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Physics, METU

Prof. Dr. Sadi Turgut
Physics, METU

Assist. Prof. Dr. Kıvanç Uyanık
Physics, Gazi University

Date: 01.09.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Kaan Akyüz

Signature :

iv



ABSTRACT

SECURITY OF QUANTUM KEY RECYCLING

Akyüz, Kaan

M.S., Department of Physics

Supervisor: Prof. Dr. Sadi Turgut

September 1, 2022, 56 pages

In cryptography, unconditional security is achieved by hiding the message under a

sufficiently long one-time pad, a key that is completely unknown from outside. The

one-time pad is single-use-only, because the presence of an eavesdropper is unde-

tectable in a classical channel. In contrast, an adversary is highly detectable in a

quantum channel. Quantum key recycling’s objective is to detect the adversary and

re-use the one-time pad. The analysis of quantum key recycling is mainly concerned

with the rate and the security of the transmission. By using a method called “smooth-

ing”, tight bounds on these quantities can be established. Smoothing was used in a

noise tolerant quantum key recycling scheme; however, only for the asymptotic case.

This thesis’ primary focus is to establish more favorable bounds on the rate and secu-

rity for the non-asymptotic case by using the smoothing method.

Keywords: information theory, quantum cryptography, quantum key recycling
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ÖZ

KUANTUM ANAHTAR GERİ DÖNÜŞÜMÜNÜN GÜVENLİĞİ

Akyüz, Kaan

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Sadi Turgut

Eylül 1, 2022 , 56 sayfa

Kriptografide koşulsuz güvenlik, yeterince uzun, saklı bir “tek kullanımlık şifre” kul-

lanılarak elde edilir. Bu şifre tek kullanımlıktır, çünkü klasik bir kanalda gizlice din-

leyen birinin varlığının tespit edilememektedir. Tersine, gizli dinleyici bir kuantum

kanalda tespit edilebilmektedir. Bir kuantum anahtar geri dönüşümü protokolünün

amacı, gizli dinleyicinin varlığını tespit etmek ve “tek kullanımlık şifrenin” tekrar

kullanılmasını sağlamaktır. Protokolün incelenmesi temel olarak iletim hızı ve güven-

liği ile ilgilidir. “Smoothing” adında bir method kullanarak, iletim hızı ve güvenliği

nicelikleri üzerinde sıkı sınırlar tespit etmek mümkündür. “Smoothing” daha önce bir

(gürültülü) kuantum anahtar geri dönüşümü için kullanıldı; ancak sadece asimtotik

durum için. Bu tezin öncelikli amacı “smoothing” methodunu kullanarak, asimtotik

olmayan durumda hız ve güvenlik üzerinde daha sıkı sınırlar tespit etmektir.

Anahtar Kelimeler: bilgi teorisi, kuantum kriptografi, kuantum anahtar geri dönü-

şümü
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CHAPTER 1

INTRODUCTION

Communication is the exchange of information, and is often intended to be private.

The study of private (or secure) communication, cryptography, has a long history

which dates back to the ancient Egypt, 1900 BC [1]. Contemporary “classical cryp-

tography” studies the security of digital information in two main branches, symmetric

key cryptography and public key cryptography. Symmetric key cryptography requires

the use of a pre-shared “secret key”. Public key cryptography does not require a pre-

shared key, but it relies on the assumptions of computational hardness. To illustrate

their general scheme, one example will be given for each, starting from the symmetric

key cryptography. Let Alice wants to send a private message to her friend Bob. She

first puts her message in a box, locks it using her key, and sends the box to Bob. Af-

ter receiving the box, Bob uses his key to unlock the box and read the contents of the

message. If Alice’s and Bob’s keys are identical, and the information to make this key

is hidden from the outside world, then Alice and Bob use symmetric-key cryptogra-

phy. In public key cryptography, Bob offers a public key, a key that will lock his lock.

But that is an asymmetric key that only locks, it cannot open. Alice puts her message

in a box and locks the box with Bob’s public key and sends it to Bob. Bob takes the

box and opens it with his private opening key. In a nutshell, anyone who wishes to

send Bob a private message can use Bob’s public key, which can only be opened by

Bob’s private key after it is locked. The important thing is that, in principle, Bob’s

opening key can be produced by an investigation of the locking key. However, this

operation is very infeasible, and that ensures its safety

In classical computers and communication channels, the information is binary, and

represented in binary strings. Hence, the messages and the keys are also represented
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in binary strings. Encryption, refers to the mapping of a plaintext (message) to a

ciphertext (encrypted message). Decryption, refers to the mapping of the ciphertext

back to the plaintext. In both, mapping is done by a key. In symmetric-key cryp-

tography the key which encrypts the message is same with the key which decrypts

it, whereas in public-key cryptography, they are not. The security in symmetric-key

cryptography depends on the amount of “secrecy” on the secret key, which refers to

the amount of information content that is hidden from the outside. Using a secret

key consumes its secrecy so it can only be used as a one-time pad once. Also, these

keys cannot be used to distribute more keys for the same reason. So, if the parties

are interested in "unconditional" security, they should physically meet and share keys

or thrust a courier for the delivery. The security in public-key cryptography is condi-

tional, it depends on the hardness of computing Bob’s private key from Bob’s public

key, and the "hardness" decreases with increasing computational power, computation

time, and the efficiency of the algorithm. Hence, it doesn’t provide everlasting se-

curity. To exemplify, let’s look at the first and still one of the most used public-key

cryptography, the RSA Encryption. To reveal the private key from the public key,

one should factor an integer with two large prime factors. Execution of the proto-

col requires multiplying large prime numbers, which can be done by the computers

in polynomial time. However, the factorization runs in exponential time. Therefore,

RSA can be executed by a classical computer but cannot be broken. In contrast, a

quantum algorithm called “Shor’s algorithm” factors integers in polynomial time on

a quantum computer. The temporariness of privacy in public-key cryptography is a

significant problem for organizations that do not want to risk disclosing their informa-

tion in the future. On the contrary, quantum cryptography offers protocols for secret

key distribution and secret key recycling (key re-using) that does not suffer from de-

creased security. Furthermore, these protocols have rigorous security proofs and their

physical implementations are already being produced commercially.

In 1984, Charles Bennett and Gilles Brassard developed the first quantum key distri-

bution(QKD) scheme[2], the BB84. The basic idea is sending the key information in

quantum bits (qubits) rather than classical bits so that an attack on the qubits would

disturb the state of the qubits. This can be detected by consuming a part of the qubits

to publicly discuss if a disturbance exists. The fundamental assumption of quantum
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key distribution is that the laws of quantum mechanics hold. There may be other

assumptions depending on the type of the security proof such as, trusting the manu-

facturer of the device etc. More importantly, quantum key distribution suffers from a

very small probability of failure, the probability that protocol accepts the distributed

keys although the keys are not secure. In 2005, Renato Renner gave a rigorous proof

on upper bounding this small probability of failure, along with new tools that have

been crucial for quantum cryptography[3].

Back to 1982, two years before the invention of BB84, a scheme named quantum

key recycling was given by Charles Bennett, Gilles Brassard, and Seth Breidbart

[4]. This protocol gave an idea on how to re-use a secret key securely, which is

not possible solely with a classical communication. The idea revolves around send-

ing the ciphertext in quantum bits instead of classical bits. Therefore, an attack on the

qubits would disturb them, which can be later detected with a classical authentication

method. An attack on more qubits increases probability of disturbance along with the

probability of detection. Although quantum key recycling did not receive as much

attention as quantum key distribution, a quantum key recycling protocol with error

tolerance established comparable rates of secure data transmission with less classical

post-processing[5].

As it can be seen from both protocols, the core difference between the classical and

the quantum cryptography comes from the detection of the adversarial behavior. In

a classical channel, an adversary can intercept the signals and copy the information

without disturbing the transmission. Therefore, parties are forced to assume that an

adversary is present and copying their transmitted information. In quantum cryptog-

raphy, the information inside the qubits cannot be copied/cloned and the adversary is

forced to perform measurement on the qubits if she is interested in the information

encoded by the qubit’s state. However, without knowing the method of encoding, the

adversary always takes the risk of disturbing the state. This disturbance is directly

proportional to the number of qubits she measures as well as the information she ob-

tains. By applying some methods that will be discussed in the following chapters,

disturbance she makes can be corrected in both sending and receiving ends and the

stolen information can be removed by a method called privacy amplification. The

error correction and privacy amplification comes with very tiny probabilities of fail-

3



ure that can be calculated and upper bounded. The upper bound can be decreased

at the cost of reducing rate of the transmission. The users can knowingly choose

how much risk they wish to take against the rate they want to send the information.

Classical cryptography lacks parties to remotely send secrecy with a such quantifiable

security. The only remote classical transmission of secret keys can be done by com-

putational assumptions which of course cannot provide a time invariant upper bound

on the probability of failure. There is no doubt that given enough time all calculable

(or decidable) problems can be calculated and hence the upper bound of failure can

ultimately become unity.

4



CHAPTER 2

PRELIMINARIES

Quantum cryptography is built on quantum mechanics, information theory and cryp-

tography. In this chapter the main concepts, terminology used and common tech-

niques that will be used in this thesis will be introduced.

2.1 Quantum Mechanics

2.1.1 The Quantum State

Any closed quantum system has an associated Hilbert spaceH, i.e. a complete inner-

product space. The associated space of a system is called, the state space of the

system. The system is completely described by a unit vector in its state space called,

the state vector. If {|i〉}i is an orthonormal basis for H, then the state vector |ψ〉 can

be expanded in this basis as,

|ψ〉 =
∑
i

αi |i〉 (2.1)

where the αi are amplitudes, which are complex numbers satisfying,
∑

i |αi|2 = 1.

2.1.2 The Quantum Evolution

Time evolution of a closed quantum system is described by a unitary operation. Let

|v〉 describes the state of a system at time t0 and |w〉 at time t1. The transformation U

that describes the evolution should be unitary and should only depend on time t0 and

t1[6].

|w〉 = U |v〉 (2.2)

5



An operator U is said to be unitary if U †U = UU † = I . It can be shown that any

unitary operator can be expanded as

U =
∑
i

λi |i〉〈i| (2.3)

where {|i〉} are its eigenvectors and λi are eigenvalues, which are complex numbers

with modulus 1. Any unitary operator U maps an orthonormal to another orthonormal

basis. Let, {|vi〉}i is an orhonormal basis, if U is unitary, then for some orhonormal

basis {|wi〉}i
U =

∑
i

|wi〉〈vi| . (2.4)

2.1.3 The Quantum Measurement

General quantum measurements are described by a collection {Mk} of measurements

operators which satisfy the equation [6]∑
k

M †
kMk = I. (2.5)

This equation corresponds to the sum of the probabilities being one. A collection

{M †
kMk} of operators satisfying (2.5) are called positive operator valued measure

(POVM) operators. The measurement operators act on the state space of the measured

system. Suppose the system is in state |ψ〉 before measurement, then the probability

that outcome k occurs is,

pk = 〈ψ|M †
kMk |ψ〉 (2.6)

and the post-measurement state of the system is,

Mk |ψ〉√
〈ψ|M †

kMk |ψ〉
. (2.7)

If one does not care about the post-measurement state but only cares about the proba-

bilities of measurement outcomes, then one may use a set of POVMs instead of gen-

eralized measurement operators. In case, all measurement operators in a collection

{Pk} are orthogonal projectors, then the measurement is called a projective measure-

ment. For a projective measurement, POVMs and generalized measurement operators

are the same. The probability of getting outcome k is,

pk = 〈ψ|Pk |ψ〉 (2.8)

6



and the post-measurement state of the system is,

Pk |ψ〉√
〈ψ|Pk |ψ〉

. (2.9)

2.1.4 Entanglement

Entanglement is the inability of describing a joint state by a tensor product of indi-

vidual states. If a joint state |ψAB〉 ∈ HAB can be written in the form |ψA〉⊗ |ψB〉 for

some |ψA〉 ∈ HA and |ψB〉 ∈ HB then the state is a product state. If the state is not a

product state, then it is entangled.

