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submitted by ÇAĞAN AKSAK in partial fulfillment of the requirements for the de-
gree of Doctor of Philosophy in Physics Department, Middle East Technical
University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Seçkin Kürkçüoğlu
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ABSTRACT

QUANTUM INFORMATION APPROACH TO CORRELATIONS IN
MANY-BODY SYSTEMS

Aksak, Çağan

Ph.D., Department of Physics

Supervisor: Prof. Dr. Sadi Turgut

September 2022, 55 pages

Quantum correlations are crucial features in both quantum information theory and

many-body physics. Characterization and quantification of quantum correlations have

delivered a rich body of work and helped to understand some quantum phenomena.

Entanglement is a unique quantum correlation for which it is a resource in many quan-

tum information tasks. Developed for quantification of entanglement, entanglement

witness formalism is a remarkable tool in the quantum information toolkit. It can be

deployed beyond the entanglement theory to quantify quantum correlations in many-

body systems. For many-body systems, the particle statistics and indistinguishability

are essential. The relation between indistinguishability and entanglement has to be

studied carefully. In this thesis, first, a class of witness operators for pairing corre-

lations in both fermionic and bosonic systems have been proposed and the necessary

and sufficient conditions for being a witness operator are found. Then, a Clauser-

Horne-Shimony-Holt type test and its bounds for fermions have been demonstrated.

Keywords: Entanglement, identical particles, quantum information, quantum corre-
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lations, pairing
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ÖZ

ÇOK PARÇALI SİSTEMLERDE KORELASYONLARA KUANTUM
BİLİŞİMİ YAKLAŞIMI

Aksak, Çağan

Doktora, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Sadi Turgut

Eylül 2022 , 55 sayfa

Kuantum korelasyonlarının hem kuantum bilişim kuramında hem de çok parçalı sis-

temlerde önemli bir yeri vardır. Kuantum korelasyonlarının nitelikleri ve nicelikleri

çok geniş bir araştırma konusu olduğu gibi bazı kuantum olgularının anlaşılmasında

da yardımcı olmuştur. Dolanıklık, bir çok kuantum bilişim işleminin gerçekleşmesini

sağlayan özel bir kuantum korelasyonudur. Dolanıklık tanık formalizmi kuantum bi-

lişim kuramı içerisinde, dolanıklık ölçülmesi için ortaya koyulmuş güçlü bir yöntem-

dir. Bu yöntem dolanıklık kuramının ötesinde, çok parçalı sistemlerde korelasyonların

ölçülmesi için de kullanılabilir. Çok parçalı sistemlerde, parçacık istatistiği ve ayırt

edilemezliği ayrıca çok önemlidir. Ayırt edilemezlik ile dolanıklık ilişkisinin dikkatle

ele alınması gerekir. Bu tezde, önce fermiyonik ve bozonik sistemler için bir grup

çiftleşim korelasyonları tanığı işlemcisi önerilmiş ve tanık işlemcisi olabilmeleri için

yeterli ve gerekli koşullar gösterilmiştir. Sonra, fermiyonlar için bir Clauser-Horne-

Shimony-Holt türü test ve bu testin limitleri ortaya koyulmuştur.
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Anahtar Kelimeler: Dolanıklık, özdeş parçacıklar, kuantum bilişim, kuantum korelas-

yonlar, çiftleşim
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CHAPTER 1

INTRODUCTION

Since the seminal works of John Stuart Bell [14] which have shown that quantum

mechanics must be nonlocal and Clauser, Horne, Shimony and Holt [22] which in-

troduced a test to nonlocality, entanglement has been the central subject of a great

body of work in physics. Arthur Ekert’s quantum cryptography and Peter Shor’s fac-

torization algorithm [19] had made the interest in the subject grow extraordinarily.

The promise that quantum computers can beat the classical computation limits has

not only attracted physicists but also government agencies and technology companies

around the world [66]. Quantum computers do not only promise faster computations

but also render impossible tasks in classical computers into somewhat everyday tasks.

Regardless of this kind of power, entanglement is still an elusive property of quantum

mechanics and lies at the heart of debates revolving around the nature of reality.

