellectual exercise, they are

required to meet the needs of the companies/tasks/customers. Thus, integrat-

ing these representations means providing an overarching perspective, which is

extra work.

Let us start with a database management problem: integrating databases. Sup-
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pose that there are two distinct databases. In the �rst one, the names of employ-

ees are supposed to be entered as <�rst name|second name|surname>, whereas

in the second one, they are supposed to be entered as <name|surname>. It is

easy for humans to combine `�rst name' and `second name' columns and equalize

them to the `name' columns of the second database. However, what if shrinking

two columns into one is not practical for some reason, how can the machine

understand whether shrinking columns is a good idea and integrating distinct

databases with correct values? Both questions are easy to answer for an ex-

pert in database management systems. Yet, these experts cannot answer how

the column names/concepts that refer to some values are related to each other.

That is an important question: How the column names are related to each other

creates new categories that provide �nding implicit relations. Well, the question

addresses that the machine can process column names. The abovementioned

example is a toy one; however, processing column names creates another level

of investigation of interactions among column names and other values. Conse-

quently, it is quite possible for the machine to draw a new column; that is, the

machine discovers a new relation necessary for the database.

Ontologies also structure the data. In order to provide ontology interoperability,

another ontology that glues others is required. That ontology can be a bridge

ontology that is speci�cally designed for the ontologies that are supposed to be

uni�ed, or it can be a reference ontology that rules over the domain ontologies

that can cohere, or it can be an upper-level ontology whose upper categories unite

the entities of the domain ontologies. However, this approach is not economic:

what should be done if two bridge, reference, or upper-level ontologies are asked

to work harmoniously? For instance, how can Cyc and DOLCE work together,

as they represent qualities from di�erent perspectives? Then, there is a need for

another ontology to integrate these ontologies. Thus, there must be a theory

that automatically generates ontologies. Just as a Turing machine runs any

algorithm, this theory can construct an ontology from any given data.

Data representations, however, are not limited to textual domains. Industry

4.0 requires interoperability among the devices that produce data, the data

that has epistemic value. For instance, a device receiving signals from various
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devices is to understand what each signal means and then performs accordingly.

In the tra�c, a signal says that many vehicles are accumulated at a crossroad;

another says an elderly is just crossing the road, and another notices that an

ambulance is coming through the crossroad. The machine that interprets all

these signals has to decide what to do: turn the tra�c light green to reduce

tra�c congestion; make all the vehicles wait till the ambulance passes by; wait

till the elderly crosses the road; and then organize tra�c lights. This kind of

decision procedure cannot be modeled algorithmically since tra�c is an open

system. At this rate, signals have epistemic value, and the machine has to

interpret them and perform accordingly. Lastly, note that the epistemic type

of natural language and formal statements are di�erent from the epistemic type

of statements coming from signals. Nevertheless, di�erent kinds of epistemic

types must interoperate in order to realize machine-understandability. Thus,

the representation of these epistemic types must be grounded on a machine

ontology theory.

Last but not least, interoperability of di�erent programs, either written in the

same or di�erent languages, is another critical trouble that is not speci�c to

ISW 4.0s. It may require translations between the programming languages,

models, and programs. Please note that this trouble also includes the integration

of programming languages, which requires translations between models, data

types, data structures, and even the formal system on which they are based.

Semantics must be respected throughout these translations (Alagi¢ & Bernstein,

2001). Note that semantics is not limited to databases or any kind of text-based

document: it includes theories, models, and formal systems. Thus, the machine

can also build ontologies for such things.

We claim that Ontology 4.0 provides interoperability in all these structures.

Above all, interoperability requires standardization in representation. Urtrope

theory standardizes data at the ontological level. As mentioned above, inter-

actions and interactors are not di�erentiated in Ontology 4.0. Hence, once ev-

erything is represented as urtrope compositions, then interoperability occurs

naturally. For instance, consider processing column names. As far as they are

represented in urtrope/trope compositions, column names and the values under
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those names can interact, just �guring out allowable morphisms. In other words,

the machine can process not only the values of a column but also column names

as values by �guring out the trope composition of the column name. Therefore,

Ontology 4.0 changes the traditional database management approaches and of-

fers a web of relations instead of relational data.

Secondly, type theoretical, in particular, homotopy type theoretical, basis of

Ontology 4.0 contributes to interoperability since it does not concern represen-

tational di�erences. Recall that how the natural numbers are represented is not

so important in a type theory: de�ning them as successive functions or binary

encoding of numbers are just two distinct ways of encoding natural numbers.

Type theory does not concern showing the di�erences between these encodings

but rather ensuring that these di�erent representations are equal. Using the

Peano system instead of the binary system would make no di�erence from type

theoretical perspective: when two things behave the same, they are considered

the same. This idea is rooted in the Univalent Axiom of Voevodsky, which says

�everything is preserved by equivalence� (Coquand, 2018).

The Univalent Axiom brings us to the third point: Voevodsky's notion of equiv-

alence between types realizes that �all categorical constructions are preserved by

isomorphism� and that �all constructions of categories are preserved by equiva-

lence of categories� (Dybjer & Palmgren, 2020). Category theory, then, provides

interoperability among programming languages, as it speci�es the necessary con-

ditions that determine equivalences between data types.

Considering type theories as a foundation for computation, Constable (1991)

states that intuitional type theories are capable of representing programming

logics, including dynamic logic. On the other hand, ontological accounts of some

logical constants are inconstant; for instance, the ontological account of negation

is changeable, so its implication and interpretation (Vickers, 2010). However,

Ontology 4.0 provides standardization in logic as well. As a world representa-

tion is context-oriented, there is no monolithic representation of the world, no

context-independent representations; each context is a di�erent interpretation.

Since category theory, topos theory, in particular, provides interoperability be-
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tween di�erent logics by providing a single mathematical structure (Alagi¢ &

Bernstein, 2001).

Consequently, Ontology 4.0 is capable of realizing that di�erent representations

are equal/the same and provides interoperability. Ontology 4.0 interoperates

not only among the same structured systems, such as databases or programs,

but also among di�erent structured systems, such as databases and ontologies,

or among protocols and programming languages. All the operations particu-

lar to interoperability are encapsulated in category theoretical computations,

which the machine performs automatically. For instance, the machine inves-

tigates trope compositions of the columns and the values under the columns.

Then, automatically creates (an) extra column(s) or shrinks the columns in the

database. So, just as everything programmable can be translated into a Tur-

ing machine, di�erent logical systems/software/databases/protocols, in principle

can be translated into a common structure/platform that Ontology 4.0 provides.

5.2.8 A self-organizing system

A system is called self-organizing when it becomes structured by its own internal

processes; in other words, it forms its structure without external control. Such

a formation occurs from numerous interactions among components of the sys-

tem (Yates et al., 1983), as such interaction paves the way for self-organization

(Zambak & Vergauwen, 2007). Moreover, in a self-organizing system, internal

interactions execute pattern formations without external interventions (Yates et

al., 1983). For instance, the atmosphere is a self-organizational system in which

weather conditions, and accordingly weather patterns, are changed in response

to internal and/or external conditions, and such patterns emerge only within the

system; that is, the process cannot be instructed from an outsider. At this rate,

Ontology 4.0 is a self-organizing system: according to patterns illustrated by

urtropes, decomposition and recomposition of urtropes execute pattern forma-

tions by ending up introducing new semantic properties to entities, generating

new types, or creating hierarchies based on speci�c contexts. Furthermore, a

pattern formation within Ontology 4.0 is not external; instead, it is inherent in
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the morphisms and their typing rules. Thus, like in atmosphere, in Ontology

4.0, interactions �either directly or indirectly� among components give rise to

emergent properties (Cf. Yates et al., 1983); that is, Ontology 4.0 is a system

that can organize its structure over and over again without external intervention.

5.2.9 A generative system

It is discussed at length that Ontology 3.0 represents the world with webs of

tags, the tags that determine the roles/behaviors of entities and relations with

a context-based. The �rst thing to do is to list all the necessary entities of

the domain and then list all the interactions among the entities determined by

the purpose of constructing the ontology. We criticized this approach for being

too labor-intensive and highly speculative in establishing a representation of the

world as a knowledge web. That is, even if all the entities would be labeled in all

the possible contexts, it is still impossible for machines to process the meanings

through labels since labels that label the entities are also required to be labeled.

Constructing a labeling system based on in�nite regress is not smart at all.

The generative power of Ontology 4.0 stems from the urtrope theory: every

representation is an urtrope composition. Unlike Ontology 3.0, there is no entity-

relation dichotomy, which enables the machine to process everything on the same

level. That provides e�cacious interactions among urtropes and then tropes

and trope compositions, and thanks to typing rules, the machine selects the

allowable interactions from the web of morphisms. The allowable interactions

that are novel to Ontology 4.0 are what the machine generates. In other words,

the machine can automatically generate new tropes, new trope compositions,

new types, and all the way to new ontologies according to a context. The

trademark of Ontology 4.0 is that it can automatically �gure out all the possible

interactions of urtropes/tropes/entities/propositions/contexts, the interactions

that are absolutely implicit to us. To sum up, Ontology 4.0 is a generative

system that hinges on the fact that everything can be represented by urtropes,

which are the non-extended building blocks of machine ontology.
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5.2.10 A systematic system

Ontology 4.0 is generative; however, these generations are not throwaway: once

a new type is detected, for instance, it is stored to be used in di�erent settings.

In this respect, Ontology 4.0 is systematic since it has the ability to apply its

generations to other related structures. Let us unpack this feature.

Systematicity is a term that belongs to the philosophy of mind and computation

used to explain how de�nite and predictable patterns are understood and used.5

The key point of systematicity is to detect a composition's constituents and get

a new composition without any additional information through the constituents

of di�erent compositions (Szabó, 2020). The machine draws the patterns by its

ability to entertain among related structures. That is to say, the machine can

relate the structures to entertain di�erent compositions. The typical example

of systematicity is that when one thinks that John loves Mary, they can enter-

tain the thought that Mary loves John: �the capacity to think that John loves

Mary is systematically related to the capacity to think that Mary loves John�

(Rescorla, 2020). This situation can be customized to the machine. The ma-

chine can recombine the constituents freely and detect whether the combinations

are sound, where the soundness depends on the composition rules. Because it

can draw the structure of the given data and their semantic types; then it can

�gure out the possible interactions in the structure. Ontology 4.0 ensures that

unstructured representations turn into structured representations where di�er-

ent potential compositions emerge (Cf. Schwitzgebel, 2021). Thus, the machine

systematically entails that Mary loves John when it is given that John loves

Mary.

5 Our aim is not to discuss whether connectionism can explain systematicity or any debate on
connectionism versus computationalism; instead, to show that Ontology 4.0 is systematic. Also, note
that systematicity is discussed in the literature from a computational perspective, whereas, Ontology
4.0 promises systematicity from a non-computational perspective. Hence, the diverse approaches to
systematicity are grounded on distinct ontological and computational perspectives.
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5.2.11 A productive system

Productivity is another term borrowed from the philosophy of mind and compu-

tation, whose debates are ruled out from this work. We would rather take this

term in the sense that a �nite set of the primitive constituents and the rules

for their combinations allows for building an in�nity of constructions (Rescorla,

2020). In other words, productivity is about having the potential to create in-

�nitely many wholes from �nitely many parts. In light of this de�nition, it is

legitimate to claim that Ontology 4.0 is productive. Here is why.

Please assume that the machine is given a complex statement6 that it has never

encountered before. If Ontology 4.0 is productive, then the machine must un-

derstand such a statement. As machine-understandability hinges on drawing

semantic properties of entities constituting the statement, the machine can con-

struct the sense of the statement out of semantic properties of entities by de-

composing entities, namely the source, the target, and the relation, into trope

compositions, �guring out the allowable compositions, and then choosing the

most appropriate combination(s). That is, the machine can �gure out the struc-

ture of the statement, which can be analyzed further into the structure of the

constituents of the statement at the entity level and/or propositional level, and

until the urtrope level analyses can be continued. Typing rules apply to draw

the allowable morphisms till the machine guarantees the types of the statement

and its components.

There are two �nal notes about the feature of productivity of Ontology 4.0. The

�rst one is about the philosophical concern of unboundedness. If the machine

is to process in a fair amount of time, the machine must have incredibility,

high computation power, and in�nitely large memory. However, cardinality is

not a concern even for human intelligence, as natural languages are learnable

and compositional at the same time (Szabó, 2020). This fact also holds for

the organization that Ontology 4.0 provides. The machine can detect allowable

6 It can either be a proposition or a context, as well.
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morphisms from urtrope level to context level simultaneously. The other note

is on �gurative uses. Recall `blue pen' and `blue voyage' examples: even if

both clauses have the same adjective, `blue,' the sense it contributes di�ers.

As explained in `Figurative Meanings in Contexts' in section Contexts in CT,

Ontology 4.0 provides a framework in which �gurative meanings can be drawn

thanks to its ability to detect structural correspondence at the trope level.

5.2.12 An associative system

One may wonder who �rst opened a wine bottle with a shoe and how these

totally irrelevant entities �a shoe and a wine bottle � were associated. Letting

aside the cognitive faculties of humans, in general, representing association is

at the heart of discovery and innovation. From the machine perspective, we de-

clared that associations are driven through the semantic properties, i.e., tropes

and trope compositions. For instance, the machine highlights an association be-

tween smoking and lung cancer from causal interactions between the tropes in

these entities. Note that proving associations is more complicated than �nding

patterns: associations explain the nature of patterns. The ability to associate

semantic properties and morphisms with entities, relations, contexts and rela-

tions, relations and entities, facts and relations, and alike makes Ontology 4.0

the most powerful tool that �nds associations.

5.2.13 A self-referential system

Previously, it was noted that self-reference is inevitable in typi�cation, and

relations must be self-re�exive. We use self-reference, self-representable, and

self-re�exive interchangeably, considering they mean the ability of a system to

represent itself in the same way it represents; the ability of a system to represent

its constituents applying to themselves; and/or the ability of a system referring

to itself. We planted the seed of Ontology 4.0 to be self-referential in part called

�A Machine Ontology as a Self-Representable System� in section The Urtrope

Theory, where we prosed urtrope theory as an untyped theory, which enables

typi�cation in an in�nite number of times, without causing an in�nite regress.
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So it provides a vibrant representation that allows applying urtropes/tropes

and their compositions to themselves. As such, Ontology 4.0 is self-referential,

thanks to the urtrope theory that does the job without presenting paradoxes.

More precisely, Ontology 4.0 is self-referential since it is a system that can be

represented by the same formal system that represents automatically generated

context-speci�c ontologies. That is, as Ontology 4.0 can represent any ontology,

it can also represent itself: there is no need for an upper ontology to represent

Ontology 4.0. As urtropes bring together in�nitely many forms, the system can

represent itself innumerable by staying within its representational form. Hence,

the urtrope theory, an ontology-based untyped theory, enables Ontology 4.0

to be turned on itself so that Ontology 4.0 can provide an account of its own

existence (Cf. Kratzer, 2021).

5.2.14 A query-ready-structure provider

A query-ready structure is nothing but a knowledge web: entities of a context

are linked to each other so that the machine can explore implicit links. In order

to have this feature, �rst of all, the context must be structured. The ontologies

generated by Ontology 4.0 have this feature. Ontology 4.0 operates on a context

by structuring it; the context becomes query ready. In other words, a context is

structured thanks to urtrope theory, and reference rules that are formalizations

in category theory can be employed.

Moreover, Ontology 4.0 can model various types of reasoning, deductive, induc-

tive, and case-based, to name some, thanks to CT. Ontology 4.0 also provides �a

logically perspicuous representation of our commonsense understanding of the

world as well as our scienti�c understanding� (Cocchiarella, 2007, p. xxiii).7

Thus, Ontology 4.0 does automatically structure the data/create an ontology

for the context: this is nothing but making the context ready for queries. In

7 Cocchiarella (2007) lists criteria of adequacy for a formal ontology. Other list elements can be
compared with the features of Ontology 4.0 in another study. We omit this work because Ontology
4.0 is not a formal ontology but a machine ontology.
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other words, Ontology 4.0 can turn any unstructured data into a knowledge web

speci�c to the context: it is for extracting the knowledge of the context.

5.2.15 An autopoietic system

We spoke of Ontology 4.0's being a self-organizing system: it can control its

structural formation. On the other hand, we also spoke of Ontology 4.0's being

an emergent system, as it can generate, for instance, new trope types. At this

rate, we should consider whether introducing new tropes endangers the unity of

Ontology 4.0 or, in the �rst place, why a system produces other components.

One of the essential paradigms of system theories is the dichotomy of system

and environment. From a system theoretical perspective, systems are divided

into open and closed ones. Closed systems have either no or limited interaction

with their environments. On the other hand, open systems constantly interact

with the environment they are in.8 There is almost no surprise for emergence

in a closed system but in an open system. Thus, systems have the property

of emergence and produce new phenomena due to their interactions with the

environments.

In the machine ontological parlance, a context is an environment, according to

which solely Ontology 4.0 speci�es the characteristics of the interactions. Given

a context, the machine can generate an ontology speci�c to the context. This

ontology speci�es trope compositions and then can generate new compositions

from those speci�cations that are unknown before the interaction. As Ontology

4.0 is a self-organizing system, it can form its own structure, but introducing a

new component requires the system's formation. At this rate, we are not talking

about a system that produces new compositions and eventually changes its own

structure, but rather a system does furthermore attain new roles/behaviors to

those compositions. Thus, Ontology 4.0 is more than being self-organizational.

8 Please beware of the distinction that the operations in such a system are closed, yet its interactions
are open.
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In system theories, the feature that an open system can produce its own compo-

nents and delegate their functions is called autopoiesis.9 The new components

�nd their characteristics and functions in the system thanks to the feature of

self-organization. Namely, Ontology 4.0 can produce new components due to

its interaction with contexts and then can assign new roles/functions to those

components and form its structure by solely itself. In the words of Iba (2010):

�an autopoietic system is de�ned as a unity whose organization is de�ned by a

particular network of production processes of elements.� Thus, the introduction

of new tropes, for instance, cannot endanger the unity of Ontology 4.0. Said

that the very feature of self-reference guarantees such a unity: the process of

system formation requires the system being self-referential such that production

of other components from the systems own components can be realized (Nöth,

2021). Alternatively, if Ontology 4.0 were not self-referential, it would assign the

roles/behavior of new components under the command of some other system.

A citation from Varela (1979, p. 13) �ts here well for illustrating an autopoietic

system.

An autopoietic system is organized (de�ned as a unity) as a network of processes
of production (transformation and destruction) of components that produces the
components that: (1) through their interactions and transformations continuously
regenerate and realize the network of processes (relations) that produced them;
and (2) constitute it (the machine) as a concrete unity in the space in which they
exist by specifying the topological domain of its realization as such a network.
[Emphasis in the original]

It follows that an autopoietic machine continuously generates and speci�es its
own organization through its operation as a system of production of its own
components, and does this in an endless turnover of components under condi-
tions of continuous perturbations and compensation of perturbations. Therefore,
an autopoietic machine10 is a homeostatic (or rather a relations-static) system
that has its own organization (de�ning network of relations) as the fundamen-
tal invariant. This is to be clearly understood. Every unity has an organization
speci�able in terms of static or dynamic relations between elements, processes, or
both. Among these possible cases, autopoietic machines are unities whose orga-
nization is de�ned by a particular network of processes (relations) of production
of components, the autopoietic network, not by the components themselves or
their static relations. Since the relations of production of components are given
only as processes, if the processes stop the relations of production vanish; as a re-

9 There are conceptual di�erences between system theories, so between the de�nition of autopoiesis,
open system, self-organization, and so on. To see such di�erences, refer to Vidales and Brier (2021),
especially Nöth (2021). The de�nitions are given here re�ect our understanding.

10 Beware that Varela (1979) uses machine to refer living systems.
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sult, for a machine to be autopoietic, its de�ning relations of production must be
continuously regenerated by the components which they produce. Furthermore,
the network of processes that constitute an autopoietic machine is a unitary
system in the space of the components that it produces and that generate the
network through their interactions.

To sum up, autopoiesis characterizes the organization of the systems that can

produce their own components. To this respect, Ontology 4.0 is a unity whose

organization is de�ned by category theoretical constructions, typing rules, and

compositions of urtropes to form new components, a unity that determines the

roles/behaviors of the components by itself. Additionally and lastly, thanks to

this feature of Ontology 4.0, the machine does no longer su�er from the di-

chotomy of organization and structure; and this feature handles nonlinear/non-

deterministic-dynamic contexts and the increasing complexity of the represen-

tations with the emergence of novel relations and types (Cf. Mainzer, 2004).

5.2.16 A Turing Machine of Ontologies

A Turing machine is a hypothetical machine that can simulate any computation.

Today's computers can be taken as a Turing machine, as they can run various

programs. For instance, word processors, video players, integrated development

environments, and so on are run in a single machine without altering the hard-

ware structure. Similarly, Ontology 4.0 is capable of automatically constructing

an ontology that is particular to a context.

Ontology studies until Ontology 4.0 have focused on creating models that can

�t contexts. For instance, RDF is a model used for structuring datasets, or an

upper-level ontology is a model that is used for structuring domain ontologies.

On the other hand, Ontology 4.0 is a system that introduces a structure that

produces models. This is possible due that Ontology 4.0 is based on an untyped

system that paves the way for typed systems. These typed systems occur in

accordance with the context. In other words, each context has its model, viz.,

a domain ontology. Moreover, the structure of Ontology 4.0 can both represent

and process itself; in other words, contentless abstract entities, urtropes, produce

tropes endlessly, yet does it without enjoying an in�nite regress.
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Furthermore, inference systems until Ontology 4.0 have focused on creating mod-

els that can re�ect the structure of the context with more expressibility and less

complexity. For instance, description logics are used for the semantic web, or

geometric logic is used for making inferences in moral agent systems. On the

other hand, Ontology 4.0 is a system that introduces a mathematical framework

that can generate di�erent inference models. That is possible due that Ontol-

ogy 4.0 is formalized in category theory, which can model di�erent inference

systems (Cf. Vickers, 2010). Thus, Ontology 4.0 is not only a Turing machine

for representation but also for inference.

Before moving to the next feature, one caveat is necessary. Ontology 4.0 is not

like a Turing machine in the sense that this hypothetical machine is extensional.

Surprisingly, on the other hand, Ontology 4.0 is more like the λ-calculus for

being non-extensional. It is by surprise since, most of the time, lambda calculus

and Turing machines are considered the same model for computation. Addition-

ally, neither lambda calculus nor Turing machines can express concurrency or

interactions (Cf. Wegner & Goldin, 2003); but Ontology 4.0.11

5.2.17 Autonomy/Active agency

In the previous chapters, we have seen that all roads lead to autonomous ma-

chines for the realization of ISW 4.0s. Similarly, just as all roads lead to Rome,

all the previous features of Ontology 4.0 form the path for the feature of auton-

omy. In this respect, the autonomy/active agency feature of Ontology 4.0 is the

conclusion of all features.

Let us start with some de�nitions. Maes, cited in Zambak and Vergauwen (2007,

p. 197), strongly de�nes agency:

An agent is a system that tries to ful�ll a set of goals in a complex, dynamic
environment. An agent is situated in the environment: It can sense the envi-
ronment through its sensors and act upon the environmental using its actuators.
[. . . ] An agent is called autonomous if it operates completely autonomously, that

11 See the feature A theory of concurrency and interaction.
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is, if it decides itself how to relate its sensor data to motor commands in such a
way that its goals are attended to successfully. [italics in the original]

In light of this de�nition, if Ontology 4.0 is an autonomous agent, or say active

agent, then, for a given goal/situation, it should decide itself by structuring,

analyzing, and interpreting a given context and then making inferences on the

�nal product, while producing particular models for the context, not coercing

to apply a �xed model. In other words, Ontology 4.0, as an agent, should

determine appropriate semantic properties and process them within a collection

of type rules according to the given context. However, Zambak (2014, p. 72)

highlights the importance of accountability in the process of reaching the goals:

�[t]he essence of agentive action is rationalization in which machine intelligence

acts in order to achieve its goals.� The goal can be de�ned as the processes

of structuring, analyzing, interpreting, and making inferences in a context by

processing the right semantic properties. Indeed, Ontology 4.0 has ontological,

epistemological, and computational foundations that rationalize how it reaches

its goals.

We will examine this feature, unlike the others, at length since it is the utmost

important feature of Ontology 4.0. Before starting, let us note that autonomy

and active agency are the same concepts for us. An agent can be responsive

to its environment passively or actively. A passive response is mechanical or

predetermined. An active response/act, on the other hand, can be beyond the

conventional ones. For instance, opening a wine bottle with a shoe or using

a full bottle of water as a doorstopper is a creative solution, not a usual one.

With this respect, if the goal is to keep the door steady and if there is no

doorstopper in the environment, an autonomous agent analyses the necessary

and su�cient conditions within the environment that are useful for �nding an

object that substitutes/can be used as a doorstopper. So, a full bottle of water

can substitute for a doorstopper by weight and volume. To sum up, an agent is

active/autonomous when it can decide on things that can meet a given goal by

utilizing things either in the system or in the environment out of their conditional

situations. In other words, the agent can behave di�erently from a particular

behavior. That also means creativity is of autonomous systems since discovery
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is a product of the system itself. As Iba (2010) de�nes, a sequence of discoveries

can be taken as a creative process. Explicitly, with respect to the system itself

or the environment, the system discovers within a collection of its operations,

the operations performed to reach the goal. Consequently, such a system is both

operationally closed and creative.

Now it is time to show how Ontology 4.0 behave autonomously, albeit prescribing

certain laws and rules, and how it can give an account of its actions. For this

illustration, we will follow the heteromorphic theory of adjunction, developed by

Ellerman (2006). According to this theory, autonomous behavior can emerge

within a system that has to follow certain laws, and further, such behaviors are

determined through universals (Ellerman, 2006, p.174):

In grand philosophical terms, the factorization through universals of an adjunc-
tion gives an approach, albeit in rather abstract mathematical terms, to re-
solving what is perhaps the central conundrum of philosophy, the reconciliation
of external determination (�necessity� or �heteronomy�) and self-determination
(�freedom� or �autonomy�).

Ellerman (2006) applies his theory in empirical and social sciences.12 As we

will see, this theory already applies to Ontology 4.0. Now let us appreciate the

theory, its examples, and its implementation in Ontology 4.0 in turn.

5.2.17.1 The heteromorphic theory about adjunction

Ellerman's idea of �determination though universals� can be reduced to the idea

of function �for the sake of demonstration-: �a function describes how one thing

determines another� (p. 20). For instance, given two sets of integers, X and Y ,

and a function f : X // Y , f assigns each element of X to some element of Y .

The elements of X are the determiners, and the elements of Y are the potential

determinees. They are called �potential� because f(x) is the actual determinee,

where x ∈ X and f(x) ∈ Y . Then, given f : Z // Z and f(x) = 2x, 2 de-

termines that the outcome is 4, though the determination of 2x. That is, the

source is the determiner �sender�, the target is the determinee �receiver�, and

12 He also uses this theory as a basis for social engineering. See Ellerman (2009) for more detail.
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the function is the determination. In category theoretical parlance, the deter-

miners and the determinees are objects in categories, and the determinations

are the morphisms between objects. However, the morphisms are of di�erent

types when the objects are of di�erent categories. We are familiar with the use

of homomorphisms, as we have mentioned that they are morphisms in a cate-

gory, namely, arrows. When objects are of di�erent categories, they are no more

arrows but heteromorphisms. For instance, a morphism from an object of Mon to

an object of Aut is a heteromorphism. Thus, we can speak of a heteromorphic

determination just as a homomorphic one.

Recall that universals are essential notions, just like natural transformations.

Their invaluable status provides, for instance, that they transfer knowledge be-

tween objects satisfying the same universal in di�erent theories or allow studying

an object from various perspectives. Ellerman proposes that the construction

of a universal paves the way for autonomy. Said that, is it unquestionable

that the source or the target can be universally represented? In order to be sure

about the mathematical constructions of any example, we need to work with ad-

joint functors. In the part Adjoints in chapter An Orchestration of the Urtrope

and Category Theories, we noted that adjoint functors could unify and/or sub-

sume categorial construction; many mathematical theorems can be rewritten as

statements about the existence of adjoint functors; they adhere to syntax and

semantics, and so on. They are primarily in this study because every universal

constructor can be de�ned in terms of adjoints. Ellerman's theory is based on

this fact about adjoints.

More precisely, adjoint functors take a �given object to its corresponding univer-

sal object in the other category� (Ellerman, 2007, p. 24). Therefore, the focus

should be on an adjunction,13 which arises from (1) where every heteromorphism

to a given object in the target category can be universally represented within

the source category, and 2) where every heteromorphism from a given object in

the source category can be universally represented within the target category

13 Recall that an adjunction is a pair of adjoint functors, namely left and right adjoints.
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(Ellerman, 2007, p. 24). The universal models are successful if a homomorphism

can represent each heteromorphism as an internal map. So, autonomy results

from such a construction: the universality + the internality. Ellerman's theory

is summarised in Figure 5.1:14

Figure 5.1: Adjunctive square as general scheme for determination through uni-
versals

This square explains the theory. Let us unpack this square with the following

illustrations and move on to the examples where we will examine this square

from various angles to understand the mathematical theory of autonomy.

5.2.17.2 Examples of Ellerman's Theory

Internalization of a speci�c behaviour as an action : Suppose that

there is an agent who is in an environment, and the agent somehow a�ects

the environment. This direct observation is the behavior of the agent in the

environment. In category theoretical parlance, certain behavior is a morphism

from the agent to the environment. That is a direct determination; however,

claims Ellerman (2007), the agent needs to internally construct a representation

of all possible behaviors in order to �gure out indirect determinations if it is

autonomous. That is, the construction of a corresponding universal internalizes

the mentioned behavior as an action, among other possible behaviors. The

notion of internalization refers to the fact that the agent and the corresponding

universal are of the same type. The e�ect of the behavior in the environment

14 The original �gure is Figure 5 on page 27.
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can be reached through the sending universal object, by the sending universal

morphism. Here, the construction of the universal constructs the collection of

all e�ects so that the given instance of behavior factors through the universal

by the internal morphism, viz., behavior. This internal morphism �chooses� the

e�ects and sends the same result to the environment as the original interaction

from the agent.

Please note two things: (1) it is not the agent by itself the �sender,� rather, the

agent and the universal object together is the sender. So, in this example, the

receiver is the environment alone. (2) �determination through a universal� is

not solely about the universal object but includes the universal morphisms. For

instance, the universal of product cannot be thought of without the projections.

Thus, for this example, �the sending universe� combines the sending universal

object and the sending universal morphism.

The diagram depicts that the speci�c behavior can be factored through the uni-

versal by the speci�c internal behavior. In other words, the observed behavior

can be determined through the internal representations of the agent's behav-

iors. Ellerman (2007) shows that mathematically the observed behavior and the

internal factorization through the universal give the same result; consequently,

the above diagram commutes.

An internal determination through a universal is worth examining more than

the direct external determinations because only the former ends up with auton-

omy, says Ellerman (2007). He states that �[t]he net e�ect is that the sender

(�organism�) is �disconnected� from direct �causal� interaction with the e�ects
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(the action takes place, as it were, in the internalized �world�) and becomes

in that sense autonomous� (p. 29). Namely, the agent and the environment

are �separated,� such that the given behavior, like other actions, occurs in the

�exemplary� environment internalized by the agent.

Internalization of a signal as perception : Suppose that there is another

agent who is in an environment. In this example, the sender is the environment,

the receiver is the agent, and the environment sends signals to the agent. In cat-

egory theoretical parlance, a certain signal is a morphism from the environment

to the agent. This is a direct determination; however, claims Ellerman (2007),

the agent needs to internally construct a representation of all possible signals

from the environment in order to �gure out indirect determinations. That is,

the construction of a corresponding universal internalizes the mentioned signal

as perception. The notion of internalization here also refers to the agent and

the corresponding universal being of the same type. The signal a�ects the agent

and can be reached through the receiving universal object by the receiving uni-

versal morphism. The universal construction, here, constructs the collection of

all signals so that the given instance of signal factors through the universal by

the internal morphism, viz., perception. This internal morphism �perceives� the

signal and sends the same signal to the agent as the original interaction from

the environment. Again note that (1) it is not the agent by itself the �receiver,�

but rather, the agent and the universal object together. So, in this example,

the sender is the environment alone. (2) Determination through a universal is

not solely about the universal object but includes the universal morphisms. For

instance, the universal of coproduct cannot be thought of without the injections.

Thus, for this example, �the receiving universe� combines the receiving universal

object and the receiving universal morphism.
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The diagram depicts that the speci�c signal can be factored through the uni-

versal by the speci�c internal perception. In other words, the detected signal

can be determined through the internal representations of signals of the agent.

Ellerman (2007) shows that mathematically the internal perception of the signal

through the universal is the same as the detected signal; consequently, the above

diagram commutes.

Ellerman (2007, p. 26) states that �[i]n more philosophical terms, the internal-

ized determination through the receiving universal gives the receiving �organism�

[agent] a certain measure of independence or autonomy from the direct stimu-

lus control represented by the speci�c external determinations.� In this respect,

the receiving agent can construct a �separate internal environment� that pro-

vides a kind of autonomy for its environment, thanks to the ability to construct

universals and their internalizations.

Universal Turing machine as a sending universal object : Ellerman

(2007, p. 30) o�ers a representation in which a universal Turing machine is a

universal object, such that a special-purpose Turing machine performs only a

speci�c calculation and whose result is equal to the result which is produced by

factorization through a universal Turing machine � as the universal object. That

is to say, a special-purpose TM directly produces certain results for the given

input; in contrast, the same result can be reached by internal determination

through a universal Turing machine. So, the following diagram, Figure 5.2,

commutes.
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Figure 5.2: Special-purpose calculator factored through a universal TM

Here the autonomy comes from the idea that the input can be an object to

various TM instructions, all of which can be represented in a universal TM. Or

in other words, the inputs are independent of speci�c instructions of a special-

purpose TM.