For two systems A and B with associated state spaces HA and HB, the composite

system AB’s state space HAB is given by the tensor product HA ⊗ HB. In other

words, a generic state |ψ〉 of AB can be written as a superposition of tensor product

of states of A and B as

|ψ〉 =
∑
ij

αij |iA〉 ⊗ |jB〉 . (2.10)

It can be shown that, for any state |ψ〉 it is possible to find two orthonormal bases of

HA andHB respectively such that

|ψ〉 =
∑
i

λi |iA〉 ⊗ |iB〉 (2.11)

where, λi are non-negative numbers. This is called the Schmidt decomposition[6].

2.1.5 The Density Operator

In many cases, one cannot not certainly know which state a quantum system is in.

Therefore, one is forced to assign some probabilities on some possible states. Suppose

a system is in state |ψi〉 with probability pi, then the set of pairs {|ψi〉 , pi}i is called,

an ensemble of pure states. The density operator ρ associated with this ensemble is,

ρ =
∑
i

pi |ψi〉〈ψi| (2.12)

The density operator is the main quantity that enables us to compute all physically rel-

evant quantities like expectation values, probabilities of measurement outcomes etc.

Let’s see why by investigating a measurement process. A measurement on a density

7



state is described by a collection of measurement operators {Mk} which satisfies the

equation
∑

kM
†
kMk = I . Suppose the system is in state ρ. Given the state |ψi〉 the

conditional probability probability of measuring k is[6],

pk|i = 〈ψi|M †
kMk |ψi〉 = tr

(
M †

kMk |ψi〉〈ψi|
)

(2.13)

and the post-measurement state is,

Mk |ψi〉√
〈i|M †

kMk |ψi〉
(2.14)

Given the state ρ, the probability of measuring k is[6],

pk =
∑
i

pipk|i =
∑
i

pi tr
(
M †

kMk |ψi〉〈ψi|
)

(2.15)

tr

(
M †

kMk

∑
i

pi |ψi〉〈ψi|

)
= tr

(
M †

kMkρ
)

(2.16)

and using the Bayes’ rule the post-measurement state is,

ρk =
∑
i

pi|k
Mk |ψi〉〈ψi|M †

k

〈ψi|M †
kMk |ψi〉

(2.17)

=
∑
i

pk|ipi
Mk |ψi〉〈ψi|M †

k

pk tr
(
|ψi〉〈ψi|M †

kMk

) (2.18)

=
∑
i

pi
Mk |ψi〉〈ψi|M †

k

pk
(2.19)

=
MkρM

†
k

pk
(2.20)

If the outcome k is unknown, then the post-measurement state ρ′ should be a mixture

of ρk with probability pk which is,

ρ′ =
∑
k

pkρk =
∑
k

MkρM
†
k (2.21)

Suppose that a system whose state is described by ensemble {|ψi〉 , pi}i has evolved

in time according to a unitary transformation U . This means that, after the time evo-

lution, the new ensemble is {U |ψi〉 , pi}i, This shows that the final density operator

is [6] ∑
i

piU |ψi〉〈ψi|U † = UρU † (2.22)
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A density operator should be a non-negative operator with unit trace. An operator

is non-negative if it is Hermitian and it has non-negative eigenvalues. Non-negative

operators are also normal, therefore can be written in the diagonal form. Let ρ be a

density operator, then there exists some orhonormal basis {|ψi〉}i such that [6]

ρ =
∑
i

λi |ψi〉〈ψi| (2.23)

where, |ψi〉 are the eigenvectors of ρ and tr(ρ) =
∑

i λi = 1. A density operator

is mixed state if it has more than one non-zero eigenvalues. If all of its eigenvalues

are non-zero and equal to each other, it is the maximally mixed state or completely

unpolarized state. If a density operator is not mixed then it is a pure state in which

case it can be written as a single 1-dimensional projector as |ψ〉〈ψ| for some |ψ〉 ∈ H.

If a density operator ρAB describes the state of a composite system AB and can be

written in the form,

ρAB =
∑
i

piρ
A
i ⊗ ρBi (2.24)

for some non-negative pi and ρAi ρ
B
i , then it is called a separable state. If a state is

not a separable state, then it is entangled. In the rest of the thesis, the set of density

operators on Hilbert spaceH will be denoted as S(H).

2.1.6 The Partial Trace

Let particle A and B interact for a period of time and have a final state represented by

ρAB. If one wants to describe the state of particle A individually, one should remove

particle B from the representation of their combined state. This corresponds to taking

the partial trace on B,

ρA := trB(ρAB) (2.25)

Generally, a density state of system AB can be written as ρAB =
∑

ijkl λijkl |iA〉〈jA|⊗
|kB〉〈lB|where {|iA〉}i {|kB〉}k are orhonormal bases for A and B spaces respectively.
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In that case, the partial trace is computed as,

ρA = trB(ρAB) (2.26)

=
∑
ijkl

λijkl |iA〉〈jA| ⊗ tr(|kB〉〈lB|) (2.27)

=
∑
ijkl

λijkl |iA〉〈jA| 〈lB|kB〉 (2.28)

=
∑
ijkl

λijklδkl |iA〉〈jA| (2.29)

=
∑
ijkl

λijll |iA〉〈jA| (2.30)

To illustrate how the partial trace acts on a separable state, let ρAB =
∑

i piρ
A
i ⊗ ρBi .

trB(ρAB) = trB(
∑
i

piρ
A
i ⊗ ρBi ) (2.31)

=
∑
i

pi trB(ρAi ⊗ ρBi ) (2.32)

=
∑
i

piρ
A
i tr
(
ρBi
)

(2.33)

=
∑
i

piρ
A
i (2.34)

= ρA (2.35)

2.1.7 Purification

Let an arbitrary density operator ρ ∈ S(HA), then a state |ΨAR〉 ∈ HAR that satisfies

the equation ρ = trR(|ΨAR〉〈ΨAR|) is called, a purification of ρ.

Note that, if a unitary operator UR is applied on the ancilla spaceHR of a purification,

the result will also be a purification of the same state due to the cyclic property of

trace.

trR
(
IA ⊗ UR|ΨAR〉〈ΨAR|IA ⊗ U+

R

)
= trR

(
IA ⊗ U+

RUR|ΨAR〉〈ΨAR|IA ⊗ IR
)

= trR (|ΨAR〉〈ΨAR|)

(2.36)
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2.1.8 The Classical-Quantum States

In quantum cryptography, a classical random variable X with a set of probabilities

{px}x defines a classical state and is described as,

ρX =
∑
x

px |x〉〈x| (2.37)

where |x〉 are orthonormal. Let the state ρXE be a classical-quantum state (cq-state)

with classical part X and quantum part E, by this we mean that ρXE can be written

as

ρXE =
∑
x

px |x〉〈x| ⊗ ρEx . (2.38)

Note that if an adversary, Eve has subsystem E but not X , she may differentiate

between ρEx ’s by making a measurement on E and obtain information about x.

2.1.9 The Ideal State

An ideal state is a cq-state composed of an uncoupled maximally mixed state and a

quantum state,

ρideal :=
1

|X|
∑
x∈X

|x〉〈x| ⊗ ρE. (2.39)

Let Alice has the subspace HX and Eve has the subspace HE . Alice performs a pro-

jective measurement on her space and obtain a value x ∈ X , uniformly at random.

Furthermore, Eve cannot do any measurement on her space that gives her any infor-

mation about x. Hence, x is completely unknown to Eve, and this defines an ideal

state for keeping x a secret.

2.1.10 The Completely Positive Trace Preserving Maps

Time evolution of open quantum systems is described by the CPTP maps. Let E be

a map from density states in S (HA) to density states in S (HB) denoted as, E ∈
C (S (HA) ,S (HB)), then for any ρ ∈ S(HA) and σ ∈ S(HAE), E should be

11



1) Trace preserving,

tr (E(ρ)) = tr (ρ) (2.40)

2) Convex linear,

E

(∑
i

piρi

)
=
∑
i

piE (ρi) (2.41)

where,
∑

i piρi is a density operator.

3) Completely positive,

(E ⊗ IE)(σAE) ≥ 0 (2.42)

CPTP maps may "expand, evolve and reduce" the state of the system. This behavior

is shown by the Steinspring dialation.

Let E ∈ C (S(HA),S(HB)) and ρ ∈ S(HA), then there exist an isometry V (V †V =

I) fromHA toHBR such that,

E(ρ) = trR
(
V ρV †

)
. (2.43)

V can be seen as an operator which makes an isometric embedding fromHA toHB⊗
HR, followed by a unitary operation on HB ⊗ HR. Finally, the partial trace throws

away some part of the system reducing it to a sub-system.

It can be shown that any CPTP mapping can be described by a collection {Ek} of

Kraus operators that satisfy the equation
∑

k E
†
kEk = I. If E is a CPTP map, then

there exists some collection of Kraus operators {Ek} such that,

E(ρ) =
∑
k

EkρE
†
k. (2.44)

This is known as the operator-sum representation.

Example 2.1.1. Let a projective measurement be performed on subsystem A of a

joint system AB which has an arbitrary state ρAB ∈ S(HAB), while recording the out-

comes {k}k in a state in system K. The measured observable M is an observable of A,

and let M=M =
∑

k kPk where Pk are the projection operators to the eigensubspace

associated with k. Here the measurement operators are Pk := |k〉〈k|, the probability

of measuring k is pk = tr(Pk ⊗ Iρ) and the corresponding post-measurement state is

12



ρABk = 1
pk

(Pk⊗I)ρ(Pk⊗I). Therefore, the post-measurement state without knowing

the result is,

ρKAB =
∑
k

pk |k〉〈k| ⊗ ρABk . (2.45)

A CPTP mapping Emeas from S(HAB) to S(HKAB) can be written in the operator-

sum representation as,

Ek = |k〉 ⊗ PA
k ⊗ IB (2.46)

which satisfies the condition,∑
k

E†kEk =
∑
k

〈k|k〉PA
k ⊗ IB

=

(∑
k

PA
k

)
⊗ IB

= IAB.

(2.47)

Then,
Emeas(ρ) =

∑
k

E†kρ
ABEk

=
∑
k

|k〉〈k| ⊗ (Pk ⊗ Ib)ρAB(Pk ⊗ Ib)

=
∑
k

pk |k〉〈k| ⊗ ρABk

= ρKAB.

(2.48)

It can be seen that the final state is a sum over coupled states between observed values

k’s and its environment states ρABk ’s. Any measurement outcome k and the coupled

environment state ρABk live in a space which is orthonormal to other spaces of out-

comes.

2.1.11 The Trace Distance

The trace distance is a metric on the space of density operators. Let ρ ∈ S(H) and

σ ∈ S(H), then the trace distance between ρ and σ is

T (ρ, σ) := sup
0≤M≤I

tr [M(ρ− σ)] (2.49)

where M is a POVM operator. Or equivalently using `1 distance ‖ρ− σ‖1,

T (ρ, σ) :=
1

2
‖ρ− σ‖1 =

1

2
tr |ρ− σ| = 1

2
tr
√

(ρ− σ)2 (2.50)
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Suppose ρ − σ is written in diagonal form as ρ − σ =
∑

i λi |i〉〈i|, where |i〉 are the

orthonormal eigenvectors of ρ − σ and λi are its eigenvalues. The absolute value of

ρ− σ can be written as |ρ− σ| =
∑

i |λi| |i〉〈i| and its trace is tr |ρ− σ| =
∑

i |λi|.

Trace distance implies the maximum probability of success in differentiating density

states in a single measurement. To illustrate this, let’s assume one has an equal chance

of getting σ or ρ and wants to find out the state by performing a measurement. Pairs

of measurement operators and outcomes (i.e. guesses) are (M ,ρ) and (I − M , σ).