Entanglement is a unique kind of quantum correlation usually defined for spatially

distinct parties. This notion seems natural in quantum information theory because of

the fact that quantum information tasks are especially designed for spatially separated

or distinguishable parties which utilize entanglement for the execution of quantum

information tasks. In order to achieve their goal, the entanglement sharing parties may

need to perform some operations, for instance measurements, in their laboratories.

Obviously, these operations are done locally and the parties may need to classically

communicate to coordinate and decide on the local operations they should do on in

their laboratories. This general setting is known as local operations and classical

communications (LOCC).

Quantum correlations is a rich subject beyond entanglement. Another interesting

aspect of entanglement is that, despite the fact entangled states were born out of
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looking nonlocality in quantum mechanics, nonlocality can exist beyond entangled

states [16]. Indeed, all entangled states exhibit nonlocality [53]. Nevertheless, it is

widely accepted in physics community that alongside with contexuality, entanglement

has solidified the validity of quantum mechanics against alternative theories.

From a foundational and information theoretic point of view the importance of entan-

glement is indisputable. Another growing field in entanglement theory is entangle-

ment in many-body systems. In recent years a plethora of papers were published for

both characterizing and quantification of entanglement in various kinds of systems

such as spin chains, Bose-Einstein condensates, Mott insulators, Majorana fermions,

superconductors, fermionic gases [5]. Since these many-body systems are funda-

mentally different than space-like separated parties, for obvious reasons, it requires a

delicate approach to define entanglement in these systems.

The ground breaking work of Bardeen, Cooper and Schrieffer [9] has shown the im-

portance of pairing. Pairing has strikingly been successful to explain superconduc-

tivity and its explanatory power is not limited to it. It is realized that internal (spin)

states of paired electrons can be used to generate entangled states [51, 67, 68]. This

clearly shows the relation between pairing and entanglement. However, entanglement

is useless from a quantum information viewpoint, unless there is access to it.

This work aims to incorporate tools from entanglement theory to correlations in

many-body systems. In chapter 2, separability, entanglement measures, witness for-

malism, and different approaches to the problem of particle indistinguishability and

entanglement are reviewed. In chapter 3, quantification of pairing correlations using

the witness formalism was presented with the necessary and sufficient conditions. In

chapter 4 we introduce a CHSH test for correlations in fermionic Fock space. The

work presented in chapter 3 is published in [1].

2



CHAPTER 2

ENTANGLEMENT, WITNESS FORMALISM AND PARTICLE

INDISTINGUISHABILITY

Characterization and quantification of entanglement is central in entanglement the-

ory [41]. Along with non-commutativity, entanglement is one of the facets of quan-

tum theory that non-locality is rooted in [20]. Quantum information and computation

science has become a major research area. Testing the ideas and concepts from quan-

tum information on many-body systems has also attracted a lot of interest. One such

endeavor is studying entanglement in many-body systems. Some of the pioneering

works are measuring entanglement in Bose-Einstein condensates, atoms trapped in

optical lattices, area law and entanglement in spin models [5].

Particle identity is a fundamental trait of quantum mechanics. Almost all of the dif-

ferent properties of different many-body systems has its origins on particle statistics.

Symmetrized or anti-symmetrized wavefunctions, in other words permutation of par-

ticle labels may give the impression of entanglement. Therefore entanglement of

indistinguishable particles has to be treated carefully.

In this chapter first separable state definition will be introduced as convex combi-

nation of product states. Then, some fundamental entanglement measures and the

entanglement witness formalism will be presented. Finally, there is a review of dif-

ferent approaches on particle indistinguishability and entanglement.
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2.1 Entanglement

Quantum states are represented on their own Hilbert spaces. Suppose that quantum

systems A and B and their corresponding Hilbert spaces are HA and HB. Then,

the Hilbert space of the composite system AB is HAB = HA ⊗ HB. If the states

of subsytems comprising the total quantum system are exactly known, their state

representations are said to be pure. The pure product states on HAB are of the form

|ψ⟩AB = |ϕ⟩A ⊗ |ϕ⟩B or in short |ψ⟩AB = |ϕAϕB⟩. However, usually states of

subsystems are not pure but a probabilistic mixture of pure states ρiA = |ϕiA⟩ ⟨ϕiA|,
then ρA =