Universal language faculty as a receiving universal object : Ellerman

(2007, p. 36) illustrates Chomsky's theory of generative grammar by employing

the adjunction square. Chomsky's theory of generative grammar claims that, in

general terms, a child does not learn grammar rules of the mother's tongue, but

the linguistic experience of the child �selects� the rules (ibid.). Figure 5.3 is the

commuting diagram of Chomsky's grammar.

Figure 5.3: Generative grammar account of language learning as determination
through a universal

This is an example of indirect determination: we understand any natural lan-

guage through our universal language faculty, and we experience a language
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su�ciently. Moreover, the universality of the internal mechanism o�ers �the

limitless possibilities of thought and imagination� that are �re�ected in the cre-

ative aspect of language use� (Chomsky (1966), in Ellerman (2007, p. 37)) Thus,

the autonomy is rooted in the universal language.

5.2.17.3 Implementation of Ellerman's Theory in Ontology 4.0

We purport that the heteromorphic theory of adjunction suggests a conceptual

structure of how autonomy can also emerge within Ontology 4.0. The urtrope

theory claims that urtropes compose endlessly and creates an in�nite number

of properties, viz., tropes. The proper construction and meaningful selection

of these tropes and trope compositions require evaluating them in interaction.

That is also a result of tropes and their compositions � entities gaining prop-

erties, contexts�gaining their meaning in interaction. So, the heteromorphic

theory of adjoints will help construct and demonstrate the machine's autonomy

since tropes and everything deriving from their compositions can be described

in a topos theoretical structure; because all ontological structures that we rep-

resent as toposes are built on universals such as an exponential object, terminal

object, product, and all of them can be represented with adjoint functors. Thus,

choosing the right adjunction for Ontology 4.0 ensures its autonomous structure.

Figure 5.4: Choosing the right morphism between entities through Entity

An entity by itself has no meaning at all; nevertheless, it gains its meaning by

interacting with other entities in a context. Gaining meaning means that the

ontological status of the entity becomes explicit. Besides, the entity interacts
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with others through some of its semantic properties. An interaction occurs

between the entity's semantic property and another entity's semantic property

in the context. For instance, in the proposition �Laura jumps,� a semantic

property of `Laura' and a semantic property of `jumping' are in interaction, and

the existence of a morphism between these proves the proposition.

Moreover, recall that semantic properties are prior to entities: interactions

among semantic properties determine the entities since Ontology 4.0 adopted

relation-based representation. Following these, we can portray that the deter-

mination, namely a speci�c interaction, is heteromorphic when the interaction is

taken to be between two entities. That is to say, an object, a semantic property,

of an entity, Entity1, is linked to an object, a semantic property, of another en-

tity, Entity2. As can be seen in Figure 5.4, the determination is the link between

the semantic properties of two distinct entities. However, the machine needs to

select the appropriate morphism between the entities. The category Entity of

entities, whose objects are entities and arrows are allowable interactions, is a

receiving universal object through which internalization can happen. In other

words, Entity is the universal through which the morphism between Entity1

and Entity2 can be determined. The category Entity of entities is the generator

of the multiplicity in the sense that it exhibits all the interactions of Entity2.

Thus, the internalization in the receiving side o�ers a functor, call it di�eren-

tial interactions, which maps the appropriate entity to Entity2. Consequently,

determination through universals provides autonomy so that the machine can

determine the morphism between the entities that are particular to the semantic

properties of entities.

Suppose that all the types of arrows in a context are determined. Behind the

determination of the types of arrows between entities, there are certain semantic

properties of the entities. We expect the machine to act according to the type

rules and make certain inferences. However, entities also have other semantic

properties. The machine must decide which of these to use in that context. This

process means processing the background information. Figure 5.5 illustrates a

speci�c interaction internalized through a universal sending object. This inter-

action determines what other semantic properties of an entity makes the entity
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Figure 5.5: Emerging implicit semantic properties of an entity in a context

interact with other entities in a context. The determination is heteromorphic

since the objects, the semantic properties, of the chosen entity interact with

entities in the context where the entity is. In this scenario, the machine needs to

attain morphisms from ⌜ENTITY⌝ to other entities in ⌜CONTEXT⌝. We will de-

�ne a category whose objects are the arrows of the ⌜CONTEXT⌝, and the arrows

are the typing rules so that all the contextual interactions are de�ned in a cate-

gory.15 With the application of typing rules to all the objects, a representation

of all possible interactions in the context is obtained. Thus, the di�erential in-

teractions from ⌜ENTITY⌝ to the category of all contextual interactions provide

a list of all the possible interactions between the entity and the other entities

in the context. However, not all are important for the context, so the machine

selects the appropriate ones that emerge the necessary background information.

Consequently, determination through a universal provides autonomy so that the

machine can select the morphisms that can emerge in a context, the morphisms

that are hidden in the trope compositions in entities.

5.2.17.4 Conclusion

The idea of determination through universals, mathematically express adjunc-

tions, unveils various collections of possibilities, which are indirect determina-

15 This category is considered like a functor category. Constructing such a category is legitimate
since all the way, we are working with Cartesian closed categories.
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tions. Therefore, some measure of autonomy can exist when there are indi-

rect factorizations through universals. In other words, determination-through-

universals puts forward determinations other than a direct external determina-

tion.

Ontology 4.0 has �nite typing rules, and there is an in�nite possibility of se-

mantic types due to urtrope compositions. The limitless possibilities of urtrope

compositions are re�ected in the creative aspect of semantic type generation.

However, limitless possibilities of urtropes cannot be observed directly, just like

the possible interactions might occur in a context. In a context, external de-

terminations are observable by nature; however, the most crucial potency of

Ontology 4.0 lies in the ability to discover implicit interactions among semantic

properties. In either case, an interaction can be restructured as a determination

through an internal universal so that a universal model of determinations can

present qualitatively di�erent types of interactions. In Ellerman (2007, p. 38)'s

words, �[t]he internalization through the universal structure builds a �separate�

internalized �space� or �world� and thus supports the emergence of a qualitatively

new level of relatively autonomous activity that would not otherwise be present

if there was only the direct determinative connections.� Consequently, Ontology

4.0 has the feature of autonomy/active agency as it can reach its goals in the

process of structuring, analyzing, interpreting, and making inferences through

constructing adjunctions.

5.3 Future Works

The �nal words of this work are about possible future works. The very �rst

future work concerns representing entities in terms of urtropes. Indeed, we

have started a project aiming to classify Web contents upon a search. We are

employing an urtrope theoretical approach to constructing tropes.

Once an urtrope theoretical representation is constructed, we will formalize them

in topos theory. Applied category theory studies and natural language processing

techniques are the essential components of this work. Our model will be tested
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against state-of-the-art models for its complexity, e�cacy, and inference power.

Another future work is to elaborate on the features of Ontology 4.0. Although

this work explains how Ontology 4.0 has such features, it is also necessary to

formalize them, just like the construction of a Turing Test or building models

as Milner (1993) did with π-calculus to model interaction between machines.

Lastly, this work can be taken as a comment on metaphysics. Current philosoph-

ical attitudes can be questions from a machine-understandability perspective.

For instance, there can be other perspectives to admit and de�ne abstraction.
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APPENDICES

A. FROM 1.0 TO 3.0: INDUSTRY, SCIENCE, WEB

The very fundamental wheels upon which the world makes progress are science

and industry. Developments in each �eld have resulted in new stages or revo-

lutions to shape the world's destiny. Speci�c to our age, the improvements in

both hardware and software have changed the way we produce: Big Data helps

people in science and industry thrive. The Web, another �eld that dominates

our lives, has gained a challenging role in Big Data. The historical and philo-

sophical background of our lives' three essential �elds �industry, science, and

the Web� from the machine and/or data involvement, generation and/or usage

perspectives. This appendix chapter provides the details of 1.0, 2.0, and 3.0

versions of Industry, Science, and Web, upon which we built ISW 4.0s.

A.1 Industry

The term `industry' points to economic activities that produce or provide �goods,

services, or sources of income� (Encyclopædia Britannica, 2011). When there

is population growth in a territory, the need for more food, more clothes, more

shelters increases. The existing industries must be transformed to meet the de-

mands. Such transformations are sometimes �nding better ways to produce or

harvest more or adjust the whole production style to meet the existing system's

limitations. New technologies, the latest scienti�c discoveries, and/or unex-

pected social phenomena (such as the dramatic increase in population) spark

industry revolutions.
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We will examine Industry in distinct periods which are almost in consensus.

In the history books, the �rst period and revolution in the industry called the

Industry Revolution. This period is when steam engines were introduced, and

immediately afterward, when mechanization of some works from which humans

were liberated. Thanks to immense scienti�c, especially in mechanics, discov-

eries, and (greedy) market demand, the second period starts with electricity

usage in factories. This new epoch begins with the introduction of the assembly

line that called forth mass production. The third period is called the Digital

or Computer Revolution that starts with the advent of computers, which led to

automation in factories. Now we are at the fourth industrial revolution called

Industry 4.0 that aims at the decentralized and autonomous factories. Coined

at the opening of Hanover Fair in 2011, the term �Industry 4.0� also named the

previous three periods/revolutions as Industry 1.0, Industry 2.0, and Industry

3.0, respectively, making the historical progress in Industry more concrete.

Industries such as agriculture, mining, or �shing have been held since the story

of humankind. In each revolutionary period, these industries have continued to

exist with the change of the period provided. That is, Industry 1.0, Industry

2.0, and Industry 3.0 have surpassed the former's limitations. In this section, we

will be discussing the revolutions in the history of Industry, the radical changes

in the ways we live, produce, consume, and behave, as they would never be the

same again.

A.1.1 Industry 1.0

By the beginning of the eighteenth century, the population of Europe was con-

tinuously increasing. The population of Britain, for example, grew by more than

80% in the early of the century (Kishlansky, Geary, & O'Brien, 2007, p. 621).

Overpopulation was the cause for more food and more cloth. The traditional

agricultural production, whose limits were determined by nature, could not meet

these requirements. People were lack of food to consume, cloth to wear, work to

earn their lives. It was an attitude change that steered agriculture, which has

been of commercial concern since then. Although known and practiced for cen-
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turies during overpopulation periods, various methods were used systematically

to increase crop yields. These early systematic agricultural practices are labeled

as the agricultural revolution, which was a revolution of technique, rather than

of technology, and it shifted substance farming into commercial agriculture. The

abundance was �rstly provided by enclosing the lands and then by determining

what and when to harvest according to the community's needs. For instance,

more grains were harvested not only for humans but also for livestock so that

farmers could increase their livestock and their wealth. The ability to tune

the agricultural products into the market demands maximized farmers' prof-

its, abundant raw materials, and foodstu� for urban and rural workers. Fall in

food prices and an increase of free human power delivered a solution for the re-

quirement for more cloth. Before the agricultural revolution, manufacturing was

labor carried out at homes as an occasional work for supplement income, called

the cottage industry�merchants often providing the raw materials and essential

equipment, and then picking up the �nished product�, that was less impor-

tant and less valuable compared to farming. On the other hand, the traditional

commercial cloth production, which urban artisans held, could not meet the

overpopulation's cloth demand. The oversupply of labor o�ered the opportu-

nity to rural families to sell their weaving skills. More and more, manufacturing

became a family-oriented occupation of many rural families. Consequently, so-

ciety's transition can be illustrated as: �The open-�eld village was a community;

the enclosed estate was a business� (Kishlansky et al., 2007, p. 626).

The agriculture revolution triggered the burst of industrialization. In the �rst

half of the nineteenth century in Europe, industrialization transformed cultures

from agrarian and rural into industrial and urban (Buchanan, 2018). This trans-

formation must be taken as a revolution rather than as development in the con-

sequences of the agricultural revolution and of the changes in manufacturing.

So, the industrial revolution,1 Industry 1.0, in our terms, refers to �a sustained

period of economic growth and change brought about by the application of

1 The term �Industrial Revolution� is not a precise historical concept. For various instructional or
conceptual purposes, historians name di�erent periods as the Industrial Revolution. See Buchanan
(2018) for some detail.
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mineral energy and technological innovations to the process of manufacturing�

(Kishlansky et al., 2007, p. 626). In the simplest terms, Industry 1.0 is when

machines, steam engines, and the textile industry changed the Western world's

dynamics.2

Before Industry 1.0, the major sources of power were the wind, water, and mus-

cle, but from the nineteenth century on, powerful engines were substituted as

power sources as well. For instance, as mentioned above, the cottage industry,

required human power, could not meet the population's demand, then many

people thought of how to improve the process of cloth production. In 1764, the

spinning jenny was invented by James Hargreaves. This machine was operated

on a number of spindles for spinning threads. Once the production of threads

was increased, then it was time to mechanize the looms. During the cottage in-

dustry, people were using hand-looms that were for weaving threads into cloth.

Invented by Edmund Cartwright in 1784 and �rst built in 1785, power looms

were steam-powered machines that reduced the need for human power and in-

creased the number of products.3 Along with textile mechanization, the steam

engines shifted human life into something that could never be the same again.

In 1712, Thomas Newcomen developed the �rst steam engine used for pumping

water out of mines. Many scientists of this period improved the Newcomen's

technology with some adaptations and developed their steam engines used in

various �elds, e.g., for iron production, and then for new transportation tech-

nologies -steamships and locomotives (Kishlansky et al., 2007). Moreover, with

the demands for reaching new markets and low-cost raw materials, people looked

for ways to power their industrial initiatives. Many industries looked for ways

to engage steam power into their manufacturing, which vivi�ed the economy of

many lands (Buchanan, 2018).

2 The industrial revolution was emerged in the Great Brain, for she had abundant mineral resources,
such as coal and iron ores, which were indispensable for industrialization; colonies that served as
sources of raw material and as a market for commercial goods; and entrepreneurs, inventors, and
skilled workers. Consequently, Kishlansky et al. (2007, p. 643) put �No one else had to invent the
jenny, the mule, or the steam engine.�

3 The Jacquard machine, or the Jacquard loom, is a power loom that used punched cards for pattern
creation. Punched cards were introduced during Industry 1.0 that is crucially important for Data
1.0 since designing the punched cards is taken as an ancestor of programming.
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The story of Industry 1.0 started with overpopulation and systematic agricul-

ture, whose indirect but inevitable e�ects initiated coal use and ended up with

steam power usage. All these paved the way for mechanized production by

powerful machines; consequently, Industry 1.0, or the Industrial Revolution, is

when the power sources have changed, which animated the machines used for

manufacturing, transportation, and communication.4

A.1.2 Industry 2.0

The emergence of mechanization in Industry 1.0 inevitably led to the factory

system, which is at the heart of Industry 2.0 that is the era starting with the elec-

tri�cation of factories and the birth of mass production. There are two crucial

energy sources for Industry 2.0: electricity and petroleum. Having widespread

applications in industry, steam engines were evolved and modi�ed with respect

to requisites of a speci�c industry; for instance, locomotives require high-pressure

steam to move such heavy vehicles (Buchanan, 2018). Although such engines

were developed to meet this need, they could not provide a necessary high speed

to rotate the dynamos to function e�ectively, so designers were looking for radical

modi�cations or novel engine systems. Besides modi�cations like the Willans en-

gine or the uni�ow engine, the steam tribune designed by Charles Parson solved

the mentioned problem e�ciently. However, this major technological innovation

prompted to generate electricity as a new power source (ibid).

Electric motors were a product of the search that how electricity could be used

as a source of power in the industry. One of the electricity practices was electric

traction, whose �rst implementation was the electric tramways and the subway

systems. On the other hand, these means of transportation were not the only

ones that occurred in this era: One of the most important inventions was the

4 In the early 1800s, a group of textile workers rebelled against the introduction of machines due
to the well-founded fear of losing their position as highly trained artisans and jobs. They knew
that they could never compete with the speed of the devices, and above all, their craftsman was
past its sell-by date. People who supported this movement called Luddites. Since that time, there
are `Luddites' who have been under the threat of their artisanship being substituted by machines.
Today, the developments in AI increase the number of Luddites, but we cannot destroy machines in
some protests as they did.
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internal-combustion engine, which can be regarded as a prime mover in the

nineteenth century (ibid). The signi�cant di�culty operating such engines was

�nding suitable fuel, which was come over with utilizing oil. Oil has been known

and used for centuries, such as for illuminants and medical products, but its

intense usage for engines encounters internal-combustion engines' invention.

Meanwhile, Ford Motor Company was working on a car design that would pro-

vide inexpensive transportation to the US's middle-class citizens. Up to that

time, each car was a product of craftsmen who had deep knowledge about me-

chanics and other car manufacturing aspects and who were highly skilled in

conducting/executing their knowledge�becoming such a person requires time

and e�ort. Then Henry Ford introduced the assembly line whose function was

to increase productivity and decrease the cars' cost. Such a creative mind lets

workers gather along with a moving line. These workers need not have deep

knowledge or skills about the whole process; namely, they were not craftsmen

necessarily; instead, they were unskilled and needed to perform a particular task

each time. Such labor division provided quick and e�cient production of goods

in general, which paved the way for mass production. In other words, Industry

2.0 refers to new organizational models of production, which aims at the automa-

tion of the process by introducing a new industrial model of large factories run

around assembly lines. To sum up, the assembly line's introduction changed the

production speed, interest, and size. Industry 2.0, therefore, provided a�ordable

goods for a large number of people by automation the process.

A.1.3 Industry 3.0

Industry 1.0 bestowed the invention of the steam engine and mechanized produc-

tion; by the advent of electricity and the invention of the assembly line, Industry

2.0 provided mass production. It is crystal clear from the facts of these periods

that the scienti�c discoveries and the new technologies called forth industrial de-

velopments, the need for human-power radically diminished, the human control

during production was gradually evanesced, and �nally, more and new products

were produced. Then, in Industry 3.0, we would expect the same pattern: sci-

enti�c studies would lead to new technology, automation would be expanded,
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and mechanical processes would rule the progress, and new products would be

on the markets thanks to all these improvements.

The third industrial revolution, namely Industry 3.0, starts with the advent of

computers, thereby it is also called Digital Revolution or Computer Revolution,

and this period is typically called the Information Age. What paved the way

for Industry 3.0 along with scienti�c studies on computation that have been

held for centuries are semiconductors -transistors-, mainframe computers, home

computers, and the Internet (Schwab, 2017). Brief information about the history

of computers is essential for a better understanding, so below it is.

The story of the ambition of mechanizing reasoning and computing, which dates

back to Leibniz, if not earlier. He aimed at creating calculus ratiocinator, a ma-

chine that computes the validity of arguments. Almost a century later comes

Babbage started to design the Analytical Engine, a machine for mechanizing

reasoning, at least as Ada Lovelace thought of (Boden, 2016, pp. 7�8). The An-

alytical Engine, or the mechanical general-purpose computer, was the �rst idea

of a programmable machine. It was never completed at the time of Babbage due

to the fact that electronic components, especially microelectronic devices, were

required for its construction (Freeman & Louça, 2001). About seventy years

later of the Analytical Engine's �rst introduction, the �rst electro-mechanical

machines were launched by Zuse (Copeland, 2017). In 1939, Atanaso� and Berry

introduced the �rst electronic computer; in the 1940s, the University of Penn-

sylvania built ENIAC, EDVAC, and UNIVAC that led the computer industry

in the States (Freeman & Louça, 2001). Meantime, IBM was dominating the

market by providing tabulators and punched cards5 to departments in the US

government and the private sector. It was when von Neumann developed his

computer architecture, and the computer industry accelerated rapidly. In the

1960s, IBM sold the mainframe computers to various countries; in the 1970s,

minicomputers were started to be realized by replacing mainframe computers,

and since the 1980s, they became a part of our daily lives. Meanwhile, in 1969

5 See section Data 1.0.
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the Internet was introduced to some universities for �le exchanging, then to the

world for data exchange. Moreover, the nascent electronic industry boosted the

industries of mobile phones, software, and microelectronics.

The ambition of mechanizing reasoning, although it has not been fully accom-

plished, and the advent of transistors gave birth to computers. Led by transistor

technology, computers have been programmed by machine languages that enable

us to tell a machine what to do. That is, there have been machines that are

programmed for speci�c tasks. The advent of computers is by itself an indus-

trial development since it comes with many industries, such as microprocessors,

software developments, or the mobile phone industry. Computers became indis-

pensable tools for almost all jobs; accordingly, the software industry rocketed

as well, for there has been a need for various programs that can operate for

speci�c works- those works used to take lots of time before using computers.

Foremost, what makes Industry 3.0 a revolution over Industry 2.0 is the advent

of automation: The robots have replaced workers on the assembly lines,6 those

are, in general, machines, which are programmed in order to carry out a series

of actions automatically. Then, machines in Industry 3.0 are �ne-tuned versions

of the previous periods: They can be externally controlled or perform their spe-

ci�c tasks uninterruptedly. Once again, the revolutionary incident of the era of

digitization is the automation of factories by industrial robots. Today, in many

factories, there are masterly designed robots performing their task craftsmanly.

When the property of performing a task craftsmanly can be attributed to ma-

chines, why not could they run a factory by becoming masters of the factory?

Once the work�ow and other detailed plans of running a factory are put forth,

an (or some) adept machine(s) can decide on what actions should be taken to

run the factory. This dream, or to some people, what is happening right now,

is about having autonomous factories. Automation via robots would become

only a minor aspect of such factories since the automation is held by some other

machines, by the autonomous machines. Realization of this and beyond can

6 Here, we are speaking of industrial robots, and there are also software robots, patient assist robots,
and nanorobots to name some.
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be another revolution in Industry, which we discuss in chapter Autonomy and

Data.

A.2 Science

As one of the highest human enterprises that shape the world, science is a com-

plex system with its own methods for producing new knowledge. Its very char-

acteristics are systematic observation, experimentation, reasoning, construction

of hypotheses and theories, and testing them. Data collection can be held in

a natural setting or laboratory settings or from simulations; reasoning methods

can vary in di�erent scienti�c works; the way of testing hypotheses can vary;

yet the very aim of science, which is knowledge production, stays the same. In

light of this fact, Andersen and Hepburn (2016) mention that the methodology

of science aims to �nd the methods that pave the way for scienti�c knowledge

production. Indeed, these methods have changed the course of scienti�c endeav-

ors across history. In order to elaborate on di�erent scienti�c eras, out of many

scholars who have categorized the history of science into di�erent phases, to

guide us, we chose formulations of Hoyningen-Huene (2013) for his encapsulat-

ing views on science; and of Gray (2009) for that his rami�cation of the progress

of science from a computational perspective. In this section, we will be speaking

of the transformations of science characteristics towards our point of view.

Hoyningen-Huene starts his systematic investigation of the history of science

with the question of what science is (Hoyningen-Huene (2013), see Introduc-

tion).7 To answer this question, he highlights two aspects: The epistemic ideal

and the source of scienti�c knowledge.

The �rst phase stretches from Plato and Aristotle to the seventeenth century.

The epistemic ideal was �the absolute certainty of knowledge,� in other words,

episteme. Episteme is gained by deductive proofs based upon �rst principles,

7 His systematic preliminaries are (i) science is taken in the broadest sense; (ii) the main focus
is scienti�c knowledge, rather than the in�uence of science in other domains of life; and (iii) the
criterion, the question of what science is, is used as a demarcation tool that separates science from
metaphysics and pseudo-science.
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which are evident axioms. Then, science is the accumulation of those absolute

certainties. The second phase starts in the seventeenth century and ends in

the second half of the nineteenth century. The certainty of scienti�c knowledge

was the epistemic ideal for this phase as well, yet another reasoning method,

induction, was introduced. A set of rules was de�ned as the scienti�c method to

secure knowledge, which guarantees that laws can be achieved from data by ap-

plying those procedures correctly. This phase ends with the suspicions upon the

scienti�c knowledge's certainty, although such knowledge is auspices of scienti�c

methods. Then comes the third phase till the late twentieth century. In this

phase, the epistemic ideal, the certainty of scienti�c knowledge, was toppled,

and its place was taken by fallibility. The discovery of non-Euclidean geometries

discredited the absolute truth of mathematics. So, mathematical claims were

considered only as conditional truths of theorems. The process of erosion of sci-

enti�c certainty supervened upon this. The emergence of relativity theory and

quantum mechanics forced the scientist to think of novel ways to explain the

phenomena rather than explaining them in terms of classical mechanics. As a

consequence, scienti�c methods no more include strict procedures for con�rma-

tion or testing of hypotheses. From the last decades of the twentieth century, we

have been in the fourth phase. At this ultimate phase, both the certainty of sci-

enti�c knowledge and the existence of the scienti�c methods as strict rules have

already eroded. In this respect, some speci�c research problems in a speci�c

context are sometimes conveyed under scienti�c methods that cannot be taken

as universally valid methodological rules. Thereby, there cannot be a consensus

on the scienti�c methods, according to science's nature.

Jim Gray divides scienti�c studies into four phases concerning the evolutional

aspect of science (Hey, Tansley, & Tolle, 2009, p. xvii-xix). According to this

criterion, science had to be primarily empirical. In the �rst phase, the scienti�c

activities were conveyed by observations and experimentations, then rational-

ized the �ndings, and �nally, descriptively reported them. The second phase

was theoretical, meaning that scientists of this era were making generalizations

about phenomena they were examining and then constructing models of these

phenomena and expressing their conclusions in a mathematical language. Since
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these models and generalizations became too challenging to be solved analyt-

ically, computers have been used across the scienti�c spectrum and thus have

become the third leg of science. That is, science has become computational,

which has acted as a de�ning characteristic of the third era. Today, in its fourth

phase, science is data explorational, for scientists �are `looking' through large-

scale, complex instruments which relay data to data centres, and only then do

they look at the information on their computers� (Hey, Tansley, & Tolle, 2009,

p. xix). For instance, third-phase biologists who conducted experiments in �wet

labs� were experts in using glassware on benches along with using machines for

doing certain calculations. In contrast, the fourth-phase biologists are consid-

ered experts only when they are skillful in working with algorithms to analyze

complex data that is no longer collected from wet labs. That is to say, the

widespread use of Big Data and the prowess of new technologies in data analy-

ses have shifted science into its fourth phase.

To make a concrete example, consider studies in astronomy. At the empiri-

cal astronomy period, scientists were looking at the sky either with naked-eye

or through telescopes and expressed their �ndings in a declarative way; at the

theoretical astronomy period, their observation techniques did not change, but

the way they expressed their �ndings did. Consider Kepler, who formalized

the planetary motion in a mathematical formula. At the computational astron-

omy, scientists no longer look through telescopes with the naked-eye but col-

lect data from telescopes with charge-coupled devices, detectors at non-optical

wavelengths, and from running simulations. Thus, astronomy converted from

`an observational science' to `a digital and computational science' (Hey, Tansley,

Tolle, et al., 2009, p. 40). Nevertheless, today, the images collected by such

devices are used to build models and simulations, which help astronomers test

their hypotheses and/or change them. That is to say; astronomers are to use

the machine for data generation, data processing, experiments, testing the hy-

potheses, and all the other scienti�c methods that a scientist in astronomy must

follow. Never do they look at the sky; but the screens, all their scienti�c works

are held in the machine.
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Examining these two di�erent rami�cations, we can highlight two common crit-

ical transformations: the development of scienti�c instruments and the expan-

sion of data sources. These transformations compose our criteria for scienti�c

phases. In light of this, in the �rst phase, the scienti�c observations were done

without an instrument; the experiments were in vivo; the scienti�c results were

generated by reasoning alone. The second phase began with the inventions of

measurement tools and the experimental instruments that enabled unobservable

becoming visible and the experiments being holding both in vivo and in vitro.

Such technologies also increased the volume of collected data. The third phase

started with the advent of computers. Apart from their being measurement

tools, computers started to process data on behalf of us, and also, they have

contributed to data production. That is, the scienti�c experiments have been

enlarged to in silico by computer simulations.8 For the fourth phase, one can say

that Big Data technologies have enormously increased the amount of data, and

data analytics contribute to scienti�c knowledge production. In the following,

we elaborate on the �rst three phases, respectively. We examine whether there

is a fourth paradigm in science in chapter Autonomy and Data.

A.2.1 Science 1.0

The �rst phase of Science, Science 1.0, is the primitive way of generating sci-

enti�c knowledge. The data is obtained through careful passive observations

of phenomena, which takes place in vivo. Observation, indeed, is dealing with

details of the resulting perceptual experience (Bogen, 2017). The observed data

is processed by reason, the results are validated through deductive logic laws,

and scienti�c descriptions are expressed in narrative features (Cf. Andersen &

Hepburn, 2016).

The scienti�c enterprise of Aristotle is a good example of scienti�c knowledge

production of this phase. Aristotelian inquiry starts with what is knowable

8 There are no sharp distinctions between the periods. Today, we can still have scienti�c knowledge
produced from the second period's methods, yet it cannot reside the information beyond what a high
school student produces.
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by us, which is sensory data; thus, any human investigation must begin with

an observation. This starting point is passive, viz., the experiments are not

controlled (Andersen & Hepburn, 2016, p. 7). The Aristotelian inquiry aims

at arriving at what is knowable in nature, i.e., acquiring the genuine episteme

about the issue at hand. Finally, the observed data are reasoned in light of

Aristotelian doctrines. Panza (2002, p. 257) clari�es Aristotle's methodology as

follows.

[...]for Aristotle motion is a natural primitive phenomenon that can be character-
ized in general in term of the fundamental metaphysical categories of ful�llment
and potentiality and described in its particular manifestation by specifying the
particular body which is moving, the causes of its motion, the path this body
covers, the time it takes to do it, and the speed with which it does it.

In order to construct a scienti�c body, the observations and the results of experi-

ments must be appropriately arranged. The explanations of these hinge on, �rst

of all, the principles that the scientist committed to. Lastly, the scienti�c body

is expressed by nomenclatures, and/or by taxonomies, and/or by classi�cations.

In the example of Aristotle, the motion is explained through doctrines of actu-

ality and potentiality and four causes. Under the light of these metaphysical

principles, the observable features of particular bodies' motion are categorized

by applying the reasoning method, the truth-transferring deduction theory.

In sum, the knowledge generation in Science 1.0 is through passive-yet-careful

observations in nature, or say experiments in vivo, and then seeking rules or ap-

plying �rst principles to explain the phenomenon at issue (Andersen & Hepburn,

2016).

A.2.2 Science 2.0

Science 1.0 has a limited source of data, the data obtained from the passive

observations. Moreover, such perceptual experiences are object to limitations

of the senses. While Science 2.0 involves the inventions of measurement tools,

instruments, and experimental instruments that have enabled us to collect more

data about and from the phenomena at hand. For instance, as a scienti�c

instrument, a telescope helps us perceive distant objects; as a measurement tool,
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a sextant measures the angular distance between two objects; as an experimental

instrument, a graduated cylinder measures the liquid volume. These scienti�c

instruments and measurement tools are used to collect data in vivo, whereas

experimental instruments are used for collecting data in vitro; namely, scientists

conduct experiments in the laboratory settings in a controlled manner. This

very situation widens the scienti�c knowledge, which is the most remarkable

di�erence between Science 1.0 and Science 2.0.

In vivo, it is quite challenging to do experiments since the external conditions di-

rectly a�ect the outcomes. However, in vitro, as its name suggests, experiments

take place in isolation, where the observed objects are organized and manipu-

lated for scienti�c knowledge production. For instance, observers need not wait

till spring comes. They can arrange laboratory settings to the desirable condi-

tions. Further, some phenomena in nature, such as neutrinos, cannot register

on either the senses or the experimental equipment; then, observers could not

produce any data. On the other hand, conducting an experiment in which neu-

trinos interact with chloride produces radioactive argon isotope, whose radiation

can be measured by Geiger counter. That is how scientists make unobservable

in vivo observable in vitro: produce data and calculate its properties indirectly.

This is revolutionary!

The bene�ts of scienti�c devices' inventions cannot boil down to the vast increase

in data volume. The scienti�c instruments collect data in a structured way, and

the data are ready for being analyzed in a mathematical fashion. The structured

feature of the data, both observed and gained, are used for �nding patterns in

it. For instance, Tycho Brache's records were used by Kepler to formulate his

laws of planetary movement. That is to say, in this phase, the language of

science became mathematics, and ever since, scienti�c communication has been

conducted through formalism. This also extends the ways of processing data.

Moreover, inductive reasoning has become prevalent in this phase since we gain

the truth of a phenomenon through observations, or more precisely, through

structured data. Therefore, not only the amount of data or the ways of pro-
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cessing data has increased, but also various reasoning methods have become

dominant in scienti�c knowledge production.

A.2.3 Science 3.0

The advent of computers is one of the most signi�cant cornerstones of hu-

mankind.9 From the �rst day of their occurrence, the ways we play games,

trade, communicate, or learn have dramatically changed. It must be crystal-

clear that computers have become a scienti�c device in scientists' toolbox, and

the integration of computers into scienti�c endeavors should have transformed

the data sources. Our examination of computers' contributions to Science is

fourfold: computers as calculators, as observers, as scienti�c experimental set-

tings, and as data processors. These contributions bring forth Science 3.0.

In Science 2.0, the measurement tools have provided scienti�c data to be stored

structurally and formalism helped these data be processed easily and e�ciently

by human e�orts. The formalization of scienti�c work resulted in traditional

ways of computing not being able to draw solutions. Many researchers of the

day were trying to invent machines that could solve complex mathematical prob-

lems that either took so much time or could not be solved using formal methods.

For instance, many scienti�c and engineering problems represented in mathemat-

ical models could only be solved using di�erential equations. These notorious

equations were too tough to be solved by human computers, and at many times

solutions by hand were labor-intensive processes and error-prone; these results

were vital in practical scienti�c applications. To provide numerical solutions

to those mathematical models, Bush and his coworkers at MIT developed, for

instance, the Rockefeller Di�erential Analyzer, �a great electromechanical brain

ready to tackle the problems of peace and to advance science by freeing it from

the pick-and-shovel work of mathematics� (Owens, 1986, p. 64). There were

many other mechanical and electromechanical di�erential analyzers, which were

applied in scienti�c solutions. For instance, Morse and Allis used it to study the

9 Both in Industry and Science, the interchangeable use of the words �computer� and �machines� may
be misunderstood. To prevent this, we mention machines as computers time-to-time in this part.
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scattering of electrons by helium atoms; Jackson and Tyson used it to calculate

energy exchange between a gas and a solid at a di�erent temperature (Rose,

1948, p. 52). The advent of computers fostered the usage of machines in scien-

ti�c calculations. Without such a device, humankind could not have landed on

the Moon.