Then, probability of success is,

psuccess =
1

2
tr(Mρ) +

1

2
tr((I −M)σ) (2.51)

=
1

2
tr(σ) +

1

2
tr(M(ρ− σ)) (2.52)

=
1

2
+

1

2
tr(M(ρ− σ)). (2.53)

To maximize this probability one can maximize the second term in the left-hand side

of (2.53), which corresponds to selecting an appropriate measurement operator,

psuccess =
1

2
+

1

2
sup

0≤M≤I
tr [M(ρ− σ)] (2.54)

=
1

2
+

1

2
T (ρ, σ). (2.55)

Observe that the trace distance gives us the maximum advantage one can have in

distinguishing these density states with a single measurement. In quantum cryptog-

raphy, the aim is to quantify the maximum information an adversary can gain on a

secret message by measuring her state. Therefore it is very important to distinguish

the output state of a quantum protocol and the ideal state which is uniformly random

and uncorrelated from an adversary. The upper bound of the distance between the

ideal state and the output state quantifies how secure a quantum protocol is.

2.1.12 The Diamond Distance

The diamond distance gives us the distinguishing advantage between two quantum

maps with equal prior probabilities of 1/2. Let E1, E2 ∈ C(S(HA),S(HB)), then the

diamond distance between E1 and E2 is

‖E1 − E2‖� := sup
ρ∈S(HA⊗HR)

‖E1 ⊗ IR(ρ)− E2 ⊗ IR(ρ)‖1 . (2.56)

14



2.1.13 No-cloning Theorem

In the heart of quantum cryptography, lies the no-cloning theorem. The inability

of cloning an unknown state without already knowing what the state is. Suppose

operator U is defined as,

U : |ψ〉 → |ψ〉 ⊗ |ψ〉 , ∀|ψ〉 ∈ H (2.57)

Let |ψ1〉 ∈ H and |ψ2〉 ∈ H, then,

U |ψ1〉 = |ψ1〉 ⊗ |ψ1〉 (2.58)

U |ψ2〉 = |ψ2〉 ⊗ |ψ2〉 (2.59)

=⇒ 〈ψ1|U †U |ψ2〉 = | 〈ψ1|ψ2〉 |2 (2.60)

U must be inner product preserving in order to describe a quantum system’s time

evolution. However, | 〈ψ1|ψ2〉 |2 6= | 〈ψ1|ψ2〉 | unless | 〈ψ1|ψ2〉 | = 0 or | 〈ψ1|ψ2〉 | =

1, therefore U cannot be defined for an arbitrary |ψ〉 (2.57).

2.2 The Information Theory and Cryptography

2.2.1 Quantifying Information

In the following definitions, let X be a random variable with alphabet X , outcomes

x ∈ X and probability mass function PX(x). Similarly, let Y be a random variable

with alphabet Y , outcomes y ∈ Y and probability mass function PY (y).

Definition 2.2.1. (Information content) The information content of outcome x is,

h(x) := − log(PX(x)) (2.61)

Definition 2.2.2. (Shannon entropy) The entropy of X is the average information

content,

H(X) := E[h(X)] (2.62)

= −
∑
x

PX(x) log(PX(x)) (2.63)

where, E is the statistical average.
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The entropy of a random variable X is the average information content of n real-

izations of X where n goes to infinity. The average information content of any n

realizations of X asymptotically converge to the Shannon entropy.

Suppose that one will observe X once and wants to correctly guess the outcome. The

best guess is the most probably outcome.

Definition 2.2.3. The minimum entropy of X is the information content of its most

probable outcome,

Hmin(X) := min
x
h(x) (2.64)

= min
x

[− logPX(x)] (2.65)

= − log max
x

[PX(x)] . (2.66)

In terms of minimum entropy the guessing probability is,

max
x

PX(x) = 2−Hmin(X). (2.67)

Definition 2.2.4. The conditional entropy of X given Y is,

H(X|Y ) =
∑
y

PY (y)H(X|Y = y) (2.68)

= −
∑
y

PY (y)
∑
x

PX|Y (x|y) log
(
PX|Y (x|y)

)
(2.69)

= −
∑
xy

PY (y)PX|Y (x|y) log
(
PX|Y (x|y)

)
(2.70)

= −
∑
xy

PXY (x, y) log
(
PX|Y (x|y)

)
. (2.71)

Definition 2.2.5 (Conditional minimum entropy). The conditional minimum entropy

of X given Y is,

Hmin(X|Y ) = − log

(∑
y

max
x

(pX|Y (x|y))

)
. (2.72)

2.2.2 Quantifying Quantum Information

Now, the quantum counterparts of the classical entropies will be defined.
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Definition 2.2.6. (von Neumann entropy) Let ρ ∈ S(H) , then von Neumann entropy

of ρ is

H(ρ) := tr(ρ log ρ). (2.73)

Example 2.2.1. Let ρ has a spectral decomposition
∑

x px |x〉〈x|, then

H(ρ) = −
∑
x

px log px. (2.74)

One can observe that the von Neumann entropy of the density operator is the coun-

terpart of the Shannon entropy of a random variable.

Definition 2.2.7. (Min-entropy) [3] Let {Mm} be a POVM, then

Hmin(ρ) := − log max
m

tr(ρMm). (2.75)

Definition 2.2.8. (Conditional min-entropy) [3] Let ρAB ∈ S(HA ⊗ HB), σB ∈
S(HB) then,

Hmin(ρAB|σB) := log(λ) (2.76)

such that, λ · IA ⊗ σB − ρAB ≥ 0.

Definition 2.2.9. (Smooth min-entropy) [3] Let ρAB ∈ S(HA ⊗HB), σB ∈ S(HB)

then, ε-smooth min-entropy of ρAB to σB is,

Hε
min (ρAB | σB) := sup

ρ̄AB :‖ρAB−ρ̄AB‖1≤ε
Hmin (ρ̄AB | σB) , (2.77)

2.2.3 The One-Time Pad

One-time pad encryption is used to provide information-theoretic security. Let Alice

and Bob pre-share a key x ∈ {0, 1}n, i.e. a binary string of n bits. Alice wants to

send a message text m ∈ {0, 1}n. Alice computes a ciphertext c1 = x ⊕ m and

send it to Bob. After receiving c1 Bob can recover m1 by using his key x and c1,

c1 ⊗ x = x ⊕ x ⊕ m1 = m1. If key x is sampled from an uniform distribution

hidden from Eve, then Eve cannot gain any information about the message from the
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ciphertext. Proof.

P (M = m|C = c) =
P (C = c|M = m)P (M = m)

P (C = c)
(2.78)

=
P (X = m⊕ c)P (M = m)

P (C = c)
(2.79)

=
P (M = m)

2nP (X ⊕M = c)
(2.80)

P (X ⊕M = c) =
∑
xm

P (X = x)P (M = m)δm⊕x,c (2.81)

=
1

2n

∑
m

P (M = m)
∑
x

δm⊕x,c =
1

2n
(2.82)

P (M = m|C = c) = P (M = m) (2.83)

where δ is the Kronecker delta. However, Eve can store this cyphertext so if Alice

and Bob use the same key x to exchange another message m2 ∈ {0, 1}n where c2 =

m2 ⊕ x then Eve can perform c1 ⊕ c2 = m1 ⊕ m2. Therefore, using the same key

twice leaks information (m1 ⊕m2) about the messages.

2.2.4 The Hash Function

In a general sense, the hash functions can be defined as functions that map long bit

strings to shorter bit strings. Hash functions can have unique properties. A set of hash

functions that shares a common property is called, a family of hash functions.

Definition 2.2.10 (1-universal). A family of hash functions, H = {h : {0, 1}n →
{0, 1}m} where m ≤ n is 1-universal if ∀x ∈ {0, 1}n and ∀z ∈ {0, 1}m,

Ph∈H (h(x) = z) =
1

2m
(2.84)

where h is chosen from H uniformly at random. Note that, the only random variable

here is h. For any value of x and z, when h is chosen from H uniformly at random,

equation (2.84) holds.

Definition 2.2.11 (2-universal). A family of hash functions H = {h : {0, 1}n →
{0, 1}m} wherem ≤ n, is 2-universal, if ∀x,∀x′ ∈ X, x 6= x′, and all pairs z, z′ ∈ Z,

Ph∈H (h(x) = z ∧ h(x′) = z′)) =
1

22m
(2.85)
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where h is chosen from H uniformly at random. Also note that when x = x′, H

satisfies (2.84) , i.e.

Ph∈H (h(x) = z ∧ h(x) = z)) = Ph∈H (h(x) = z) =
1

2m
(2.86)

which means that any 2-universal hash is 1-universal. An extractor function, or a

randomness extractor, Ext(u, x) is essentially a construction over hash functions. The

seed of the extractor u ∈ U is defined for indexing the hash functions. For example,

if H := {h1, h2, h3}, then the seed is u ∈ {1, 2, 3} and the hash functions can

be denoted as hu. Therefore, choosing a seed uniformly at random, corresponds to

choosing a hash function at random for the extractor. Finally, x denotes the input for

the chosen hash function. Let Ext : (u, x) 7→ z, and Euf(u) =
∑

u
1
|u|f(u), then

EuδExt(u,x),zδExt(u,x′),z′ = δx,x′ |Z|−1 + (1− δx,x′)|Z|−2 (2.87)

2.2.5 The Message Authentication Codes

A message authentication code (MAC or a tag) is a binary string that contains in-

formation about a larger binary string (a message). MACs are used to check the

integrity of the messages. Suppose Alice and Bob pre-shares a key k which selects a

hash function fk from a family of 2-universal hash functions. Alice calculates the tag

τ = Γ(m, k), i.e. the function denoted by Γ takes the message m and the key k and

calculates fk(m) = τ . Alice sends τ along with m. Bob receives m′ and τ (assumes

τ remains unchanged), checks if Γ(m′, k) = τ , encodes the accept/reject result in one

bit and sends to Alice. The failure probability of a MAC is P (τ = Γ(m′, k)|m 6= m′),

i.e. the probability of accept when m 6= m′. This probability is calculated as follows.

Let binary strings, m,m′ ∈ {0, 1}l represent two messages, k ∈ {0, 1}n represents a

MAC key, τ ∈ {0, 1}z represents tag and τ = Γ(m, k), then P(τ = Γ(m′, k)|m 6=
m′) = 1

2z
[7] or equivalently,

EkδΓ(m′,k),Γ(m,k) = δm,m′ + (1− δm,m′)
1

2z
. (2.88)
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2.2.6 Syndromes

Syndromes are used as a method of error correction. An error correction refers to

correcting the flipped bits of a message that is sent through a noisy channel. A given

set of syndromes has an encoder function Syn : {0, 1}n → {0, 1}τ and a decoder

function DecSyn : {0, 1}τ → {0, 1}n. The encoder function maps a message to a

syndrome, which encodes the relations (such as the checksums) of the message bits.

After the message and the syndrome is sent through a noisy channel, the receiver

puts the syndrome to its decoder function which checks if the relations hold and

gives a bit string with the length of the message. Then, one can XOR the received

(and possibly corrupted) message m′ and the decoder output s to recover the original

message s⊕m′ = m̂. The decoding can fail, i.e. m̂ 6= m, if the flipped bits are more

than the number of bits the syndrome can correct. However, failure of the decoding

is noticed by the receiver [7].

20



CHAPTER 3

QUANTUM CRYPTOGRAPHY

3.1 Quantifying Security

The one-time pad is the “gold standard” in cryptography. It is the only known algo-

rithm that can unconditionally and perfectly secure a message. However, one-time

pad is also costly, a secret key can be only used once as a one time pad. Meanwhile,

Alice aims to find a more sustainable method and she considers using Bob’s public-

key to encrypt her messages. Nobody except Bob, has the private key that can decrypt

it, but, this situation can change. In particular, Bob’s private key can be calculated

from Bob’s public key, but this requires to perform calculations which are practically

impossible with current technologies. However she is anxious because she thinks that

with promising new technologies together with new algorithms, these problems can

be solved. Therefore, her security may not hold in the future and may completely lose

its value. If Alice chooses to send her messages using Bob’s public key, Eve, the ma-

licious eavesdropper, can easily copy them without notice. Eve can then store them

until she can compute Bob’s private key from his public key, and can read all the mes-

sages Alice sent to Bob. Alice looks at the probability "ε" that Eve computes Bob’s

private key, and it is very small. However, "ε" grows as the technology improves.