∑
i piρ

i
A; where

∑
i pi = 1. The separable mixed states of a bipartite

system are convex combinations of bipartite product states ρA ⊗ ρB;

ρsep =
∑
µ

λµρ
µ
A ⊗ ρµB (2.1)

where
∑

µ λµ = 1. Pure product states ρiA ⊗ ρjB = |ϕiA⟩ ⟨ϕiA| ⊗
∣∣ϕjB〉 〈ϕjB∣∣ where

Span
{∣∣∣ϕi(j)A(B)

〉}
= HA(B) are the extremal points of this subset. Every member

of this subset can be represented as a convex combination of its extremal points,

namely the pure product states. These mixed separable state are in the form of (2.1).

All bipartite separable states are a subset of all states. This has a clear geometrical

meaning which is pictured in the figure below. A geometrical treatment of quantum

states can be found in [15].

ρsep

Figure 2.1: The set of all separable states is a subset of all states.

However, this picture is not completely true since the extremals of separable state set

is also the extremals of the complete state set.
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ρsep

Figure 2.2: A more accurate illustration of separable state set inside the set of all

states.

Definition 1. Schmidt Decomposition

There exist ortohormal bases
{∣∣iA(B)

〉}
for HA(B), any pure state of the bipartite

system |ψAB⟩ =
∑

m,nAmn
∣∣eAm〉 ∣∣eBn 〉 with subsystem dimensions dA and dB can

be represented in the form of |ψAB⟩ =
∑r

i ci |iAiB⟩ where
∑

|ci|2 = 1 and r ≤
min(dA, dB). This is the Schmidt decomposition of |ψAB⟩ and ci are called Schmidt

coefficients.

This is easily shown by using singular value decomposition of A = UDV where

Amn = UmiDiiVin, Umi
∣∣eAm〉 = |iA⟩, Vin

∣∣eBn 〉 = |iB⟩ and Dii = ci.

An immediate observation is that if more than one of the Schmidt coefficients are non-

zero then |ψAB⟩ is an entangled state. The number of non-zero Schmidt coefficients

r is called Schmidt rank. So that, ρ is entangled if r > 1.

The elementary entanglement quantification is the entropy of entanglement;

Sent = −tr(ρ log2 ρ). (2.2)

For bipartite pure states this can be calculated by first finding the Schmidt decompo-

sition then using the Schmidt coefficients ci; S =
∑

i |ci|2 log2|ci|2.

Schmidt decomposition of a pure bipartite state reveals if the state is entangled. How-

ever, deciding if any given mixed states is entangled requires a different procedure. If

a given bipartite mixed states can be represented as 2.1 it is separable. The elemen-

tary entanglement test for bipartite mixed states is the Peres-Horodecki, also known

as Positive Partial Transpose (PPT) criterion.
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Suppose that X is an operator acting on HAB = HA ⊗ HB. A and B act on HA

and HB respectively. Then, we can write down X =
∑
xij,µν |i⟩ ⟨j| ⊗ |µ⟩ ⟨ν|. A

partial transpose of X with respect to B is XTB =
∑
xij,µν |i⟩ ⟨j| ⊗ |ν⟩ ⟨µ| or X =∑

xij,νµ |i⟩ ⟨j| ⊗ |µ⟩ ⟨ν|. The significance of partial transpose is that if X = A ⊗ B

that is X is a separable operator then a partial transposition of X with respect to A

or B would yield a positive operator otherwise the result is a negative operator. This

criteria is necessary and sufficient for dimensions 2× 2 and 2× 3.

Adopting this result to density operators if ρ =
∑
ρij,µν |i⟩ ⟨j| ⊗ |µ⟩ ⟨ν| and partial

transpose of ρ with respect to B is ρTB =
∑
ρij,νµ |i⟩ ⟨j| ⊗ |µ⟩ ⟨ν| and with respect

to A is ρTA =
∑
ρji,µν |i⟩ ⟨j| ⊗ |µ⟩ ⟨ν|. Then PPT criteria concludes that if ρTB < 0

or ρTA < 0 then ρ is an inseparable state. Actually, negativity of one of the partial

transposes guarantees negativity of the other.