The scientists of Science 1.0, as passive observers, note down their observa-

tions; whereas, the scientists of Science 2.0, as active observers, note and record

their observations. In Science 3.0, computers have been gathering data as if they

were the observers themselves. For instance, astronomy researchers of the second

phase used telescopes, and then analog photographic plates to record their obser-

vations of the sky. These data were recorded and processed by scientists. In the

second phase, during the late days of astronomy research, photographic plates,

augmented with electronic devices, ampli�ed the signal from celestial objects.

This revolution in astronomy came with the invention of the charge-coupled de-

vice (CCD) that detects even non-optical wavelengths and then records their

discoveries in digital databanks. That is to say, more data became available to

astronomers, which �transformed astronomy from an observational science into

a digital and computational science.� (Goodman & Wong, 2009, p. 40). Results

gathered from recent research can be given as a second example. Maldonado

et al. (2019) developed a sensor-material for environmental monitoring, which

detects the amount of water in organic solvents. Machines sending X-rays ex-

amine the sensor-material to record humidity levels. The data generated by this

system will also be used in other experiments. Therefore, it can be concluded

that machines have been making considerable contributions to data generation;

this can also be considered as a revolution in scienti�c devices.

Other means of data generation in the third phase of science are computer sim-

ulations. According to Winsberg (2019), a computer simulation is a program

that is designed to explore the behavior of a natural phenomenon. This math-

ematical model mimics a target system, which contains analytically unsolvable

equations. On the other hand, this is not the only reason for creating numerical

representations of the natural world.

279



Computer simulations are modeled for three purposes (Winsberg, 2019). The

�rst one is for predicting how a system in the real world can behave in partic-

ular situations. Scientists can observe a model of interest in particular settings

for predicting the future or retrodicting the past. Numerical weather prediction

is a good example of this kind of simulation since it is built upon mathemat-

ical models. The second purpose is that computer simulations can be used to

communicate with other researchers and to represent the models for a better

understanding of themselves. The ultimate purpose of creating computer simu-

lations is to understand systems and their behavior. These kinds of simulations

are used for comprehending the events in systems and are constructed in order

to understand the potential of speci�c events of occurring or how they truly

happen.

One of the earliest computer simulations used in science dates back to the in-

vention of the �rst general-purpose computers. Built-in 1946, ENIAC's �rst use

was to run the simulations that helped develop the hydrogen bomb (Kaufmann

& Smarr, 1992, p. 30). Although it is a notorious attempt for some scholars,

a recent example of computer simulations in science is the human brain simu-

lations. Began in 2013 and founded by European Union, Human Brain Project

aims at building a human brain in silico. Scientists can do experiments with

multi-level models of the brain to study various kinds of scienti�c questions in

their minds (Brain Simulation Platform, 2017).

Computer simulations, then, help scientists understand complex phenomena, do

experiments that cannot be tested, or cannot be conducted either in vivo or in

vitro. Their advantage is rooted in the fact that a vast number of calculations or

step-by-step methods can be carried out without any toil of direct observation

or active recording by researchers. Thus, exploring nature with a computer has

expanded scienti�c endeavors considerably. Therefore, the machine has excelled

science into a new level by making calculations and conducting experiments in

silico.

Last but not least, these two contributions �complex problem solvers and data

generators�, with the aid of technological developments, shifted science into a
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further stage, in which the machine has become data processors. Let us illustrate

the impacts of computerization on science with examples. The �rst one is about

a macro scale: observations of the biggest entities. In the second phase of sci-

ence, John Campbell invented the sextant to measure latitude for navigational

purposes in 1757. During the third phase of science, this tool was converted

into satellite navigation, a tool that receives signals from orbiting satellites to

detect the position, speed, and local time of the user. Then, conducting science

of navigation or conducting science that includes navigational knowledge does

not change; yet, the features of data collection and experiments have changed

radically. Large Synoptic Survey Telescope (LSST) is producing a decade survey

of the sky to understand and explore the structure and evolution of the universe

and what it contains (Large Synoptic Survey Telescope, n.d.). The data it col-

lects per night is about 20 terabytes, so by the end of ten years of operation,

there will be about 60 petabytes of data to be processed. These vast datasets

covering the whole sky are being processed by the machine that executes �auto-

mated data quality assessment and automated discovery of moving or transient

sources� (ibid). This machine, both the telescope itself and the software that

analyzes the dataset, goes far and far away from the human capability of data

collection and reasoning.

The second example is about a micro scale: observations of the smallest entities.

In the second phase of science, the devices that magnify objects were designed.

Galileo Galilei is credited as the inventor of the �rst microscope. Human curios-

ity about whether there are parts smaller than what microscopes have shown led

scientists to theoretical and practical searches. To make a long story short, sci-

entists found that there are subatomic particles that do not have mass on their

own, but they gain mass when they are interacting with the Higgs �eld (CERN,

2019). Such a �eld can be shown by the presence of an associated particle, which

is The Higgs boson for the Higgs �eld because all fundamental �elds have their

associated particle. The experiments with ATLAS and CMS detectors at the

Large Hadron Collider showed that there is a new particle that meets the theo-

retical expectations that Higgs would be found. Thus, showing such an existence

is a �visible manifestation of the Higgs �eld� (ibid.). This story, on the other
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hand, is a story of without-the machine-we-cannot-conduct-the-experiment-and-

analyze-the-data. The experiments required colossal machines: particles cycled

through the colliders about 48,000 times per second; particles collided inside the

detectors more than 2 million times per second; and a trillion collisions produced

only one Higgs boson (Fermilab and the Higgs Boson, 2019). Furthermore, in

order to claim the discovery of the Higgs boson, which is nothing but what the

data indicate, the dataset consisting of 800,000 simulated events must be ana-

lyzed (Adam-Bourdarios et al., 2015). This may seem like any other dataset,

but the di�culty is not the dimension but the complexity of the data. There

was even an open competition for analyzing this dataset: Higgs Boson Machine

Learning Challenge. Without machine learning algorithms, the discovery of the

Higgs Boson was impossible (Adam-Bourdarios et al., 2015).

In the chapter called In the Emergence of Digital Science, a quarter of a century

ago, Kaufmann and Smarr (1992, p. 4) support the idea that involvement of

computers -especially computer simulations- into scienti�c endeavor by claiming

that

No scientist could digest the vast columns of numbers that stream from the com-
puter programs used in simulation [p. 3]. [W]ith the help of supercomputers,
we will see not only these machines have taken us so far, but where they can
take us in the future [p. 23]. [T]he development of digital computers has trans-
formed the pursuit of science because it has given rise to a third methodology:
the computational mode. The intend of this mode is to solve numerically the
theorist's mathematical models in their full complexity. A simulation that accu-
rately mimics a complex phenomenon contains a wealth information about that
phenomenon.

Without the software, we could never collect the data, and we would never be

able to analyze it or come to conclusions. Scientists have to rely on the results

that the machine generates; therefore, these results are considered to be scienti�c

knowledge. Thus, what has been revolutionary in science is that the machine is

involved in both data generation and data analyzing processes; in other words,

the machine has become indispensable in scienti�c knowledge production.

The advent of computers and their involvement in scienti�c knowledge produc-

tion revolutionized science. In view of this, the machine has become indispens-

able tool that has expanded the scienti�c cycle in many aspects. Nevertheless,

today science faces some troubles. Firstly, data analytic methods are analyzed
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using huge volumes of data, which are statistical and probabilistic models in

their nature. Data analytics cannot answer the why-questions, and answering

those is the very essence of doing science. Secondly, among these data deluge in

science, the machine could list the complex and hard-to-discover relationships,

which are not bare to the scientists. On the one hand, this can be deployed into

data analytics when semantic relations are introduced to the speci�c datasets;

on the other hand, building ontologies to specify those relations is not prac-

tical under the data deluge. Thirdly, the interdisciplinary collaborations and

their new types of near-real-time publishing cause scientists to hardly follow the

studies done in their �eld. All these issues and beyond are addressed in chapter

Autonomy and Data.

A.3 Web

The scientists in CERN had had trouble sharing information among them, keep-

ing track of massive projects, reaching technical details of ex-projects, or �nd-

ing a recorded information stored in the computers (Berners-Lee, 1989). To

solve such issues, the vision Tim Berners-Lee had was that �all the information

stored on computers everywhere were linked,� and every computer could be pro-

grammed to provide a space in which everything could be linked, so that �all

the bits of information in every computer at CERN, and on the planet, would

be available to� everyone (Berners-Lee & Fischetti, 2001, p. 4). To realize this

aim, in 1989, Berners-Lee proposed `Information Management: A Proposal'; the

studies on that single, global information space that we know today as the World

Wide Web, or the Web, were just initiated.

This invention, however, cannot be attributed to Berners-Lee alone. There had

been many visionaries and scientists who paved the way for this invention. Van-

nevar Bush ([1945] 1979) in his article �As We May Think� speaks of a hypo-

thetical machine called Memex, which could create and navigate cross-references

between documents in a micro�lm library. In�uenced by Bush's vision like many

people in those days, Ted Nelson started to work on a computer-based version

of Memex. He invented hypertext, which means �a body of written or pictorial
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material interconnected in such a complex way that it could not conveniently

be presented or represented on paper� (Nelson, 1965, p. 96). Memex can be

thought of as a proto-hypertext machine. Nelson (1965) proposed another hy-

pothetical machine called �Literary Machines� which could write and publish in

hypertext. The importance of the idea is that all the information in the world

could be connected so that a reader could navigate among a text or texts just by

following the links. Douglas Engelbart, then, wanted to use the hypertext tech-

nology as a community collaboration method (Berners-Lee & Fischetti, 2001).

For this purpose, in the 1960s, he created a collaborative workspace called oN-

Line System (NLS), which was the hypertext's �rst practical use. �[T]he next

great development in the quest for global connectivity was the Internet, a general

communications infrastructure that links computers together,� whose pioneers

were Donald Davis, Paul Barran, Vint Cerf, Bob Kahn (Berners-Lee & Fischetti,

2001, p. 6). Such successive and accumulative ideas and technologies allowed

Berners-Lee �to marry� hypertext and the Internet together to birth the Web.

Consequently, the Web was ready to provide solutions to the troubles mentioned

earlier, foremost for automatic information-sharing not only between scientists

at CERN but also around the world.

The story of the Web starts with a dream and continues with passion. To con-

crete this claim, we will introduce the gradual developments in Web technolo-

gies.10 Web 1.0 is the `space' where people can �write and share their ideas;�

Web 2.0 is where people-to-people communication and dynamic data sharing

occur; Web 3.0 is where the machine can analyze the data on the Web (Cf.

Berners-Lee & Fischetti, 2001).

10 Web X.0s are de�ned by World Wide Web Consortium (W3C) , and we follow their de�nitions
and explanations unless otherwise is introduced. Besides, Web 3.0 is de�ned as decentralized web
or there are Web 5.0 and Web 6.0 in the literature; see Khanzode and Sarode (2016), for instance.
On the contrary, we believe that Web 4.0 is the latest technology that has not yet been introduced
so far.
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A.3.1 Web 1.0

Web 1.0 starts with the birth of the Web, of no wonder, the aim of which was to

make data accessible to any computer by networking.11 Two existing technolo-

gies were su�ced to reach this aim: hypertext technology and the Internet. The

hypertext technology provides the body of data, which can reside in the same

or a remote computer, is connected by links so that one can reach a resource

through another one.12 On the other hand, the Internet provides access to some

data that locate in a remote computer. This is the basic picture of Web 1.0;

now it is time to explain how it works.

A content producer can create a web `page,' namely a location where the con-

tent is stored. For it, she uses the language, the HyperText Markup Language

(HTML), to represent the webpage's contents. Indeed, HTML provides the for-

mat of the pages containing hypertext links. Once the page with contents (text,

audio, or graphics, for instance) connected by hyperlinks is created in HTML,

a user can reach the page by giving the URI to a web browser, a program that

shows contents in the Web in a human-readable format. This is how the content

readers reach a created webpage. Now, let us explain the background processing.

Any abstract or physical resource in the Web is identi�ed by a URI, the acronym

of Uniform Resource Identi�er, which can be thought of as the unique Internet

address of that resource.13 A body of data can be gained from a remote computer

using its URI through a web server. A web server is software that serves the

contents to the Web and allows any request to reach that content under the

11 One caveat is necessary here. In Berners-Lee or Nelson's original texts, the concept `information'
is used for mentioning the documents stored in the computers. However, this dissertation is very
sensitive to the conceptual di�erence of `data' and `information', it is correct to use `data' here. For
more information, see section De�nitions of Data.

12 The notion of `resource' in the Web literature refers to anything; it can be a webpage, a word,
a phrase, or an image. We prefer to keep this usage throughout this section. On the other hand,
from a broader view, we are prone to denote those either as data -from a computational view- or
as entities -from an ontological view.

13 This caveat is for the ones who have limited knowledge about this technology. URIs are often
confused with the addresses of webpages, yet they are not limited to the Web, however. A URI
identi�es a resource on the Internet by using a set of syntax rules to sustain uniformity all over
the Internet, which obviously includes web technologies. For more information, see Berners-Lee,
Fielding, and Masinter (2005).
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Hypertext Transfer Protocol, HTTP. This protocol allows retrieval of linked

data across the Web and ful�lls the requirements of a hypertext system. A web

browser reaches the given URI content and displays it in the human-readable

format speci�ed with HTML.

Web 1.0 is often called `informational web' or `information portal' since users

can only search, read, and share contents over webpages. The webpages of those

days were created by only the professionals and were stand-alone applications.

The static nature of such webpages, thus, cannot allow any interaction between

the generated content and the consumers. This fact shows that Web 1.0 ignores

the power of the network e�ect, which means there are fewer content creators but

more consumers. Thereby any contribution that the consumers could form was

neglected (Nath, Dhar, & Basishtha, 2014). This runs into a contradiction with

the goal of the Web, since the Internet and hypertext technology by themselves

did not su�ce user-interaction. For this reason, new technologies should be

introduced for upgrading Web 1.0 from only-content-delivery nature to more-

human-interaction- nature.

A.3.2 Web 2.0

Web 2.0, also called the `Social Web', indicates that any web-user can be a con-

tent generator, and can interact with other users, thereby socialize in the `virtual

world' through the Web (Cormode & Krishnamurthy, 2008). As mentioned ear-

lier of Web 1.0 (static webpages and passive consumers), the limitations were

surpassed by introducing dynamic and interactive web experiences. This is, in-

deed, of the aims of the Web: �The Web is more a social interaction than a

technical one� (Berners-Lee & Fischetti, 2001, p. 123).

Since the late 2003-early 2004, the webpages of Web 2.0 started to emerge

(Cormode & Krishnamurthy, 2008). The shift from one-way communication of

the client-server model to read-write interactive and dynamic webpages was due

to attitude changes in business and user demands towards the Web and to the

technological developments. Firstly, the Web became a platform where every-

thing and everybody could meet, and such a platform has contained Web-based
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communities, blogs, social networking, podcasts, RSS feeds, vlogs, and alike.

With this, the users of Web 2.0 applications have not been only consumers but

also participants. Secondly, various new technologies have emerged for maxi-

mizing the content creation and user participation. Indeed, this new platform

required software artifacts to enable interactive and dynamic systems, thereby

many software �rms developed such technologies.14 For instance, medium data

richness was gained through XML, eXtensible Markup Language, by user labeled

content; so that light interlinked data started to occur in the Web.15 Moreover,

many innovative websites, such as Facebook, YouTube, LinkedIn, have been

built on those technologies to provide dynamic and interactive environments to

the web-users.16 Thirdly, Web 2.0 became user-centric. Content management,

cumulative content generation, and content exchange have come into prominence

since the Social Web (Harrison & Barthel, 2009). Besides, web browsers kept

pace with Web 2.0 by advancing syntax-aware browsing and searching capacities.

Some of the limitations of Web 2.0 can be listed as hacking threads, ethical issues

concerning the contents of the pages, limited knowledge sharing and interaction,

the inability of reaching clean de�nitions of resources of dynamic webpages,

and whether the resource them has changed and the inability of classifying the

existing data on the Web (Chan, Lee, & Lin, 2009; Cormode & Krishnamurthy,

2008). Within this dissertation's frame, the most signi�cant limitation of the

`read-and-write-web' was the data classi�cation. Web 2.0 was developed to

increase human collaboration in the Web so that web users could share their

contents of any kind. The Web has become a vast databank that was an open

base to be analyzed for various purposes. Besides, among the vast linked data,

it was quite impossible to retrieve the data desired. Consider that one would

14 Mashups are the popular innovations that enable combining or rendering the content in a novel
form; namely, they provide cross-site links between semi-structured databases. Another essential
technology used in Web 2.0 is AJAX (autonomous Javascript and XML), which is �a mixture
of several technologies that integrate Web page presentation, interactive data exchange between
client and server, client-side scripts, and asynchronous update of server response� (Cormode &
Krishnamurthy, 2008).

15 XML will be explained in detail in From 1.0 to 3.0: Industry, Science, Web
16 In addition to this, unlike Web 1.0, the content readers have become the customers, and they
became ��rst-class objects� (Cormode & Krishnamurthy, 2008). That is to say, not only is the
content that people share on the Web necessary, but the very themselves are crucial for the social
networks

287



like to �nd content about jaguars. In Web 2.0, they had to dig into the Web

in order to �nd what they was really looking for: jaguar the animal, Jaguar

the car, Jaguar the software, or Jaguar, their favorite band. The search results

were not arranged according to their appetite, instead of descending order of a

number of hits. To wit, in Web 2.0, the machine could process, convert and/or

transfer the data, yet they could not `read' the content. Hence, to upgrade

the machine from being data processing and transferring tools and reach more

organized `information' on the Web, there would be an upgraded version of Web

2.0.

A.3.3 Web 3.0

Web 3.0 or Web of Data or the Semantic Web was emerged due to the need

to organizing data `meaningfully' in the Web, thereby the machine can `read'

the content.17 The Semantic Web, in a nutshell, is a web of data that can be

processable, or in other words, be read by the machine (Berners-Lee & Fischetti,

2001).18 Processable data means, to our understanding, that any representation

of a phenomenon is digitized in a particular way so that the machine can process

it.19 On the other hand, we are discussing here is a web of connections between

di�erent forms of data. This is obviously more than processing a representation:

Web 3.0 processes the data interrelatedly with their meanings (Berners-Lee &

Fischetti, 2001).20

Hypertext Markup Language, HTML, is the standard markup language for con-

tents designed to be displayed in a web browser. Its universal codes only specify

the format of the pages, such as the size of the header, the location of the images,

or the linked resources. HTML su�ced for Web 1.0 and Web 2.0, for it is all

about displaying the pages, and by itself cannot provide personalized web and

powerfully expressed data. If the Web aimed to reach cumulative knowledge,

17 See section Data 3.0.
18 We disagree that Tim Berners-Lee (2001) names Semantic Web as the machine-understandable
web. For details see sectionData 4.0.

19 See section Data 1.0.
20 See sectionData 3.0.
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then it was to overcome the obstacle of powerful expressiveness of the pages

that had been in the content. In addition to this, search engines before Web 3.0

could not link the related data, instead showed the search results by the number

of clicks. Thus, there must be ways to reach the content of the pages somehow.

To this end, there should be an infrastructure that could interchange and inte-

grate the data on the Web, by which data could be exchanged and merged on a

Web-scale.21

The task of involving semantic aspects of the data in the game drove the Web

3.0 developers to build such a new infrastructure of the Web, which is often

called the Semantic Web Stack or the Semantic Web Layers (Horrocks, Parsia,

Patel-Schneider, & Hendler, 2005).22 Berners-Lee et al. (2001, p. 43) summarise

the purpose and the technical aspects of the architecture as follows.

The Semantic Web, in naming every concept simply by a URI, lets anyone express
new concepts that they invent with minimal e�ort. Its unifying logical language
will enable these concepts to be progressively linked into a global Web. This
structure will open up the knowledge and workings of humankind to meaningful
analysis by software agents, providing a new class of tools by which we can live,
work and learn together.

A visual summary of this succinct paragraph can be demonstrated in Figure

A.1.

The Semantic Web architecture consists of �ve main stacks: representation,

reasoning, query, trust, and interaction. The Representation stack consists of

various applications that represent data in a structured way. The Reasoning

stack provides semantically operatable data by introducing semantic markups.

The Query stack provides interrogations on the web constructed in the reasoning

stack to make inferences on the web. The Trust stack provides justi�cations of

the inferences made, creates a trustable setting for conducting transactions, and

21 Let us illustrate this with an outdated example, in any case. Before the time of �rst attempts
of Web 3.0, there were myriad of pages, say about Middle East Technical University. One page
exhibited the number of enrolled students, another stated administration details, another listed the
upcoming events. What if we wanted to learn the current president? The only thing we could do
was to visit webpages one by one since no search engine at that time could answer. Today, a Google
search immediately shows it. What if we wanted to know the third president? Unfortunately, even
today, we cannot get this information directly, yet the related pages are more or less displayed.

22 Although there are various versions of the stack, we use the basic version in Berners-Lee and Swick
(2006).
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Figure A.1: A summary of the Semantic Web Stack

supports security and privacy. Lastly, the Interaction stack provides semantic

technologies to the user.

The detailed visual representation of Figure A.1 is seen in Figure A.2. In the

following, we will examine each stack in terms of its layers, respectively.

Figure A.2: The Semantic Web Stack

It is important to note that there are plenty of di�erent web technologies. The

Semantic Web Stack shows only the ones that are recommended by the World

Wide Web Consortium (W3C).
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A.3.3.1 The Representation Stack

The universal codes of HTML determine the webpages' format: Once we have

such a format, we can �ll in the contents. The lowest layer of the Semantic Web

includes the basis of the hypertext technology, that of Web 1.0 (p. 285). In

this layer, there are Unicode, URIs/IRIs. Unicode is the character set that is a

computing standard for the encoding symbols. The reason for the inclusion of

Unicode is to allow di�erent natural languages to be represented and manipu-

lated. URIs, Uniform Resource Identi�ers, identify the resources on the Internet

uniquely. In contemporary semantic web technology, developers use IRIs, Inter-

nationalised Resource Identi�ers, generalization of URI, whose character set is

extended to the Universal Coded Character Set (Keil, 2016). Thus, this layer is

the basis upon which the whole Semantic Web will be constructed.

The second-lowest layer was borrowed from the existing hypertext technolo-

gies of that day that allowed the developers of Semantic Web to touch upon

the content. The eXtensible Markup Language (XML) is a markup language

that provides �exibility that users not only create their own labels on the con-

tent and create structured web documents, but also their own markup language

(Berners-Lee & Fischetti, 2001). Suppose that one, say Laura, wants to create

a CV webpage in XML syntax.23 She has no explicit way of representing the

notion of her name or her address: She needs to �nd a way to represent entities

in the world on a webpage in a machine-readable format so that the content

would be accessible throughout the Web. She can create new tags, just like the

ones in HTML. For example, a header is speci�ed as <h1> My CV <\h1>, this

format of the header is standardised by the <h1>, tag. Now she can add her

name as <myname>Laura<\myname>. So, not only the format but also the con-

tent is tagged, and HTML has been expanded by XML. In this respect, XML

can be considered a data description tool, a tool for exchanging data over the

Web.

23 That is an XHTML page.
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Moreover, this layer contains XML Schema. A schema is basically about the

information that is expressed in the related system. Thus, XML Schema is a

description for an application by restricting the structure of XML documents.

It o�ers standardization of XML formats, which eases the data exchange.24 For

instance, in the CV example, XML Schema de�nes the structure of the CV by

de�ning entities and attributes, their data types, and default and �xed values

for entities and attributes (W3Schools, 2019). To sum up, the XML layer is

responsible for the exchange of structured data over the Web by its virtue of

providing a syntax.

So far, the Web contains a bunch of distributed structured data from multiple

sources that need to be federated. Another technology is needed that glues those

tags and a set of rules that makes semantic linkages that can classify the tags;

so that the Web would end up with a global way of identifying entities as the

global web. To this end, the developers use the Resource Description Framework

(RDF) that is the third layer of the stack. RDF is basically a data model that

accesses, connects, and describes the resources by introducing them in a set of

triples (subject, predicate/verb, object) to encode the meaning.

Built on top of XML and connecting the tagged resources in a directed way, RDF

has the graph structure: the subjects and objects are the nodes, and the relations

between them are edges. This structure allows a consistent way of representing

distributed data in a single model: Any constituent of a triple with the same

IRIs come together from multiple sources to form a global source. As is, RDF

is a data model for metadata that provides a syntax so that the distributed

data from multiple sources can merge. Thus, stored in the RDF triples, the

custom-built tagged words are now readable by the machine, which entails that

the collections of triples form a web of data with the unique relational paths

among the tagged words in the webpages (Berners-Lee et al., 2001, p. 40).

24 Recall that there are several XML schema languages other than XML Schema, or there are other
markup languages or ontologies other than the ones in the layers of the Semantic Web Stack. People
can use other technologies, yet those are just recommendations of the World Wide Web Consortium.
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A.3.3.2 The Reasoning Stack

XML and XML Schema cannot place semantic restrictions over either the stan-

dardised or the new labels de�ned by content producers. For instance, Laura can

label her full name as <name>Dr. Laura Phaenarete<\name> or as the follows:

<name>
<firstname>Laura</firstname>
<lastname>Phaenarete</lastname>
<title>Dr.</title>

</name>

In the real world, the �rst representation of the person's name refers to the same

person to which the second representation refers. In the realm of the Web, on

the other hand, these two representations take di�erent URIs. Alternatively,

consider this: (1) the planet Venus, (2) the Morning Star, (3) Lucifer, (4) Phos-

phorus, and (5) John Wycli�e have di�erent URIs. The Web infrastructure has

no way of knowing that in some contents (1), (2) and (4), in other contents

(2) and (3), and in others (2) and (5) have to be treated as the same entity.

Moreover, both (1) and (5) refers to (2). The former is a planet, and the latter

is a human. Since RDF aims to connect resources in a consistent way to reach

a single data model that allows inferences, it has nothing to do with providing

any semantic di�erences.

The �rst layer of this stack is The Resource Description Framework Schema

(RDFS). RDFS was developed to solve such problems. Like other schema lan-

guages, RDFS speci�es how the resources and relations in RDF should be for-

malized. It describes a vocabulary that describes the notions of commonality

and variability by founding its syntax in set theory. In other words, RDFS vo-

cabulary, such as classes, subclasses, properties, sub-properties, domain, range,

is used to describe the RDF triples.

RDFS applies some inference rules by relating the resources in classes and sub-

classes, domains and ranges, properties, and sub-properties. For instance, a �rst

name and a surname construct a person's name: When `name' is taken as a set,

then `�rstname' and `lastname' be elements of it, and such a structure must
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belong to a person. Thus, RDFS relates these three resources in a set-theoretic

approach to make inferences. In the latter example, once the classes of (1) and

(5) belong is identi�ed by RDFS, there would be no semantic clashes in the

system. Hence, RDFS leverages the inference power.

Hitherto the Web gained powerful expressiveness by XML and RDF technologies

and an inference system with RDFS. As mentioned, the semantic di�erences

cannot be obtained by these technologies. The second layer of the Reasoning

stack, OWL Ontologies, realizes semantically operatable tagged data. In this

section, we �rstly investigate the ontologies in information sciences and then

speak of OWL.

Leaving aside its philosophical connotations,25 an ontology in information sci-

ences is a knowledge representation tool. An ontology uses a domain's entities

and their interrelations, then provides classes, instances, properties, axioms, and

de�nitions of the domain.26 All the information about an entity of the domain

at hand can be explicitly represented in the semantically enriched web. Thus,

ontologies leverage the semantic aspects of data.

Apart from Web 3.0, ontologies can be built for several reasons, such as creating

a knowledgebase of a domain, checking the consistency of the representation, or

making inferences. That is, ontologies are not con�ned to use on web technolo-

gies. There are many languages to implement ontologies, OIL, LOOM, and KIF

to name some. Out of them, W3C recommends the Web Ontology Language

(OWL) to represent web contents,27 so that a unifying logical language enables

concepts to yield a linked global web. Built on RDF and RDFS, OWL repre-

sentations are run to verify contents' consistency and deduce information from

them. In other words, OWL enables the de�nitions of new classes and properties

over the existing classes and properties de�ned by RDF and RDFS for modeling

more restrictions to make valid inferences. Consequently, the static nature of

25 A philosophical and computational journey of ontologies is elaborated in appendix Ontology.
26 See section Ontology.
27 OWL is not limited to use on the Web either.
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Web 1.0 and Web 2.0 was limited to human readability; alas, Web 3.0 evolved

into a `meaningful' readable Web with the integration of OWL Ontologies.

Let us concrete this technical process with an example. Suppose that we are

researching a person whose personal data distributed to various webpages and

that we want to �nd the postcode of her home address.28 In a static webpage,

there is nothing like a `postcode' tag, so it is cumbersome to look at all the

webpages she has. In Web 3.0, all those webpages are connected by that person's

name, identi�ed by a speci�c IRI, and we hope to reach the postcode easily. It

can be tagged as <postcode>06800</postcode>. Thus the machine is thought

to reach this data. However, what if we are looking for the postcode of her home

address. In such a situation, tagging cannot provide a solution. As stated before,

this data was encoded in RDF, so it is related to other data; then, the machine

can detect the postcode linked to the home address. Nevertheless, people use

di�erent terms to refer to very same things, so do webpages. For instance, one

uses `zip code' instead of `postcode,' another uses `postal code.' At this point,

ontologies are used for �guring out the semantic content of the data, and their

sets of inference rules are applied to provide accuracy of Web searches and to

relate the data (Berners-Lee et al., 2001, p. 41). XML allows users to add

arbitrary tags to their content, but RDF cannot fully express the meanings of

those tags. The meaning of the whole thing is rooted in ontology. Web clients

can get the equivalence of distinct terms or the XML tags by virtue of ontologies.

Thus, it is ontology's role to serve a basis upon which the web client gets that

those three expressions refer to the same number. Therefore, an OWL ontology,

a semantic markup, enables to derive of relevant connections.

The third layer of the Reasoning stack is the Rule Interchange Format (RIF).

RIF was created to enable the interchange of rules over the Web. Interchanging

rules gains importance when di�erent information models are merged. Suppose

that there are two diverse information models. Each has its own rule sets that

are expressed in di�erent rule languages or dialects. Creating common represen-

28 This example is developed from Berners-Lee et al. (2001, pp. 40�41).
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tations, ontologies simpli�es access to diverse models, but they are not capable

of expressing mappings between the rules of these models. To merge them, we

need to merge the rules that are also expressed for di�erent purposes. RIF

helps us bridge the rules with semantically preserving mappings. Thus, RIF,

the common rule representation, enables the gradual development of a network

of mappings between the rule sets of myriad information models in the Web.

The Reasoning stack is established for Web-scale reasoning. In most cases, rea-

soning on the Web is carried out by logic since checking the validity of inferred

results is of the most importance. However, traditional reasoning methods are

not compatible with Web-scale systems. The number of axioms and facts anno-

tated on the Web is overgrowing. This makes the Web an open system whose

completeness is not realizable. Besides, due that the inference capabilities of

the formal systems di�er, the users can prefer to model their data with di�er-

ent conceptual schemas. The Web contents are created by humans who have

con�icting ideas, which makes the system inconsistent as well. The reasoning

tools, on the other hand, are based on logic, mainly on the �rst-order logic, or its

fragments, which are to deal with computational resources and time limitations.

There are various reasoning engines29 constructed upon a formal system, whose

interoperability is problematic. In order to minimize these di�culties, Unifying

Logic is introduced as the last layer of this stack.30

The most often used logics in semantic web technologies are description logics

and Horn logics. Nevertheless, there is no single unifying logic recommended by

W3C. When we have it, representations, axioms, queries would be expressed by

the same formal system. It would be easy to sustain the usability of inferred re-

sults and relate them with the requested resources. In light of this, the Unifying

Logic layer is above the Query stack since queries are expressed in some formal

language. In other words, although we have a functioning Query Stack, we are

still trying to �nd a unifying logical framework that provides formal semantics

for making inferences.

29 See section Ontology.
30 This layer becomes more meaningful in the following lines.
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A.3.3.3 The Query Stack

The Reasoning Stack, apart from the Unifying Logic layer, provides machine-

readable and semantically weaved Web. The Query Stack enables making in-

ferences on this system. The W3C recommends SPARQL, SPARQL Protocol

and RDF Query Language, a semantic query language on knowledgebases for

reprieving the data in the RDF format. There are ongoing developments in

SPARQL to support OWL semantics fully.

A.3.3.4 The Trust Stack

The Trust Stack is being constructed for assuring con�dence in reasoning and in

using the Web. Above the Reasoning Layer, Web 3.0 should ensure to provide

human-understandable explanations of the chain of reasoning. Further, it should

also ensure privacy, security, and protection of digital rights in each layer.

The Trust Stack consists of two horizontal and one vertical layer. Firstly, the

Proof layer is for manifesting/representing the inference process. In other words,

it executes the rules provided from the Unifying Logic layer and provides jus-

ti�cations/ explanations of the inferences. Secondly, the Trust layer tells us

whether we should count on the given justi�cation/proof or not. The formal

system could work perfectly, but the results could be unsound. Lastly, the

vertical layer, Crypto, saves us from misleading conclusions: The Digital Signa-

tures provide the proof that the RDF triples, OWL constructions, the selection

of ontology vocabulary, the methods of proofs are written or constructed by a

con�dent person or a con�dent institution. Since the signatures are based on

cryptography, the trustworthiness of these people or these institutions cannot

be a�ected. Thus, the applications on this layer make use of the sources with

digital signatures to ensure the level of trust and support privacy and security.

This stack is under development to provide valid and sound inferences from the

secure Web.
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A.3.3.5 The Interaction Stack

The Interaction Stack contains developing suited user interfaces and applications

that enrich the Web semantically. To extend the usage of Semantic Web tech-

nologies, researchers aim at designing user interfaces for people who have almost

no logical background. Moreover, they are developing applications for searching

semantic data, enhancing search results by metadata, easing data integration

from various sources, and enhancing knowledge management in web-based sys-

tems. As the preceding stack, this stack is still evolving.