For quantum protocols, "ε" gives the probability that after (or during) the execution of

the protocol, Eve learns some information about the secret message. With probability

"(1 − ε)" Eve learns absolutely nothing, forever. In other words, the ε in quantum

protocols stays constant. Alice decides to use quantum cryptography, if the ε is very

small and it provides fast and accurate communication.
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3.2 Quantum Key Distribution

Quantum key distribution is used as an umbrella term for the key distribution proto-

cols that utilize quantum mechanics. Unlike classical key distribution methods which

rely on computational assumptions such as the hardness of factorization in RSA, secu-

rity of quantum key distribution is unconditional. It is invulnerable to new decryption

algorithms as well as increasing computational power. Developed in 1984 by Charles

Bennett and Gilles Brassard [2], BB84 is the first scheme for implementing quantum

key distribution.

3.2.1 BB84

Alice chooses binary strings x ∈ {0, 1}n and b ∈ {0, 1}n uniformly at random and

for each xi she encodes qubits
∣∣ψbixi〉 as,∣∣ψ0

0

〉
:= |0〉

∣∣ψ1
0

〉
:= |+〉∣∣ψ0

1

〉
:= |1〉

∣∣ψ1
1

〉
:= |−〉 (3.1)

where {|0〉 , |1〉} and {|+〉 , |−〉} are the eigenvectors of Pauli-Z and Pauli-X matrices

respectively. Then, Alice sends
∣∣ψbx〉 to Bob.

Bob receives
∣∣ψbx〉 and chooses a binary string b′ ∈ {0, 1}n uniformly at random.

Then for all qubits in
∣∣ψbx〉 he performs measurement according to the bits in the

binary string b′. In particular, he measures ith qubit in Z-basis if b′i = 0 and X-basis

if b′i = 1 and obtains the bit x′i. After measuring all qubits he obtains a binary string

x′ ∈ {0, 1}n that is composed of x′is. Consider that, if bi = b′i then xi = x′i but if

bi 6= b′i, with probability one half x′i = 0 and probability one half x′i = 0 regardless of

the value of xi. Consequently, Alice and Bob publicly compare each bi and b′i to see

whether they match or not, and if they match Alice and Bob keep xi and x′i otherwise

they discard them. After that, they consume a part the binary string that they keep in

order to check if there is a discrepancy. If there is discrepancy, this shows the channel

is noisy and the noise may be caused by an adversary. If they decide that the error is so

high that they will not be able to recover a secure key from the noisy qubits they may

abort the protocol. If there is a ‘tolerable’ amount of unmatched bits, Alice and Bob
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can use error correction protocols and correct the unmatched bits in the remaining part

of the key. However, as the remaining part of the key is recovered from noisy qubits,

Eve may have information on this key. In order to have perfectly secure key from a

partially insecure key, Alice and Bob perform privacy amplification on their partially

insecure keys. This involves applying a random hash function to their insecure keys

and as a result producing a secure key with a smaller length.

Note that the crucial feature of QKD is that, the adversary Eve cannot clone the state

sent by Alice due to the no-cloning theorem. To gain any information, Eve is forced to

make destructive measurements on the state and forward them to Bob. Hence, Eve’s

existence and actions can be detected by Alice and Bob. In classical communications,

Eve can simply copy the cyphertext without changing it and hence remain undetected.

3.2.2 The protocol

From a uniformly random source generating 2n bits, Alice generates x, b ∈ {0, 1}n.

She encodes the bits in a classical state |ψ〉 as in (3.1), and sends the qubits to Bob.

Note that the state may change while transmission so lets denote Bob’s received state

|ψ′〉. Bob generates n bits b′ = {0, 1}n from a uniformly random source and measures

the qubit in the ith location in the Pauli-Z basis if bi = 0 and in Pauli-X basis if bi = 1

for each i ∈ {0, 1}n and records the outcomes as 0 or 1 on a binary string x′ ∈ {0, 1}n.

Then, he announces the b′ to Alice, and in return, she announces the locations i where

b′i 6= bi. They both throw the x and x′ values corresponding those locations, and left

with raw keys r, r′ ∈ {0, 1}m.

3.2.3 Parameter estimation and error correction

Alice and Bob have to perform error correction for their raw keys in order to use

them as a one-time pad, however before that they have to estimate how much noise is

present in their communication. To do that, they discuss and randomly choose k bits,

k < m, and announce them. By looking at the error rate δ1 := e/k where e is the

number of unmatched bits in k bits, they make an error estimation for the remaining

raw key. Suppose that δ1 is the error rate on the compared k bits and δ2 is the error
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rate on the remaining raw key of m− k bits. Suppose that Alice and Bob decided to

tolerate a maximum error rate of γ on the compared bits. If δ1 ≤ γ, they will perform

error correction on the remaining raw key that can correct for an error rate that is

less than γ + ν, where 0 < ν < 1 − γ. Then, the probability of failure of the error

correction can be written as follows,

Ppe(γ, ν) := P ((δ1 ≤ γ) ∩ (δ2 ≥ γ + ν)) . (3.2)

This probability can be upper bounded based on Serfling’s inequality as[8],

Ppe(γ, ν) ≤ exp

(
−2ν2 (m− k)k2

m(k + 1)

)
. (3.3)

3.2.4 Privacy amplification

Suppose that the error correction is successful and Alice and Bob shares the same

binary string l with length log |l| = m− k. But, they still don’t have perfectly secure

keys. The error causing measurements of Eve and the error correcting information

they shared publicly, leak information about l. Hence, they should somehow map the

partially secure l to another binary string z ∈ {0, 1}t that is perfectly secure. l ∈
{0, 1}m−k can be modelled as a binary string sampled from a random variable L with

a non-uniform distribution given Eve’s knowledgeE. Eve’s probability of guessing L

is 2−Hmin(L|E). Alice and Bob cannot decrease Eve’s probability of guessing l but they

can map l to a smaller binary string z with length t that looks uniformly random from

Eve’s perspective. It should also have a similar probability of guessing, that is, 2−t

should be as close as possible to 2−Hmin(L|E). But, notice that t cannot be more than

Hmin(L|E). Because the secrecy of l cannot be increased without spending another

hidden information. The process of mapping non-uniformly distributed binary string

to a smaller but uniformly distributed binary string is called the privacy amplification.

Privacy amplification is done by using a randomness extractor (2.2.4) that takes a

uniformly random seed s, and an input string l. The failure probability of privacy

amplification is the probability that it fails to produce a perfectly secure z. This is

given by the distance between ρZSE , i.e. the actual state after privacy amplification

and µt ⊗ ρS ⊗ ρE the ideal state where µt is the decoupled maximally mixed state.
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This can be upper bounded in terms of smooth min-entropy 2.2.9 as [3]

δ (ρZSE, µt ⊗ ρS ⊗ ρE) ≤ 1

2

√
2t−H

ε
min(L|E)ρ + ε, (3.4)

3.2.5 The Ekert91

The Ekert91 is the entanglement version of the prepare-and-share protocols[9]. Any

security proof of a quantum protocol in the entanglement version also holds for the

prepare-and-measure version. In the entanglement version, instead of preparing Alice

and measuring Bob, Alice and Bob shares parts of a Bell state and both measure their

parts in either standart basis {|0〉 , |1〉} or Hadamard basis {|+〉 , |−〉}.

|Φ+〉AB =
1√
2

(|00〉+ |11〉) (3.5)

=
1√
2

(|++〉+ |−−〉) (3.6)

If Alice and Bob measures in the same basis their outcome will match with proba-

bility 1, and if they use different basis their outcome will match with probability 1/2.

Therefore, Alice or Bob may announce the bases of measurement just like in prepare

and measure version, and the other side can send the locations of the matching bases

(or non-matching). Remember that, the purpose of Alice and Bob is to produce and

share an identical random key. In prepare and measure protocols, Alice generates

random bit and encodes it with a random basis then sends it to Bob. Then Bob mea-

sures it and announce his basis, then Alice lets him know if the basis matches or not.

In Ekert version, when Alice measures with a random basis, the outcome will always

be uniformly random as the reduced state for both Alice and Bob is I /2. But after

Alice measures, Bob’s state will collapse into whatever Alice’s is, so if Bob measures

with the same basis, he will get the same outcome with probability 1 and if not he

will get it with probability 1/2. Note that a maximally entangled state is necessarily

in a product state with the environment’s state (including Eve’s state). This property

of entanglement is sometimes called as the monogamy of entanglement.

|ψABE〉 = |φAB〉 ⊗ |ψE〉 (3.7)

Therefore, Alice and Bob shares an entangled pair and an adversary can have no

knowledge on the measurements of Alice and Bob. The Ekert version provides a the-

oretical framework for the analysis of the protocols like quantum key distribution and
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quantum key recycling, which may be more favorable over the prepare-and-measure

version while making security proofs.

3.3 Quantum Key Recycling

Two years before the BB84, Charles H. Bennett, Gilles Brassard and Seth Breidbart,

proposed the first quantum key recycling scheme in their paper “Quantum Cryptog-

raphy II:How to re-use a one-time pad safely even if P=NP”[4]. Their idea was to

send a quantum ciphertext instead of a classical ciphertext, so that if an adversary

is present they can detect it by checking if the ciphertext is changed or not. If it’s

not changed, then it’s safe to re-use the one-time pad. The paper was submitted to

“Fifteenth Annual ACM Symposium on Theory of Computing” but got rejected. Af-

ter publishing BB84, Charles H. Bennett and Gilles Brassard decided to drop their

idea of key recycling, thinking that BB84 was a better idea[4]. Thirty years later,

Ivan Damgård, Thomas Brochmann Pedersen and Louis Salvail picked up the idea

and proposed a key recycling scheme together with a security proof, in their paper,

“A Quantum Cipher with Near Optimal Key-Recycling”[10]. However, their scheme

requires the honest users to use quantum computation. In 2017, Serge Fehr and Louis

Salvail proposed a new scheme with a security proof, in their paper, “Quantum Au-

thentication and Encryption with Key Recycling” which does not require quantum

computers and uses BB84 qubits[11]. Their scheme is as follows.

Alice and Bob shares an authentication key k and a basis key θ ∈ {0, 1}n. Alice

and Bob agrees on a MAC function Γ which has the properties described in (2.2.5).

Alice chooses a bit string x ∈ {0, 1}n uniformly at random and encodes it on BB84

qubits (3.1) by using θ. Alice produces a plaintext m then computes the tag t as t =

Γ(m‖x, k). “‖” stands for concatenation. Alice sends t,m through a classical channel

and |x〉 through a quantum channel to Bob. Bob receives the noisy qubits, measures

them in θ-basis recovers measurements x′ and checks if t equals to Γ(m′‖x, k). If

it is Bob accepts, otherwise he rejects. Bob encodes result accept/reject on the bit

w ∈ {0, 1} and sends it to Alice. In accept, they re-use θ and k. In reject, only θ will

be refreshed, k will still be re-used. Notice that, if it was Γ(mi, k) and Eve knows

the plaintexts mi then Eve would gain information on key k. However, in our case
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Eve does not know x. Therefore, in order to get information on k she has to measure

the BB84 qubits. Unless Eve knows θ, she has a chance to disturb the state and get

detected. So, if Bob accepts, the next round key θ′, is set to θ. Otherwise, Alice and

Bob selects θ′ uniformly at random. Note that, as long as the input of a MAC function

holds a considerable uncertainty (see [4]), k is safe to be re-used to authenticate the

message. Alice generates a new, uniformly random x every round, hence, in both

accept and reject cases, k can be re-used. Suppose Eve holds the system E, authors’

claim is, if before the execution, Pguess(θ|E) ≈ 0 and k is uniformly random given

θ and E, then after the execution, Pguess(θ′|E) ≈ 0 and k stays uniformly random

given θ′ and E.