Despite, its usefulness for dim = 2 × 2 or dim = 2 × 3 systems, PPT criteria

fails to be sufficient for higher dimensions [40]. In the literature there are many

other entanglement criteria, some being stronger but extremely difficult to compute.

Also note that, PPT criteria is an abstract, purely mathematical tool which cannot be

applied in laboratory, and requires full knowledge of the state.

2.1.1 Entanglement Measures

Entanglement measurement is one of the pillars of entanglement theory. Some quan-

tum information tasks require manipulation of entangled states and success of these

tasks may depend on the amount of entanglement. Also, there is the problem of state

transformation. Some states can be converted into another one by local operations

and classical communication if and only if the final state is not more entangled than

the initial state. A comprehensive review for entanglement measures can be found

in [65].

An entanglement measure E satisfies the following properties:1) Monotonicity un-

der LOCC: The parties sharing a quantum state can apply local operations on the

parts they have access and and these parties can talk to each other through classical

communication, and manipulate the quantum state they share. The final state after
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this manipulation cannot have more entanglement than the initial state. This LOCC

paradigm implies an operational context to E. Let Λ be a LOCC protocol then,

E(Λ(ρ)) ≤ E(ρ). 2) Zero for separable states: An entanglement measure E must

be zero for any separable state E(ρsep) = 0. 3) Convexity: Mixture of entangled

states cannot increase total entanglement on average E(
∑

i piρi) ≤
∑

i piE(ρi)

• Concurrence: C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} is the concurrence of a

mixed qubit state where λi’s are eigenvalues of the matrix R in decreasing or-

der. The matrixR is defined asR =
√√

ρρ̃
√
ρwith ρ̃ = (σy ⊗ σy) ρ

∗ (σy ⊗ σy)

is time reversed form of ρ.

• Entanglement of Formation: EF = inf
pi,ρi

∑
i

piE(ρi) is the convex roof exten-

sion of a pure state measure E and infimum is taken over all possible decom-

positions of ρ. For instance,if E is chosen as the entanglement entropy for a bi-

partite state of ρAB, EF = inf
pi,|ψAB⟩i

∑
i

piS(ρA,i), ρA,i = trB(|ψAB⟩i ⟨ψAB|i).

However, it is extremely difficult to find an analytical closed form for EF . For

two qubits, EF can be calculated from concurrence

EF (ρ) = h

(
1 +

√
1− C2(ρ)

2

)
where h(x) = −x log2 x− (1− x) log2(1− x).

• Distillable Entanglement: Most of the important tasks in quantum information

and computation deploy maximally entangled states as resources. Therefore,

creation of these states is a vital job. Suppose there are a large number, n, of

copies of a state ρ. The goal is using an LOCC protocol Λ to transform ρ⊗n to

Φ2rn = |ϕ+⟩ ⟨ϕ+|⊗rn. This kind of LOCC protocols are called distillation.

ED(ρ) = sup
{
r : lim

n→∞

[
inf
Λ

∥Λ
(
ρ⊗n
)
− Φ2rn∥1

]
= 0
}

where ∥ · ∥1 is the trace norm of a matrix M ; ∥M∥1 = tr(
√
MM †).

• Entanglement Cost: Entanglement CostEC might be thought as the reverse of

ED. In this case from a large number of singlets, a state ρwill be approximated.

ED measures the number of singlets committed for this purpose.

EC(ρ) = inf
{
r : lim

n→∞

[
inf
Λ

∥ρ⊗n − Λ (Φ2rn) ∥1
]
= 0
}

7



• Relative Entropy: Relative entropy ER measures the distance of a state ρ from

the separable set

ER = inf
σ
S (ρ∥σ)

where the infimum is taken over the separable state set and

S (ρ∥σ) = tr {ρ log2 ρ− ρ log2 σ}. Relative entropy measures quantum cor-

relations of a state by comparing to a separable state which does not posses

quantum correlations.