A.3.3.6 Summary and Final Remarks

To sum up, the up-to-a-great-degree-not-realized layers of the Semantic Web

stack are the essential components of Web 3.0 since only these layers could

provide machine judgments over machine-readable data. Web 3.0 lacks an over-

arching logic, which could provide rules for making inferences in many contexts;

an automatic proof checking system could explain how the machine reached that

conclusion and whether the sources and the conclusion were trustworthy. Hence,

these drawbacks discon�rm that Web 3.0 is the Semantic Web.

On the Semantic Web path, the initial aim was to connect and consistently

integrate data. To realise this, data must be in a machine-readable format,

and meanwhile it must be �exibly tagged by the content producers. Unicode

allows every natural language to be expressible on the Web; XML provides an

infrastructure for tagging the content freely by its users. Once the content is

in the machine-readable format, it is now time to introduce the semantics on

the grounds of inference. However, the tagged resources are spread all over

the Web; there must be a way to connect them in a meaningful way. RDF

provides a distributable and machine-readable model of the data: Resources are

connected to each other as triples. The triples also should be brought together,

otherwise the Web would be full of triples without signifying a meaning. The

resources with the same URIs are connected to each other, which leads to a

connected data collection. RDF reveals meaning of the resources through triples,

yet the meaning in broader sense, namely the meaning of data which comes from
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multiple resources, to a degree, is provided by RDFS which supports inference

mechanism by de�ning rules over RDF. It expresses meaning through specifying

inferences by assigning set-theoretical structures over the triples. As RDFS is

built upon RDF in order to increase logical constrains, accordingly to increase

inference power, OWL is built upon RDF due to the very same reasons. Data is,

then, modelled with constrains between resources, classes, and properties: OWL

sets further rules for describing classes based on allowed values for properties

to empower the inference and check the validity of the inferences. In the end,

we get a global web of connected and integrated data with valid inferences.

Should the Web is a collection of links, the Semantic Web is the collection of

linked meaningful data that the machine can read to process data integration,

automation of some tasks, and above all, data discovery.

Web 3.0 becomes a worldwide database that has high data richness. The web

browsers became capable of semantic- and context-aware searches, and even

in some platforms, there can be inferences on the Web. All these revolution-

ary aspects of the new Web cannot swipe some de�ciencies that the worldwide

database has: the data is heterogeneous, there are inconsistent facts, the Web

is open and growing rapidly. Nevertheless, the Semantic Web dreams that the

machine can understand and respond to human questions nested in semantics.

When this dream comes true, they will be producing knowledge by virtue of the

Web that has been woven for decades. �Link by link we build paths of under-

standing across the web of humanity� says the inventor of the Web (Berners-Lee

& Fischetti, 2001, p. 204), by embracing all the di�culties we have and will face,

however. For instance, the fact that di�erent ontologies are built upon di�erent

axioms and/or logics can be the reason for logical contradictions. This causes

invalid results that can be hard to detect.31

31 When we a�rm the consequences, one logical form we use is modus ponens, which can be stated in
the form that �If p then q, and p. Therefore q.� An argumentation in the form of `If p then q, and q.
Therefore p.� is rendered as deductively invalid since there may be other reasons for the existence of
q. On the other hand, as Walton (2014, p. 143) states in his Measles Inference, �If a patient has red
spots (of a certain kind), then the patient has measles, and this patient has red spots (of this certain
kind). Therefore, this patient has measles.� Although this inference is deductively invalid according
to a logical system that includes modus ponens, the inferences like measles inference should be
introduced to logical systems since the only way of having measles is having a certain kind of red
spots. Thus, two ontologies, one strictly having modus ponens invalidates the measles inference,
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We have to acknowledge the vast number of webpages and, accordingly, of the

contents we have and a considerable amount of fallacious content on the web-

pages.32 This fact troubles trustworthy semantic endeavors in the Web. Above

all, the alleged semantic web cannot lead to discoveries yet. Web 3.0 de�nes

structured data: data is stored in an organized way that warrants automation,

integration, inferences, and integration with data analytics that promise pre-

diction, personalized web experience, and alike. On the other hand, in the age

of Big Data, what we have is unstructured data that nonuples the amount of

structured and semi-structured data we have. To this respect, it would be ille-

gitimate to say that we have the Semantic Web in Web 3.0, as Boden (2016, p.

38) clearly states:

The semantic web isn't the same as the World Wide Web�which we've had since
the 1990s. For the semantic web isn't even state of the art: it's state of the future.
If and when it exists, the machine-driven associative search will be improved and
supplemented by machine understanding. That will enable apps and browsers
to access information from anywhere on the Internet and to integrate di�erent
items sensibly in reasoning about questions. That's a tall order.

Evolution to the real semantic web �at least the one Boden utters� may require

a revolution in our understanding of data and its computation, which eventually

can make the future closer, and the tall order simpler.

have two di�erent inference models.
Besides, consider logical systems, such as intuitionistic logic, which rejects the law of excluded
middle. Whether there is a unifying logic that accepts this law in some situations and rejects it in
others is a question of debate.

32 As of May 26, 2022, there are at least 4.87 billion indexed webpages. See WorldWideWebSize.com.
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B. ONTOLOGY

In Web 3.0, we spoke of ontologies in the Reasoning Stack of the Semantic Web

Stack. Recall that ontology is the backbone of Web 3.0 since it o�ers semanti-

cally processable data. In other words, the ontology technology paved the way

for structured `meaningful' readable data and reasoning in the Web, without

which Web 3.0 could not have occurred. As mentioned in the appendix chapter

From 1.0 to 3.0: Industry, Science, Web, ontologies are not con�ned to use on

web technologies. They are crucial in information systems for their indispensable

contributions to knowledge representation, knowledge management, knowledge

sharing, knowledge production, and the like. Recall also that knowledge repre-

sentation, knowledge management, and knowledge production are critical issues

in Science 3.0. Ontologies must play a crucial role in knowledge management,

which is essential for Web, Science, and Industry. For this reason, we believe it

is worth examining ontologies in a separate appendix chapter, propounded for

the four-phase picture of Industry, Science, Web, Data, and Ontology.

Ontology is one of the oldest human endeavors, along with science. It, as its

etymology o�ers,1 refers to the study of being. This subdisciple of philosophy

has been answering the two-millennia-old question of what there is, if there is.

Philosophers apply ontological methods to convey analyses on ontology's fun-

damental concepts, such as being and existence, concreteness and abstractness,

identity and essence, universality and particularity, actuality and potentiality,

part and whole, subject and property, attributes, and relations. Upon their

re�ections, each philosopher has their own ontological doctrine.

1 Ontology comes from the Greek word ὄν, �being,� that is the present participle of εἰμί, �to be.�
When λογία is added to ὄν, the word ontology is constructed as the study of being.
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Ontology as a philosophical activity is classi�ed in various forms. Strawson o�ers

two kinds of ontologies in his Individuals: An Essay in Descriptive Metaphysics :

descriptive and revisionary. �Descriptive metaphysics is content to describe the

actual structure of our thought about the world,� and revisionary metaphysics,

which is �at the service of descriptive metaphysics,� is �concerned to produce

a better structure� for our thought about the world (Strawson, 2002, p. 9)

[emphasis added]. The character of both metaphysics is to introduce an account

of �thought structures� (Phillips, 1967, p. 105). That is to say, the discussion

between descriptive and revisionary ontologies is rooted in analytic philosophy

tradition.

In other respects, Keinänen (2008, p. 24) de�nes two kinds of ontological activ-

ity. The �rst one is the �modeling of our description of the world by means of

ontological categories.� In this kind of activity, the world's true descriptions are

presented in some conceptual scheme and formalized -usually- in predicate logic.

Whereas the second kind of ontological activity concerns the �direct characteri-

zation of the structure of the world in terms of ontological categories.� Keinänen

urges us that both descriptive and revisionary metaphysics are activities of this

kind. He states that there is a kind of formal ontology which can be regarded

as �the con�uence between a school of thought which has addressed metaphysi-

cal problems within the mainstream of analytic philosophy, and another school

more closely related to phenomenology.� A fortiori, Guarino (1995, p. 628) de-

�nes the former school as a school consisting of philosophers who agree on the

idea of �descriptive metaphysics� proposed by Strawson, and the latter school

as a school consisting of philosophers who follow the tradition of Brentano and

Husserl.

Poli (2003, p. 185), on the other hand, de�nes three forms of ontologies: de-

scriptive, formal, and formalized. Descriptive ontology is about organizing prima

facie information; formal ontology �distills, �lters, codi�es and organizes the re-

sults of descriptive ontology�; formalized ontology, lastly, is formally codi�ed

constructions that �descriptively acquired� and �formally puri�ed.� This ver-

sion of the classi�cation of ontology is the closest to our purposes. Descriptive

ontology, Ontology 1.0, encapsulates the traditional ontologies that aim to de-
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�ne reality by classifying all types of entities in all spheres of being. Thereby

most of the time, these ontologies considered metaphysics. Poli mentions both

Husserl and Quine are of formal ontologies (p. 186), and he separates formal-

ized philosophical ontologies. To our understanding, both formal and formalized

ontologies pave the way for ontologies in information systems, so the latter two

forms of ontologies should be merged. Thus, formal ontology and formalized

ontology, Ontology 2.0, captures theories that are developed, expressed, and re-

�ned with formal tools, such as algebra, category theory, mereology, set theory

(B. Smith, 2014, p. 77). However, constructed for computational purposes,

Poli's formalized ontologies are in the realm of Ontology 3.0. These ontologies

are built as software artifacts for computational purposes, which is at the heart

of this appendix chapter.

B.1 Ontology 1.0

Ontology 1.0 refers to the philosophical study of being, which can be called tradi-

tional ontology. Ontology 1.0 studies which entities deserve to be called �being�

and its reasons; the criteria of entities that must be labelled as �being,� which

are the relations between those beings and alike. There are myriad answers to

those issues, so as various kinds of ontologies. Accordingly, the work of a philoso-

pher who studies traditional ontology,2 is to illuminate or detect what there is

and to decide properties of and kinds of relations among those entities. That

is to say; a traditional philontologist develops a hierarchical and relational web

of beings. Among traditional philontologists, we choose Parmenides, Aristotle,

and Whitehead for providing di�erent aspects of reality construction.

Parmenides of Elea is famous for denying the existence of change. He starts his

argumentation with that only being is, and non-being is not, thereby unthink-

able cannot be an object of thought (Kranz, 1994, p. 81). Upon this argument,

Parmenides builds his philontology: Being is unchanging, indivisible, knowable,

2 From now on we call �philontologist� to a philosopher who studies ontology; and �philontology� to
philosophical ontology.
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ubiquitous, self-identical, and eternal. There seems change, generation and de-

struction, and process; the reason behind these illusions is our senses, in which

we should not trust (Zeller, 2008, p. 82). Moreover, our senses betray us by

making us think of contraries. Then, there is no dichotomy at all: Even if

there seem contraries, one of them is real, and it is. So, non-being, contrary

to being, cannot be an object of thought, since what is in thought is. Thus, in

Parmenidean ontology, there is only `One' that we can speak of; consequently,

there is no room for explaining velocity as a fact.

Aristotle constructs his ontology, the science of being qua being in the Meta-

physics.3 Throughout the book, he examines what is worthy of being called

`being,' which has several senses: Accidental being, being in the sense of true

being, being of the categories, and potential and actual being (Cf. Brentano,

1975). The �rst sense cannot be at the top of the taxonomy since an acciden-

tal being can cease existence. The second sense is not in the ontology realm

since a true being is only in thought, just like non-being is a false-being. The

third sense, on the other hand, gives us the hierarchy of being in the tangible

world. In Categories, Aristotle speaks of primary categories as substances and

secondary categories as attributes or categories. Secondary categories cannot

be the ultimate study of ontology since their existence depends on the primary

categories, namely substances.

[S]ome things are said to be because they are substances, others because they are
a�ections of substance, others because they are a process towards substance, or
destructions or privations or qualities of substance, or productive or generative
of substance, or of things which are relative to substance, or negations of one of
these things of substance itself. (1003b5-10)

Substances, says Aristotle, are said in di�erent ways. In 1028b33-35, four senses

of substance are given as substratum, essence, universal, and genus. The last two

candidates are ruled out from the investigation of being, for they cannot satisfy

the fundamental requirement of being a substance, which is separateness.4 The

examination of whether substratum or essence merits to be called substance, on

the other hand, tells that both senses can be reduced to form. At this point, the

3 We use the Aristotelian corpus edited by Barnes et al. (1995).
4 This section is prepared for giving a general idea of traditional philontologies. If one wants to learn
more about how we ended up this conclusion, they can read Ζ, Η, Θ in the Metaphysics.
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fourth sense of being, actual and potential being, must be apprehended. What

merits to be called `being' in Aristotle's ontological hierarchy is form, which is

actual, separate, and individual.5. In sum, being under the analysis of actuality

and potentiality is the form; the hylomorphic analysis6 reveals that substance

is the bearer of the attributes. In other words, combining his other doctrines,

Aristotle ends up with a substance in the highest sense as the highest being

is actual, separate, and individual form. It seems that Aristotelian ontology

encapsulates all the beings from sands to stars and provides a place for velocity,

yet there is no room for writing a dissertation as a process in this ontology.

Whitehead is known as a process philosopher,7 and remarkable mathematician.

A process ontology develops through process metaphysics, says Whitehead, and

this metaphysical attitude replaces material objects with momentary events of

experience (Whitehead, 1957). This doctrine is against most philontologists in

Ontology 1.0, for the dominant view in Ontology 1.0 is metaphysics of sub-

stance/objects. Whitehead, on the other hand, deprives inert substances of

actuality,8 and claims that the substances belong to space-time and are related

to each other externally. Then, he puts actuality into momentary events,9 the

events that are actual entities or actual occasions : Being internally related with

each other, the events are �the �nal real things of which the world is made

up� (Whitehead (1957, p. 18), Cf. Ford (1983)). Naming things that exist as

`organisms,' Whitehead claims that organisms are not only internally related

but also externally, adding that they are interdependent and intrinsically active.

To sum up, everything in the world can be referred to as some actual entity.

Thereby Whiteheadian ontology is not a hierarchy, rather a web of entities and

the relations between them, in which we can �nd writing a dissertation as an

entity.

5 See Metaphysics, Λ.
6 Hylomorphic analysis tells the degree of the matter-form constitution, and accordingly of
potentiality-actuality of a substance. So, all the sensible objects are subject to hylomorphic analysis.

7 Indeed, the godfather of the process philosophy is Heraclitus. Compare the process philosophy with
Parmenidean, one who denies the existence of change.

8 Recall that actuality is the most characteristic of being in Aristotle, like in most, if not all,
philosophers.

9 Since, action and passion are always simultaneous.
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Ontology 1.0 is the traditional philontology that encompasses di�erent examina-

tions of how humans depict the world. Philontologists question whether numbers

exist, whether there are things called processes, what the ultimate being is, and

so on, and give di�erent answers for centuries. That what one says there is,

another says not triggers us to think about how we are supposed to depict the

world in the machine.

B.2 Ontology 2.0

Ontology 2.0 refers to both analytic ontologies and formal philontologies.10 It

involves, in the broadest sense, philontologies that aim at striping contemplative,

say revisionary, a feature of philontologies and at striving to reach objectivity, as

highest as possible, towards reality. To elucidate Ontology 2.0, we will introduce

Husserlian formal ontology to a degree since its pivotal role not only in Ontology

2.0 but also in Ontology 3.0 should be grasped. Next, we will speak of Quinean

(analytic) ontology that shares Husserlian formal ontology's same pivotal des-

tiny. Then, we will state the reasons for naming these two philosophers under

the same aspect �for some scholars claim that they belong to the worlds apart�

by examining and de�ning formal ontologies.

B.2.1 Husserlian Ontology 2.0

Being worth mentioning as the �rst philosopher of Ontology 2.0 belongs to the

coiner of the term `formal ontology': Husserl. A narrative of his general philon-

tological endeavor can be begun by introducing his rami�cation of types of ob-

jects: Fact, Essence, and Meaning (D. W. Smith, 2007, p. 157). The realm

of Fact includes real individuals that exist in space and time, which can be

grouped into concrete individuals (books, cats, stars), state of a�airs (Socrates'

being wise, Romeo's loving Juliet), and events/processes (writing a dissertation,

10 Consider that Ontology 2.0 refers to the philosophical endeavor of formal ontologies, while Ontology
3.0 is not in the realm of philosophy, albeit referring to formal ontologies.
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�ood) (Ideas I, �2). Under the realm of Essence, there are eidos11 of objects.

These objects, not in space or time, determine concrete-spatiotemporal objects;

species, qualities, unity, plurality, and whole and part, to name a few (Ideas

I, �� 10-12). The objects in the former realm are particulars with contingent

characteristics, whereas the ones in the latter are generalizable, unchaining, and

timeless (Ideas I, �� 6, 8). The last realm is Meaning/Sense that embraces ob-

jects that are the ideal content of intentional experience, for meanings/senses

have a distinguishable role in intentionality, and that role deserves to be dis-

cussed in such a categorical ontology. As D. W. Smith (2007, p. 156) points

out, Husserl does not speak of this last realm explicitly, though it is essential

for his ultimate construction, phenomenology.

In sum, Husserl lists both categories of concepts/meanings, as Kant does, and

categories of objects, as Aristotle does. He bonds these two with semantic

correlations (which can be found in Frege's philosophy); then he ends up with

a categorization of concepts/meanings and the objects they represent, and of

our experiences, those are �intentionally related to objects via meanings that

represent such objects� (D. W. Smith, 2007, p. 138).

Within the design of this dissertation, if we are to speak of Husserlian ontology,

we must dig out the realm of Essence, in which two kinds of essences appear,

those pave the way for material and formal ontologies. The �rst kind of essences

is called material essences that are generalizations of the realm of Fact. The

highest genus of material essences is called a region (Ideas I, � 9). In the words

of Husserl, a region is �the total highest genetic unity belonging to a concretum,

i.e., the essentially unitary nexus of the summa genera pertaining to in�mae

species within the concretum� (Ideas I, � 16). Husserl purports the subtle work

of determining the number and distinguishable features of the regions due to the

di�erent regions' interwovenness (Ideas I, �152). Despite this fact, D. W. Smith

(2007, p. 157) suggests that there are mainly three regions: Nature, Conscious-

ness, and Culture or Spirit. Nature subsumes all entities in nature; Conscious-

11 Husserl uses �eidos� in the sense of Platonic Forms.
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ness subsumes all conscious experiences; Culture subsumes all entities formed by

human acts. Put di�erently, the material essences in the �rst-mentioned region

concern the structure of time, material compositions, and causality; the ones in

the second concern the structure of intentionality, and the ones in the last region

concern acts of people in communities (ibid., pp. 184�185).

Each material essence is studied by a corresponding regional/material ontology.12

Accordingly, regional ontologies apply to all objects whatsoever, since �to the

pure regional essence [. . . ] there corresponds a regional ontology� (Ideas I, �9).

For instance, the regional ontology of Nature is a hierarchy of genus and species

are determined by ordering eidetic singularities, which are the individuals in

nature. Besides, each region has its own set of a priori truths;13 those apply to

any possible categories in that region; viz, a regional ontology con�rms a set of

regional categories: It is the regional essence that �makes up the content of the

regional ontology� (Ideas I, �16). So, the regional categories are eidetic universals

and apply to individual objects in that regional ontology. For instance, Ideas I,

� 9 says Nature, as a highest regional essence, corresponds to �the eidetic science

of any physical Nature whatever�; that is nothing but the ontology of Nature. It,

therefore, explicates the categories of empirical sciences of Nature �with rational

purity� in order to theorize the grounds of this empirical science.

The second kind of essences are formal essences that are materially empty, or

purely logical (Ideas I, � 12). Formal essences, in other words, are the forms of

objects of any type. The highest genus of formal essences is category, just as it is

region for the material essences. D. W. Smith (2007) explicitly puts that Husserl

o�ers di�erent lists of categories (p. 145) and mentions �there is always more

to come� in Husserl's categories (p. 156). For instance, the categories found

in Ideas I : individual or substrate, species, quality or property, relation, state

of a�airs, connection, necessity, possibility, dependence, independence, whole,

part, unity, plurality, number, set, group, manifold, value (p. 157).

12 In the context of material essences, the adjectives of `regional' and `material' are used interchange-
ably.

13 �Each regional essence determines `synthetical' eidetic truths, that is to say, truths that are
grounded in it as this genetic essence� (Ideas I, �16).

308



The regions are strictly separate from each other; for instance, the ontology of

Nature is di�erent from the ontology of Culture since each region has its own

syntactic a priori truths that govern their sub-ontologies. That is not the case

for categories: A formal singular essence can lie inside another essence, even a

higher essence can lie inside a lower one (Ideas I, �12). That is why categories can

be de�ned as the �genus of all genera� (Ideas I, ��12-13). This non-hierarchical

feature of categories, which cannot be found in material ontologies, enables them

to be applicable in any material domain. In other words, formal ontology can be

applied, for instance, to the ontology of Nature and the ontology of Culture and

their sub-ontologies simultaneously. To wit, the charm and signi�cance of formal

essences come from the fact that the same formal essences apply to objects in

any of these regions. Further, the gist of Husserlian formal ontology is that any

object has a formal essence, and formal ontology is the eidetic science of any

object whatsoever (Ideas I, �10).

Husserl distinguishes between regional ontologies, which study material essences

shared by all the entities in the region, and formal ontology, which surveys the

essence of objectivity in general.14 In other words, formal ontology is the science

of the objects qua they are objects. Further, formal essences strictly govern or

determine all objects in any regional essences (D. W. Smith, 2007, p. 145).

Therefore, the realm of Fact cannot be separated from the realm of Essence.

Indeed, the sciences of the latter govern the sciences of the former. In Ideas I,

�9, Husserl states empirical sciences depend on material ontologies. Thus, the

role of formal ontology is governing or determining the structure of material

ontologies, which constitutes empirical sciences; i.e., anything and everything

is in the scope of formal ontology. Then, every empirical science has essential

theoretical foundations in formal ontology (Cf. Ideas I, �2). A Husserlian formal

philontologist's work is to detect and de�ne the formal essences that govern all,

or for most of, the objects. Then she can copy the formal essences then paste

them into regions in order to reach material ontologies.

14 Husserl neither gives a list of formal and non-formal entities nor provides a demarcation rule
that distinguishes these two. Rather, he charges the philosophers to �nd out the objects and their
essences, thereby enhancing the regional and formal ontologies. Cf. Logical Investigations I, �71.
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Husserl uses the term `formal,' in the broadest sense, as opposed to `material'

or as `domain-neutral.' A formal theory, then, mentions any particular object,

yet at the same time deals with those in total abstracted ways (Simons, 1982,

pp. 113�114). In this respect, formal logic does not directly deal with the

meaning of a particular proposition; instead, it discusses the eidetic essences of

any proposition whatever. The same is true for formal ontology: it applies to

all domains of objects whatsoever. footnoteMoreover, the demarcation of formal

and non-formal is not related to being expressed symbolically (Simons, 1982).

Axioms of mereology in the Husserlian sense, for instance, are not written in

a formal language; rather, they are of no domain and consist of purely logical

constants and formal concepts, such as �Two distinct objects cannot be part of

each other.� Note that this does not mean that we cannot express such axioms

in a formal language. Any determinate proposition-form and any form of a

proposition member is an eidetic singularity in pure logic, just like any shape,

quality, or mental process being an eidetic singularity in formal ontology (Ideas

I, �12). If the highest genus of pure logic is any signi�cation whatever, which is,

then the highest genus of formal ontology is categories which are of any object

whatever. Hence, it is evident that formal ontology is not a formal (logical)

language or pure logic itself; rather is a discipline totally distinct from formal

logic, yet formal ontology is analogous to formal logic (B. Smith & Smith, 1995,

p. 28).

The crucial point is that eidos or formal points out the non-material or domain-

independent nature of this ontology, the same as formal logic. For Husserl,

formal ontology is a counterpart of pure [formal] logic. Pure logic serves semantic

correlations with logical forms, and formal ontology is �always as pure logic

in its full extent as mathesis universalis� (Ideas I, �10; D. W. Smith (2007,

p. 184)). To wit, formal denotes two �elds in Husserl: ontology and logic.

Ontologically formal deals with �whatever pertains to be object in general,�

whereas logically formal deals with logical operators and functors, and thereby

logical forms behave like formal essences (Poli, 2003, p. 189).
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B.2.2 Quinean Ontology 2.0

Quine is the second most in�uential philosopher both in Ontology 2.0 and On-

tology 3.0. In his paper `On What There Is,' Quine (1948, p. 21) starts his onto-

logical analyses with the decipherment of the puzzlement of Plato's beard: �Non-

being must in some sense be, otherwise what is it that there is not?� There are

two alleged solutions to this puzzlement: Non-beings either have ideal-existence

or are possible entities. The former entails that Pegasus exists as a reference

to its ideal existence since Pegasus-idea does exist as a mental entity. On the

other hand, states Quine, Pegasus, and Pegasus's idea cannot share the same

ontological status: Pegasus' being a mental entity cannot entail its existence,

besides it cannot provide any ontological condition to it. The latter alleged so-

lution that nonbeings are possible entities puts forth that entities are rami�ed

into actuals and possibles, thereby Pegasus is an unactualized possible, whereas

concrete entities are actuals. Quine objects to this solution for two reasons.

Classi�cation of possibilities gets all balled up (then, possible statements should

be opted over possible entities). Furthermore, the contradictory entities, such as

�round square cupola�, cause another ontological category to occur- unactualized

impossible, which is obviously an oxymoron.

These objections could be defended by uttering that such phrases are meaning-

less. Nevertheless, meaning (that does not necessitate the existence of the term)

and naming (that implies the existence of the term) are di�erent things; for this

reason, some shorthand descriptions (`the winged horse that was captured by

Bellerophon') are taken as names (`Pegasus') (p. 26):

When a statement of being or nonbeing is analyzed by Russell's theory of de-
scriptions, it ceases to contain any expression which even purports to name the
alleged entity whose being is in question, so that the meaningfulness of the state-
ment no longer can be thought to presuppose that there be such an entity.

In light of Russell's theory, descriptive names can be transformed into variables

of quanti�cations (`something,' `nothing,' `everything'); those variables by them-

selves are the bearers of meaning and existence. To construct on philontology,
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we must then commit ourselves to positive existential statements.15 This brings

forth the famous Quinean ontology-construction motto(s): �To be is to be the

value of a variable� (p. 34) / �To be is, purely and simply, to be the value of a

variable� (p. 32).

However, this remark does not tell us what there is; instead, it only states what

a statement in question says there is. That means building a philontology is like

a scienti�c endeavor: Ontologists take entities from theories of natural sciences,

then by using those, they build their philontologies (B. Smith, 2002, p. 17).

When viewed in this light, building an ontology is an ongoing task; furthermore,

it is discipline-related. Think of an ontologist who wants to construct an ontology

of physics. She starts with using the entities that physicists are committed to,

then represents them in the language of �rst-order logic (B. Smith, 2002, p. 18).

Scienti�c methods in physics show the existence of these entities. Finally, this

ontology can be merged with an ontology of, say, biology. In the case of choosing

between two competing hypotheses, says Quine (1948, pp. 10�11), we should

favor parsimony just like we do in natural sciences. In conclusion, Quinean

ontology is extracting ontology from scienti�c theories: They reveal what there

is, and ontology brings them together to form a network of entities and their

relations through the medium of logic. Each natural science gives the entities

to which it is committed, then each of them represents a partial ontology.

B.2.3 Ontology 2.0 in the 21st Century

Cocchiarella (2007, p. xiii) de�nes formal ontology as:

[...] is a discipline in which the formal methods of mathematical logic are com-
bined with the intuitive, philosophical analyses and principles of ontology, where
by ontology we mean the study and analysis of being qua being, including in par-
ticular the di�erent categories of being and how those categories are connected
with the nexus of predication in language, thought and reality. The purpose of
formal ontology is to bring together the clarity, precision, and methodology of
logical analyses on the one hand with the philosophical signi�cance of ontological
analyses on the other.

15 Obviously, negative existential statements cannot commit us to an ontology. That is to say,
existence must be positively quanti�ed in order to reach an ontology.
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In this respect, formal ontology is the study of all forms and modes of be-

ing expressed in a formal language. That would embrace Quine, for science

uses formal language for its survival, and ontologies are the scienti�c endeavors.

Nevertheless, Cocchiarella (2007, p. ix) demurs that Husserl studies categor-

ical structures, not a formal ontology. The main reason for such exclusion is

that Husserlian formal ontology is not rooted in quanti�er-centered symbolic

languages (B. Smith & Mulligan, 1983, p. 73; p. 74). B. Smith and Mulligan

(1983) criticize analytic philosophers for ignoring the formal structures and rela-

tions among objects and kinds of objects. They state that �[t]he most powerful

motivating force underlying the resistance of the analytic philosopher to the ac-

ceptance of an ontology of moments is his tendency to run together ontological

questions with questions of logic or `grammar' � (p. 79). Moments are elements

or factors of wholes and are the indistinguishable concept of Husserlian formal

ontology. What analytic philosophers do, for the most time, is translating sen-

tences into logical forms, thus cannot room moments as logical constants. On

the other hand, moments are not in the realm of formal logic, rather in formal

ontology because they are about the reality of objects, not meanings. So, the

perplexity of such objections from the analytic philosophy-side arises from the

concept `formal.'

As we noted earlier, a formal theory is domain-independent; if so, formal logic

is a domain-independent formal theory that deals with structures or meanings.

Whereas formal ontology is a domain-independent formal theory that deals with

structures of objects and their parts (Cf. B. Smith & Mulligan, 1983, p. 73).

Hence, formal logic concerns itself with neither objects, nor parts of objects,

nor relations between objects, but sentences about the objects and their rela-

tions. Although Cocchiarella rules out Husserlian formal ontology for its lack

of formal language, Poli keeps Husserlian formal ontology. Poli (1993, p. 1)

mentions two distinct interpretations of the term `formal ontology'. The �rst,

he calls analytic, is the formal ontology in the sense of Cocchiarella: �[a] branch

of ontology which is analyzed within the framework of formal logic.� The sec-

ond, he calls phenomenological, is the formal ontology in the sense of Husserl:

�[explicating] both the connections between the formal and material, and those
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between the ontological and the logical.� Moreover, Poli stresses that �[d]espite

their di�erences, these two varieties of formal ontology quite frequently overlap

each other, although to date there has been no systematic study of the cat-

egories and layers that constitute formal ontology and no systematic analysis

of the issues addressed by it.� Beaney (2018) supports Poli's claim by stating

that the analytic methods play a pivotal role for both analytic philosophy and

phenomenology within the geist of the twentieth century.

Ontology 2.0 is distinguished from the previous philontologies by the analytic

methods. 16 In the vein of Føllesdal (1996), analytic methods are characterized

by two crucial elements of philosophical and scienti�c activities: arguments and

justi�cation. That is, the decompositional analysis of propositions, or in other

words, conceptual analysis is just a part of the analytic method. Arguments are

not restricted to deduction, rather include induction or abduction; justi�cations,

then, include `proving' as well as `accepting' and `believing.'17 To wit, there are

several approaches to reach sound arguments and valid justi�cations in analytic

philosophy, which eventually shape the way of approaching ontology.

To sum up, within the elucidation of Ontology 2.0, we introduced two promi-

nent philosophers: The former is the coiner of the term `formal ontology' and

developed his philosophy from an ontological perspective (B. Smith & Smith,

1995); the latter is famous for introducing criterion of ontological commitment,

which can be regarded as the seal of analytic philosophy (Bricker, 2016). Then,

we argued for the reciprocal in�uence of phenomenology and analytic philos-

ophy. In order that we could purport that the methodology of Husserl and

Quine are neither the same nor the one; yet we claim that both originated from

formal-construction of ontology mindset. What is common in these ontologies is

that formal theories are built upon formal foundations. Finally, what we should

understand as formal ontology, as Ontology 2.0, today can be summarised by

B. Smith (2002, p. 5) as follows:

16 For more details on the relationship between analytic philosophical and phenomenological methods,
see Beaney (2013). Moreover, Føllesdal (1996) stunningly discusses the history of philosophy into
degrees of being analytical, which embraces continental philosophy, along with ancient philosophy,
as well.

17 See Føllesdal (1996) for the theory of re�ective equilibrium as the approach of justi�cation in
analytic philosophy.

314



[Phil]Ontologists nowadays have a choice of formal frameworks (deriving from
formal logic, as well as from algebra, category theory, mereology, set theory,
topology) in terms of which their theories can be formulated. These new formal
tools allow philosophical ontologists to express intuitive principles and de�nitions
in a clear and rigorous fashion, and they can allow also for the testing of theo-
ries for consistency and completeness through the application of the methods of
formal semantics.

When ontologies are expressed in a formal language, then it becomes easier

to represent the world to the machine. Ontologies were thought of bene�-

cial to �the knowledge-construction process in yielding high-value knowledge

bases� (Guarino, 1995, p. 626), and then on utilized in knowledge-acquisition,

-integration, -sharing, and -reusing in many machine intelligence studies, such as

knowledge representation, natural language processing, and theory of databases

(Cf. Poli, 2003, p. 188). The following section will see how Ontology 2.0 is

employed in computer science and information systems.

B.3 Ontology 3.0

In the previous section, we slightly mentioned that there are two kinds of for-

mal ontologies. One is a philontology, studies being qua being with formal

frameworks to test the theories for consistency and completeness; the other is

a software designed for various purposes in information systems.18 A philontol-

ogist, either of Ontology 1.0 or Ontology 2.0, aims at constructing the reality

of what there is either partially or as a whole. She tries to elucidate the truths

about the world within philosophical methods.

In contrast, an ontologist of Ontology 3.0 aims at designing a software agent.