3.4 Security Definition

3.4.1 The Ideal Protocol

The security of a quantum protocol is quantified by bounding its diamond distance to

its “ideal version”.

Definition 3.4.1 (The ideal protocol). Suppose that Alice and Bob want a part of the

classical information, let’s say X, to remain completely hidden from the adversary

Eve after the execution of the protocol. Let F denote the action of the ideal protocol.

F : ρinput → ρideal (3.8)

where,

ρideal =
1

|X|
∑
x∈X

|x〉〈x| ⊗ ρE (3.9)

clearly, X is uniformly random and uncoupled from Eve’s state, i.e. completely un-

known from Eve’s perspective.

27



3.4.2 The Diamond Distance

Definition 3.4.2 (The diamond distance). Let E1, E2 ∈ CPTPM(S(HA),S(HB)).

Then the diamond distance between E1 and E2 is defined as,

‖E1 − E2‖� := sup
ρ∈S(HA⊗HR)

‖E1 ⊗ IR(ρ)− E2 ⊗ IR(ρ)‖1 (3.10)

Let E be the map induced by the real protocol and F be the map induced by the

ideal protocol. Then, the diamond distance between E and F gives the maximum

distinguishing advantage between E and F in a single execution. To illustrate, let an

unknown map be eitherF or E with probability 1/2 and any operation or measurement

on its input space and its the environment is allowed. Then, the maximum probability

of correctly guessing the map, after applying it on an input state once is,

psuccess =
1

2
+

1

2
ε (3.11)

A useful interpretation of ε is; with probability of at least 1− ε, the action of the real

protocol is indistinguishable from the action of the ideal protocol.

3.4.3 Composability

The security defined with the diamond distance is composable. This means, if single

execution of the protocol is ε-secure, two consecutive execution of the protocol is at

least 2ε-secure.

Proof. Let ‖E − F‖� ≤ ε, using triangular inequality in step (3.13) and the fact that

CPTP maps do not increase trace distance [3] in step (3.14),

‖E ◦ E − F ◦ F‖� = ‖E ◦ (E − F) + (E − F) ◦ F‖� (3.12)

≤ ‖E ◦ (E − F)‖� + ‖(E − F) ◦ F‖� (3.13)

≤ ‖E − F‖� + ‖E − F‖� ≤ 2ε (3.14)

This can be clearly generalized to N executions of the protocol. Different maps that

induce diamond distance can also be composed, such as parts of a quantum protocol
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or subsequent rounds of different quantum protocols. Proof.

‖E2 ◦ E1 −F ◦ F‖� = ‖E2 ◦ (E1 −F) + (E2 −F) ◦ F‖� (3.15)

≤ ‖E2 ◦ (E1 −F)‖� + ‖(E2 −F) ◦ F‖� (3.16)

≤ ‖E2 −F‖� + ‖E1 −F‖� ≤ ε2 + ε1 (3.17)

3.4.4 Partitioning the Epsilon

The analysis of quantum key distribution involves composable quantities such as cor-

rectness, secrecy and robustness. Correctness refers to the probability that Alice and

Bob obtain identical keys, secrecy refers to the probability that Eve is clueless about

the keys that Alice and Bob obtains, robustness refers to the probability that Alice

and Bob rejects and the output is discarded. To illustrate, let quantum key distri-

bution protocol induces a CPTP map EQKDABE→KAKBTE that maps initial state of Alice,

Bob and Eve in combined systemABE to key states inKAKB. Alice and Bob’s pub-

lic discussions are encoded in the state in T . Let KA, KB ∈ K ∪ {⊥}, K := {0, 1}l

and {⊥}∩K = ∅. K is the set of keys Alice and Bob accept after execution and {⊥}
is the reject set.

EQKDABE→KAKBTE(|ΨABE〉〈ΨABE|) = p⊥ |⊥〉〈⊥| ⊗ ρTE + (1− p⊥)ρKAKBTE (3.18)

where,

ρKAKBTE =
∑

ka,kb∈K,t∈T

pkakbt |kakbt〉〈kakbt| ⊗ ρEkakbt (3.19)

Let F define the ideal map,

F(|ΨABE〉〈ΨABE|) = µKAKB ⊗ ρTE (3.20)

µKAKB =
1

22l
I (3.21)

then, ε-security,[12]

1

2
||ρKAKBTE − µKAKB ⊗ ρTE||1 ≤ εsecure (3.22)

ε-correctness,[3]

(1− p⊥) Pr [K 6= K ′] ≤ εcorr (3.23)
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ε-secrecy,[3]

(1− p⊥)
1

2
‖ρKAKBTE − µKAKB ⊗ ρTE‖1 ≤ εsecr. (3.24)

and ε-robustness is εrobust = p⊥.

Furthermore, ε-security is upper bounded with ε-correctness and ε-secrecy as,

εsecure ≤ εsecr + εcorr (3.25)

3.4.5 6-state and 8-state Encodings

In a quantum key recycling protocol, the security and the rate of the protocol may

depend on the selection, and number of the bases used to encode the binary infor-

mation on the qubits [13]. As seen in quantum key distribution and quantum key

recycling protocols, one can encode one bit of information g ∈ {0, 1} in 4-states

|0〉 , |1〉 , |+〉 , |−〉 according to the value of g and the basis basis b ∈ {0, 1}. These

states are commonly called as the BB84 states. Another method of encoding is the

6-state encoding. Here, the basis key for encoding one bit is b ∈ {0, 1, 2}, and a qubit∣∣ψbg〉 is defined as, ∣∣ψ0
0

〉
:= |+x〉

∣∣ψ1
0

〉
:= |+y〉

∣∣ψ2
0

〉
:= |+z〉 (3.26)∣∣ψ0

0

〉
:= |−x〉

∣∣ψ1
1

〉
:= |−y〉

∣∣ψ2
2

〉
:= |−z〉 (3.27)

where |±x〉 |±y〉 |±z〉 denote the eigenkets of Pauli matrices σx, σy, σz. Finally, g

can be encoded into 8-states with four bases (u,w) ∈ {0, 1}× {0, 1} [13],

|ψuwg〉 : = Euw |ψg〉 (3.28)

= (−1)gu
[
(−
√
i)g cos

α

2
|g ⊕ w〉+ (−1)u(

√
i)1−g sin

α

2
|g ⊕ w〉

]
(3.29)

where Euw := σu+2w and cosα := 1/
√

3. It has been demonstrated that 8-state

encoding provides more favorable security bounds and secure transmission rates than

6-state encoding and 4-state encoding for quantum key recycling [13].

3.5 Post-selection

In the Ekert91 version of the protocol Eve prepares the initial state in S(H⊗nABE), and

distribute sub-systems A and B to Alice and Bob and keeps E to herself. As a result,
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the attack that Eve can make depends on the preparation of the initial state and Eve’s

action on her sub-system E.

Definition 3.5.1 (Eve’s attacks). The general attacks refer to the attacks without any

constraints.

The collective attacks introduces two constraints [14],

• The initial state is of the form ρABE = σ⊗n ∈ S(H⊗nABE).

• The measurement device on AB system is memoryless (results don’t effect

other measurements) and makes measurements individually. This constraint

is not valid for Eve, Eve can make measurements on the combined space and

hence the name collective attacks.

General attacks introduce many complications on the security proofs. Therefore, the

protocols are commonly modeled under collective attacks and generalized to general

attacks by the post-selection argument.

Let E be the map induced by a quantum protocol and act on S(H⊗nAB). Let F be the

map induced by the ideal version of the protocol. The post-selection argument [17]

states that if E is invariant under the permutations of the input states, then ε′-security

against general attacks implies ε-security against collective attacks.

(General attacks) ε′ : = ‖E − F‖� (3.30)

: = max
ρ∈S(HR⊗H⊗nABE)

‖(I ⊗ E − I ⊗F) (ρ)‖1 (3.31)

(Collective attacks) ε : = max
σ∈S(HABE)

∥∥(E − F)
(
σ⊗n

)∥∥
1

(3.32)

Post-selection argument,

‖E − F‖� ≤ (n+ 1)d
2−1 max

σ∈S(HABE)

∥∥(E − F)
(
σ⊗n

)∥∥
1

(3.33)

=⇒ ε′ ≤ (n+ 1)d
2−1ε (3.34)

where, d denotes the dimension of Alice and Bob subspace HAB. The σ that max-

imizes (3.32) is a pure state of ABE system and can be written as a 1-dimensional

projector,

σ := |ΨABE〉〈ΨABE| (3.35)
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Proof. Let an arbitrary density state be expanded as ρ = pρ0 + (1 − p)ρ1, ρ0 and ρ1

has orhogonal support when ρ is not pure. By using linearity of CPTP maps and the

triangular inequality,

‖E(ρ)−F(ρ)‖1 ≤ p ‖E (ρ1)−F (ρ1)‖1 + (1− p) ‖E (ρ2)−F (ρ2)‖1 (3.36)

≤ max {‖E (ρ1)−F (ρ1)‖1 , ‖E (ρ2)−F (ρ2)‖1} (3.37)

Let π be a CPTP map that randomly permutes the n-subspaces (that are in tensor

product) of the state space S(H⊗n). The CPTP map E ◦ π is permutation invariant

under its input states if E does not apply any operation depending on the action of π.

Post-selection argument can be used if Alice and Bob starts the protocol by randomly

selecting a permutation for their qubits and forgetting about it.

3.6 Noise Symmetrization

The noise symmetrization [3] is a mapping of the initial state that lets us write the

reduced state of Alice and Bob as a mixture of pure Bell states. Let Σ be the CPTPM

induced by noise symmetrization and σAB := Σ(trE σ), then

σAB = λ0

∣∣Ψ−〉〈Ψ−∣∣+ λ1

∣∣Φ−〉〈Φ−∣∣+ λ2

∣∣Ψ+
〉〈

Ψ+
∣∣+ λ3

∣∣Φ+
〉〈

Φ+
∣∣ (3.38)

where λ0 +λ1 +λ2 +λ3 = 1, |Ψ−〉〈Ψ−| , |Φ−〉〈Φ−| , |Ψ+〉〈Ψ+| , |Φ+〉〈Φ+| are the Bell

states and Σ is defined as

Σ : ρAB 7→ 1

4

3∑
i=0

(σi ⊗ σi) trE σ(σi ⊗ σi) (3.39)

for any ρAB ∈ S(HAB) where σi ’s are the Pauli matrices including the identity, σ0.

Σ(ρAB) produces a density matrix diagonal in the Bell basis. Hence, if Alice and Bob

publicly selects Pauli matrices, uniformly and independently at random, and apply it

on their individual states, their joint state can be written as a simple convex sum over

pure Bell states.

Let Alice and Bob apply the same, randomly chosen Pauli matrix to their state σAB

and perform measurement in the same basis. Alice gets the bit x, Bob gets y. If the

state produces x = y with a probability γ, their state before the measurement should
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be in the form [15],

σAB = (1− 3γ

2
)
∣∣Ψ−〉〈Ψ−∣∣+

γ

2

∣∣Φ−〉〈Φ−∣∣+
γ

2

∣∣Ψ+
〉〈

Ψ+
∣∣+

γ

2

∣∣Φ+
〉〈

Φ+
∣∣ . (3.40)

3.7 Purification

There is unitary freedom in the purification of σAB. In [16], the purification is written

as,

∣∣ΨABE
〉

=

√
1− 3

2
γ
∣∣Ψ−〉⊗ |m0〉+√
γ

2

(
−
∣∣Φ−〉⊗ |m1〉+ i

∣∣Ψ+
〉
⊗ |m2〉+

∣∣Φ+
〉
⊗ |m3〉

)
(3.41)

where {|mi〉}i is an orthonormal basis and Eve’s Hilbert space can be chosen asHE .