• Logarithmic Negativity: Based on the virtue of PPT criteria, negativity is the

sum of negative eigenvalues in ρTB

N (ρ) =
∥ρTB∥1 − 1

2
.

Logarithmic Negativity is defined as, EN = log2(∥ρTB∥1)

2.2 Quantum Operations, Completely Positive Maps and Entanglement Wit-

nesses

Quantum operations are convex linear mappings that take a density matrix ρ in H to

ρ′ in H′. Let L(H) be the set of square linear operators on H

ε(ρ) = ρ′

ε

(∑
k

pkρk

)
=
∑
k

pkε(ρk)

ε : L(H) −→ L(H′) .

(2.3)

ε is trace preserving and positive, tr (ε(ρ)) = 1 and ε(ρ) ≥ 0. We also require

that quantum operations can be applicable on composite systems. Suppose that A is

an ancilla added to system X and their joint density matrix is ρAX . If ε is a quantum

operation acting onX and leaving the ancillaA unchanged in ρAX , then the extension

ε′ = IA ⊗ ε represents the total operation on ρAX . So, ε′ (ρAX) = ρ′AX and ε′ :

L(HA ⊗ HX) → L(HA ⊗ H′
X). Since we require ε′ to be a physically realizable

operation on ρAX , we demand the same properties; ε′ must be positive and trace

preserving.
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Definition 2. Completely Positive Maps

If ε′ = IA ⊗ ε is positive for any HA then ε is a completely positive map. If ε′

is a completely positive map, then there exist operators {Mi} such that; ε′(ρ) =∑
iMiρM

†
i . Mi are Kraus Operators and

∑
iMiM

†
i = 1.

Transposition operation which is a positive map, i.e. T : L(H) → L(H) and it can

be redefined to act on one part of a composite Hilbert space. Let TX be the transposi-

tion operation on space HX . If the composite Hilbert space is H = HA ⊗HX , then

[IA ⊗ TX ] is the transposition operation on HX . We already know that partial transpo-

sition of entangled states are not positive, they have negative eigenvalues. Therefore

transposition is a positive(P) but not a completely positive(CP) map. The fact that

there exist maps T such that for a composite state ρ, [I⊗ T ] ρ ≱ 0 is the essence of

Peres-Horodecki criteria [40].

Definition 3. Entangled State

Suppose T is any positive but not completely positive map. If,

[I⊗ T ] (ρ) ≱ 0 (2.4)

then ρ is entangled.

2.2.1 Entanglement Witnesses

Let DAB be the set of all states and SAB is the subset of all separable states; so

that, SAB ⊂ DAB. SAB is a convex subset with elements Eq.2.1. The sketch of its

geometric interpretation is shown in Fig.s 2.1 and 2.2.

Hyperplane Separation (Hahn-Banach) Theorems

Theorem 1. If S is a convex set in Rn and x ∈ Rn is a point such that x /∈ S, then

there exists a hyperplane H that separates S and x such that dim(H) = n − 1 and

H ∩ S = ∅.

Corollary 1. Let S1 and S2 be two convex sets in Rn such that S1 ∩ S2 = ∅, then

there exists a hyperplane that separates S1 and S2.

Note that a single element set is also a convex set. Suppose that ρe is an entangled

state therefore ρe /∈ SAB.
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S
x0

x

H

(a) Hyperplane H separates x from S

SAB

ρe

σ

⟨O⟩

(b) ⟨O⟩ defines a hyperplane in DAB

Figure 2.3: Hyperplane separation of a convex subspace

Theorem 2. Let S be a convex linear set, x0 ∈ S and x /∈ S. There is a real linear

functional f such that; f(x) < c ≤ f(x0).

Suppose u ∈ Rn and c ∈ R, then the set H = {u|f(u) = c} is a hyperplane in Rn. It

is possible to adopt this fact to our needs as follows: Suppose ρ ∈ DAB and O is a

Hermitian operator, then ⟨O⟩ = tr (Oρ) = c defines a hyperplane.

tr (σO) ≥ c,∀σ ∈ SAB

tr (ρeO) < c
(2.5)

Any operator that obeys above conditions can be minimized over the set of separable

states SAB. Let, msep = min
ρ∈SAB

tr (ρO) and define Õ = O−msep1.