She is occupied with developing an ontology for speci�c purposes that are held

18 Guarino (1998, p. 3) gives a list of �elds that makes use of ontologies (�knowledge engineering,
knowledge representation, qualitative modeling, language engineering, database design, information
modeling, information integration, object-oriented analysis, information retrieval and extraction,
knowledge management and organization, agent-based systems design�) and a list of some applica-
tion areas (�enterprise integration, natural language translation, medicine, mechanical engineering,
standardization of product knowledge, electronic commerce, geographic information systems, le-
gal information systems, biological information systems�). He uses the generic term `information
systems' to refer to �elds and application areas en masse. We follow this.
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in computational environments.19 For this reason, such ontologies are also called

applied ontologies.

The story of Ontology 3.0 starts from the introduction of catalog systems in

library management. Books had been located in permanent shelves where the

latest arrivals were located at the end of the shelves in early libraries. An in-

crease of numbers and types of artifacts �such as books, periodicals, records� in

libraries caused di�culty accessing materials both for librarians and users. In

order to facilitate access to the materials, systematic classi�cations of the arti-

facts were needed. Classi�cations provided schemes according to which artifacts

were arranged in a sequence that helps users �nd out the artifacts they were

looking for. In 1876, Melvil Dewey introduced the Dewey Decimal System, a

classi�cation of documents in libraries that is one of the best-known schemes

(Foskett, Estabrook, Francis, & Haider, n.d.).20 Each artifact was categorized,

tagged, stored, and retrieved by its unique identi�er. From then on, the books

have been located according to their unique identi�ers that make it easy to �nd

and return any book to its proper shelf.

The Dewey Decimal System was updated several times, and there introduced

myriad classi�cation schemes, such as the Library of Congress Classi�cation,

the Universal Decimal Classi�cation. The common aspect of these di�erent

classi�cation schemes is they all provide standardization. The libraries that

use the same classi�cation scheme locate their artifacts according to the same

unique identi�er. As long as the material's identi�er is known, the material can

be retrieved easily by deciphering it in any library that uses the same scheme. It

can be viewed as the beginning of structuring data in information management

before the advent of computers.

The philontologies as a classi�cation tool in information systems after the advent

of computers were �rstly introduced by a computer scientist, George H. Mealy

19 For the time being, we limit ontologies to speci�c domains.
20 According to this scheme, artifacts were classi�ed into ten groups, and each group was assigned
a three-digit number, e.g. 100�199, philosophy and psychology and 500�599, natural sciences and
mathematics; 600�699. These main groups were in turn subdivided over and over again for assigning
more speci�c subject groups.
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(B. Smith, 2002, p. 20). During his examination of the basic foundations of data

modeling, Mealy used Quanian way of ontologizing into a part of his software

system (Mealy (1967, p. 525), B. Smith (2002, pp. 20�21)). After philontologies

got popularity in information systems, another prominent computer scientist,

Gruber (1992, n.d.) famously articulated ontologies as a classi�cation tool that

provides standardization: �An ontology is a speci�cation of a conceptualization.�

According to this de�nition, ontologies are designed for creating a controlled

vocabulary of a domain. �A conceptualization,� says Gruber, �is an abstract,

simpli�ed view of the world that we wish to present for some purpose� (ibid).

Hence, an ontologist represents a part of the reality from a particular perspective

by postulating an orthodox way. For instance, after this de�nition, a farm

ontology created for an agriculture management system is designed to include

the entities, their properties, and interrelations, where the terms for entities,

properties, and relations are o�ered as a conceptualization.

Guarino, Oberle, and Staab (2009, p. 2) de�ne ontology in information systems

as �a formal, explicit speci�cation of a shared conceptualization.� According to

them, the four constituents of ontology are indispensable. (1) The very distin-

guishing feature of Ontology 3.0 is that it is constructed for representing the

phenomena into the machine, viz., an ontology must be machine-readable. (2)

An ontology o�ers standardization. For instance, the following is a frequently

encountered issue in information systems. A group of scientists uses some ter-

minological and conceptual structures di�erent from another group does. In this

situation, a concept can have two di�erent references, or a reference can have

two distinct concepts, so as their formal expressions. For instance, Mosquito

Gross Anatomy Ontology de�nes `cell' as �an area of wing membrane delimited

by veins or by veins and the wing margin.�21 Whereas, Cell Ontology o�ers

the most used `cell' de�nition as �A material entity of anatomical origin (part

of or deriving from an organism) that has as its parts a maximally connected

cell compartment surrounded by a plasma membrane.�22 these two entities nei-

21 Term's IRI: http : //purl.obolibrary.org/obo/TGMA_0000218
22 Term's IRI: http : //purl.obolibrary.org/obo/CL_0000000
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ther in reality nor formally refer to the same thing. Such usages violate formal

structures and cause invalid results. In order not to encounter such di�culties,

an ontology should be a consensual construction. (3) The concepts, properties,

relations, and constraints on these must be explicitly de�ned in formal means.

For instance, a formal declaration of a circular de�nition of a property may

cause a recursive loop that results in crashing the program. Notorious for its

circular de�nitions, Friend of a Friend (FOAF), an experimental linked informa-

tion system, de�nes `image' as �a subclass of Document corresponding to those

documents which are images.�23 In description logics, it can be represented as

Image = Document AND Image. The only information one can derive from this

de�nition is that Image is a subclass of Document. To wit, an ontologist has to

provide clear formal de�nitions of the fundamental constituents of the related

domains. (4) Conceptualization is an abstract model of some phenomena in

the real world with identi�cations of the relevant concepts of those phenomena.

That is, ontologies are real-world representations.

Hayes voices the understanding of the ontology of most of the people in infor-

mation systems by uttering that the �rst thing to do in information systems

is to �formalize the naive worldview, using whatever concepts seem best suited

to that purpose� without caring philosophical worries of representing the world

with �some special collection of concepts� (cited in Guarino (1995, p. 627)). On

the other hand, the concept of `conceptualization' is a controversial issue among

ontologists. We believe that taking ontology as a particular way of conceptu-

alizing is a notorious de�nition. As Guarino (1995) points out the modeling

di�erences between the transfer view �modeling according to an expert's view�

and the modeling view �modeling from the objective reality�, conceptualization

can be taken as transfer view. Hence, for a better ontology, an ontologist has

to appeal to the objective reality as it exists.24 We will return philosophical as-

pects of ontologies soon, yet before it, let us give application areas of ontologies

in information systems.

23 http://xmlns.com/foaf/spec/#term_Image
24 For the details see B. Smith (2004).
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B.3.1 Ontologies as Software

In this part, we are going to explore areas of usage of applied ontologies, of

which Semantic Web is an example.

Building an ontology, either in philosophy or in information systems, starts with

identifying the entities, properties, and relations in the domains of discourse.

The domain experts should share a domain's terminology, which is a controlled

vocabulary, which paves the way for standardization in the domain. Thus, the

�rst reason for building and using ontologies is to maintain a controlled vocabu-

lary and express the terms in hierarchical structures and heterarchical networks.

MeSH (Medical Subject Heading) terms, for instance, provides an exhaustive

controlled vocabulary for indexing biomedical literature. Further, it indexes ab-

stracts and/or citations of all documents, books, and references in PubMed25,

a comprehensive search engine that accesses vast databases on biomedical and

life sciences.

Accordingly, ontologies are used for sharing and annotating domain knowl-

edge. In parallel with, the domain experts use and/or expand the ontolo-

gies. GoodRelations26 is one of the oldest controlled vocabulary used in e-

commerce. It aims at maintaining interoperability between websites �which

provide contents� and clients �who consume those websites. This ontology is

used for search engine optimization, product information management, or e-

commerce data quality management (Hepp, n.d.). Any industry for any kind

of goods in any country or legal environment can use the information model

of GoodRelations provides. The customers only need to adjust their special

features into this ontology that serves as a domain knowledge template.

Further, ontologies play a crucial role in data integration and agents' interaction.

As long as they are modeled via the same controlled vocabulary, many separate

databases can be merged. That enables di�erent data sources to become a uni-

25 https://pubmed.ncbi.nlm.nih.gov
26 http://www.heppnetz.de/projects/goodrelations

319



�ed database so that the information expanded, just as agents' interactions. For

instance, during the Human Genome Project,27 each laboratory created and used

its own terminology, classi�cation, and semantic structure caused the problem of

knowledge bases and/or databases not being shared among the researchers. The

Gene Ontology28 was introduced to researchers to solve that obstacle. Conse-

quently, not only various data sources became a single thing, but also researchers

have used the �ndings of other laboratories in their research questions.

Ontologies have a critical role in knowledge extraction; since they are not only

o�ering a machine-readable controlled vocabulary but also semantically con-

nected processable data. Recall from Web 3.0, the tagged data brought together

by RDFS gains further semantic features with the introduction of ontologies.

So, in general, ontologies are robust domain models for knowledge analysis. By

knowledge analysis, we mean employing queries for accessing implicit knowledge

from what is represented on the machine. Each new query is crafted to reach a

result from the set of propositions presented in the formal system. For instance,

in clinical information systems, testing and discovering a medical relationship

or feature and examining its validity in the biomedical domain is the backbone

of decision support systems (Yargan & Zambak, 2021). These operations are

conveyed via queries to the related knowledge representations, namely to the

related ontologies. In sum, beyond being standardizers of terminology and tax-

onomy, ontologies are tools that o�er a logical structure upon which knowledge

management systems can be built.

To sum up, applied ontologies are built for from the standardization of the

knowledge to be represented in the machine to the knowledge management in

�elds such as science, industry, government, education, and healthcare. All said

can be summarised by Poli (2003, p. 188):

An ontologically grounded knowledge of the domain's objects should make their
codi�cation simpler, more transparent and more natural. Indeed, ontology can
give greater robustness to models by furnishing criteria and categories with which
to organize and construct them; and it is also provide contexts in which di�er-

27 https://www.genome.gov/human-genome-project
28 http://geneontology.org
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ent models can be embedded and re-categorized to acquire greater reciprocal
transparency.

B.3.2 Types of Ontologies

Ontology 3.0 has two main classes: domain ontologies, Ontology 3.0.1, and

domain-independent ontologies, Ontology 3.0.2. Domain ontologies are systems

in that the basic entities and interrelations of a speci�c domain are introduced

in machine-interpretable format by domain experts in order for a speci�c pur-

pose held in the machine. They are divided into two groups according to the

purpose of their establishment.29 Application ontologies, Ontology 3.0.1.1, are

software artifacts created for specialized information management purposes such

as data storage, sharing, information extraction, and information representation

(Cf. Jansen, 2009, p. 171). As-built for particular applications in the machine,

the designs of application ontologies prioritize technical concerns, such as e�-

ciency, ease of use, storage space. An example of this kind of domain ontology

is the Bibliographic Reference Ontology,30 formally de�nes bibliographic records

and bibliographic references, and relates these into bibliographic collections, and

relates collections of such records and references into ordered bibliographic lists

(Peroni, Shotto, & other Collaborators, 2018). Reference ontologies, Ontology

3.0.1.2, on the other hand, are domain ontologies that contain knowledge rep-

resentation of the most up-to-date studies in a speci�c domain. The primary

purpose of constructing a reference ontology is to be reused in application on-

tology designs to solve incompatibilities caused by de�ning and/or naming the

entities and relations di�erently. Thereby formulated in canonical syntax, de�-

nitions can be shared and used by di�erent information system communities to

support computational tools (B. Smith, 2014, p. 80). Thus, called a founda-

tion ontology, a reference ontology is taken as analogous to a scienti�c theory

(Jansen, 2009, p. 171). An example of a reference ontology can be the Anatomi-

29 In the literature, there is a consensus neither on the kinds of ontology nor on the kinds of domain
ontology. In this work, the classi�cations are designed according to our perspective.

30 The notion `reference' in its name may be misleading. That is an application ontology for biblio-
graphic references.
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cal Entity Ontology, AEO, which is an expansion of the Common Anatomy Ref-

erence Ontology (OBO Technical WG, 2018). AEO is an ontology of anatomical

structures constructed for �facilitating annotation and enabling interoperability

across anatomy ontologies� (ibid). Thus, AEO provides the basis for develop-

ing application ontologies, such as a research group can utilize AEO to support

inference capabilities of its computational tools in clinical practices.

Designing robust domain ontologies as the software requires three interrelated

fundamental characteristics: reusability, shareability, and interoperability. They

maximize the artifacts' usability and provide representations of the reality that

will depict the world in more detail day by day. In the end, the machine can

process knowledge on a giant knowledgebase. To sustain these characteristics,

designers should ponder on the following issues.

Domain-knowledge should be represented in such a way that it can be reusable.

Suppose that there is an application ontology built for making inferences on

appropriations and expenditures in May 2020. When it is established solely for

May 2020, it re�ects a closed domain, which cannot be reused for, say, May 2022.

Ontologists must design their ontologies with such awareness. Related to this,

ontology designs should be convenient to be pruned and enlarged. Suppose that

an ontology of Turkish Folk Music is created in order to build a knowledgebase.

It should be designed in such a way that one can reuse it for a high school-

level inference system, and another can detail it to conservatoire-level knowledge

representation. Each ontology speaks of scales employed in the music, yet in

di�erent levels of technicality. Thus, how we de�ne the entities, relations, and

properties and which formal language we use to formalize the axioms are of great

importance in reusability.

When an ontology is utilized, sometimes it is necessary to add some new entities

and/or relations, and accordingly new formal descriptions. Most of the time,

it is solved case-by-case. On the other hand, when two di�erent ontologies are

supposed to be merged, each entity and relation cannot be revised one by one.

This issue can be handled by creating bridge ontologies. However, it is costly

since there may be a need for a new bridge ontology for each merging. In or-
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der to sustain interoperability, controlled vocabulary is not always enough. A

good solution comes from reference ontologies thanks to representing the upper

categories in a domain and using the same formal language for representations.

Created for di�erent purposes, di�erent ontologies can easily be merged when

built upon the same reference ontology. A reference anatomy ontology can

be used for bone-diseases ontology and tooth-decay ontology. Researches easily

facilitate interoperability between these two application ontologies since the cat-

egories refer to the same things, and they are expressed in the same language.

Nevertheless, what if one would like to work on two di�erent reference ontolo-

gies? In other words, how are we supposed to sustain interoperability between

reference ontologies?

Creating an ontology is toilsome. Deciding on the entities, relations, and proper-

ties, writing them in a formal system, de�ning axioms, and alike require intensive

human labor. Ontology 3.0 cannot o�er an automatized system for these works;

therefore, shareability has upmost importance. For this reason, thanks to their

being a lingua franca in a domain, ontologies are used to solve jingle-jangle

fallacies that are very common in scienti�c studies. Jingle fallacy occurs when

entities with identical IRIs/tags refer to di�erent real-world phenomena; jangle

fallacy occurs when di�erent IRIs/tags refer to the same real-world phenomenon.

On the other hand, an entity or a relation can be represented in di�erent do-

mains from di�erent perspectives; thus, their ontological status or position in

the hierarchy changes. That is an obstacle to share ontologies. Suppose that we

want to build a graduate school ontology. We know that one graduate school

calls �Ph.D. Thesis� and another calls �Dissertation� to the same entity. Since

ontologies maintain a thesaurus, two di�erent labeled entities are known to be

referred to as the same entity. What if, in their formal de�nitions, the entity

�Dissertation� contains temporal aspects, whereas �Ph.D. Thesis� refers to a

bunch of printed papers? How should ontologists think of the philontological

status of the entities and formal properties of relations?

The questions in the last two paragraphs paved the way for building domain-

independent ontologies. The second class of ontologies, Ontology 3.0.2, aims to

establish semantic interoperability among reference and application ontologies
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by introducing common categories across all domains. For the focus on the

highest categories of being, these ontologies are also called upper-level ontolo-

gies (ULOs). ULOs de�ne and axiomatize the most general categories, such as

objects, properties, relations, events, space, time, and alike, to serve as an under-

lying structure of any domain ontology at any level any granularity. Moreover,

modes of being, such as space-time, part-whole, and border, are also de�ned

and axiomatized in ULOs. For this purpose, they are to be constructed with

rich axiomatic systems for establishing the meanings of all kinds of categories.

For instance, in temporal logic, it is a matter of choice of taking time as time

points or as time intervals. Thus, the category of time should be established as

such axioms in ontologies both in robotics and in quantum mechanics can give

the meaning of the reality in both �elds with the same formal language. The

most popular upper-level ontologies are the Basic Formal Ontology (BFO), the

Suggested Upper Merged Ontology (SUMO), and the Descriptive Ontology for

Linguistics and Cognitive Engineering (DOLCE).

Upper-level ontologies are a framework for reference and application ontolo-

gies. 31 For instance, the above-mentioned Anatomical Entity Ontology is one

of the Open Biological and Biomedical Ontology (OBO) Foundry ontologies

that are built upon the Basic Formal Ontology (BFO), one of the most used

ULOs. Developed collaboratively, the OBO Foundry consists of domain ontolo-

gies, ontologies that computationally represent our biological and biomedical

knowledge in various levels, granularity, and perspectives (OBO Technical WG,

2016). Building ontologies with an upper-level ontology guarantees the three

fundamental characteristics of Ontology 3.0, interoperability, shareability, and

reusability. Furthermore, the most arduous deed of constructing the family of

reference or application ontologies in a logically well-formed and scienti�cally

accurate way is warranted by the selected ULO as well. However, in general,

ULOs provide basic ontological restrictions through axioms so that a ULO can

31 Quinean ontologies resemble reference ontologies, for they re�ect the domain knowledge with
formal means. Whereas Husserlian formal ontologies resemble upper-level ontologies as the top-level
categories and relations are de�ned formally, the construction becomes applicable to any domain.
Another interpretation is that Quinean ontologies can be regarded as Husserlian regional ontologies.
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also be used as a means to verify the plausibility of and compatibility within a

set of domain ontologies. Consequently, a ULO establishes a foundation upon

which semantically interoperable ontologies can be developed collaboratively.

Lastly, we want to highlight the indispensable aspect of philontologies in building

reference and upper-level ontologies. Reference ontologies must re�ect the high-

est categories of a domain and express the latest knowledge in a formal structure.

Upper-level ontologies must re�ect the highest categories of being and express

them in a formal structure. Thus, skills in representing knowledge of the phe-

nomena are essential in designing ontologies. That is, appropriate philosophical

theories must take place in the construction of reference and upper-level ontolo-

gies. Yet, the use of these theories in building an ontology is also shaped by

the requirement that ontologies must be consistent with scienti�c facts and that

these ontologies are created to be used in information systems. Regardless of

building an application or a reference ontology, de�ning classes and assigning

properties requires a philontological solid perspective. Representation of col-

ors, for instance, can be regarded as `quality' or `abstract,' where quality can

be taken as dependent on a concrete, whereas abstract can be taken as onto-

logically independent from concrete. Which ontological stance for universals is

taken is of crucial importance. Further, along with philosophical concerns, an

ontologist should be able to design their ontology by being aware of the formal

languages' limitations. A formal language is expressible enough for mereological

facts should be a concern for an ontologist. In the following part, we will explain

this requirement in detail with implementation procedures of ontologies.

B.3.3 Building Ontologies in Ontology 3.0

There are various ways of representing knowledge in the machine. However,

ontologies are the most robust ones for they not only provide standardization in

a domain but also inference applications. In this section, we are going to examine

how to represent knowledge with ontologies. Yet, let us begin with a caveat. In

truth, there is no particular or correct methodology for developing ontologies

in general. Domain ontologies are primarily designed with considerations of

clients' requests, computational restrictions, and/or speci�cations of application

325



domains. Hence, domain ontologists keep in mind the prerequisites, requests,

and restrictions of application-users, -domains, and -clients while developing

their ontologies.32 In other saying, a domain can be represented from di�erent

perspectives. Or, it can be modeled di�erently, even for the same purpose due

to the ontologists' di�erent ontological views.

Design of an ontology starts with declaring the reason for building the ontology

at hand. Stating the reason can be thought of as laying a foundation of a build-

ing. As the whole building is going to be constructed on such a foundation, the

ontology will be built upon its construction purpose. Representing knowledge

of a bank's ATM transaction processes to optimize all the bank's transaction

processes is an example of an application ontology. The ontologists mainly focus

on the entities of ATMs and transaction processes particular to the bank. All

the relations and properties of the entities are selected relative to transaction

processes taken on the bank. Suppose that the bank managers realized the need

for various application ontologies to meliorate the bank's operations. For these

applications, ontologies interoperate easily; there should be a reference ontology.

If the reference ontology is asked to be domain-speci�c, then, again, the entities,

relations, and properties are selected concerning operations held in the bank.

The entities, on the other hand, must refer to the highest categories of opera-

tions. As a second option, an upper-level ontology can be used as a framework

for application ontologies. Since a ULO is domain-independent, how can a ULO

be chosen that is appropriate for the bank? Laying a foundation of an ontol-

ogy is also necessary for ULOs as well. For instance, whether abstract entities

and/or universals are included in the ontology is up to the philosophical stance

of the upper-level ontology designers. If the designers admit �ctional entities in

their ontologies, they must include a category for them, or they do not admit

abstract entities in their ULO; they need to guide practitioners on representing

numbers in the applications. Hence, if a ULO is designed to overarch all the

32 As Noy and McGuinness (2001, p. 2) point out that designing ontologies and object-oriented
programming seem similar, nevertheless their perspectives di�er. In an ontology design, what is
essential is structural properties of a class, which consists of entities and relations, where, as in
object-oriented programming, what is designed is operational properties of a class, namely the
methods of a class.
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entities in the scienti�c domains, the designers select the highest categories in

which scienti�c entities fall. Suppose the designers of a ULO are philosophically

realists, in the sense that the general features of reality are known in the form

of universals and the relations between them. In that case, selecting the highest

categories of being and their formal representations must be in accordance with

the universal-particular dichotomy. Finally, a ULO should be selected that is

convenient to entities in the applications of a bank. For instance, BFO would

be a better choice than DOLCE since BFO explicitly accounts for temporal-

ity, whereas DOLCE does not allow temporal indexing, which is essential for

transactions.

As mentioned in the last paragraph, declaring the purpose for building an ontol-

ogy simultaneously and implicitly reveals which entities should be selected for

building the ontology. Then, the second step of building an ontology is select-

ing entities, their interrelations, and their properties as relevant to the purpose

for building it. The most common general terms taken from several sources,

such as books, articles, terminologies, and relevant ontologies, are listed, then

selected in accordance with the subject matter of the ontology. The third step

is de�ning and organizing all these materials: constructing a taxonomical hi-

erarchy, exhibiting semantic webs, and assigning the properties. Taxonomy is

the backbone of the ontology since it gives all the subsumption relations and

provides a base for exhibiting semantic webs. Ordering entities in a taxonomy

identi�es the highest categories and ensures coherence between them. Moreover,

it facilitates de�ning the entities that provide ease for human readability and

for writing axioms. The next step is the implementation of the structure into

the machine.

Everything represented in the machine has a unique identi�er.33 Just as unique

identi�ers of artifacts in libraries let us �nd a book at its proper place, IRIs let

the machine trace entities and their related entities. Entities with IRIs in the

taxonomy and the semantic web are encoded with tags and annotations, which

33 Refer to section From 1.0 to 3.0: Industry, Science, Web
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are the most important for sustaining machine-readability. Ontologists need

to decide on a formal language to encode their ontologies. There are various

formal languages for representing semantics in the machine, the Web Ontol-

ogy Language (OWL), the Resource Description Framework Schema (RDFS),

Knowledge Interchange Format (KIF), Ontolingua, and DAML+OIL, to name

some. Which formal language to be used hinges on the purpose of the construc-

tion of the ontology. Designers inspect the expressibility and the complexity of

the formal language: the less complexity and the more expressibility are inher-

ited in the optimum formal languages. Further, selection of the formal language

also determines which ontology editors34 and semantic reasoners35 to be used.

Ontology editors are used for encoding the ontology; namely, entities, relations,

properties, and axioms of the ontology are represented in the editor. Seman-

tic reasoners inherit the inference rules and are embedded into ontology editors.

They operate on the axioms and declarations to check the structure's consistency

and/or make inferences. Then, once the ontology is represented consistently via

an ontology editor, the artifact is ready to be used following its purpose for

construction.

34 Protégé, OBOEdit, OntoEdit, Fluent Editor, NeOn Toolkit, OWLGrEd are examples of ontology
editors.

35 The reasoning programs that in standard use with OWL are Pellet, FaCT++, and HermiT OWL
Reasoner (Arp, Smith, & Spear, 2015, p. 174).
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C. CATEGORIES THAT DEPICT THE WORLD

One of the aims of this work is to depict the world in the machine. To this end,

one of the �rst steps should be understanding how we depict the world for our-

selves. The purpose of this appendix is to give a philosophical background for an

examination of the phenomena. Thus, this part pictures what beings and their

interrelations are and the integrity and diversity of meanings through construct-

ing philontologies. In this sense, a philontology is a means of labeling something

as being and listing the semantic properties of those that exist. That said, this

part also shows our philontological investigation through which we came up with

the idea of employing process of semantic properties into computation.

What determines the structure of an ontology is its categories. Aristotle states

his categories by asking questions like �how much,� �where,� or �in what condi-

tion;� in contrast, Quine constructs his ontology on a maxim that �to be is to

be the value of a quanti�ed variable.� The �rst part of this appendix will in-

vestigate the categories that help us depict the world. Through analyzing these

categories, in the second part, we will decide on which category or categories

would be useful for representing integrity and diversity of meanings. Again, the

fundamental structure that reveals semantic properties is ontology, and ontolo-

gies are constructed on categories.

Please, consider the following example. When an entity is under the superclass

of the abstract, whatever an abstract means, the semantic properties of the

abstract are ascribed to the entity, and all the possible relations that an abstract

entity can have are determined inevitably. Suppose that abstracts are de�ned as

intangible entities which cannot be twisted or heated. If numbers are abstract,

twisting or heating cannot be in the collection of semantic properties of numbers.
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Again, the world is depicted via ontologies, whose essential elements are being;

however, the aim of this appendix is not to construct an ontological system that

transforms phenomena into data. On the other hand, it aims to pave the way

for a depiction of the world that contains (1) a collection of semantic properties

of an entity and (2) the possible operations among semantic properties. To sum

up, in this appendix, we will investigate how we understand the world, how we

classify the entities that exist, and the di�erences between them. In the end, we

will have learned the philosophical position of the trope theory.

C.1 Abstract-Concrete Dichotomy

De�ning the abstract-concrete distinction, if any, is one of the main problems

in philosophy. Accepting or rejecting the existence of such entities necessitates

thorough de�nitions, through which we can get an insight into how entities get

semantic properties, �abstract� and �concrete.�

As concrete is trivial, the question of the principles of representing an entity

as abstract is the �rst to be answered. Williams (1953, p. 14) confronts us

with the ambiguous and various uses of the term. An abstract object can be

either �the product of some magical feat of mind� or �the denizen of some remote

immaterial eternity,� or,

The abstract is equated with the abstruse, the ethereal, the mental, the rational,
the incorporeal, the ideally perfect, the non-temporal, the primordial or ulti-
mate, the purely theoretical, the precariously speculative and visionary; or again
with the empty, the de�cient, the non-actual or merely potential, the downright
imaginary, and the unreal. [. . . ] Mathematics or logic is called �abstract� partly
because it is about formal structures, partly because it treats them only hy-
pothetically; but a symbolic calculus is called �abstract� because it isn't about
anything.

The most common de�nition is that abstracts are non-spatiotemporal (Rodriguez-

Pereyra, 2019): abstract entities exist nowhere in a speci�c time. Accordingly,

concrete entities have both spatial and temporal extensions. For example, math-

ematical objects, e.g., a set, and linguistic concepts, e.g., a concept, are exam-

ples of abstract entities. Falguera, Martínez-Vidal, and Rosen (2022) states that

chess must resemble a mathematical function in its relation to space and time.

On the other hand, (Rodriguez-Pereyra, 2019) considers games non-spatial but
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temporal. We have two options: either we accept that abstract entities distinc-

tively exist in space and time as concrete entities do (Falguera et al., 2022) or

reject the entities with temporal aspects as abstracts. The �rst option leaves us

with the problem of de�ning the �distinctive ways.� Think of a set of �owers in

a speci�c room. It has 7 elements for the time being, yet some of the �owers

will cease to exist after some years, and there will occur a new set with the

element number, say 5. Alternatively, please think of the space that this �ower

set occupies: it is untenable that it occupies as much as space that the �owers

seize. However, this set of �owers cannot occupy a location and exist at a par-

ticular time. Sets as pure mathematical entities cannot exist in space and time,

whereas sets consisting of concrete entities �the impure sets- can be spoken of

their location. Here, we need to choose between two options: either we accept

that impure sets as abstracts exist in space or reject abstract entities cannot

occupy space since impure sets are abstract (Falguera et al., 2022). Either way,

there is puzzlement: electrons do not occupy a region in space, according to some

quantum scientists (Falguera et al., 2022). Are electrons abstract or concrete?

This question compels us to examine another de�nition of abstract: abstracts

are causally inert entities since only spatiotemporal entities have causal relations

(Rodriguez-Pereyra, 2019). If electrons are abstract, they do not have causal

powers, which is untenable; if they are concrete, concrete entities do not occupy a

region in space, which is a contradiction. Leaving perplexity of quantum entities

aside, let us discuss which entities can be regarded as causally ine�cacious. The

above de�nition states that only concrete entities have causal powers. Consider

the event of Brutus' stabbing Caesar. This is an event and can be considered

concrete since it happened in a particular place and a particular time. While

the causation of this event is non-spatiotemporal, thus abstract (Scha�er, 2016).

To solve this problem, we can group causation as concrete and abstract only in

terms of causal ine�cacy. That means there can be concrete entities, whether

mental or material and only those have causal powers. Then, abstracts are

numbers, sets, and alike that make nothing happen. Both pure and impure sets

are abstracts at that rate since they make no de�nite causal in�uence on what

emerges (Falguera et al., 2022).
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Uzun �hsan Efendi, the protagonist in Puslu K�talar Atlas�, is a product of

�hsan Oktay Anar's mental activity. As a mental entity, does it have any causal

powers? If any, what are they? Thus, is Uzun �hsan Efendi an abstract entity?

In the book, Uzun �hsan Efendi surveys truth in his dreams; in other words,

he uses dreaming of searching for truth. We can claim that the idea that truth

can be surveyed in dreams may trigger someone to practice dreaming as Uzun

�hsan Efendi did. Can we conclude that the character of a book can be a reason

for this practice? We a�rm without hesitation since events are concrete; either

they have spatiotemporal aspects or are causally e�cacious. When we accept it

as a concrete entity, it must trigger anyone who reads to book in the same way.

No prima persona a�ects two people in the same way. Thus, some causal powers

have multiple e�ects simultaneously. As a consequence, that abstract entities

have causal powers must be tenable.

Besides, electrons are concrete since they have causal powers. Obviously, they

are not mental since they are mind-independent entities. So, they are con-

crete. We need to revise the de�nition of abstract once more: mind-independent

entities are abstract. When we strip being abstract from causality, is being

mind-dependent su�cient reason for being abstract? Or, can being concrete be

equated with being mind-independent? Physical entities, for sure, are mind-

independent ones. On the other hand, Platonists claim that mathematical enti-

ties are mind-independent, which makes them concrete. However, this is never

true since mathematical objects, like other Forms, are intangible. Hence, there

should be another criterion to di�erentiate abstracts from concretes: tangibility.

Let us attempt to de�ne abstract entities: an entity is abstract if and only if it

is mind-dependent and intangible. In this sense, mathematical objects can be

concrete due to their being mind-independent,1 or electrons or quarks can be

abstract due to their being intangible [?]. The double ontological state �from

one aspect concrete from the other abstract- is unacceptable.

1 On the other hand, sets are mind-dependent when constructing them.
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The problems occur due to distinct ontological stances. Being concrete, which

necessitates having causal powers, is almost always equated with being tangible.

What is tangible is always in space and time. From the other way around, what

is not in space and time is intangible; thus, an abstract. We must deny the

existence of impure sets, quarks, and even the dreams that exist in time yet in-

tangible. Or, we need to choose a side by either accepting the mind-independent

existence of mathematical objects or claiming that mathematical objects are

mind-dependent. Nevertheless, we want to o�er the oldest philosophical way to

di�erentiate abstract and concrete: abstraction.

Here we can use Aristotle's approach: the beings that are separable in thought

are abstracts; the beings that are separable in reality are parts. According to this

approach, both parts and abstracts necessitate another entity for their existence.

Namely, an abstract is an entity that cannot exist separately from and that is

taken as a separate entity by our abstraction faculty. When we look at a speci�c

iron globe, we cannot separate its sphereness from the globe, yet sphereness

can be separated from the globe in thought. The principle of separability in

thought is not the only way to formulate abstraction. We can apply abstraction

functions to concrete entities, and an abstract entity is essentially the value of

the abstraction function (Falguera et al., 2022). Note that there cannot be a

function that asks for arbitrary values; in other words, what is abstracted from a

concrete entity is de�ned by the function. For instance, Color(this apple)=red;

Capital(France)=Paris; Shape(Sun)= sphere; Quantity(Humans in Venus)=0.

The value of the abstraction function Color must be a color; similarly, the value

of the abstraction function Shape is essentially a shape, whereas Paris is not an

essential value of the abstraction function Capital. As an abstraction function

gives the essential values due to the abstraction criteria, the idea of applying

the abstraction function is not helpful in all circumstances.

One may ask what we will get at the end of applying all the possible abstraction

functions to an entity. If the concrete entity is an ontologically independent being

that attires to abstracts, what is left when we stripe all the abstract entities?

We will return these questions in the following parts, but let us consider whether

we can formally model this metaphysical distinction.
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We could not have �gured out whether we should include spatial and/or tem-

poral aspects into concern; similarly, it is doubtful whether we should consider

including tangible and intangible distinctions. Let us use the ontological depen-

dency criterion, which seems the most useful for formalization.