3.8 Quantum key recycling with Noise

This section is intended as a summary of [5]. Alice and Bob share some secret keys

beforehand and publicly agree to use some functions during the executing the proto-

col. Alice wants to send a plaintext mbare to Bob securely without consuming any

key material. Therefore in each round, Alice sends next round keys concatenated

with plaintext. If the protocol succeeds, they would gain the same amount key mate-

rial that they consumed. But if it fails, they consume their keys completely and next

round keys would be unsecure to use and hence discarded. In both cases, plaintext

is transmitted securely. Considering the odds of failing, Alice and Bob may choose

to allocate some part of the plaintext to send key information. So after some num-

ber of rounds, if the protocol fails, they can consume the key material sent inside

the plaintexts and continue executing the protocol. Description of the protocol is as

follows. The assumptions are: Eve has no access to Alice’s and Bob’s devices,i.e.

the information that is generated locally by Alice, and the calculations that Alice

and Bob make. Eve has unbounded quantum memory and unbounded computation

power. In prepare-and-measure version, Alice prepares n qubits individually, and

sends them individually to Bob. In EPR version, Alice and Bob shares n pairs of

EPR states and they perform their measurements individually and separately on each
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pair. Furthermore, Eve prepares the initial state in EPR version. Eve may perform

any measurement on her combined subspace after n rounds, i.e., H⊗nE . The initial

state of Alice, Bob and Eve is prepared and distributed by Eve. Alice and Bob then

publicly choose a permutation, uniformly at random, and apply it to their initial state.

This guaranties that their protocol is permutation invariant and allows to make the

post-selection argument. Then, Alice and Bob applies the same random Pauli to each

of their n qubits individually (noise symmetrization). As a result, the initial state is

written as a purification with one free variable which is the error rate γ. This greatly

simplifies the subsequent analysis.

3.8.1 Prepare-and-measure version

3.8.2 Before execution

Alice and Bob privately share,

• a basis key b ∈ Bn

• two MAC keys k1
MAC, k

2
MAC ∈ {0, 1}λ

• an extractor seed u ∈ U

• a one-time-pad key for protecting syndrome ksyn ∈ {0, 1}a

Alice and Bob publicly agree to use,

• a pairwise independent hash function Ext : U × {0, 1}n × Bn → {0, 1}` × Bn

• a MAC function Γ : {0, 1}λ × {0, 1}n+`+a → {0, 1}λ

• a linear error correcting code with encoder Syn : {0, 1}n → {0, 1}a and de-

coder SynDec : {0, 1}a → {0, 1}n

3.8.3 During execution

Encryption
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Alice, independently from Bob and Eve

• generates a uniformly random bit string x ∈ {0, 1}n

• generates a uniformly random key k ∈ {0, 1}2λ+a

• produces a plaintext mbare ∈ {0, 1}`
′ where, `′ := `− 2λ− a

By using the shared key material and her generated material, Alice computes

1. m = mbare ‖k. (m ∈ {0, 1}`. “‖” denotes concatenation.)

2. s = ksyn ⊕ Syn(x)

3. z‖b′ = Ext(u, x‖b)

4. c = m⊕ z

5. τ = Γ (k1
MAC, x‖c‖s)

Finally, she encodes x to qubits with shared basis key b

|Ψ〉 =
n⊗
i=1

|ψbixi〉 (3.42)

and sends |Ψ〉, s, c, τ to Bob.

Decryption

Bob receives |Ψ′〉, s′, c′, τ ′ and

1. measures |Ψ′〉 in the b-basis and obtain x′ ∈ {0, 1}n,

2. recovers x̂ = x′ ⊕ SynDec (ksyn ⊕ s′ ⊕ Synx′),

3. computes ẑ‖b̂′ = Ext(u, x̂‖b) and m̂ = c′ ⊕ ẑ,

4. accepts if τ ′ = Γ (k1
MAC, x̂ ‖c′‖ | s′) and syndrome decoding is successful. Re-

ject otherwise.

5. Sends Accept/Reject bit w (if accepts, w = 0, if rejects, w = 1) and an authen-

tication tag χ = Γ(k2
MAC, w) to Alice.

6. If Accept, parse m̂ as m̂bare ‖k̂, as the length of k is known.
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3.8.4 After execution

• If Accept, set b← b′, (k1
MAC ‖k2

MAC‖ ksyn)← k. Re-use u.

• If Reject, refresh k1
MAC, k

2
MAC, ksyn, b, u.

If accept, Alice and Bob send the same amount of key material they consume during

the round. Basis key b, mac keys k1
MAC, k

2
MAC ∈ {0, 1}λ and syndrome one time

pad ksyn ∈ {0, 1}a are replaced by the sent material, while extractor seed u is re-

used. Moreover, Alice sends the plaintext mbare to Bob. If reject, Alice and Bob lose

k1
MAC, k

2
MAC, ksyn, b, u but mbare is still sent. The remaining part proves the security

of this quantum key recycling protocol.

3.9 The security proof

The security proof of the protocol is done on the EPR version of the protocol. This

also proves the security of the prepare-and-measure version [6]. In prepare-and-

measure Alice randomly generates a x ∈ {0, 1}, encodes x in b-basis and sends it

to Bob through a noisy channel. In EPR version, Alice and Bob shares a noisy EPR

pair, Alice and Bob measure the qubits in b-basis. Alice’s measurement outcome is

x ∈ {0, 1} and Bob’s is y ∈ {0, 1}. The other steps are the same in both versions.

The map induced by EPR version of the protocol is,

E = P ◦M ◦ I ◦ Σ ◦ π (3.43)

Here, π randomly permutes the states as defined in 3.5, Σ randomly applies Pauli

operators to each n-partite states 3.39, I adds the state of the basis key b in tensor

product,M measures Alice and Bob spaces separately in basis b, P performs post-

processing.

The protocol starts with a random permutation therefore the post-processing argument

can be used and one can assume Eve prepares n identical and independent states σ⊗n.
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After noise-symmetrization, σ =
∣∣ΨABE

〉〈
ΨABE

∣∣ where

∣∣ΨABE
〉

=

√
1− 3

2
γ
∣∣Ψ−〉⊗ |m0〉+√
γ

2

(
−
∣∣Φ−〉⊗ |m1〉+ i

∣∣Ψ+
〉
⊗ |m2〉+

∣∣Φ+
〉
⊗ |m3〉

)
(3.44)

Then Alice and Bob put their basis key in working memory, which is in a maximally

mixed state.

I(σ⊗n) = Eb |b〉〈b| ⊗ σ⊗n (3.45)

where b ∈ B and Eb(.) :=
∑

b pb(.), i.e. expectation over the states denoted the by

subscript of E.

Alice and Bob measure their states in b-basis which results in,

M(Eb |b〉〈b| ⊗ σ⊗n) = Ebxy |bxy〉〈bxy| ⊗ ρEbxy (3.46)

where x, y ∈ {0, 1}n

ρEbxy:=
n⊗
i=1

σbixiyi (3.47)

and,

σbixiyi :=
∣∣Ebi

xiyi

〉〈
Ebi
xiyi

∣∣ . (3.48)

Since
∣∣Ebi

xiyi

〉〈
Ebi
xiyi

∣∣’s are in tensor product, without loss of generality one can define

it for the arbitrary x, y ∈ {0, 1} and b ∈ B where B only encodes one bit. Then

the
∣∣Eb

xy

〉〈
Eb
xy

∣∣ are defined with a vector v and the vector is defined according to the

elements in basis set B. Let unit vector v := (v1, v2, v3), v1, v2, v3 ∈ R and |v ·m〉
denotes v1 |m1〉+ v2 |m2〉+ v3 |m3〉, then

σvxy:=
∣∣Ev

xy

〉〈
Ev
xy

∣∣ . (3.49)
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|Ev
01〉 =

1√
1− γ

[√
1− 3

2
γ |m0〉+

√
γ

2
|v ·m〉

]
(3.50)

|Ev
10〉 =

1√
1− γ

[√
1− 3

2
γ |m0〉 −

√
γ

2
|v ·m〉

]
(3.51)

|Ev
00〉 =

1√
2 (1− v2

3)

[
(−v1v3 − iv2) |m1〉+ (−v2v3 + iv1) |m2〉+

(
1− v2

3

)
|m3〉

]
(3.52)

|Ev
11〉 =

1√
2 (1− v2

3)

[
(−v1v3 + iv2) |m1〉+ (−v2v3 − iv1) |m2〉+

(
1− v2

3

)
|m3〉

]
.

(3.53)

To exemplify, in 8-state encoding v is defined as[13],

v =
−1√

3


(−1)u

(−1)u+w

(−1)w

 (3.54)

where (u,w) ∈ {0, 1}× {0, 1} and b ∈ {(00), (01), (10), (11)}. An important prop-

erty regarding σbxy is[5],

Exyσbxy =

(
1− 3

2
γ

)
|m0〉〈m0|+

γ

2

3∑
i=1

|mi〉〈mi| . (3.55)

The measurement is followed by the post-processing operator P . The output state

of P is written with assuming the authentications don’t give false positive results.

The probability of fail of the MAC functions with key length log |kMAC | = λ is

P (Γ(kMAC ,m
′) = Γ(kMAC ,m)|m′ 6= m) = 2−λ. Assuming this does not occur

will add 2−λ to the trace distance. Therefore, considering Γ is used two times, with

separate keys k1
MAC and k2

MAC one can assume that authentications are successful by

adding 2 · 2−λ to the trace distance.

‖E − F‖� = ‖E − EAuth + EAuth −F‖� (3.56)

≤ ‖EAuth − E‖� + ‖EAuth −F‖� (3.57)

≤ 2 · 2−λ + ‖EAuth −F‖� (3.58)

Hence upper bound of the authenticated protocol implies the upper bound of the ac-

tual protocol. Note that, authenticated protocol does not involve two MAC keys and
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sets s′ = s, c′ = c, ω′ = ω.

P(ρABE) = Exyubksyn
∑
zb′s

|xyubzb′ksyn〉〈xyubzb′ksyn|

⊗ Em
∑
b̃ũcω

|b̃ũmscω〉〈b̃ũmscω| ⊗ ρEbxy

· δs,ksyn⊕Synxδz||b′,Ext(u,x||b)δc,m⊕z

{
ωθxyδũuδb̃b′ + ω̄θxy

1

|B||U|

}
(3.59)

where the success/fail of error correction is denoted by

θxy :=

 1 if Hamm(x⊕ ȳ) ≤ t

0 otherwise
(3.60)

Hamm(.) denotes the Hamming weight (i.e. the number of non-zero symbols in its

input). Hence, if the bit error is less than t, the error correction succeeds (θxy = 1)

and fails otherwise (θxy = 0). Note that, for error parameter γ and tolerated error t

[5],

Pcorr(t, γ) = Exyθxy =
t∑

k=0

 n

k

 γk(1− γ)n−k (3.61)

Some takeaways regarding (3.59),

• If Bob accepts (w = 1) the next round keys are b̃ = b′, ũ = u, if he rejects

(w = 0), b̃ and ũ is chosen uniformly at random from B and U respectively.

• ksyn, u, b have uniform distributions. This cannot be said for M contains mbare,

m = mbare||k.

Finally, in accordance with the assumption that Alice’s and Bob’s devices are only ac-

cessible by Alice and Bob, the parts that are residing in their devices, i.e.,XY UBZB′Ksyn

will be traced out. The remaining parts are the outputs of the protocol; Eve’s subsys-

tem, the public messages and the next round keys, EΩCSMB̃Ũ . Hence,

EAuthQKR(ρABE) = trXY UBZB′Ksyn P ◦M(ρABE) = ρB̃ŨMSCΩE (3.62)

ρB̃ŨMSCΩE = Eb̃ũms
∑
cω

2−`|b̃ũmscω〉〈b̃ũmscω|

⊗
[
ωρE

b̃ũmc,[ω=1]
+ ω̄ρE

b̃ũmc,[ω=0]

] (3.63)
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where,

ρE
b̃ũmc,[ω=1]

:= Exyθxy2`
∑
b

δ(m⊕c)‖b̃,Ext(ũ,x‖b)ρ
E
bxy (3.64)

ρE
b̃ũmc,[ω=0]

:= ExyθxyEbρEbxy (3.65)

Note that, S is decoupled and uniformly distributed in both w = 0 and w = 1 because

S is one-time padded with ksyn.