Entanglement Witness [73]

A Hermitian operator W is an entanglement witness if;

tr (σW) ≥ 0 ∀σ ∈ SAB

tr (ρeW) < 0 ∃ ρe entangled .
(2.6)
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Witness operators are powerful tools for detecting entanglement in quantum states.

They do not require full knowledge of the state and they are experimentally realizable.

These are substantially helpful properties for detecting entanglement shared between

many particles. It was already discussed that there are maps which are positive when

applied to a system but are not necessarily positive when applied on subsystems.

These positive but not completely positive maps can detect entanglement. One such

map is transposition. Now it will be shown that these maps can be represented as

operators which can serve as entanglement witnesses.

Theorem 3. Choi-Jamiołkowski Isomorphism Let A1 and A2 be linear operator

algebras on Hilbert spaces H1 and H2 respectively. L(A1,A2) is the space of linear

maps from A1 to A2. Then there exists a linear transformation T such that

T : Φ ∈ L(A1,A2) → A1 ⊗A2,

T (Φ) is defined through [T (Φ), A†
1⊗A2]HS = [Φ(A1), A2]HS . [. , . ]HS is the Hilbert-

Schmidt inner product for operator Hilbert spaces and [A,B]HS = tr(B†A). The

operator form of Φ, denoted as CΦ = T (Φ) ∈ A1 ⊗A2, is called Choi operator and

can be found by;

T (Φ) = CΦ = (Φ⊗ 1H2)
(∣∣ψ+

〉 〈
ψ+
∣∣) ,

where |ψ+⟩ =
∑d

i=1 |ei⟩ |ei⟩, d = dimH1 and {|ek⟩} is an orthonormal basis of H1.

The Choi-Jamiołkowski isomorphism lets constructing witness operators associated

with positive but not completely positive maps

Let Λ : L (HX) → L (HX) be a linear map and let A be an ancilla system with the

same dimension; dimHA = dimHX = N . Then, |ψ+⟩AX =
∑N

i=1 |i⟩A ⊗ |i⟩X and

|ψ+⟩ ⟨ψ+| =
∑

i,j |ii⟩ ⟨jj| =
∑

|i⟩ ⟨j|A ⊗ |i⟩ ⟨j|X . The Choi operator is, then,

CΛ = (1A ⊗ ΛX) (|Φ⟩ ⟨Φ|)

=
∑
i,j

|i⟩ ⟨j|A ⊗ ΛX (|i⟩ ⟨j|X) .
(2.7)

This is how Choi operator for a given map is constructed. However, the reverse is

also possible and is given as follows:

Λ(ρ) = trA
[(
1A ⊗ ρTX

)
CΛ

]
11



The relation between a linear map Λ and its Choi operatorCΛ is crucial if the Choi op-

erator is required to be eligible for being an entanglement witness. Following lemma

resolves the question of whether a Choi operator can be an entanglement witness.

Lemma 1. a) CΛ is positive semi-definite if and only if Λ is completely positive

b) CΛ is an entanglement witness if and only if Λ is positive but not completely

positive.

This lemma implies that for any witness operator there is a corresponding positive

but not completely positive map. However, finding out this map can be extremely

difficult.

2.3 Entanglement and Particle Indistinguishability

In standard quantum information settings, entanglement relies on the fact that entan-

gled parties are distinct entities, whether they are particles or agents (Alice and Bob)

that can manipulate the state of the particles they hold, of course this gives the liberty

of labeling the particles with the same spatial modes with the agents they belong to.

This is the case in the Bell’s seminal work or almost all of the quantum information

tasks for example teleportation or quantum key distribution [57]. This "distinctness"

is reflected on the quantification of entanglement as well. However, beyond the use-

fulness in quantum information tasks, entanglement is a naturally occurring phenom-

ena in systems of many particles where this coincidence between particle labels and

spatial modes may not exist. When identical particles colocated, indistinguishability

and the definition of entanglement has to be treated carefully.