Rojek (2008) uses the ontological dependency criterion for distinguishing ab-

stracts from concretes. He explains the relation between abstract and concrete

with inherence. Inherence is a relation with a property of order; namely, it should

be re�exive, transitive, and nonsymmetrical. It is legitimate to claim that if an

entity, say x inheres in another entity, say y, then x is more concrete than y

(Rojek, 2008, p. 362). For instance, redness is more concrete than color. Hence,

the existence of an abstract necessitates a concrete entity for its existence. When

ontological dependency is formalized with inherence relation(←), an absolute ab-

stract entity, x can be de�ned as �∃y(y ← x∧x ̸= y)∧∀z((x← z) =⇒ (x = z)))�;

where x is an absolute abstract entity such that there is a distinct entity inheres

x and for all other entities that are inherited in x requires that x is the same en-

tity with the other entities. Rojek's further analyses suggest that we can speak

of an absolute concrete entity with the same formula. Moreover, these formulae

also suggest that an abstract entity can be concrete simultaneously, so being

abstract does not necessarily exclude being concrete. For sure, there can be dif-

ferent formal modeling of abstract-concrete dichotomy. The point here is that

the ontological dependency of abstracts cannot be formalized without regard to

the levels of concreteness. For example, a cup handle, which is concrete for sure,

is ontologically dependent on the cup, yet a cup can exist without a handle. On

the other hand, a handle does not inhere in a cup; a handle can be a part of

a cup. Then, how can we di�erentiate inherence relation from parthood rela-

tion? A thorough mereological investigation is needed. This proposes that the

abstract-concrete dichotomy is relative. Thus, in which circumstances could we

apply abstractness or concreteness to an entity as a semantic property? Before

answering this, let us dig into what Rojek (2008)'s absolute concrete entity can

be.
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C.2 Substance Theory

When the abstract entities are ontologically dependent on the concrete entities,

what is left when we stripe all the abstract entities from an entity? There can

be many philosophical answers to it. One may reject the idea of separable in

thought, or one may claim that nothing is left, or one says that there is something

left, which is �something that stands under or grounds things� (Robinson, 2021).

According to the last approach, the thing that is the foundation of the concrete

entities is called substratum. Kantian way of describing substrata is de�ning

them as Dinge an sich, or noumena, observation-independent entities. Recall

that these metaphysical entities are unknown to us.

Let us remind the reason for our metaphysical investigation: we are trying to

�nd an ontological system that helps us depict the world into the machine. It

seems that there is no apparent motive for accommodating substratum either for

us or for the machine since we cannot represent something that we do not know.

On the other hand, in philosophical parlance, the term substratum can be used

in its most speci�c sense: an individual. So, it is better not to rule it out at

once. In the narrower sense of substratum, it is usually translated into English

as �substance.�2 This kind of substance, then, is not the answer to the question

of what is left when all the abstracts are stripped from a concrete entity. Rather,

this is another way of speaking of the concrete. Thus, in philosophy sketchily,

there are three main substance theories. Firstly monists, for who there is only

one substance in the world within which all being is infused. Pneuma of stoics

is an example of monistic substance theory. Secondly, dualists claim that there

are two distinct fundamental substances: material and immaterial substances.

These two distinct substances have di�erent identity conditions, which form an

entity (Robinson, 2020). The third substance theory a�rms a good number of

substances. Aristotle's hylomorphic categories are the best exemplary.

2 The term substance is also used as an English translation of subsratum, in the sense of observation-
independent entity. Be aware of this ontological distinction.
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Which substance theory -monist, dualist, or pluralist- �ts our ontological inves-

tigation? We would not eliminate the monist approach for depicting the world in

the machine, for the approach seems quite metaphysical, if not mystical, burden-

some for our intellect. The monist approach will be investigated at last because

we need to �gure out all the possible categories used for picturing the world.

Dualism, on the other hand, does not necessitate such a suspension. In the

debate of abstract entities, we encountered that describing mind-independent

entities is not philosophically obvious. The metaphysical stances characterize

the features of mind-dependency or mind�independency. A typical example is

the ontological status of mathematical objects.3 The last approach, pluralist

substance theory, admits multiple ontological categories. In Aristotelian ontol-

ogy, on the one hand, there are universals vs. individuals/particulars as one

categorical dichotomy, and on the other hand, there is substantial vs. accidental

dichotomy. This schema is called Aristotelian ontological square. Before digging

into this square and other polycategorical ontologies, we need to investigate the

nature of universals and particulars.

C.2.1 Universals versus Particulars

In philosophy, it is pretty easy to talk about particulars: as far as we can point

at an entity that is particular. �This man,� �this opinion,� �these colors� are

examples of particulars. Universals, on the other hand, are the entities that can

be instantiated either by another universal or a particular; i.e., universals are

the only entities that can be instantiated. Therefore, the demarcation relation

of universal-particular distinction is instantiation.4 The existence of universals

is one of the oldest debates in philosophy. Realist admits universals exist: Ante

rem realists maintain universals as non-spatiotemporal entities, namely univer-

3 In Web 3.0, some ontologies omit the mathematical objects or are constructed without philosophical
concerns. In Ontology 3.0, ontologies either inherent mathematical objects in various categories or
reject their existence. However, we cannot rule out such objects since, one way or another, we have
to represent them in the.

4 A confession is on the way. In this appendix, we speak of categories regardless of clinging to any
philosophical doctrine. We never choose a philosophical approach and follow its categorical structure
to understand and picture the world. We are rather searching an appropriate way to represent entities
in terms of their semantic properties, while considering other ontological categories that are related
with properties.
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sals exist independent of their instances; whereas in re realists, maintain the

existence of universals in space and time. One sect of the nominalists rejects

the existence of universals (Rodriguez-Pereyra, 2019).5 The last camp of the de-

bate is conceptualists, who deny that mind-independent universals exist. They

rather label universals as �non-linguistic mind-dependent entities,� namely as

concepts (Orilia & Paolini Paoletti, 2020). When the existence of universals is

a�rmed, how are we supposed to interpret such entities: abstracts or concretes,

or something distinct from these two? Rojek (2008, pp. 365�366) speaks of

three concepts of universals. The �rst one is universals as common properties.

The above-stated de�nition of universals acknowledges that universals are in-

stantiated entities. One interpretation, then, can be universals inhere in many

universals or particulars. Taste inheres in both sweet and sour; sweet inheres

in both baklava and cannoli.6 The second one is universals as indeterminate

entities. Particulars and/or properties make these indeterminables determinate.

Particular sweetness and taste are fundamental, and such particular sweetnesses

determine universal sweetness. The last one is universals as inhered entities.

Universal sweetness is inhered in this piece of baklava and this cannoli.

In sum, there seem two relations for universals exist: inherence and determi-

nation. Nevertheless, inherence relation has two distinct senses in the �rst and

the third depiction of universals: is universal to be taken as a domain value or

co-domain value? Moreover, along with the de�nitions, we also need to consider

the formal structure of the categories. Thus, how are we supposed to determine

the relation type of the universals?

Supporting a solid ground for universals is troublous; it is so for particulars.

When we maintain that universals exist in space and time, they have attributed

concreteness. Again, when we admit that abstracts are non-spatiotemporal enti-

ties, is the sweetness of a speci�c piece of baklava universal or particular? Thus,

the sweetness of baklava is universal property, just as sweetness and the sweet-

ness of this piece of baklava is a particular property. Further, we should not state

5 The other rejects the existence of abstract objects. Cf. Falguera et al. (2022)
6 Sweet as a semantic property is in the collection of semantic properties of baklava and cannoli.
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something like universal substratum and particular substratum if we accept such

an approach. Furthermore, Robinson (2021) notes that most philosophers, if not

all, accept using substance concepts in their speci�c usage since individuals are

essential for us to understand the world. Substance concepts roughly are what

we generalize from the individuals, such as human or computer.7 Do we need to

acknowledge substance concepts as abstract or as universal? There is no plau-

sible answer since it is still unclear how we de�ne abstract-concrete entities or

universal-particular entities.

C.3 Properties

When universals are held as common properties, what are the �uncommon�

properties? Furthermore, what is a property? Are properties mind-independent

or ontologically dependent? Are they abstract, so are they universals? The

perplexing realm of metaphysics pulls us in again.

Properties, another ontological category, are entities that entities exemplify or

instantiate (Orilia & Paolini Paoletti, 2020). Socrates instantiates the prop-

erty of being human, and being human exempli�es the property of being a

living being. The sweetness of this cannoli exempli�es the property of being

sweet. Obviously, there are various kinds of properties. Taken from Orilia and

Paolini Paoletti (2017), some of them are listed below.

• Primary and secondary properties : Primary properties are mind-independent

entities, such as shape, size, or charge, whereas secondary properties are

mind-dependent entities, such as smell, color, or taste.

• First-order and higher-order properties : First-order properties can only

be instantiated by individuals, such as baklava is sweet or the dress is

crimson. On the other hand, higher-order properties can be instantiated

by �rst-order properties, such as sweet exempli�es the property of being

7 They are often called sortals.
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taste; crimson exempli�es the property of being red and the property of

being a color.

• Typed vs. untyped properties : Following Russell's type theory, typed prop-

erties are precisely partitioned into levels, such that there is a well-formed

hierarchy in properties. However, to accommodate self-exempli�cation

and/or transcendental properties, such as �thinking about,� typed theory

should be replaced favoring untyped or type-free property theory.

• Simple and compound properties : Properties either are only simple or are

simple and compound. The former takes all the properties as simple; the

latter accepts that simple or simpler properties can form other properties.

Understanding all of the properties as simple is straightforward; however,

explaining how the simple or simpler properties form compound properties

requires a formal analysis. This brings another kind of property:

� Structured vs. unstructured properties : Some properties are struc-

tured by logical or some other formal connectives.

• Determinates and determinables : Properties are distinguished from each

other by determination relation, which gives the �rst instances of type-

level properties. For instance, sweet is a determinate of taste, or red is a

determinable of crimson.

Apart from these kinds, there are other kinds of properties as well: propositions,

tensed properties, sortal vs. non-sortal properties, genus and species, natural

kinds, purely qualitative properties, essential properties and internal relations,

intrinsic vs. extrinsic properties, supervenient and emergent properties, linguis-

tic types, and categorical properties vs. causal powers (Orilia & Paolini Paoletti,

2017).

Philontologists admit some of them and reject the rest. There cannot be an

ontology that maintains both determinates and �rst-order properties since the

�rst-order properties are instantiated by individuals. In contrast, determinates

and determinables cannot be assigned by the instantiation relation but rather

by the determination relation. Only higher-order properties can be determinate
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or determinable properties, yet the philontologist must prove that the ranges of

determination and instantiation functions are one and the same. For instance,

the property of being taste is a higher property since another property can in-

stantiate it; and it is also a determinable since its more speci�c versions can

be found. Then, it is instantiated and determined by the same properties, such

as the properties of being sweet, sour, or spicy. A lexical analysis o�ers that a

determinate is ontologically prior to a determinable: an agent must be ontolog-

ically and logically prior to an act. That follows; the property of being sweet

is ontologically prior to the property of being taste. Is it legitimate to transfer

this ontological status to �rst and higher-order properties? Just as a realist can

claim, there can be no such priority relation between them. The bottom line is

that a philontologist must consider all of the categorical aspects when building

an ontology.

Orilia and Paolini Paoletti (2017) speak of relations as a kind of property in

the sense that relations can be reduced to monadic properties. Commonsensical

di�erentiation between properties and relations is that the former holds of the

particulars, while the latter holds between the particulars (Cf. MacBride, 2020).

However, argument deletion lets us reduce dyadic relations into monadic ones.

For instance, �Laura is eating a piece of baklava� o�ers that �is eating� relation

is dyadic; whereas as argument deletion transforms this sentence to �Laura is

eating,� in which �is eating� relation is a monadic property.8 Hence, even Laura

has the relational property of bearing �eat� a piece of baklava, while baklava has

the property of Laura's bearing �eat� to it. That is, even if �to eat� is binary,

the relational property �is eating� is unary.

Moreover, predicates should be a part of our categorical investigation of prop-

erties and relations. G. F. Stout (1940, p. 117) de�nes a thing as a complex

whole that includes all properties that truly predicate it. That is, a predicate is

a constituent of a property complex (p. 118). In this sense, a truly predicable is

a property of a thing. Further, relations play a crucial role in knowing a thing:

8 Orilia and Paolini Paoletti (2017) highlight that �is eating� relation necessitates something for
monadic property to be a relation: �Laura is eating something.�
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non-relational properties cannot exist without the relation to other things or

properties (p. 120). Therefore, both relational and non-relational properties are

parts of property complexes. As the connection between properties, predicates,

and relations is crucial for our investigation, we will dedicate a separate section

to investigate this connection in the following.

C.3.1 Several Senses of Properties

The history of philosophy is full of opposing ideas, so the theory of properties is

not an exception. According to Aristotle, properties are separable in thought:

redness as an entity is only separable in thought and cannot exists without its

bearer. Thus, properties are both abstract and ontologically dependent. More-

over, Locke elaborates this and speci�es a category as secondary properties,

which are mind-dependent entities. That makes some properties ontologically

prior to others. Plato rejects such a view and maintains properties, or univer-

sals, exist separately and are capable of being instantiated by di�erent entities.

However, Williams disagrees with the multi-location of properties and admits

all the properties are particulars. Moreover, in the literature, some categories

are equated with properties, such as universals, abstracts, and predicates. Be-

sides, some categories are used in the sense of properties, such as Locke uses the

term quality and Stout uses the term character in the same sense with the term

property (Falguera et al., 2022; G. F. Stout, 1940). Examining the category of

properties also requires examining relations between the mentioned categories,

such as the relation between universals and properties, character and proper-

ties. This is crucial for us to de�ne all the fabrics of the world so that we can

manufacture the world into the machine with properties.

The terms property and attribute are used interchangeably. On the other hand, a

linguistic analysis o�ers that an attribute is predicable, and the term �property�

points to ownership. In other words, a property that is attributed to an entity is

owned by or is in the entity itself. In this case, a property is an attribute of an

entity (Falguera et al., 2022), which makes an attribute is more than a property.

Moreover, Rojek (2008, p. 370) de�nes another term, �aspect,� with which
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properties constitute the set of attributes. He provides etymological analysis of

the term �aspect�: The term is connected with �seeing,� which requires an agent

who constructs the attribute by her cognitive faculties. The aspect-property

dichotomy is equated with the determinable-determinate dichotomy.9 However,

Levinson (1980, p. 102) uses the quality-property dichotomy instead of the

aspect-property one. Both Rojek (2008) and Levinson (1980) mention both as

generically attributes.

When properties are taken as abstract entities, then every property exempli�es

abstractness (Orilia & Paolini Paoletti, 2020). Besides, properties can, for sure,

exemplify properties, such as the property of sweetness exempli�es the property

of taste. Moreover, being abstract is a property, so it exempli�es itself. Although

this approach is legitimate to many metaphysicians, Russell rejects the self-

exempli�cation of properties because such exempli�cations cause paradoxes in

the formal representations.

When properties are taken as universals, how are we supposed to explain the one-

over-many problem of universals? For example, colors of two di�erent concrete

entities, say apples, can be distinguished: one is red, the other is green. What

can we say about two green apples of equal size? These apples are numerically

di�erent, yet they are somehow one. How can the properties of size and color

be in many places? One may state that there is nothing wrong with equalizing

universals and properties, and we can solve the one-over-many problem as we

solved it for universals. We need to wait until the decision of which categories

appeal to be crucial for a machine ontology. We can skip this question for the

time being.

Inevitable questions bear in the minds of ontologists. How can we di�erentiate

these categories used interchangeably, and how can we formalize nuances of

these categories? What Locke calls quality is di�erent than what Levinson calls

it. Further, when simple properties are unanalyzable, we cannot talk about

9 The di�erence, however, lies in the demarcation function used. For the former inherence relation
di�erentiate aspect and property: properties are inhered in entities, whereas aspects are not; for the
latter determination function is used, as stated above.
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an inner structure of them; yet complex properties are analyzable so that they

have an inner structure. What is the methodology of property analysis? How

can one ensure that this method will not be circular or linearly ad in�nitum?

If there is an inner structure of complex properties, can such a structure be

formalized? When the philosophers are so lost in de�ning these categories,

how are we supposed to represent them in the machine? No matter which

philosophical aspect we entertain, such an abundance of categories, which will

grow more and more in the following pages, increases the computational load as

well. In a nutshell, we are tussling with metaphysical abstrusities once again.

C.4 Relations

As a category, relations are included in many philontologies. For instance, Aris-

totelian realism embodies relations in some categories such as relative, posture,

state, and passion; Kant speaks of relation as a category by itself; Husserl de-

scribes relations under the ontological categories correlated with semantic cate-

gories; updating Aristotelian categories, Grossman calls relations one of the eight

highest categories, in which he distinguishes properties from relations. Further,

Ho�man and Rosenkrantz take relations as abstract entities, along with dis-

joint entities of properties and propositions, and Lowe distinguishes particular

relations from universal relations (Thomasson, 2019). A realist can accept prop-

erties as universals; yet can reject the existence of relations. Accordingly, for

a nominalist, relations are out of the scene. If so, how come can two opposing

ontological doctrines share a common conclusion about relations? Are relations

abstract? Are they particular? Are they distinct from properties? Are they

universals? How can they occur in various categories? Could we speak of a

representation without relations? In what follows, we will investigate relations

qua an ontological category.

Properties are de�ned above as entities that are exempli�ed or instantiated by

some other entities. As noted before, they are monadic since properties are

only exempli�ed by other entities, either by particulars or by properties, on an

individual basis. In comparison, relations are considered n-adic, where n > 1,

since they are exempli�ed between particulars. In logic lectures, properties are
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formalized as F (x), while a dyadic relation is formalized as R(x, y), where F

for a property, x and y for arguments, and R for a relation. What if x = y,

is R(x, x) a relation or a property? MacBride (2020) highlights that identity

is a relation, not a property, so the terminus of the relation can be the same

as the subject. The main distinction, thus, lies that relations, on the contrary

to properties, hold between things, even in some cases it connects the entity at

hand with itself.

There is a perplexing entity called �relational property.� A relational property

is a property that depends on a relationship between entities. That is, it is

�a predicate of a given entity which is generated in it by the subsistence of

a relation between that entity and other entities or itself� (Findlay, 1936, p.

176). Recall that identity is a relation. At the same time, there is a relational

property of identity in the entity to its terminus. Findlay (1936, p. 176) ex-

plains the di�erence with an analogy: the �relations are bridges between entities,

whereas relational properties are the points of contact between the entities and

such bridges.� Thus, identity is dyadic, but the relational property of identity is

monadic. To make it more concrete, consider the following examples. Marriage

is a relation between two humans, but `being married to someone' is a relational

property. If a book is on a table, there is a certain spatial relation between the

book and the table. This spatial relation generates in the book the relational

property of being on the table, and in the table the relational property of being

under the book.

C.4.1 Internal and External Relations

Relations can be distinguished as internal and external. An internal relation

is a relation whose holding between entities is somehow determined by the en-

tities; an external relation is a relation whose holding between entities is not

determined in a speci�c sense. Philosophers disagree on how internal relations

are determined. As Moore admits, an internal relation is determined by the

existence of the entities that it relates; as Armstrong claims, an internal relation

is determined by intrinsic natures, i.e., non-relational properties, of the relata;

as Lewis states, a relation is internal if it supervenes upon the intrinsic natures
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of the entities it relates (MacBride, 2020). Beyond any doubt, what an external

relation is a matter of debate as well.

There is eliminativism about external relations and reductionism about internal

relations, both of which are controversial. Bradley's Regress, the most famous

eliminativism about external relations, concludes that we should exclude ex-

ternal relations from our ontology because each external relation necessitates

another external relation to explaining the previous one.10 This ad in�nitum

regress makes such relations unintelligible. In keeping with the de�nition of in-

ternal relation, recall that either the mere existence of the relata is necessitated

or the relation must supervene upon some intrinsic characters of the relata. The

�rst case o�ers nothing about the internal relations: Claiming their existence is

nothing since, in Armstrong's parlance, it does not constitute �an addition to

the world's furniture� (MacBride, 2020). The second case, on the other hand,

seems promising, since matter and charge are the most common examples of

intrinsic characters of any physical entity (Lewis, 1986, p. 14, p. 60). However,

quantum theory acknowledges that we should eliminate intrinsic properties from

out of metaphysical outlook (Teller, 1986 from MacBride (2020)).

C.4.2 Order and Direction

We will mention the nature of relations, viz., order and direction. Recall that

a relation, R is symmetric if aRb = bRa; is non-symmetric if aRb ̸= bRa. How

can we decide whether a relation is symmetric or not? Is it up to the entities

it relates to, or does a relation bestow order upon its entities? If the former is

true, we need to �gure out the natures, namely per se, maybe also per accident,

attributes, of entities, and which attributes admit/allow/emerge what relations

with respect to the other entity's attributes. Otherwise, for the latter, we search

for the converse of the relation and check whether the relation and its converse

are one and the same. Note that �nding a converse of a binary relation is more

or less easy, whereas can we speak of a/the converse of an n-adic relation? So,

10 See F. H. Bradley ([1893] 2016) for the discussion in detail.
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admitting an order of the entities in a relationship is both computationally and

metaphysically important.

Let us focus more on how to di�erentiate symmetric relations from non-symmetric

ones; in other words, how to determine the direction of the relations. It is legiti-

mate to de�ne symmetric relations as relations whose converse is itself. Suppose

that R is a relation between a and b, and that R∗ is the converse of R: if aRb,

then bR∗a. Assume that if R and R∗ are one and the same, so as the mentioned

two states. For instance, the book's being on the table is the same state as the

table's being under the book; these two states are one and the same.

When we interchange the relations � the book is under the table, and the table

is on the book � they express one and the same state again. However, this may

not be true for all cases. The table can be on the book, for some reason; what

about �Laura owns the book�? The relation between Laura and the book is

owning, which has a converse �belonging to.� Then, the state can be expressed

as �The book belongs to Laura.� When these two relations are the same, it

would be legitimate to express the state as �The book owns Laura,� which is

nonsensical. There cannot be such a state. Then we cannot show symmetric

relations upon our assumption. The converse of the assumption, if the same state

arises from the holding either R and R∗, then these relations are the same, and

R is symmetric, is also false for the same reasons. Then, how can we determine

non-symmetric relations? What about that a relation does not have a direction

when it does not have a converse, which expresses the same state? However,

this is nothing but begging the question.

One may wonder why we do not just claim that aRb is the same as bRa, then

R is symmetric. For instance, if a is identical with b, then b is identical with a,

therefore being identical is a symmetric relation. Even one can say that when we

take the relation as a relational property and true for both relata, the relation

is symmetric. �The major is meeting her vice-president� is another example

of this. When we change the relation into is loving, we cannot claim that
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is loving is a symmetric relation.11 There will always be some indeterminacy,

whether semantic or metaphysical when we convey the direction of relations.12

Philosophers have invested in �nding a solution that o�ers a distinctive feature

for non-symmetric relations without referring to direction. Here we will speak

of only two of them by following MacBride (2020).13 The �rst solution, posi-

tionalism, acknowledges that the distinctive feature of a non-symmetric relation

R with respect to its relata can be explained �locally� in terms of R and the

relata. In positionalism, the argument positions are conceived as entities with-

out having an intrinsic order. That is, they cannot determine any signi�cant

order or direction; rather, the relations di�er only with respect to the positions

of the relata. For instance, a relatum can be either the subject or the object

of a relation, say to love; so the occupants of the argument positions and the

relation characterize a non-symmetric relation. On the other hand, primitivism,

the second solution, does not admit the recognition of the relata: All relations

are primitive, so they are unanalyzable. Moreover, the di�erence between the

states aRb and bRa are taken primitive as well (ibid.).14

The category of relations contains complications even for humans' understand-

ing. So, we need to end this section with too much puzzlement at hand: do

relations depend upon the existence of substances that bear them? Or, on the

contrary, are they ontologically independent entities? How can we speak of the

intrinsic natures of the entities which pave the way for the existence of relations?

How should we exhibit the nature of n-adic relations? How can we di�erentiate

the relation of �cause� is transitive in one context and intransitive in another?

When we admit relations as universals, should we abandon the view that all

relations are primitive -since there is a hierarchy in universals- or should we re-

11 Further, its converse is `is loved by,' which is formally di�erent.
12 For semantic and metaphysical indeterminacies see Taylor and Burgess (2015).
13 For instance, anti-positionalism is a strategy that rejects the distinctive feature of a non-symmetric
relation explained locally.

14 Whether we should annotate �is meeting� as a non-symmetric relation is a perplexity. If the relata
are humans, then is meeting symmetric; however, consider �the principle meets the requirements,�
the very same relation is non-symmetric. A question of which approach to relations is better for
knowledge representation in unstructured data is kept in mind.
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ject hierarchy in relations? And above all: How should we represent relations in

the machine, keeping the option of rejecting the existence of such �ontologically

weird� things in toto, as Lowe (2016, p. 111) suggests?

C.5 Properties, Predicates, Relations

Can properties, predicates, and relations be equalized? Let us start with predi-

cates and properties. Although predicate and property are used interchangeably,

properties are articulated by predicates; that is to say, predicates are linguis-

tic entities, not ontological ones (Orilia & Paolini Paoletti, 2020). Predicates

are verbal phrases, like �is sweet� or �eats,� predicates can be nominalized by

su�xes �ity or-ness, or via gerundive or in�nitive phrases. �Sweetness,� then,

can be taken as a property.15 Furthermore, properties are semantic values of

predicates for a kind of nominalism, yet they are more than being a value, such

as accounting for similarity (Rodriguez-Pereyra, 2019). Being a semantic value

is a role of properties, so predicates have their own ontological status. In the

same vein, all properties are truly predicates of an entity (G. F. Stout, 1940,

p. 117), so that we can think of predicates as properties. In other words, a

predicate can only be a property (Orilia & Paolini Paoletti, 2017).

G. F. Stout (1940, p. 120) highlights that the source of our knowledge of an

entity is not solely our observations of the entity itself. Moreover, the states

that the entity has relations with other entities are its properties as well. As

we uttered above, relational properties are properties that an entity share with

another entity simultaneously. Thus, relations can be thought of as a kind of

property. A question arises: what is the connection with predicates and re-

lations? Should we take predicates as ontological entities? When we follow

Findlay (1936), we should conclude that since relations are universal, predicates

can be regarded as limiting cases of relations. However, are relations commit-

15 According to Orilia and Paolini Paoletti (2017), `sweet' and `sweetness' distinction is not onto-
logical; instead, it is a grammatical issue. In English, we say �Baklava is sweet,� not �Baklava is
sweetness.� However, we cannot rule out this grammatical distinction. In formal settings, we typify
words, and possible relations and possible combinations occur with respect to the part of speech
tags. We will come back to this problem when we discuss the relation between formalism and
metaphysics.
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ting one-over-many? Let us leave these questions for a while and continue our

categorical investigation.

C.6 The Role of Time and Space

Please think of the books of �hsan Oktay Anar and his writing the books. There

was a moment when Anar was born; there was a period when he was writing one

of his works up; there has been a moment since that book has been accessible.

We can legitimately take a published book of Anar as a particular entity/an

individual; at that rate, can we still legitimately regard his writing a book as an

individual? Suppose that we have two di�erent time instances, t1 and t2, when

his book, B1, has been published before t1, and he has been writing his book,

B2, between t1 and t2. Take any n, such that t1 < n < t2. While B1 is the same

for any n, B2, keeping its identity continues to change. Then, B1 and B2 should

have di�erent ontological statuses. In ontological parlance, the entities that are

present wholly at every time instances when they exist are called endurants; the

entities that happen through time and have time intervals are called perdurants

(Cf. Yargan, 2020b). The latter is separated from the former by having temporal

parts, so the individuals must be separated from events, which are obviously

perdurants.16 There are no perdurants in Aristotle's categories; there are no

endurants in Whitehead's categories. Should we accept or reject the categorical

distinction between individuals and events when representing Anar's books and

writing one of his books, or a cell and crossing-over in a cell, for a machine?

Now think of a vase and the clay of which the vase is made. This typical onto-

logical example is to question whether the di�erent entities should be separately

represented when they occupy the same space at a given time. The vase and the

piece of clay exist in the same space and time, so it is legitimate to represent them

separately since they have di�erent ontological statuses: the vase is ontologically

dependent on some amount of clay. However, Aristotelian hylomorphism rejects

such representation since there is clay as a material cause of the vase. There is

16 In the literature, continuant and occurrent are used interchangeably with endurant and perdurant,
respectively. However, this is not a consensus. See Sat�o§lu [Yargan] (2015).
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a vase form that is the formal cause of the clay: the form of the clay is the vase,

the matter of the vase is clay. They are one and the same ontological entities in

space and time, yet they are di�erent when analyzed hylomorphically. Hence,

should we teach some hylomorphic analysis to the machine?

C.7 Tropes

We think that most of the ontological categories boil down to two dichotomies:

universal-particular and substance-property and that there are two main rela-

tions: inherence and dependency. We have mentioned myriad views on com-

bining these categories and relations, each of which has its own superiorities

and de�ciencies in representing the world. In the following, we will introduce

the last ontological category, which is no exception of having superiorities and

de�ciencies: tropes.

Regarded as the father of tropes, Williams (1953) takes them as constituents of

all of the entities. He develops his idea of how partial similarity and di�erence are

both subsumed and inherited in entities (p. 4). He pictures three lollipops with

the following features: the �rst lollipop has a red round peppermint head, the

second one has a brown round chocolate head, and the third has a red square

peppermint head. These three lollipops have one exactly similar part: their

sticks. The proposal behind this claim is that when two entities are partially

similar to each other, then a part of one entity is �wholly or completely similar�

to a part of the other one. Ignoring the spatial aspects, for now, we can claim

that each lollipop is partially similar to each other with respect to a physical

part, or a �gross part,� viz., stick. Williams (1953) proposes that we should

treat ��ne parts,� namely, abstract components (such as shape, color, �avor), in

precisely the same way: the �rst and the second lollipops are partially similar

with respect to their shape; the �rst and the third lollipops are partially similar

with respect to their color and �avor. Indeed, he purports that we can speak of

whole similarity and partial similarity and dissimilarity of both gross and �ne

parts (p. 5); that is how we know of complex wholes, namely entities (p. 6).

To make an example of tropes, consider the particular shape, color, or weight

of an individual entity. Two lollipops �share� a property of shade of red, yet
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each exempli�es a set of redness-trope. Since each redness-trope is numerically

distinct, there must be at least two redness-tropes; but at the same time, they

resemble each other.

The crucial point of Williams' doctrine lies in his interpretation of the term

�abstract.� As mentioned above, there are myriad interpretations of abstract.

Williams (1953, p. 15) uses abstract to mean �partial, incomplete, or fragmen-

tary, the trait of what is less than its including whole.�17 That is, what is an

entity is a total that is the composition of abstract parts. For instance, a lollipop

as a whole has constituents its color, its stick, its shape, its �avor, its weight,

and alike. Moreover, he disagrees with taking abstract as universal and argues

that the abstract components must be particular. Williams (1953, p. 10) avers

that there is no ontological distinction between concrete particulars and abstract

universals. Universals are abstract nouns that refer to sets of particular cases

abstract parts. For instance, the redness of the lollipop stands for its particu-

lar case of Redness. Thus,Williams (1953, p. 7) de�nes abstract particulars as

tropes, which are particular entities, which are �either abstract or consisting of

one or more concreta in combinations with an abstractum� (p. 7). In that vein,

tropes are the very alphabet of being.

Accepting �abstract particulars� does rule out neither universals nor concreteness

(p. 16). Universals are sets of tropes, where a set is �a class of which the terms

are members; and particulars are sums of tropes, where a sum is �a whole of

which the terms are parts� (p. 9; italics in the original).18 We know concrete

things from their abstracta (in the sense of part of the whole), not from the bulk

without properties (p. 16). The �rst things we realize when perceiving an entity,

say a dress is its color, its style, its fabric, its sleeve length, its collar style, and

alike. Namely, everything from pain to lollipops, from the Sun to music, can be

constructed out of tropes. In sum, the trope provides one �rubric which is

17 As Rojek (2008, p. 361) de�nes concrete as �a knitted whole.�
18 An utmost attention should be given to the fact that there is nothing as abstract universal in any
trope theory.
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hospitable to a hundred sorts of entity which neither philosophy, science, nor

common sense can forego� (p. 17).

Said all, starting the history of the theory of tropes from Williams would be a

mistake. Maurin (2018) claims that this theory could date back to Aristotle.

Several names o�ered alternatives to tropes, throughout the history of trope

theory, such as abstract particular, mode, moment, quality instance, concrete

property, particularly property, unit property, intrinsic character, or quality.19

Moreover, philosophers disagree on not only di�erent labels but also the onto-

logical status of the category of tropes.

We can classify trope theories into two (Rojek (2008, p. 366), Cf. (Maurin,

2018)). The foremost declaration in the �rst group is that tropes are the el-

ements of being; whereas, that in the second group is that all properties are

particulars. Let us examine them in turn.

C.7.1 Tropes: The Elements of Being

According to this Trope Theory, tropes are the only ontological category (Williams

(1953), Maurin (2002), Campbell (1990)). The very duty of trope-only theorists

is to show how other categories are made up of tropes.

Tropes, the single type of entity, are abstract particulars. They are not numer-

ically identical and multiply located in space and time as universals are. For

instance, think of two pieces of baklava. Baklava is sweet and sweetness can be

abstracted from it. The sweetness of the �rst is di�erent from that of the second.

Each piece has its own sweetness, yet the two resemble each other concerning

their taste. Trope-Only theories, on the other hand, do not take abstract as a

non-spatiotemporal category (See, for instance, Williams (1953) and Campbell

(1990)). The demarcation between abstract and concrete can lie in monopoliz-

ing the locations. Concretes monopolize their locations, whereas abstracts occur

19 See Niiniluoto (2012) and Maurin (2018) for the philosophers who coined those terms. The last
two belong to Paul (2017).
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in conjunction with other things (Campbell, 1990). Or, abstracts can be taken

as part or fragmentary (Cf. Williams, 1953). In one way or another, abstracts

cannot be considered as universals in this kind of trope theory.