3.9.1 Ideal protocol

The ideal protocol should decouple next round keys, from Eve’s state and public

states. Hence it can be defined as replacing B̃ŨK-state of ρB̃ŨMSCΩE with a max-

imally mixed state. Moreover, if Eve does not know the plaintext mbare, it should

also decouple its state from the rest. Let F ′ represent the map induced by the ideal

protocol when Eve does not know the plaintext and F when she does. Hence,

F ′
(
σ⊗n

)
= R′

(
ρB̃ŨMSCΩE

)
= Eb̃ũm|b̃ũm〉〈b̃ũm| ⊗ ρ

SCΩE (3.66)

F
(
σ⊗n

)
= R

(
ρB̃ŨMSCΩE

)
= Eb̃ũk|b̃ũk〉〈b̃ũk| ⊗ ρ

Mbare SCΩE. (3.67)

Although there seems to be two different ideal maps, because of the 2-universal prop-

erty of the extractor function (i.e. Eũδ(m⊕c)‖b̃,Ext(ũ,x‖b) = 1
2l|B| ), mbare is decoupled

from the rest in both ideal states. Hence, F (σ⊗n) = F ′ (σ⊗n) [5].

ρMbare SCΩE = Embare |mbare 〉〈mbare | ⊗ τSC

⊗
∑
ω

|ω〉〈ω| ⊗
[
ωρE[ω=1] + ω̄ρE[ω=0]

] (3.68)

ρE[ω=1] = ExyθxyEbρEbxy (3.69)

ρE[ω=0] = Exyθ̄xyEbρEbxy (3.70)

where τSC is the maximally mixed state in S(HSC) space. The trace distance be-

tween the actual state and ideal state in the non-asymptotic case i.e. finite n, is as

following[5]. Let

f(γ) :=

√(
1− 3

2
γ

)
(1− γ) +

√
3

2
γ(1 + γ) (3.71)
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then the trace distance between actual state and the ideal state can be upper bounded

as, ∥∥(EAuthQKR −F
) (
σ⊗n

)∥∥
1

=
∥∥∥ρB̃ŨKMbare CΩE − µB̃ŨK ⊗ ρMbare CΩE

∥∥∥
1

(3.72)

≤ min

{
Pcorr (t, γ),

1

2

√
2`−n+2n log f(γ)

}
(3.73)

The proof can be found in [5].
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CHAPTER 4

NON-ASYMPTOTIC BOUND WITH SMOOTHING

4.1 Smoothing the state

We introduce smoothing on the state after measurement. The state after the measure-

ment is defined as,

ρ :=M(Eb |b〉〈b|σ⊗n) = Ebxy |bxy〉〈bxy| ⊗ ρEbxy (4.1)

Let G := {0, 1, 2, 3}n, g ∈ G, |mg〉〈mg| :=
⊗n

i=1 |mgi〉〈mgi |, S ⊆ G, PS :=∑
g∈S |mg〉〈mg|. We introduce smoothing on ρ by projecting Eve’s reduced state onto

the eigenspace of PS ,

ρ̄ := Ebxy |bxy〉〈bxy| ⊗ PSρEbxyPS (4.2)

The trace of ρ̄ is as follows,

tr(ρ̄) = tr
(
EbxyPSρEbxyPS

)
(4.3)

= tr

PS {(1− 3

2
γ

)
|m0〉〈m0|+

γ

2

3∑
i=1

|mi〉〈mi|

}⊗n
PS

 (4.4)

Let the set of probabilities {pg}g∈G be defined as,

pg :=

(
1− 3

2
γ

)n−Hamm(g) (γ
2

)Hamm(g)

(4.5)
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where Hamm(.) the is Hamming weight (i.e. number of non-zero symbols). Then

(4.4) becomes

tr

(
PS
∑
g∈G

pg |mg〉〈mg|PS

)
(4.6)

= tr

(∑
g∈S

pg |mg〉〈mg|

)
(4.7)

=
∑
g∈S

pg (4.8)

The following lemma will be used to bound the `1 distance between ρ and ρ̄.

Lemma [3]: Let P(H) be the set of non-negative operators on Hilbert space H,

σ, σ̄ ∈ P(H) such that σ̄ = PσP for some projector P onH. Then,

‖σ − σ̄‖1 ≤ 2
√

tr(σ)(tr(σ)− tr(σ̄)) (4.9)

Using (4.9), tr(ρ) = 1 and tr(ρ̄) =
∑

g∈S pg,

‖ρ− ρ̄‖1 < 2

√
1−

∑
g∈S

pg (4.10)

= 2

√∑
g∈G\S

pg (4.11)

4.2 Bounding the security with smoothing

The `1 distance between the actual state and the ideal state is defined in [5] as,∥∥(EAuthQKR −F
) (
σ⊗n

)∥∥
1

=
∥∥(P −R ◦ P)

(
Ebxy |bxy〉〈bxy| ⊗ ρEbxy

)∥∥
1

(4.12)

This can be upper bounded by the `1 distance on the smooth state,

‖(P −R ◦ P) (ρ)‖1 (4.13)

= ‖P(ρ− ρ̄+ ρ̄)−R ◦ P(ρ− ρ̄+ ρ̄)‖1 (4.14)

≤ ‖P(ρ̄)−R ◦ P(ρ̄)‖1 + ‖P(ρ− ρ̄)−R ◦ P(ρ− ρ̄)‖1 (4.15)

≤ ‖P(ρ̄)−R ◦ P(ρ̄)‖1 + ‖P(ρ− ρ̄)‖1 + ‖R ◦ P(ρ− ρ̄)‖1 (4.16)

≤ ‖P(ρ̄)−R ◦ P(ρ̄)‖1 + ‖ρ− ρ̄‖1 + ‖ρ− ρ̄‖1 (4.17)

= ‖P(ρ̄)−R ◦ P(ρ̄)‖1 + 2‖ρ− ρ̄‖1 (4.18)
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The inequality between (4.16) and (4.17) follows from the fact that CPTP maps do

not increase `1 distance [3].

4.3 Post-processing on the smooth state

P(ρ̄) = Exyubksyn
∑
zb′s

|xyubzb′ksyn〉〈xyubzb′ksyn|

⊗ Em
∑
b̃ũcω

|b̃ũmscω〉〈b̃ũmscω| ⊗ PSρEbxyPS

· δs,ksyn⊕Synxδz||b′,Ext(u,x||b)δc,m⊕z

{
ωθxyδũuδb̃b′ + ω̄θxy

1

|B||U|

} (4.19)

and taking the partial trace,

ρ̄B̃ŨMSCΩE = trXY UBZB′Ksyn P(ρ̄) = Eb̃ũms
∑
cω

2−`|b̃ũmscω〉〈b̃ũmscω|

⊗
[
ωρ̄E

b̃ũmc,[ω=1]
+ ω̄ρ̄E

b̃ũmc,[ω=0]

] (4.20)

where,

ρ̄E
b̃ũmc,[ω=1]

:= Exyθxy2`
∑
b

δ(m⊕c)‖b̃,Ext(ũ,x‖b)PSρ
E
bxyPS (4.21)

ρ̄E
b̃ũmc,[ω=0]

:= ExyθxyEbPSρEbxyPS (4.22)

4.4 "Ideal" post-processing on the smooth state

The ideal map is defined by tracing out B̃ŨK and adding a maximally mixed state in

B̃ŨK after post-processing,

R ◦ P(ρ̄) = R(ρ̄B̃ŨMSCΩE) (4.23)

= Embare |mbare 〉〈mbare | ⊗ τSC ⊗
∑
ω

|ω〉〈ω| ⊗
[
ωρ̄E[ω=1] + ω̄ρ̄E[ω=0]

]
(4.24)

where, ρ̄E[ω=1] := ExyθxyEbPSρEbxyPS and ρ̄E[ω=0] := Exyθ̄xyEbPSρEbxyPS .
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4.5 Security of the smooth state

The security of the smooth state is defined by the trace distance between P(ρ̄) and

R ◦ P(ρ̄). Let this be denoted by D̄,

D̄ : =
1

2
‖P(ρ̄)−R ◦ P(ρ̄)‖1 (4.25)

=
1

2
‖ρ̄B̃ŨMSCΩE −R(ρ̄B̃ŨMSCΩE)‖ (4.26)

Then applying PS on the Eve’s subspace on the derivations for bounding the trace

distance in [5] we get,

2D̄ = ‖ρ̄B̃ŨMSCΩE −R(ρ̄B̃ŨMSCΩE)‖1 (4.27)

= ‖Eb̃ũmc|b̃ũmcω〉〈b̃ũmscω|

⊗ (ρ̄E
b̃ũmc,[ω=1]

+ ρ̄E
b̃ũmc,[ω=0]

− ρ̄E[ω=1] − ρ̄E[ω=0])‖1

(4.28)

= ‖Eb̃ũmc|b̃ũmcω〉〈b̃ũmscω| ⊗
(
ρ̄E
b̃ũmc,[ω=1]

− ρ̄E[ω=1]

)
‖1 (4.29)

= Eb̃ũmc‖ρ̄
E
b̃ũmc,[ω=1]

− ρ̄E[ω=1]‖1 (4.30)

= Eb̃ũmc tr
√

(ρ̄E
b̃ũmc,[ω=1]

− ρ̄E[ω=1])
2 (4.31)

≤ Eb̃mc tr
√

Eũ(ρ̄Eb̃ũmc,[ω=1]
− ρ̄E[ω=1])

2 (4.32)

By expanding the term inside the square root and using P 2
S = PS ,

Eũ(PSρEb̃ũmc,[ω=1]
PS − PSρE[ω=1]PS)2 (4.33)

= Eũ(PSρEb̃ũmc,[ω=1]
PSρ

E
b̃ũmc,[ω=1]

PS − PSρE[ω=1]PSρb̃ũmc,[ω=1]PS

− PSρb̃ũmc,[ω=1]PSρ
E
[ω=1]PS + PSρ

E
[ω=1]PSρ

E
[ω=1]PS)

(4.34)

= Eũ(PSρEb̃ũmc,[ω=1]
PSρ

E
b̃ũmc,[ω=1]

PS − PSρE[ω=1]PSρb̃ũmc,[ω=1]PS) (4.35)

= Eũ(PSρEb̃ũmc,[ω=1]
PSρ

E
b̃ũmc,[ω=1]

PS − PSρE[ω=1]PSρ
E
[ω=1]PS) (4.36)

By putting (4.23) into (4.36) with ρEbx,[ω=1] :=
∑

y px|yθxyρ
E
bxy

= Exx′
∑
bb′

[
22`Eũδm⊕c||b̃,Ext(ũ,x‖b)δm⊕c||b̃,Ext(ũ,x′||b′)

]
PSρ

E
bx,[ω=1]PSρ

E
b′x′,[ω=1]PS −

(
PSρ

E
[ω=1]PS

)2

(4.37)
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By using the 2-universal property of extractor, i.e. EuδExt(u,x),zδExt(x′),z′ = δx,x′ |Z|−1+

(1− δx,x′)|Z|−2,

= Exx′
∑
bb′

[
|B|−2n + δbb′δxx′

(
2`|B|−n − |B|−2n

)]
PSρ

E
bx,[ω=1]PSρ

E
b′x′,[ω=1]PS −

(
PSρ

E
[ω=1]PS

)2

(4.38)

= Exx′
∑
bb′

δbb′δxx′
(
2`|B|−n − |B|−2n

)
PSρ

E
bx,[ω=1]PSρ

E
b′x′,[ω=1]PS

+ Exx′
∑
bb′

|B|−2nPSρ
E
bx,[ω=1]PSρ

E
b′x′,[ω=1]PS −

(
PSρ

E
[ω=1]PS

)2
(4.39)

= Exx′
∑
bb′

δbb′δxx′
(
2`|B|−n − |B|−2n

)
PSρ

E
bx,[ω=1]PSρ

E
b′x′,[ω=1]PS

+
(
PSρ

E
[ω=1]PS

)2 −
(
PSρ

E
[ω=1]PS

)2

(4.40)

=
(
2`|B|n − 1

)
Exx′Ebb′δbb′δxx′PSρEbx,[ω=1]PSρ

E
b′x′,[ω=1]PS (4.41)

Inside ρEbx,[ω=1] there is θxy ≤ 1 and a sum over non-negative operators ρEbxy [5].