A simple illustration how particle indistinguishability plays into entanglement is as

following: Consider two adjacent wells, separated by a potential large enough to sup-

press the tunneling. Label the sites L(eft) and R(ight). Suppose each site is occupied

by a spin-1
2

particle, site L with spin-up and R by spin-down; then the wavefunction

of this system is

|Ψ⟩dist. = |ψL⟩ |↑⟩L ⊗ |ψR⟩ |↓⟩R . (2.8)

The spatial parts of wavefunctions ψL(R)(r⃗), have zero overlap. This suggests that
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for all practical reasons two particles are distinguishable. This permits us to define

the composite Hilbert space as the direct product of L and R; HL ⊗ HR. Now, at

a later time, the potential barrier is lowered and the particles are not localized on

sites L and R anymore, and spatial parts of their wavefunctions have nonzero overlap.

In this case, since particles are identical, cannot be treated distinguishable. Indices

L and R cannot be used to label particles, instead we will enumerate the particles.

However note that this enumeration is artificial unlike the site labeling. Using fermion

statistics, the new total wavefunction of the system has to be antisymmetrical under

particle exchange,

|Ψ⟩indist. = |ψL⟩1 |↑⟩1 |ψR⟩2 |↓⟩2 − |ψL⟩2 |↑⟩2 |ψR⟩1 |↓⟩1 . (2.9)

This can be seen by 1 ↔ 2 leads to

P12 |Ψ⟩indist. = − |Ψ⟩indist. .

Now the Hilbert space of the system is not direct product but the anti-symmetric

subspace A (HL ⊗HR) . The distinguishable state 2.8 is not entangled does not have

any quantum correlation, however the indistinguishable state 2.9 has the impression

of an entangled state.

Quantum mechanics demand particle exchange symmetry in representing wavefunc-

tions of multiple identical particles. So that, wavefunctions are either symmetric or

antisymmetric under particle exchange for Fermionic and Bosonic statistics respec-

tively. If we apply particle exchange symmetry to two identical particles;

A (|ψL⟩1 |ψR⟩2) =
1√
2
(|ψL⟩1 |ψR⟩2 − |ψL⟩2 |ψR⟩1)

S (|ψL⟩1 |ψR⟩2) =
1√
2
(|ψL⟩1 |ψR⟩2 + |ψL⟩2 |ψR⟩1) (2.10)

where particles 1 & 2 are permuted. For a general N particle case, let |Ψ⟩N =

|µ1, µ2, . . . , µN⟩ be non-permuted and ordered where |µl⟩j is the j-th particle in state

|µl⟩. Note that |µl⟩ are single particle states and |µl⟩ ∈ H(1)
L where H(1)

L is the L-

dimensional single particle state. Hilbert space of N identical particles is the (anti)symmetric

subspace of H(N) =
N⊗
H(1)
L for (fermions)bosons. In order to define the wavefunc-

tions for N fermions or bosons, all possible particle permutations P ∈ SN (SN is the

13



permutation symmetry group of N items) has to be considered

Σ± (|Ψ⟩N) =
1√
N !

∑
P

(±)ε(P ) P
N⊗

|µl⟩j , (2.11)

ε(P ) is the sign of the permutation and Σ+ = S, Σ− = A.

The states in 2.10 and 2.11 have the appearance of entangled states. However when

expressed in second quantized form, this entangled appearance vanishes. Consider

the states in 2.10, in occupation number representation this state is |1⟩L |1⟩R, which

is indeed a product state. Let {a†i} be particle creation operators in mode i, then for N-

fermions |n1, n2 . . . nM⟩ =
∏
i

(
a†i

)ni

|0⟩, ni = 0, 1 and for N-bosons |n1, n2, . . . nM⟩ =∏
i

[
(a†i)

ni

√
ni!

|0⟩
]

, where
∑

i ni = N .

There are different approaches to the relation between particle exchange symmetry

and entanglement, and it is still an active debate in quantum information community.

Here is given a non-exhaustive review of most notable approaches. A great body of

work dismisses the legitimacy of entanglement from (anti)symmetrization [28,30,31,

52, 62, 69, 70, 82, 84], calling it either unphysical or inaccessible.