G. F. Stout (1940, p. 117) states that a �thing as a subject of predicates is simply

identical with the complex whole including all properties truly predicable of it.�

what is this orange? G. F. Stout (1940) says that asserting its roundness and

juiciness provides partial answers; thus, we would have a complete answer as long

as we assign all its predictable properties. One may claim that asserting all the

predictable properties cannot fully de�ne an entity. Let us change the question of

�What is this entity?� into that of �What is this entity as a subject of predicable

properties?� A tenable answer has value in metaphysics, yet representing such an

obscure �thing� in the machine is irrelevant. Since we do not represent somewhat,

we �do not know what,� rather what we perceive or think of a particular entity

(G. F. Stout, 1940, p. 118). Moreover, things are the character complexes,

and the character predicate of a thing is nothing but a constituent of the thing

(p. 120). Once we follow this line of thought, a particular entity is �the whole

complex including all its properties in their union with each other� (p. 118).

Other types of entities can be accounted for in terms of tropes. In the sense

of an individual entity, such as a star or an electron, a particular is held to be

a compresent collection of tropes or, as for Williams, a sum of the tropes. A

universal, such as sweetness or Sweetness, is a set of exactly similar tropes. The

sum-set notions are special in this theory. �Set� does not have any set-theoretic

ontological connotations; it is just used to refer to similar tropes. �Socrates is

wise� means that �the concurrence sum (Socrates) includes a trope which is a

member of the similarity set (Wisdom).�

Certainly, there are too many metaphysical questions to be addressed. For

instance, how can we di�erentiate two collections of the same compresent tropes?

Is the relation of compresense among tropes the same as the relation between

complex universals, such as the set of exactly similar particular cases of redness

and oblongness? Is the relation of resemblance strong enough to rule out any

substance-theoretical categories? How should the relation of identity be de�ned
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in terms of tropes? Although so many others can be added, we should ask

questions concerning a possible depiction of the world in the machine.

C.7.2 Tropes with Universals

Most of the one-category ontologists, if not all, are nominalists who reject the

existence of universal properties. On the other hand, trope theorists need not

be nominalists. They can reject universals as common properties, yet they can

accept universals either as determinables or as concrete. That is to say, there

are realist-trope theorists as well.

In the Several Senses of Properties part, we spoke of three kinds of universals.

Recall that Rojek (2008) distinguishes universals as properties from universals

as aspects. This distinction is based on two relations of inherence and deter-

mination. Properties inhere in entities, whereas aspects are determined by the

properties. In this sense, all properties are determinate, and all aspects are de-

terminable. Following that, one can exemplify this claim as sweet is a property,

and taste is an aspect. On the other hand, recall that Rojek (2008, p. 370) avers

that a property is �proper� to an entity; namely, it is something that belongs

to an entity. Therefore, properties are particulars, yet tropes and other entities

determine aspects. An aspect like sweetness is determined by a trope; an aspect

like humanity is determined by an entity, such as Socrates. A sweetness inheres

in cannoli, and a humanity is determined by Soctares, a bundle of tropes. Given

that all properties are particulars and all properties are tropes, we can conclude

that there are universals as aspects. By declaring the existence of determinable

universals, not all of the trope theories can be monopolized by nominalists.20

All trope theorists reject the existence of abstract universals, but some of them

accept concrete universals. Recall that Rojek (2008) speaks of concrete uni-

versals as the third kind of universals. He suggests that concrete universals

are Aristotle's second substances or Wittgenstein's �family of resemblances� (p.

373). Once again, recall that what demarcates universals and particulars is the

20 See Niiniluoto (1999) for further discussions.

354



primitive relation of inherence: universals are not properties but wholes which

encompass their instances, properties, considered as abstract universals, on the

other hand, are particulars. For instance, abstract sweetness inheres in many

distinct desserts, whereas concrete sweetness is a whole constructed by all the

desserts that ever have been and will be. Thus, as tropes are particulars, there

is another category of being other than tropes. So, it is legitimate to declare a

trope theory with concrete universals.21

C.7.3 Tropes and Concrete Objects: Together or The Same

In this appendix, we have been investigating various categories of being, and we

have experienced that the meaning of the categories varies from one philosopher

to another. In this line, the following is inevitable: that Williams de�nes tropes

as abstract particulars, and that �abstract� means what is partial or incomplete

is untenable for many trope theorists. Some think that tropes are concrete (e.g.,

Giberman); for some, tropes are both abstract, and concrete (e.g., Simons), or

some think tropes are a kind of property (e.g., Mulligan) (Maurin, 2018).

We claimed that all trope theorists acknowledge that all properties are tropes.

Does this statement legitimately follow that tropes are properties? Williams

would refuse such a claim since a trope-only theorist has to maintain tropes

as objects, or at least a kind of object. As Williams (1953, p. 5) states, we

christen tropes: we name such particulars. On the other hand, if all properties

are tropes, and all properties are independent entities, then tropes are a kind of

dependent entities, contrary to Williams and Campbell. This situation can be

observed linguistically: Tropes express the ways entities are. What about simply

accepting that tropes are neither objects nor properties and that they are the

independent building blocks of every entity? Trope compositions can construct

objects and properties. Or, consider that `being sharable' is necessary for `being

a property' and that monopolizing a spatiotemporal location is characteristic of

21 According to the theory of concrete universals, concrete particulars and concrete universals are
one and the same. The idea behind this is that �concrete� means things are united/knitted. Within
the limits of this work, we do not go through it.
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objects; tropes are neither properties nor objects due to their being independent

and particular, respectively. Following these, tropes can be assumed to be in-

stantiated in individuals, which amounts to substance-trope view (Cf. Simons,

1994).

The perplexity of tropes being either property or an object springs from the per-

plexities of abstract-object-property-universal notions and their connotations.

We can discuss: If tropes are a kind of objects, they are �non-transferable,� but

when they are a kind of property, they are �transferable� since properties are

instantiated, but objects are not. That means tropes are not abstract, then not

universal. On the other hand, we can discuss the other way around, such that

tropes are properties and abstract. However, we should never ever forget that

all our discussions are done for the sake of the realization of machine under-

standability. It would be wise to reconsider the connotations of these categories

for machine ontology.

C.7.4 Further Con�icts among Trope Theorists

The confusions about the nature of tropes are not limited to the property-object

dichotomy. As we emphasized before, tropes can be categorized as primitive,

simple, and complex. Tropes are primitive only if they have no constituents (e.g.,

Campbell (1990), Maurin (2002)). Tropes are simple either when they have no

parts or when they are made up from other tropes. Obviously, the trope-only

theorists, tropes, the very alphabet of entities, are primitive or ontologically

simple. Lastly, tropes are complex only if they have internal constitutions, which

are either intrinsic aspects of a trope or some other ontological category other

than tropes. The relation of resemblance instantiates an intrinsic aspect, for

instance, as it helps us compare tropes. That is, a trope must have its intrinsic

properties (Alvarado, 2019). On the other hand, if an internal constitution is

of not tropes alone, then the trope theorists maintain either a trope-universal

theory or a trope-substance theory.

Rojek (2008, p. 364) distinguishes two kinds of simplicity. The �rst kind of

simplicity is necessary for any trope theory, whereas the second kind, which
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is the primitiveness of tropes, is unnecessary. As nothing inheres in a trope,

tropes are simple by their nature; yet there can be trope constituents. That is,

tropes are simple in respect to inherence, and they can be complex regarding

other relations, such as in respect to determination. On the other hand, Molnar

(2003, p. 37) notes that modes, i.e., tropes, are neither simple nor complex. He

claims that tropes neither have parts nor have themselves as parts, so that they

are just out of any mereological study (p. 44).

Another con�ict among trope theorists is how to individuate tropes. For some

of the trope-only theorists, two tropes are distinct if and only if they are nu-

merically distinct; since they are primitive. Calling it the Primitivist Principle,

Ehring (2011, p. 76) such an approach requires no analysis or reduction to

individualization of tropes. Campbell (1990, p. 69) depicts this principle as �in-

dividuation is basic and unanalyzable� since a trope is just what it is. Since there

is neither ontological analysis nor metaphysical explanation is possible concern-

ing this principle, there is the Spatiotemporal Principle, which explains necessary

and su�cient reasons for the individuation of exactly two similar tropes: two

tropes are distinct if and only if either they do not exactly resemble or they are

distinct from each other spatiotemporally (Ehring, 2011, p. 76). However, this

principle cannot explain mutually excluded tropes. A roundness trope and a

squareness trope are exactly similar with respect to their both being shape, yet

they cannot have the same spatiotemporal location. Thus, this principle fails in

explaining same-level trope individuation. To solve this problem, another indi-

viduation principle can be o�ered: the Object Principle. Tropes are individuated

with reference to the entities that �contain� them. Two exactly similar tropes

are identical only if the entities that they constitute are exactly identical. This

principle, however, makes individuation circular (Maurin, 2018). As an entity is

a trope composition, it is known by the individuated tropes. Next, we operate
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this trope composition in order to distinguish the tropes: we know of an entity

via its tropes and a trope via the entity.22

C.8 Conclusion

This appendix studies how ontological categories, particularly relations and

properties, are studied in philosophy. Its purpose is to investigate philontological

characteristics of properties and other categories directly related to them. Ad-

ditionally, it is witnessed that there are so many philosophical disputes, such as

in trope theory: Hochberg and Armstrong reject simple tropes; Ehring accepts

simple tropes from a di�erent perspective; Molnar rejects both aspects, as the

two tropes are not simple due to their internal relations. All these disagreements

are of philontologies; however, our aim has never been pondering these issues.

Instead, it is to �nd the most suitable guiding categorical theory for a machine

ontology in light of this work.

22 The individuation of tropes has been discussed from other perspectives, such as swapping, sliding,
and piling arguments. Here we neither continue the issue of trope individuation nor de�ne all these
arguments; in which anyone interested are encouraged to see Ehring (2011, pp. 78�91) for details.
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E. TURKISH SUMMARY/TÜRKÇE ÖZET

E.1 Giri³

Büyük Veri'nin insanl�k tarihi boyunca dönü³ümler sa§lad�§�/sa§layaca§� inanc�

onu yüzy�l�n en önemli olgular�ndan biri haline getirmi³tir. Ancak insanl�k tar-

ihini ³ekillendiren üç alan �endüstri, bilim ve Web� incelendi§inde, Büyük Veri

mevcut teknolojilerle bu alanlarda gerçek bir dönü³üm sa§layamaz. Çünkü,

bu alanlarda Büyük Veri'nin dönü³üm sa§layabilmesi için makinenin otonom

olmas�, di§er bir deyi³le ilk önce Büyük Veri'yi anlayabilen ve i³leyebilen bir

makinenin in³as� gereklidir. Bu tez, makine-anla³�labilirli§inin felse� ve berim-

sel ilkelerini tan�mlamay�, makine-anla³�labilirli§ini sa§layacak bir veri i³leme

yap�s�n� ke³fetmeyi, buradan hareketle, verilerin nas�l temsil edilmesi gerek-

ti§ini ara³t�rmay� ve üzerinde anla³maya var�lan temsil sisteminin biçimselle³tir-

ilmesini sa§layacak bir araç bulmay� hede�emektedir.

E.2 Büyük Veri, Endüstri, Bilim ve Web

Dünyan�n üzerinde ilerleme kaydetti§i en temel çarklar bilim ve endüstridir. Bu

alanlardaki geli³meler, dünyan�n kaderini ³ekillendiren yeni dönemleri ba³lat-

m�³t�r. Yirmibirinci yüzy�lda, donan�m ve yaz�l�mdaki geli³melere ek olarak

Büyük Veri'nin etkisini ile endüstriyel ve bilimsel üretim ³ekillerinde de§i³iklikler

ya³anmaktad�r. Hem endüstri hem bilim hem de yüzy�l�n en kritik bile³eni olan

Web de Büyük Veri'nin dönü³türücü etkisi alt�ndad�r. O halde, bu alanlardaki

veri tufan�n�n neleri de§i³tirdi§ini ve Büyük Veri'nin etkisinin nas�l bir devrim

yaratabilece§ini tart�³madan önce, Büyük Veri'nin ne oldu§u incelenmelidir.

363



E.2.1 Büyük Veri

`Veri' sözcü§ü günümüzün en çekici ve bir o kadar da aldat�c� terimi haline

gelmi³tir. Popüler makaleler ve kitaplar, veriyi en de§erli kaynak anlam�nda

�dijital ça§�n yeni petrolü� olarak tan�mlar (Leonelli, 2014). Verinin bu kadar

de§er kazanmas�n�n as�l nedeni veri hacmindeki üstel art�³t�r. 2017'de günde 2,5

kentilyon bit veri üretilmi³ ve küresel internet nüfusu 2017'den Temmuz 2021'e

kadar %36,84 artt�§�ndan üretilen veri say�s� önemli ölçüde artm�³t�r.1 O halde,

üretilen ve saklanan verilerin hacmi, h�z� ve çe³itlili§indeki art�³ veriye `Büyük

Veri' ad�n� koymay� gerektirmi³tir.

Büyük Veri'nin çe³itlili§inden bahsederken üç veri çe³idinden bahsetmek gerekir.

�lki yap�sal veridir. Yap�sal veri, en basit haliyle, makinenin i³lemesine uy-

gun hale getirilmi³ veri demektir. Yar�-yap�sal verinin ise yap�salla³t�r�lmam�³

k�s�mlar� bulunur. Bunlar üzerinde çe³itli istatistiksel modeller kullan�l�r ya da

yap�salla³t�r�l�r. Yap�salla³t�r�lmam�³ veri ise verinin do§rudan kullan�ma haz�r

olmayan çe³ididir. Veri i³leme yöntemlerinin bu veri y�§�nlar�nda düzgün çal�³a-

bilmesi için bu verilerin k�smen ya da tamamen yap�salla³t�r�lmas� gereklidir.

Büyük Veri'nin en önemli özelliklerinden biri %90'�ndan fazlas�n�n yap�salla³t�r�l-

mam�³ olmas�d�r. Geleneksel veri yönetimi teknikleri yap�salla³t�r�lm�³ veya yar�

yap�salla³t�r�lm�³ veri kümeleri üzerinde çal�³abildi§inden, Büyük Veri teknolo-

jilerinin yap�salla³t�r�lmam�³ veriyi i³leyecek biçimde geli³tirilmesi son derece

elzemdir. Sonuç olarak, veri biliminin ana konusu olan yap�salla³t�r�lmam�³ olan-

lar ba³ta olmak üzere Büyük Veri'nin her türlü veriyi yönetebilmesi için yeni veri

teknikleri geli³tirilmeli ve yeni anlay�³lar ortaya at�lmal�d�r.

E.2.2 Endüstri

�Endüstri� terimi, �mallar, hizmetler veya gelir kaynaklar�� üreten veya sa§layan

ekonomik faaliyetlere i³aret eder (Britannica, n.d.-b). Endüstri tarihinde s�çra-

1 https://www.domo.com/learn/infographic/data-never-sleeps-9 adresinden güncel say�lara bak�la-
bilir.
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malar yeni teknolojiler, en son bilimsel ke³i�er ve/veya beklenmedik sosyal

fenomenler (nüfustaki çarp�c� art�³ gibi) ile gerçekle³ir. Bili³sel ve berimsel alan-

lardaki teknolojik geli³meler sayesinde yeni bir s�çramadan, Endüstri 4.0'dan

bahsedilmeye ba³lanm�³t�r.

Bu çal�³mada endüstri, genel kan�yla da uyumlu olarak, dört a³ama incelen-

mi³tir. Tarih kitaplar�nda endüstride ya³anan ilk dönem ve devrim Sanayi De-

vrimi olarak an�l�r. Bu dönem, buharl� makinelerin kullan�lmaya ba³land�§� ve

hemen ard�ndan insanlar�n kas güçlerini özgürle³tirdi§i, baz� i³lerin mekanize

edildi§i dönemdir. Piyasadaki artan taleplerin ve mekanikteki ke³i�erin etk-

isiyle ikinci dönemin, Endüstri 2.0, tohumlar� at�l�r. Bu dönem, fabrikalarda

elektrik kullan�m� ve böylece seri üretimi gerektiren montaj hatt� devreye girme-

siyle ba³lar. Üçüncü dönem, Endüstri 3.0, fabrikalarda otomasyona yol açan bil-

gisayarlar�n ortaya ç�kmas�yla ba³layan Dijital veya Bilgisayar Devrimi olarak

adland�r�l�r. 2011 y�l�nda Hannover Fuar�'n�n aç�l�³�nda ortaya ç�kan �Endüstri

4.0� terimi ile merkezi olmayan ve otonom fabrikalar� hede�eyen Endüstri 4.0

olarak adland�r�lan dördüncü endüstri devrimi içerisindeyiz.

E.2.2.1 Endüstri 4.0

�nternet teknolojileri, veri analiz teknikleri, Büyük Veri, robotik ve benzeri

sayesinde üretim süreçlerinde gerçek ve tam otomasyon sa§lanmas� hede�enmek-

tedir. Bir anlamda, bu tür gerçek ve tam otomasyon, otonom olarak adland�r�la-

bilir. Bu tarz bir otomasyon, bilgi yo§un üretimin oldu§u otonom bir endüstridir.

Bu nedenle, Endüstri 3.0'dan Endüstri 4.0'a geçi³ demek gömülü sistemlerden

(merkezi üretimden) siber-�ziksel sistemler a§�na (merkezi olmayan üretime)

geçi³tir. Endüstri 4.0, hammadde elde etmekten mü³teri memnuniyetini kar³�lay-

acak lojisti§e kadar tüm süreçleri yöneten merkezi olmayan endüstri dönemidir.

Böylece, kâr oranlar�n�n artt�r�lmas�, maliyetlerin dü³ürülmesi, mü³teri deney-

iminin iyile³tirilmesi, piyasaya yeni sürülen hammaddelerin korunmas�, ya³am

boyu de§erin optimize edilmesi ve di§er pazar konular� kaç�n�lmaz olarak otonom

makineler ile gerçekle³ebilir. Çünkü, merkezi olmayan bir üretim, tüm süreç-

lerin dinamiklerini ayn� anda de§erlendirmeyi, verilerden ç�kar�mda bulunmay�,

tavsiye etmeyi, karar vermeyi gerektirir. Hacmi, çe³itlili§i ve h�z� oldukça fazla
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olan verileri i³leyerek pazarlaman�n tüm yönlerinde, yani ürünlerin tasar�m�nda,

üretiminde, i³letiminde ve hizmetinde özerk karar verebilen makinelerin var ol-

mas�ndan sonra Endüstri 4.0'dan bahsetmek mümkün olabilir.

E.2.3 Bilim

Dünyan�n gidi³at�na yön veren en yüksek insani giri³imlerden biri olan bilim,

fenomenlerin s�rlar�n� anlama yöntemlerine sahip karma³�k bir sistemdir. Özel-

likleri sistematik gözlem, deney, ak�l yürütme, hipotez ve teorilerin in³as� ve

testtir. Veri toplama, do§al veya laboratuvar ortam�nda veya simülasyonlardan

yap�labilir; ak�l yürütme yöntemleri farkl� bilimsel çal�³malarda farkl�l�k göstere-

bilir; hipotezleri test etme yolu de§i³ebilir, ancak bilimin amac� olan bilgi üretimi

faaliyeti de§i³mez.

Bilimsel ve/veya felse� bak�³ aç�lar� veya farkl� yakla³�mlar bilim tarihinin farkl�

a³amalara veya dönemlere ayr�lmas�na neden olurlar. Bu çal�³mada ise bilim

tarihiyle, makinelerin bilimsel bilgi üretimine katk�s� aç�s�ndan ilgileniyoruz.

Bu bak�mdan Bilim 1.0'� bilim insanlar�n�n pasif gözlemciler oldu§u, deney-

lerin in vivo'da yap�ld�§� ve bilimsel bilginin tümdengelimli ak�l yürütme ile

üretildi§i dönem olarak belirliyoruz. Bilim 2.0 ise gözlemlenemeyenlerin görünür

hale gelmesini sa§layan deney aletlerinin ve ölçüm araçlar�n�n icat edildi§i ve

böylece toplanan verilerin hacminin artt�§� dönemdir. Böylece, Bilim 2.0'daki

bilim insanlar� deneylerini hem in vivo'da hem de in vitro'da yapabilir hâle

gelmi³lerdir. Bilim 3.0 ise bilgisayarlar�n icad�ndan sonraki döneme i³aret eder.

Bu dönemde, bilim insanlar� deneylerini yapmak için makineye ba§�ml�d�r, çünkü

veri toplama, veri i³leme, deney ortam� olu³turma gibi i³lemlerin gerçekle³tir-

ilmesi için makinelerin kullan�lmas� zorunludur. Böylece, bilim insanlar� bil-

gisayar simülasyonlar� arac�l�§�yla bilimsel deneylerin kapsam�na in silico'yu da

katm�³lard�r. Bilim 4.0'a kadar olan tüm dönemlerin ortak özelli§i bilimsel bilgi

üretiminin insana ait olmas�d�r. Bilim 4.0 ise veri tufan�ndaki unsurlar� insan-

lar�n bir araya getiremeyece§ini vurgulayarak bilimsel bilgi üretimine makineleri

de katan dönem olacakt�r.
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E.2.3.1 Bilim 4.0

Deney ve ölçüm teknolojisindeki geli³meler sonucunda genellikle veri tufan� olarak

adland�r�lan büyük miktarlarda veri ortaya ç�km�³t�r. Ara³t�rmac�lar, bu kadar

büyük miktarda veriyi i³leyerek bilim yapabilmeyi sa§layan bir çerçeve sunabile-

cek yeni yöntemler aramaktad�r. Bu çerçeveye eBilim veya veriye dayal� bilim

denir ve yöntemler veri analiti§ini olu³tururlar. Veri tufan�n�n tüm bilimlerin

gelece§ini olu³turdu§u yads�namaz ve buna göre bilim insanlar�n�n veri analiti§i

becerileri kazanmalar� gerekmektedir. Öte yandan, hesaplama gücündeki ve al-

goritmalardaki ve hiç bu kadar büyük olmayan verilerdeki geli³tirmeler sadece

Bilim 3.0'daki geli³melerdir. Çünkü ne yapay sinir a§lar� ne Bayes ç�kar�m� ne de

di§er makine ö§renme algoritmalar�, yani hiçbir veri analiti§i arac�, ürettikleri

sonuçlar�n hesab�n� veremez. Bilimde aç�klama hayatidir, bu nedenle veri anal-

izinin üretti§i hiçbir aç�klama, bilimsel iddia anlam�na gelemez. Ne zamanki

makineler �neden� sorusunu yan�tlayabilir o zaman ürettikleri sonuçlara bilimsel

ke³i�er olarak güvenebiliriz.

�statistiksel modeller, ara³t�rmac�lar�n teorilerini geli³tirmelerine yard�mc� ol-

mak için kullan�l�r. Ara³t�rmac�lara -eldeki ara³t�rmayla hem do§rudan hem

de dolayl� olarak ilgili tüm belgeleri okuyamayan insanlara- önerilerde bulu-

nan makineyi yaratmay� hede�iyorsak, o zaman makine-ara³t�rmac�lar taraf�n-

dan sa§lanan içeri§i anlayabilmelidir. Bu ancak bilimsel Büyük Veri'nin an-

lamsal yönleri analiz yöntemlerine dahil etti§inde mümkün olabilir. Bilgisayar

simülasyonlar� ve cihazlardan gelen veriler yap�salla³t�r�lm�³ olmas�na ve bilimin

belirli alanlar�nda çok say�da taksonomi ve ontoloji kullan�lmas�na ra§men, bil-

imsel Büyük Veri'yi yap�salla³t�rmak zor ve zorunlu bir i³tir. Bu nedenle, ver-

ileri standartla³t�rman�n yollar�n� bulmazsak, Büyük Veri bilimde asla devrim

yaratamaz. Bunun gerçekle³mesi için makinenin veri iyile³tirme yetene§ine sahip

olmas� gerekir; yap�salla³t�r�lmam�³ verileri otomatik olarak yap�salla³t�r�lm�³ bir

³ekilde temsil edebilmelidir. Ayr�ca, bilgisayar simülasyonlar�, deneyler ve bilim-

sel belgeler bilimin bir yönünü yans�tt�§�ndan, makine aç�k dünya sistemleriyle

ba³a ç�kabilmelidir. K�saca, Bilim 4.0 makinenin bilimsel bilgi üretiminde yer
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ald�§� döneme i³aret eder ve bu dönemde makinelerin Büyük Veri'yi anlaya-

bilmesi zorunludur.

E.2.4 Web

Tim Berners-Lee'nin hayali CERN'deki bilim insanlar�n�n bilgi payla³abilece§i,

projeleri takip edebilece§i, eski projelerin teknik detaylar�na ula³abilece§i veya

ki³isel bilgisayarlarda saklanan kay�tl� bilgileri bulabilece§i bir `uzay' yaratmakt�

(Berners-Lee & Fischetti, 2001). Bu ilk küresel enformasyon alan� yaratma

hayali 1989'da gerçekle³ti ve ad�na Dünya Çap�nda A§ ya da sadeceWeb denildi.

Web, o zamandan bu yana günlük hayat�m�z�n vazgeçilmez bir bile³enidir.

Tim Berners-Lee'nin hayal etti§i uzay�n, yani bilgisayarlarda bulunan enfor-

masyonun birbirine ba§l� bilgisayarlar arac�l�§� ile herkesin ula³abilece§i ³ekilde

tasarlanm�³ a§�n ilk versiyonu Web 1.0'd�r. Bu Web türünde tüm web sayfalar�

statiktir; kullan�c�lar, sadece profesyonel içerik üreticileri taraf�ndan olu³turulan

içeriklere ula³abilir ve okuyabilir. Web �krinin sosyal etkile³imi gerektirdi§inden

Web 2.0 ortaya ç�km�³ ve böylece insandan insana ileti³im ve dinamik veri pay-

la³�m� ortam� olu³turulmu³tur. Böylece art�k web içeri§i de kullan�c�lar taraf�n-

dan üretilmeye ba³lanm�³t�r. Bununla birlikte, web içeri§inin hacmindeki önemli

art�³, Web'deki içeri§in anlamsal olarak birbirine ba§l� biçimde düzenlenmesini

gerektirdi. Web 3.0, makinenin Web üzerindeki verileri analiz etmek için içeri§i

okuyabildi§i Web a³amas�d�r. Bu dönemde Web'de bulunan veriler, insanlar�n

ba§lam� gözeterek verilere atfettikleri anlamsal özelliklerle ile birbirine ba§lan-

abiliyordu. Ancak, veri tufan�ndan en çok etkilenen alan olan Web'de ba§lama

ba§�ml� anlamsal özellik atfetme sürecinin insan i³i olmaktan ç�kmas�, maki-

nenin bunu otomatik olarak gerçekle³tirmesi gerekmektedir. Bu da bizi Web

4.0'a getirecektir.

E.2.4.1 Web 4.0

Büyük Veri'nin en büyük etkisi Web üzerindedir. Web'de günlük olarak olu³-

turulan veriler petabitleri a³makta, günde milyarlarca foto§raf ve video yük-

lenmekte, milyarlarca yorum yay�nlanmakta, milyonlarca web sayfas� olu³turul-

makta veya güncellenmekte ve binlerce belge yüklenmektedir. Arama motor-
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lar�, sorgudaki anahtar sözcüklere göre ilgili web sayfalar�n� bulmaya yard�mc�

olsalar da sonuçlar milyonlarca sayfan�n içinde bir yerlerde olabilir. Bu nedenle,

Web 4.0, arama alan�n� daraltan ve kullan�c�lar�n tüm sayfalar� gözden geçirme-

sine gerek kalmayacak ³ekilde sorguyu özelle³tiren s�n��and�rmalara olanak tan�-

mal�d�r.

Web 4.0'�n di§er bir özelli§i de sorgular� yan�tlamak olabilir. Web 4.0'�n alameti-

farikas� aramaya de§il, sorguya dayal� içerik üretmek olmal�d�r. Herhangi bir

sorgu süreci, mant�ksal gereklilik ve dolay�s�yla bir içerik üretimi gerektirir.

Yani, makine sorguya göre farkl� web sayfalar�ndaki enformasyonu birle³tirip

yeni sonuçlar üretebilme gücüne de sahip olabilir. Sonuç olarak, makinenin ilgili

tüm kaynaklar� okumas�, yorumlamas� ve aramaya göre s�n��and�rmas� ve daha

sonra kümelenmi³ web sayfalar�nda ba§lam üretimi yapabilmesi gerekmektedir.

E.3 Etkin Eyleyici Makine

Bir önceki bölümde Büyük Veri'nin ne oldu§u ve Endüstri, Bilim ve Web alan-

lar�n�n Büyük Veri ile de§i³iminin nas�l olaca§�/olmas� gerekti§i tart�³t�k. Endüstrinin

gelece§i, makinenin ürün üretimlerden da§�t�mlara kadar her a³amay� otomatik-

le³tirdi§i ak�ll� fabrikalard�r. Bunun gerçekle³mesi için, insan-makine ileti³i-

minde birlikte çal�³abilirlik ve bilgi yo§un üretimde merkezi olmayan zekâ ol-

mas� gerekir. Her cihaz�n ayn� dilde konu³mas�n� sa§lamak imkâns�z oldu§u için

merkezi olmayan olmal�d�r. Cihazlar�n birbirini anlamas� ve Büyük Veri'yi an-

lamas� çok önemlidir. Bilim 4.0'da makine hem bilgi kayna§� hem de üretilen

bilginin durumunu belirleyen eyleyici olacakt�r. Bilimin gelece§i, makinenin,

adeta otonom bir i³ arkada³� gibi bilim insanlar�na önerilerde bulunarak, soru-

lar� yan�tlayarak ve kal�plar� aç�klayarak bilimsel bilgi üretimine katk�da bu-

lunmas�n� gerektirir. Öte yandan Web'in gelece§i, makinenin içerik yöneticisi ve

üreticisi olmas�n� gerektirir. �çerik yöneticisi olarak, makine herhangi bir konuda

do§al dil sorgular�na cevap verecektir; içerik üreticisi olarak, makine Web'deki

hacimli enformasyondan bir sorgu üzerine içerik üretecektir. Ancak, sorgular�

yan�tlaman�n ön ko³ulu, makinenin belirli bir arama/sorgu için web sayfalar�n�

s�n��and�rma yetene§idir. Web, makinenin web sayfalar�n� s�n��and�raca§� ve

ard�ndan belirli bir konu için ç�kar�mlarda bulunaca§� ve içerik üretece§i dev
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bir bilgi taban� olacakt�r. O halde, Endüstri, Bilim ve Web'in 4.0 sürümlerinde

makineye yeni bir rol atand�§� sonucuna varabiliriz: etkin bir eyleyici.

Makinenin etkin bir eyleyici oldu§unu, belirli bir ba§lamda bir görevi ba³ar-

mak için amaçl� olarak eylemde bulundu§unda söyleyebiliriz. Endüstri, Bilim

ve Web'in 4.0 versiyonlar�na geçi³ için, kararlar veren, içerik üreten, önerilerde

bulunan ve gerçekli§in temsilinin eksikli§i ve/veya yanl�³l�§� nedeniyle belirsiz-

lik alt�ndaki yarg�lar için aç�klamalar sunan, yani otonom ve aç�klayabilen bir

makineye ihtiyaç vard�r. Bu nedenle, makinenin aktif bir eyleyici olmas� için

gerekli olan gereksinimleri tespit etmek ve bunlar� kar³�lamak bu alanlardaki

geli³meler için at�lacak ilk ad�m� te³kil eder.

E.4 Anlayabilen Makine

Günümüzde makine, belirli bir görev için belirli bir alan�n yap�salla³t�r�lm�³

ve/veya yap�salla³t�r�lmam�³ verilerini kullanan istatistiksel modeller ile olu³tu-

rulmu³ uzman sistemden daha fazla bir ³ey de§ildir. Makinenin kararlar�/tavsiyeleri

yaln�zca makine için temsil edilen veya e§itilen etki alan�nda geçerlidir. Yani

üretilen sonuçlar ba³ka bir alana uygulanamayabilir ve/veya temsiller ba³ka

alanlar için yetersiz olabilir. Ancak Büyük Veri söz konusu oldu§unda aç�k

dünya modeline göre üretilmi³ sistemler devrede olmal�d�r. Ak�ll� fabrikalar-

daki makineler, çe³itli ortamlardan kararlar almak zorundad�r; Web'deki çe³itli

ba§lamlardan gelen içerikleri kümelemek zorundad�r; farkl� amaçlara sahip çe³itli

bilimsel çal�³malar aras�nda otomatik olarak ileti³im kurmak zorundad�r. Bilgi

i³lemenin önündeki mevcut en büyük zorluklardan baz�lar�, ço§u verinin yap�sal-

la³t�r�lmam�³ olmas�, anlamsal özelliklerin alan uzmanlar� taraf�ndan ba§lama

göre i³aretlenmesi, çe³itli ak�l yürütme yöntemleri için kullan�labilecek biçimsel

sistemlerin çok k�s�tlay�c� olmas�d�r. O halde, makinenin otonom olabilmesi için

veriyi otomatik olarak yap�land�rmas�, anlamsal özellikleri otomatik olarak ilgili

ba§lama göre tespit edebilmesi ve çe³itli ak�l yürütme sistemlerini uygulaya-

bilmesi gerekmektedir. Bunun olabilmesi için ise makinenin anlayabilir olmas�

gereklidir.

370



Makine-anlayabilir bir sistem için makinenin anlamsal özellikleri otomatik olarak

i³leyebilmesi gereklidir. Makine-okuyabilir sistemlerden al�³�k oldu§umuz üzere

entitelerin hangi anlama geldikleri onlara anlamsal özellikler i³aretleyerek belir-

lenir. Ancak burada önemli olan, ba§lama göre bu anlamsal özelliklerin tespit

edilmesidir. Makine-anlayabilir bir sistem için ise tüm entitelerin tüm ba§lam-

lardaki hallerine göre tüm anlamsal özelliklerinin makinede temsil edilebilmesi

gerekir ki bu imkans�zd�r. Bu nedenle makine-okuyabilir yakla³�m� radikal biçimde

de§i³tirmemiz gerekmektedir.