Hence, taking θxy = 1 upper bounds (4.41)

≤
(
2`|B|n − 1

)
Exx′Ebb′δbb′δxx′PSρEbxPSρEb′x′PS (4.42)

<
(
2`|B|n

)
Exx′Ebb′δbb′δxx′PSρEbxPSρEb′x′PS (4.43)

= (2`−n)EbxPSρEbxPSρEbxPS (4.44)

By putting (4.44) into (4.32),

D̄ <
1

2

√
2`−n tr

√
EbxPSρEbxPSρEbxPS (4.45)

ρEbx are non-negative operators so EbxρEbxPSρEbx ≤ EbxρbxIρbx and the square root is

operator-monotone. Hence,

≤ 1

2

√
2`−n tr

√
PSEbxρEbxIρEbxPS (4.46)

=
1

2

√
2`−n tr

√
PSEbx(ρbx)2PS (4.47)

The terms Ebx(ρbx)2(4.49) and PS :=
∑

g∈S |mg〉〈mg| commute. Hence,

=
1

2

√
2`−n trPS

√
Ebx(ρbx)2PS (4.48)

where [5],

Ebx(ρbx)2 =

{
(1− γ)

(
1− 3

2
γ

)
|m0〉〈m0|+

γ(1 + γ)

6

3∑
i=1

|mi〉〈mi|

}⊗n
(4.49)
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Let a function f(γ) be defined as[5],

f(γ) : =

{√
(1− γ)

(
1− 3

2
γ

)
+

√
3

2
γ(1 + γ)

}
(4.50)

then, f(γ)n = tr
√

Ebx(ρbx)2. Let the set of probabilities {qg}g∈G be defined as,

qg :=
1

f(γ)n

(
(1− γ)

(
1− 3

2
γ

)) 1
2

(n−Hamm(g))(
γ(1 + γ)

6

) 1
2

Hamm(g)

(4.51)

then the term
√
Ebx(ρbx)2 in (4.48) can be written as

√
Ebx(ρbx)2 = f(γ)n

∑
g∈G qg |mg〉〈mg|.

Putting this into (4.48),

PS
√
Ebx(ρbx)2PS = f(γ)n

∑
g∈S

qg |mg〉〈mg| (4.52)

Finally, putting (4.52) into (4.48) we can write D̄ as

D̄ <
1

2

√
2`−nf(γ)2n(tr

∑
g∈S

qg |mg〉〈mg|)2 (4.53)

=
1

2

√
2`−n+2n log f(γ)+2 log

∑
g∈S qg (4.54)

4.6 Security of the actual state

Putting (4.8) and (4.54) into (4.18) we have,

D <
1

2

(
2`−n+2n log f(γ)+2 log(

∑
g∈S qg)

)1/2

+

( ∑
g∈G\S

pg

)1/2

(4.55)

4.7 The asymptotic rate

In the inequality (4.55), the smoothing terms were induced by
∑

g∈G\S pg |mg〉〈mg|
and

∑
g∈S qg |mg〉〈mg|. Let P0 := |m0〉〈m0| and P1 := |m1〉〈m1| + |m2〉〈m2| +

|m3〉〈m3| then,∑
g∈G

pg |mg〉〈mg| =
((

1− 3γ

2

)
P0 +

γ

2
P1

)⊗n
(4.56)

∑
g∈G

qg |mg〉〈mg| =
1

f(γ)n

(√
(1− γ)

(
1− 3

2
γ

)
P0 +

√
3

2
γ(1 + γ)P1

)⊗n
(4.57)
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Operators (4.56) and (4.57) can be seen as representations of a sequence of n i.i.d.

Bernoulli random variables, G := G1, G2, ..., Gn with probability mass functions P

and Q that are defined on the same probability space G = {0, 1}n. Then for any Gi

in the random variable sequence G,

P(Gi = 0) =

(
1− 3γ

2

)
tr(P0) = 1− 3γ

2
(4.58)

P(Gi = 1) =
γ

2
tr(P1) =

3γ

2
(4.59)

Q(Gi = 0) =
1

f(γ)

√
(1− γ)

(
1− 3

2
γ

)
(4.60)

Q(Gi = 1) =
1

f(γ)

√
3

2
γ(1 + γ) (4.61)

Let, p := P(Gi = 1) and q := Q(Gi = 1) (p ≤ q for 0 ≤ γ ≤ 0.5), Sn :=
∑n

i=1Gi.

Then, Q(Sn) and P (Sn) describe two binomial distributions over the same random

variable Sn. Let, the set S be {g :
∑

i gi ≤ nα} such that p < α < q. Then, by using

the Chernoff bound on the term
∑

g∈S qg in (4.55) we get

D ≤ 1

2

(
2`−n+2n log f(γ)+2 log e

−n(q−α)2
2q

)1/2

+

( ∑
g∈G\S

pg

)1/2

(4.62)

Due to the weak law of large numbers the term
∑

g∈G\S pg in (4.62) asymptoti-

cally goes to zero for p < α. Also, when α is infinitesimally close to p, the term

2 log e
−n(q−α)2

2q takes its minimum value. Selecting α as p in (4.62), defining β as the

error correction rate t/n (3.61) [5] and setting γ in the definitions of p and q to β,

we can compare the asymptotic rates implied by the distance “without smoothing”

(3.72), and “with smoothing” (4.62). The distances (3.72) and (4.62) can be made

exponentially small for l/n < 1− 2 log f(β) and l/n < 1− 2 log f(β) + (q−p)2
q

log e

respectively. The terms that are induced by the post-processing, O(log(n)/n), and the

authentication, 2λ/n, asymptotically go to zero. The syndrome length asymptotically

goes to a/n = h(β). The length of mbare is specified as `′ := ` − 2λ − a (3.8.3).

Hence the asymptotic rates `′/n are; 1 − 2 log f(β) − h(β) without smoothing, and

1− 2 log f(β) + n(q−p)2
q

log e− h(β) with smoothing.
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Figure 4.1: Asymptotic rates l′/n: “with smoothing”, 1− 2 log f(β) + n(q−p)2
q

log e−
h(β), and, “without smoothing” 1− 2 log f(β)− h(β). (3.72), (4.62).

4.8 The non-asymptotic rate

The trace distance between the actual state and the ideal state is given by the minimum

of two terms [5],

d(B̃ŨK |Mbare CΩE) ≤ min

{
Pcorr (t, γ),

1

2

√
2`−n+2n log f(γ)

}
. (4.63)

In [5], an upper bound to d is selected as d ≤ 2−ν where ν is the security param-

eter. The maximum γ that makes Pcorr (t, γ) ≤ 2−ν is denoted as γmax. Note that,

Pcorr (t, γ) is a decreasing function of γ, so when γ ≥ γmax it is apparent that d ≤ 2−ν .

When γ ≤ γmax, observe that, Pcorr (t, γ) ≥ 2−ν . Hence, the second term should be

upper bounded with 2−ν when γ ≤ γmax. The upper bound for γmax is given in [5]

by solving the Chernoff bound for γ as

γmax(t, ν) ≤ γ0(t, ν) :=
t

n
+
ν ln 2

n
+

√
2
t

n

ν ln 2

n
+

(
ν ln 2

n

)2

. (4.64)

The term log f(γ0) in (4.63) is an increasing function of γ. Hence for γ ≤ γmax, `

can be upper bounded as

` ≤ n− 2n log f(γ0)− 2ν − 1. (4.65)

This gives the non-asymptotic rate for ` without smoothing.
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For finding the non-asymptotic rate with smoothing, we selecting S as {g :
∑

i gi ≤
nα} and use the upper and lower tail Chernoff bounds on (4.62),

D ≤ 1

2

(
2`−n+2n log f(γ)−n(q−α)

2

q
log e

)1/2

+ 2e
−n(α−p)2
2(p+α) . (4.66)

We select α that satisfies e
−n(α−p)2
2(p+α) ≤ 2ν

′ for some ν ′ ∈ Z+ as

α =
n p+ ln 2 ν ′ +

√
ln 2 ν ′ (4n p+ ln 2 ν ′)

n
, (4.67)

and we select ` as,

` ≤ n− 2n log f(γ0) +
n(q − α)2

q
log e− 2ν ′ + 4. (4.68)

Putting (4.67) in (4.66) and defining ν ′ := ν + 2 we get

D ≤ 2−ν (4.69)

and using (3.58), ∥∥(EQKR −F)
(
σ⊗n

)∥∥
1
≤ 21−ν + 21−λ. (4.70)

Finally, the non-asymptotic bound on the rate of mbare will be deduced as shown in

[5]. Suppose Alice and Bob are willing to tolerate a maximum distance of θ. Each

round adds η := 21−ν + 21−λ to the distance (4.70). Hence, after N = bθ/ηc rounds

of accept they will refresh the extractor and the basis keys, u and b. The amount of

bits required are specified as [5] log |U| = log |{0, 1}n × Bn| and log |Bn|will be sent

as a part of mbare in each round. The rate of useful classical payload after subtracting

all the expenditure can be written as

A = 1− a

n
− 2 log f(γ0) +

(q − α)2

q
log e−

30 log(n+ 1)

n
− 2λ+ 2ν

n
− 1 + 2 log |B|

N
. (4.71)

|B| is chosen as |B| = 4 (8-state encoding), and error correction length a is[18]

a = nh(β) +
√
nΦinv

(
10−6

)√
β(1− β) log

1− β
β

, (4.72)

where h(.) denotes the binary entropy function and Φ(z):=
∫∞
z

(2π)−1/2 exp [−x2/2] dx.

Also note that, 30 log(n+1)
n

term comes from the post-selection (3.5)

‖EQKR −F‖� ≤ (n+ 1)15
∥∥(EQKR −F)

(
σ⊗n

)∥∥
1
, (4.73)
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Figure 4.2: Non-asymptotic rates A: (4.71) and “without smoothing”. Parameters are

selected according to [5]: N = 1000, θ = 2−128, ν = λ and β = 0.02, 0.04, 0.06. The

dashed lines are the asymptotic rates that are given in (4.7).
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CHAPTER 5

CONCLUSION AND DISCUSSIONS

The properties of quantum mechanics, most notably, the no-cloning theorem and the

destructive measurement, extended our capabilities of securing our information and

let us develop classically impossible schemes like quantum key distribution and quan-

tum key recycling.

This thesis introduces the main concepts and common techniques in quantum me-

chanics, information theory, and cryptography. Then, it gives a review of quantum

key distribution, and quantum key recycling. Since the noise-tolerant quantum key

recycling protocol was published in 2019, the protocol has lacked the use of smooth-

ing method on the non-asymptotic security analysis, and this was left as an open

question in the paper [5]. It was also argued by the authors that using smoothing can

lead to better results on the rate of the protocol. In this thesis, smoothing is done in a

particular way that would increase the rate. Finally, it is demonstrated that under the

same security conditions, the rate with smoothing is higher than the rate in [5] in the

non-asymptotic case.

As a final note, one may consider other ways of doing smoothing, and different con-

centration bounds in the security proof. One may also demonstrate that the non-

asymptotic rate of the protocol converges to the asymptotic rate, which is equal to the

rate of quantum key distribution with one-way post-processing [5].
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