E.4.1 Entitelerin Temsili

Bir verinin temelde iki bile³eni vard�r: de§er ve tip. Verinin de§eri tipinin çizdi§i

s�n�rlar içinde i³lenir. Örne§in, karakter tipindeki bir verinin de§eri �elma� ve bu

verinin tüm karakterlerinin büyük harf ile gösterilmesi isteniyor olsun. Karak-

ter tipi için büyük harf olmak tan�mlanm�³/me³ru bir operasyon oldu§undan

verinin de§eri �ELMA� olarak de§i³ir. Ancak, bu verinin iki kat� bulunamaz,

çünkü karakter tipi üzerinde tan�ml� böyle bir operasyon olamaz. Tüm bunlara

ek olarak, makine-okuyabilir sistemlerde veriye bir de anlamsal özellik bile³eni

eklenir. Örnekteki veriye �tatl�� özelli§inin eklenmesi ve bu bile³en üzerinden

verinin i³lem görmesi makinenin verilerin anlamlar� üzerinden i³lem yapt�§�n�

gösterir. Makine-okuyabilir sistemlerin olu³turulma nedenleri tam da ba§lam

içinde entitelerin anlamlar�n� i³leyebilmektir. Ancak, makine-anlayabilir bir sis-

tem olu³turmak söz konusu oldu§unda ise tüm ba§lamlardaki tüm anlamsal özel-

likleri i³aretlemek imkans�zd�r. Zira, entiteler anlamlar�n� ancak ili³kili olduk-

lar� entiteler üzerinden kazan�rlar. Elman�n tatl� olmas� baz� ba§lamlar için

önemliyken, kâ§�t a§�rl�§� olabilmesi gibi baz� ba§lamlarda hiçbir anlam� yoktur.

Dolay�s�yla, makinenin elman�n bir kâ§�t a§�rl�§� olarak da kullan�labilece§ini

ç�karmas�n� hede�emek makine-anlayabilir bir sistem olu³turman�n yakla³�m�n�

vermektedir. O halde, verinin üçüncü bile³eni olan anlamsal özelliklerin t�pk�

tipleri gibi önceden tan�ml� olarak makinede temsil edilmesi ve makinenin bu an-

lamsal özelliklerden hangilerini hangi operasyonlarla kullanaca§�n� ilgili ba§lama

göre belirlemesi gerekmektedir.
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E.4.2 Veri

Yukar�da veriden ve verinin anlamsal özellikleriyle gösterilmesi gerekti§inden

bahsettik. Bunun nas�l yap�laca§�na geçmeden önce veriyi ve ontolojiyi incele-

memizde fayda olacakt�r.

Bu çal�³mada veriyi makine perspekti�nden ele al�yoruz. Yani veri, makinedeki

temsilin en temel kavram�d�r. Buna göre, Veri 1.0 i³lemeye haz�r yap�salla³t�r�lm�³

veri, Veri 2.0 ise makineler aras�ndaki ileti³imi sa§layan veri, Veri 3.0 ise maki-

nenin üst veriler arac�l�§� ile temsil edilen anlamsal özelliklere sahip verilerdir.

Burada dikkat edilmesi gereken birinci nokta Veri 3.0'�n asl�nda Veri 1.0 da

oldu§udur. Ancak Veri 2.0 Veri 3.0 olmak zorunda olmamas�d�r. �kincisi ise

bu üç veri tipinin makine-anlayabilir bir sistemi sa§layamaz oldu§udur. Zira

makine-anlayabilirli§i sa§lamak için Veri 4.0'�n in³as� gereklidir: Anlamsal özel-

likleriyle fenomenlerin formel olarak yap�salla³t�r�ld�§� veriler.

E.4.3 Ontoloji 4.0

Makine-anlayabilirli§i sa§layabilmek için verinin üçüncü bile³eninin anlamsal

özellikler oldu§unu ancak bunun insanlar�n i³aretlemesi ile elde edilemeyece§ini

gördük. Zira, anlayabilirlik var olan kavramlar�n yeni ba§lamlarda yepyeni kom-

binasyonlarla kullan�labilmesi becerisidir. Bunu dil üzerinden anlat�rsak, bilinen

bir dildeki sözcüklerin, dilbilgisi kurallar�na uygun olarak farkl� ba§lamlarda bir

araya anlaml� bir ³ekilde getirilmesidir. Dili konu³an ki³i, yeni ba§lamlarda be-

lirli sözcükleri bir araya getirerek ifadesini dile getirir. Bu dile getiri³ eylemi

sonucunda ki³inin anl�yor oldu§unu dü³ünürüz. O halde, makine-anlayabilir

yap�ya geçmenin esas meselesinin entitelerin yeni ba§lamlarda nas�l i³lenece§ini

otomatize etmek oldu§unu söyleyebiliriz. Ancak, bunun olmas� için veri yap�-

land�rmam�z� de§i³tirmemiz gerekmektedir.

Bu noktada ontolojilere de§inmemiz gerekir. Ontoloji, felsefenin bir alt dal�

olarak varl�§�n ne oldu§unu, varl�klar aras� ili³kileri inceleyen bir ara³t�rma alan�d�r.

Meta�zi§in alt dal� olarak varl�§� inceleyen ontolojilere, bu çal�³mada, Ontoloji

1.0 diyoruz. Ontoloji 2.0 ise varl�§� formel araçlarla inceleyen ve ontoloji kur-
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man�n, varl�klardan bahsetmenin ilkelerini formel ara³t�rmalara dayand�ran bir

felsefe alt dal�d�r. Ontoloji 3.0 ise tam da yukar�da inceledi§imiz makine-anlayabilir

sistemlerin olu³turulmas� için in³a edilen enformatik sistemlerinde çal�³�lan bir

ara³t�rma alan�d�r. Yani, Ontoloji 3.0'da in³a edilen ontolojiler makinede tem-

sil edilmesi istenen alan�n varl�klar�n� ve bu varl�klar aras� ili³kilerini formel

araçlar ile gösterirler. Bu tür ontolojiler insanlar�n verilere anlamsal özellik-

leri eklemesi yani verilerin i³aret ettikleri entitelere ontolojik statü tayin etmesi

yoluyla olu³turulur. Anla³�laca§� gibi de ³u ana kadar olan tüm yakla³�mlar�n

temelinde nesne ile özelliklerinin ayr� tutuldu§u, nesnenin öncelendi§i anlay�³

vard�r. Bunun makine-anlayabilirli§i aç�s�ndan i³imize yaramayaca§� a³ikard�r.

Bu nedenle veri yap�land�rmas�na yeni bir soluk getirecek yakla³�ma gereksinim

vard�r.

Felse� ontolojileri anlamsal özelliklerin temsilinin nas�l olmas� gerekti§i penceresin-

den yapt�§�m�z ara³t�rma sonras�nda trop kuram�n�n fenomenin temsilinde kul-

lan�lmas� gereken yakla³�m oldu§unu savunmaktay�z. Makine anlayabilirli§i

çerçevesinde benimsedi§imiz trop kuram�na göre var olan her ³ey, örne§in nes-

neler, ili³kiler, olaylar, özelliklerin toplam�d�r. Böylece nesne ve özellikler aras�n-

daki keskin çizgi ortadan kalkar ve ortada sadece özellikler kal�r. O halde,

fenomenler veriye yepyeni bir ontoloji içinden dönü³ebilirler. Bu tam da makine-

anlayabilirli§i için makineye özgü bir ontoloji olacakt�r. �nsan�n dünyay� anla-

mas� ve anlamland�rmas�n� makineye aktarmak için de§il, makinenin dünyay�

anlamas� için olu³turulmu³ bir makine ontolojisi olu³turulacakt�r. Biz buna On-

toloji 4.0 diyoruz.

Trop kuram�n�n meta�ziksel tart�³malar�n� felsefeye teslim ederek, bu kurama

bizi yakla³t�ran ve bize ilham veren iki görü³ten bahsedelim: Wittgenstein'�n

Tractatus Logico-Philosophicus 'u ve Rovelli (2021)'nin Helgoland '�. Bu iki çal�³-

maya göre nesnelerden bahsedebilmek için ilk önce ili³kilerden bahsetmek gerekir.

Ba³ka bir deyi³le, nesnelerden ancak ili³kilerin varl�§� üzerinden bahsedebiliriz.

O halde, her ³ey ili³kilerle anlat�lmal�d�r. Bu noktada, makine-anlayabilir bir sis-

tem kurabilmenin temellerini ili³kilere indirgemek do§ru olacakt�r. Bunlardan
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yola ç�karak, entiteleri ili³kiler ile bilebiliyorsak, troplar� ili³kiler olarak temsil

etti§imizde entiteleri makinelerde temsil etmi³ oluruz. Sonuç olarak, makine-

anlayabilirli§inin temelini ili³kilerin troplar olarak temsil edilmesi olu³turur.

E.4.4 Troplar�n �³lenmesi

Entitelerin tipleri nas�l belirlenecektir? Ya da e§er entiteler troplar�n bir kom-

pozisyonu olarak temsil edilecekse entiteler üzerine i³lemler nas�l yap�lacakt�r?

Entitelerin tiplerinden bahsetmek makine-anlayabilir sistemlere özgü olmal�d�r,

zira e§er her ³ey ili³kiler ile anlam kazanacaksa, yani bir varl�k, onu di§er varl�k-

larla ili³kilendiren ili³kilerle ontolojik statüsünü kazanacaksa entitenin makine

taraf�ndan i³lenebilmesi için kendisinin de§il, ilgili ba§lamda aktif olan ili³ki-

lerinin i³lenmesi gerekecektir. Bu bak�mdan, entiteler tiplendirilemezler, ancak

troplar ve onlar�n kompozisyonlar�n�n tipleri belirtilir, çünkü ancak o zaman

anlamsal özellikler üzerinde i³lemler yap�labilir. Özetle, hangi semantik özellik-

lerin i³lenece§ini entite de§il, o entiteye ba§l� ili³kiler belirler; böylece troplar ve

trop kompozisyonlar�n�n tiplendirilmesi sayesinde makine-anlayabilir bir sisteme

ula³�labilir. O halde, makine-anlayabilirli§ine giden yolda, ilk olarak, troplar

tiple³tirilmelidir; ikinci olarak, trop ve trop kompozisyonlar� üzerindeki tip ku-

rallar� belirtilmelidir ve son olarak, bu kurallar� i³letmek için bir biçimsel model

tespit edilmedir.

E.4.5 Tip olarak Troplar

Yukar�daki bölümde gördü§ümüz üzere troplar�n tiplerini ve bu tiplerin kom-

pozisyon kurallar�n� belirleyebilirsek makineler verileri anlamsal özellikleriyle

i³leyebilirler. Bununla birlikte makine-anlayabilirli§i için tiplerin de tiplerinin

makine taraf�ndan belirlenmesi gereklidir. Aksi takdirde makine-okuyabilirli§in

ötesinde bir temsilden bahsediyor olmay�z. Ayr�ca tiplerin tiplerinin ve hatta tip-

lerin tiplerinin tiplerinin makine taraf�ndan tan�mlanabiliyor olmas� arka plan

bilgisinin makinede temsil edilebildi§ini de gösterir. Örne§in, �Tüm canl�lar

ölümlüdür� ve �Ali ö§rencidir� cümlelerinden yola ç�karsak, �ö§renci�nin an-

lamsal özelliklerinden birinin �insan olmak,� �insan� olman�n anlamsal özellik-

lerinden birinin �canl� olmak� oldu§unu bildi§imizden, Ali'nin de ölümlü oldu§u
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sonucuna varabiliriz. �³te, `canl�,' `insan,' `ölümlü,' `Ali' ve `ö§renci' entitelerinin

anlamsal özellikleri aras�nda makinenin de ayn� ³ekilde i³lem yapabilmesi gerekir.

Ancak, tiplerin tiplerinden bahsedebilmek için ele al�nan tip kuram�n�n bu tarz

bir i³leme izin verebiliyor olmas� gerekir, aksi takdirde küme kuram� temelli tip

kuramlar�ndaki en büyük sorun olan kendisi tip olmayan ama tüm tipleri içeren

³eyin de tipinden bahsetmek zorunludur ama makine de bunu hesaplayamaz.

Bu soruna çözüm ise Martin-Löf'ün tip kuram�d�r. Bu kurama göre tiplerin tip-

lerinden yap�salc� perspektiften yola ç�karak, tüm tipleri içeren bir tipten, sonra

bu tipi içeren bir üst tipten olu³an bir hiyerar³iden bahsedilebilir. Böylece, yeni

tiplerin olu³turulabilmesi ve tiplerin tiplerinden bahsedilmesi mümkün olur.

Entiteleri troplar ile temsil ederken izleyece§imiz yolu buldu§umuza göre Martin-

Löf'ün iddia etti§i en küçük olan tiplerin kümesini tespit etmeye ba³layabiliriz.

Bu ³u demek: Öyle bir troplar derlemesi bulal�m ki bunlar� kullanarak di§er

troplar, ve ayn� ³ekilde di§er tipler de türetilebilsin. Ancak bu anlams�zd�r:

Ne insanlar ne de makineler böyle bir derlemeden söz edebilir. Aksine, alt tip-

lerin de üst tipler gibi makine taraf�ndan sürekli türetilebiliyor olmas� gerekir.

Bunlar makineye haz�r bir biçimde sunulmad�§� takdirde makinenin bunlar� be-

lirlemesinin bir yolu yoktur. Ayr�ca, uzamsal olan her ³ey sadece belirli ba§lam-

larda belirli rolleri al�r, belirli davran�³larda bulunur. Burada makine-anlayabilir

sistemlerde kar³�la³t�§�m�z ba§lama göre nesnelerin anlamsal özelliklerinin tespi-

tinin insan gücüne ba§l� olma sorunu ile kar³� kar³�yay�z. O halde, troplar�n tip-

lerinin de ba§lama göre makine taraf�ndan otomatik olarak belirlenmesi gerekir.

O halde, troplar�n uzamsal olmas� makine-anlayabilirli§inin önünde bir engeldir.

Bu sorunu çözmek için bilgisayar bilimine dan�³aca§�z.

E.5 Urtrop Kuram�

Troplar�n tiple³tirilmesi onlar�n i³lenebilmesi için elzemdir. Dolay�s�yla, tem-

sil anlay�³�m�z olan troplar�n ve onlar�n komposizyonlar�n�n entiteleri olu³tur-

mas�ndan ya da anlamsal özelliklerin i³lenmesi için kullanmam�z gereken Martin-

Löf'ün tip kuram�ndan vazgeçemeyiz. Ancak, troplar�n uzamsal olmalar� on-

lar�n makinede temsilini imkans�zla³t�r�r. Cardelli ve Wegner'e (1985) göre

tiple³tirdi§imiz anda entiteye bir elbise biçiyor ve onun rolünü de an�nda be-
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lirlemi³ oluyoruz. Yani, troplar k�yafetli temsillerdir ve bu tür elbiseler hangi

tropun hangi troplar ile etkile³ime girece§ini belirler. Ancak temsiller ç�plak

olursa troplar�n tiplerinden kendi ba³lar�na bahsedemeyiz. Bu �kir de bizi tip

ba§�ms�z özellik kuramlar�na götürür.

Tip ba§�ms�z özellik kuramlar�na göre tipler tipsiz unsurlar�n bir araya gelmesiyle

olu³ur. Di§er bir deyi³le, tipsizlerin bir araya gelmesi bir rolü ya da bir davran�³�

belirler. Bu kuramlar�n kullan�m�n�n bizim aç�m�zdan en önemli özelli§i tipsiz

unsurlar�n say�s�z bir araya geli³lerinden tipler olu³turulabilmesi ve tipsiz bir

unsurlar arac�l�§� ile tipler tan�mland�§� için, bir tipi tan�mlamak için ba³ka

bir tipe ba³vurmaya gerek kalmayaca§�d�r. Bununla da hesaplanabilirlik soru-

nunun önüne geçilmi³ olur. Di§er yandan, tipsiz unsurlar� birbirleri ile tan�mla-

mada bir s�k�nt� olmayacakt�r, çünkü bunlar uzamsal olmad�klar� için döngüsel

yap�lar�n var olmas� kuram� geçersiz k�lmaz. O halde, makine-anlayabilirli§i

yolunda verinin troplar ile de§il, uzamsal olmayan ve kompozisyonlar� troplar�

verecek ontolojik unsurlar ile temsil edilmesi gerekir. Almanca'da öncel, ilk,

temel anlamlar�na gelen Ur- önekini `trop' kavram�na ekleyerek olu³turdu§umuz

urtrop kavram� ile makine ontolojisindeki tüm entiteler olu³turulabilir.

Urtrop kuram�na göre, urtroplar uzamsal de§ildir. Uzamsal olmamak demek

hiçbir anlam� olmamas� da demektir. Tüm troplar bir ili³kiyi i³aret ettikleri için

hepsinin belirli ba§lamlarda anlamlar� vard�r. Ancak urtroplar ba³ka urtroplar

ile bir araya gelse bile bir tropa i³aret ederler; kendilerinin bir anlam� yoktur.

Yani, onlar�n kompozisyonlar� tek ba³�na hiçbir anlam� olmayan uzamsal ³eylere

yol açar, zira tüm troplar anlamlar�n� ancak ba³ka troplar ile ili³kilendi§inde

kazan�r. Bununla birlikte, bir urtrop kompozisyonun, bir özne veya bir ba§lam-

daki bir ili³ki gibi statik rolleri yoktur; bir kompozisyon bunlardan herhangi biri

olabilir. Bu nedenle, Cardelli ve Wegner'in (1985) aç�kça belirtti§i gibi, tipler

tipsiz evrenlerden ba³layarak do§al olarak ortaya ç�kt�§�ndan urtrop kuram�na

dayal� bir makine ontolojisi in³a etmek kesinlikle me³rudur.
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E.6 Urtrop Kuram�n�n Biçimselle³tirilmesi

�u ana kadar troplar�n tip kuram�na göre i³lenece§ini, makine ontolojisinin

uzamsal olmayan ³eyler üzerine kurulaca§�n� ve troplar�n da bu ³eylerin kom-

pozisyonu olarak temsil edilece§ini gördük. K�saca, bir makine ontolojisini olu³-

turmak için ontolojik ve berimsel temel olarak urtrop kuram�n� sunduk. Peki,

urtrop kuram�na en uygun biçimsel sistem ne olmal�d�r?

E.6.1 Kategori Kuram�

Ara³t�rmalar�m�z tip ba§�ms�z sistemlerin temsilleri için farkl� biçimselle³tirme

araçlar� kullan�labilece§ini gösterse de kategori kuram�n�n makine ontolojisi kur-

mak için en uygun biçimselle³tirme arac� oldu§u sonucuna vard�k. Bunun nedeni

kategori kuram�n�n matemati§in temeli olarak kabul edilecek kadar yüksek bir

soyutlama düzeyi sa§lamas� de§il, urtrop kuram� ile ortak özellikler ta³�mas�d�r.

Kategori kuram�ndaki nesneler aynen urtrop kuram�nda oldu§u gibi içeriksiz

ve uzams�zd�r. Yine, kategori kuram�n�n da ili³ki temelli bir yakla³�m� vard�r:

Tüm hesaplamalar ili³kiler üzerinden gerçekle³ir. Tüm bunlara ra§men, kate-

gori kuram�n� do§rudan al�p makine ontolojisini kurmak için kullanmak do§ru

bir tutum olmaz. Bu nedenle, urtrop kuram�n� formel düzeyde temsil etmek

için baz� aksiyomlar ve kurallarla kuram�n s�n�rlar� belirlenmelidir. Örne§in, tip

olu³turma veya e³zamanl�l�k kurallar�, kategori kuram�na ek ilkeler gerektirir.

Böylece, kategori kuram� bu tür eklemelerle urtrop kuram�n� biçimselle³tirebilir.

Urtrop kuram�ndaki nesnelerin kategori kuram�nda nas�l temsil edilece§i nok-

tas�nda Curry�Howard�Lambek uyu³mas�na ba³vururuz. Buna dayanarak, Pe-

ruzzi (2006), Kartezyen kapal� kategoriler ile tipli lambda kalkülüsün, terminal

nesnesi olmayan C-monoidler ile tipsiz lambda kalkülüsün, lokal Kartezyen ka-

pal� kategoriler ile Martin-Löf tip kuramlar�n�n ve toposlar ile sezgisel (lokal)

tip kuramlar�n�n uyu³tu§unu gösterir. Buna dayanarak, urtroplar� terminal nes-

nesi olmayan C-monoidlerle temsil edilebilece§ini iddia ediyoruz. C-monoidlerin

nesne oldu§u Kartezyen kapal� kategorilerle de troplar� ve bu kategorilerin nesne

oldu§u ba³ka kategoriler kurarak da entitelerin makinelerde temsil edilebile-

ce§ine kolayl�kla eri³ebiliriz. Ancak, özel bir Kartezyen kapal� kategori olan
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toposlar�n troplar�n temsili için çok daha do§ru bir biçimsellik ta³�d�§�n� savunuy-

oruz. Çünkü, matematikte toposlar sayesinde bir `köprü' topos olu³turularak iki

farkl� matematiksel kuram incelenebilir, kar³�la³t�r�labilir ve analiz edilebilir; alt

nesne s�n��and�r�c� nesnesi sayesinde toposlar�n mant�ksal yönleri ke³fedilebilir

ve hatta olu³turulabilir. Bu nedenle topos kuramsal yöntemler, matematik-

sel kuramlar aras�nda derin ba§lant�lar�n bulunmas�n� sa§lar ve bu ba§lant�lar

arac�l�§�yla bilgi transferleri mümkündür (Caramello, t.y.). Toposlar�n bu özel-

liklerini troplara kazand�rmak temsil sisteminin gücünü artt�rmakt�r. Çünkü,

do§ruluk de§erlerini troplar içinde ve aras�nda incelemek, troplar�n neli§i hakk�nda

araçlar elde edebilmek makine-anlayabilirli§i için gereklidir. Bu yüzdendir ki

topos kullan�m� hem ontoloji hem de veri bilimi çal�³malar�nda dikkat çek-

mi³tir. Spivak (2015), Ulusal Standartlar ve Teknoloji Enstitüsü'nün kate-

gori kuram�n�n Büyük Veri ça§�nda potansiyel bir matematiksel temel olarak

tan�d�§�n� bildirmektedir ve kendisinin de üyesi oldu§u Topos Enstitüsü'nde

Büyük Veri'nin i³lenmesi ile ilgili kategori kuram� temelli projeler yürütülmek-

tedir.

E.7 Sonuç: Bir Makine Ontolojisi olarak Ontoloji 4.0

Bu çal�³man�n amac� makine-anlayabilirli§inin ilkelerini tespit etmekti. Ara³t�r-

mam�z yeni bir veri yap�land�rmas�na gitmemiz gerekti§ini gösterdi. Bu do§rul-

tuda, anlamsal özelliklerin, de§er ve tip gibi verinin bir bile³eni olarak temsil

edilmesinin makine-anlayabilirli§ini sa§layaca§�n� iddia etmi³, bu yüzden de en-

titelerin makinede temsilleri için trop kuramsal bir yakla³�m gerekti§ini savun-

mu³tuk. Böylece, makine-anlayabilir sistemlerin s�kl�kla kulland�§� ontolojik

yakla³�m (Ontoloji 3.0) yerine, fenomenin ontoloji içinde temsili olan Ontoloji

4.0'�n makine-anlayabilir verinin (Veri 4.0'�n) temeli olaca§�n� ifade etmi³tik.

Ontoloji 4.0'�n i³lenebilmesi için Martin-Löf tip kuram�ndan faydalanmak gerek-

ti§ini, ancak troplar�n uzamsal olmalar�ndan dolay� berimsel yap�da kar³�la³�lan

sorunlar� çözmek için tip ba§�ms�z sistemlerin ontolojik yap�y� olu³turmas� gerek-

ti§i sonucuna ula³t�k. Ortaya att�§�m�z urtrop kuram� ile makine ontolojisindeki

her ³eyin en temelde tipsiz unsurlar�n kompozisyonlar�ndan türedi§ini, daha aç�k

söylersek, urtrop kompozisyonlar�n�n troplar�, trop kompozisyonlar�n�n entitileri,
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entite kompozisyonlar�n�n ise daha büyük yap�lar� var etti§ini gördük. En son

olarak da urtrop kuram�n� makinede uygulayabilmek için kategori kuram�ndan

faydalanaca§�m�z� anlatt�k. Kategori kuram�n�n seçim nedeni ise urtrop ku-

ram� gibi nesnelerin içeriksiz olmalar� ve hesaplamalar�n ili³kiler üzerinden yap�l-

mas�yd�. Kategori kuram�n�n tip kuramlar� ile uyumlanmas�n� kullanarak da

urtroplar� C-monoidlerle, geri kalan tüm yap�lar�n ise toposlarla temsil edilebile-

ce§ini savunduk. Böylece, her ³ey �yani bir urtrop ile bir entite, bir ili³ki ile

ba³ka bir ili³ki ya da bir ba§lam ile bir nesne� aras�nda ili³kilendirmelerin yap�-

land�r�lmas�na olana§�n oldu§unu anlatt�k. Ara³t�rmam�z�n sonucu olarak On-

toloji 4.0'�n makine-anlayabilirli§ini sa§layaca§�n� göstermi³ olduk.

Her ne kadar ara³t�rmam�z� tamamlam�³ ve hede�mize ula³m�³ olsak da On-

toloji 4.0'�n özelliklerini inceleyerek sonuçlar�m�z�n sa§lamas�n� da yapmak is-

teriz. Bunun için ilk önce Ontoloji 4.0'�n i³leyece§i çevre olan Endüstri, Bilim

ve Web'in 4.0 versiyonlar�n�n özelliklerini özetlemek gerekir.

Her üç alan da birer aç�k sistemdir, yani sistem içindeki entiteler sistem d�³�ndaki

di§er entiteler ile de etkile³im halindedir ve bu etkile³imleri sistem içindeki rol-

lerini ve davran�³lar�n� etkiler. Örne§in, ak�ll� fabrikalar aç�k sistemlerdir, çünkü

makine çe³itli kaynaklardan gelen verileri gerçek zamanl� olarak manipüle eder.

Bu üç alan�n ikinci özelli§i dinamik olmas� ve evrimle³mesidir. Etkile³imli olduk-

lar� için her etkile³im dinamik bir ortam yarat�r; her etkile³imde bu sistemler

de§i³ir. Etkile³imler do§rusal olmak zorunda de§ildir, e³zamanl� da olabilirler.

Bu nedenle, bu alanlar�n 4.0 versiyonlar� dinamikli§i ve evrimselle³mesi, e³za-

manl�l�§�n temsili ile do§rudan ili³kilidir. Bahsetmek istedi§imiz son özellik, etk-

ile³im ve tabii ki berimsel aç�s�ndan karma³�k sistemler olmas�d�r. Etkile³im ne

kadar fazlaysa, etkile³imli karma³�kl�k da o kadar fazlad�r (Wegner, 1998). Öze-

tle, Ontoloji 4.0'�n varl�§�n� sürdürdü§ü ortam�n özellikleri aç�k, eksik, ko³ullu,

dinamik ve karma³�k olarak özetlenebilir. �imdi Ontoloji 4.0'�n özelliklerini in-

celeyelim ve bu ortam�n sorunlar�yla ilgilenenleri analiz edelim.
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E.7.1 Ontology 4.0'�n Özellikleri

Temsil Standard�: Uzamsal olmayan urtroplar temsillerin standardiza-

syonunu sa§lar: nesneler, ili³kiler, süreçler, k�saca tüm entiteler tek bir

düzleme, urtroplara indirgenebilir. O halde, Ontoloji 4.0 bu tipsiz yap�

ta³lar� sayesinde makinedeki gösterimin standardizasyonunu garanti eder.

Sözdizimi ve anlambilimin birle³imi: Topos kuram� sembolik ifadeleri

ve ç�kar�mlar�n� e³itler. Dolay�s�yla, bir ispat hem kendi makinedeki ontolo-

jik statüsüne ve kendine içkin olan anlamsal de§ere sahiptir. Sonuç olarak,

topos kuramsal yap�lar�n�n tipleri adland�rd�§� kategori kuramsal sistemin

ontolojik yap� ta³lar� olan urtroplar sayesinde, Ontoloji 4.0 sözdizimi ve

anlambilimin bir birle³imidir.

Süreç tabanl� bir çerçeve: Makine-anlayabilirli§inin temelinde her ³eyin

ili³kiler içinde anlam kazand�§� görü³ü vard�r. Bu do§rultuda da Ontoloji

4.0, her ³eyin ili³kilerle temsil edildi§i bir çerçeve sunacak ³ekilde in³a

edilmi³tir.

Dinamik ve evrimle³en sistem: Urtroplar�n say�s�z kompozisyonundan

bahsedebildi§imiz için entitelerin ba§lam içinde sabit rollere bürünmelerine

gerek yoktur. Yani, Ontoloji 4.0'�n dinamikli§i urtroplar�n yeniden düzen-

lenebilir olmas�ndan kaynaklan�r: farkl� bile³imleri, farkl� ba§lamlarda ve

tiplerde farkl� anlamsal özelliklere yol açar. Bu nedenle, urtrop ve troplar

gibi Ontoloji 4.0 da dinamiktir. Ayn� zamanda her yeni ba§lamsal seviye

analizinin yeni anlamsal özelliklerin entitelere dahil edilmesi için yeni trop

kompozisyonlar� sa§layabilece§i için Ontoloji 4.0'�n evrimle³ti§ini söyleye-

biliriz. Ba³ka bir deyi³le, Ontoloji 4.0, entitelere yeni trop kompozisyon-

lar�n� temsil edebilen bir çerçeve sa§lar.

E³zamanl�l�k ve etkile³im kuram�: Kategori ve urtrop kuramlar�n�n

Ontoloji 4.0'� olu³turmas�, e³zamanl�l�k ve etkile³imin ilkelerinin gerçek-

le³mesi için gerekli ve yeterlidir.

Aç�k bir sistem: Her ne kadar aç�k sistemlerle ba³a ç�kmak için olu³tu-

rulsa da Ontoloji 4.0'�n kendisi de aç�k bir sistemdir, zira tüm bile³enleri
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ve onlardan türeyen her ³ey etkile³im içindedir.

Birlikte çal�³abilir bir sistem: Birlikte çal�³abilirlik temsilde standard-

izasyon gerektirir. Ontoloji 4.0 bunu iki aç�dan sa§lar: Urtrop kuram�

sayesinde entiteleri ontolojik düzeyde ve kategori kuram� sayesinde man-

t�ksal yap�lar� standartla³t�r�r.

Kendi kendini organize eden bir sistem: Bir sistem, kendi iç süreç-

leri taraf�ndan yap�land�r�ld�§�nda kendi kendini organize eden olarak ad-

land�r�l�r; yani d�³ kontrol olmaks�z�n yap�s�n� olu³turur. Urtrop kuram�

sayesinde Ontoloji 4.0 kendi iç süreçleriyle kendini yap�land�rabilir.

Üretken bir sistem: Urtrop kuram� sayesinde, makine, bir ba§lama

göre otomatik olarak yeni troplar, yeni trop kompozisyonlar�, tiplerin yeni

tiplerini ve yeni ontolojilere kadar her ³eyi üretebilir.

Sistematik bir sistem: Ontoloji 4.0 üretkendir; ancak, üretilenler tek

kullan�ml�k de§ildir. Örne§in, yeni bir tip tespit edildi§inde, farkl� ba§lam-

larda kullan�lmak üzere saklan�r. Bu aç�dan Ontoloji 4.0, üretilenleri di§er

ilgili yap�lara uygulama yetene§ine sahip oldu§undan sistematiktir.

Verimli bir sistem: Verimlilik, çok say�da parçadan sonsuz say�da bütün

yaratma potansiyeline sahip olmakla ilgilidir. Bu tan�m �³�§�nda Ontoloji

4.0'�n üretken oldu§unu iddia etmek me³rudur çünkü makine-anlayabilirli§i

tam da entitelerin anlamsal özellikleri üzerinden onlar� farkl� ba§lamlarda

kullanabilme becerisini içerir. Bunu da urtrop ve trop kuramlar�na dayand�§�

için yapabilir.

�li³kisel bir sistem: Anlamsal özellikleri ve entiteler, ili³kiler, ba§lamlar

ve ili³kiler, ili³kiler ve olgular, vb. aras�ndaki mor�zmleri ili³kilendirme

yetene§i, Ontoloji 4.0'� ili³kisellikleri bulan en güçlü araç haline getirir.

Özgönderimsel bir sistem: Urtrop kuram� sayesinde, Ontoloji 4.0,

otomatik olarak ba§lama özel olu³turdu§u ontolojileri temsil eden ayn�

biçimsel yap� ile kendini de temsil edebildi§inden kendi kendine refer-

ansl�d�r.
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Sorguya haz�r yap� sa§lay�c�: Ontoloji 4.0 herhangi bir veri y�§�n�n�

otomatik olarak yap�salla³t�r�r ve bu ontolojilerde i³lem yapabilmek için

ba³ka bir biçimsel yap�ya ya da mant�k sistemine ihtiyac� da yoktur.

Otopoietik bir sistem: Ontoloji 4.0'�n birli§i kategori kuramsal yap�lar,

tipleme kurallar� ve yeni bile³enler olu³turan urtrop kompozisyonlar�n�n or-

ganizasyonudur. Bu birlik, ontolojideki her bir bile³enin rolünü/davran�³�n�

belirledi§i için de Ontoloji 4.0 otopoietiktir.

Ontolojilerin Turing makinesi: Nas�l ki hesaplanabilen her yap� Turing

makinesinde temsil edilebiliyorsa, her ba§lama ait ontolojiler de otomatik

olarak Ontoloji 4.0 taraf�ndan olu³turulur.

Otonom/Etkin eyleyici: Bu bölümde sayd�§�m�z özellikler tezin sonucu,

bu özellik ise Ontoloji 4.0'�n tüm özelliklerinin bir sonucudur. Ontoloji 4.0,

belirli bir amaç/durum için belirli bir ba§lam� yap�land�r�p, analiz ederek

ve yorumlayarak ve ard�ndan bu ba§lam hakk�nda ç�kar�mlarda bulunup

karar verebildi§i için otonomdur, /etkin bir eyleyicidir.

Yukar�da Ontoloji 4.0'�n hangi özelliklere sahip oldu§una k�saca de§indik. En

son vard�§�m�z özellik olan Ontoloji 4.0'�n otonom bir yap�ya sahip olmas� da

tezimizin hede�ne ula³t�§�n�n kan�t�d�r.
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