Schliemann et. al [69] claim that correlations coming solely from (anti)symmetrization

should be excluded from entanglement. They propose a new entanglement criteria

based on Slater determinants for fermions. They claim that any fermionic state that

cannot be written as a single Slater determinant is quantum correlated, an approach

analogous to Schmidt decomposition of distinguishable particles. Note that the same

authors cautiously distinguish these correlations from entanglement and prefer to re-

fer to them as quantum correlations.

Let fi be a set of fermionic annihilation operators. Fermionic operators obey canoni-

cal anticommutation relations (CAR)

{fi, f †
j } = fif

†
j + f †

j fi = δij , {f †
i , f

†
j } = {fi, fj} = 0 .

A general two-fermion state is |ψF ⟩ =
∑m

i,j=1 ωijf
†
i f

†
j |vac⟩, where |ψF ⟩ ∈ A(Hm ⊗

Hm). ω is a m × m antisymmetric, ωij = −ωji, square matrix. Using the fact that

there exists a unitary transformation U : f †
i → f †

i =
∑
Uilf

′†
l that transforms the

antisymmetric ω → ω′ = UωUT such that

ω′ = Z0 ⊕ Z1 ⊕ Z2 ⊕ . . .⊕ Zr

14



where Zi =
[

0 zi
−zi 0

]
and Z0 = 0m−2r×m−2r . r is the Slater rank of |ψF ⟩ . Any

fermionic state with r > 1 quantum correlated. This is the Slater rank criteria for

quantum correlations. Its generalization to bosons(for bosons instead of determinants

Slater permanents must be worked out) and N number of particles can be found in

[28, 62, 70].

Another approach is partitioning of particles into distinguishable modes. This ap-

proach appears a natural adaptation of standard entanglement to identical particles.

Modes can be chosen to be locally accessible hence there is an agreement with the

LOCC paradigm. A single particle in two distinct modes A and B in second quan-

tized representation is 1√
2
[a†A + a†B] |0⟩ = 1√

2
[|1A0B⟩+ |0A1B⟩]. Although it seems

counterintuitive, a single photon state of this kind has shown to be entangled in [48].

Wiseman and Vacarro [79] point out the fact that entangled states in mode occupation

number must obey SSR(superselection rules) and quantum information operations

with entangled states of superposition of different number of massive and charged

particles are forbidden. They propose that the state of an identical particle system

should be projected onto fixed particle number subspaces. For a measureEM of mode

entanglement, true entanglement will be given by,EP (|ψAB⟩) =
∑
n

PnEM(|ψnAB⟩)

where |ψnAB⟩ = Πn |ψAB⟩ and they define EP as the entanglement of particles. Since

modes can be chosen differently entanglement depends on the choice of modes. Mode

entanglement has been studied in various fermionic, bosonic and spin systems [3, 4,

6, 8, 17, 18, 23–27, 32, 35–38, 47, 55, 59, 60, 71, 75, 76, 80–82, 84].

Another noteworthy approach attempts to find a generalized or unified definition of

entanglement based on observable induced subalgebras, in this case entanglement is

found observable structure not state space [7, 10, 11, 83].

According to a completely different approach in [42, 77], exchange symmetry causes

globally entangled states in fermions and either globally entangled or fully separable

states in bosons. They show that permutationally invariant states can be arbitrarily

partitioned but else there exists no partitioning, the former implies full separability

whereas the later implies global entanglement. Some works propose to obtain use-

ful entanglement from particle indistinguishability without creating any at the pro-

cess [12,13,44,54,56,63]. In a similar spirit, the exchange between particle indistin-
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guishability and entanglement was discussed in [21, 58].
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CHAPTER 3

PAIRING CORRELATIONS

Pairing is one of the key aspects of many-body physics. In BCS theory [9] pairing of

electrons creates a superconducting state. In low energies, a weak interaction between

electrons creates pairs of electrons (known as Cooper pairs), above the Fermi sea thus

unstabilizing it. These pairs of electrons behave like bosons and condensate until the

system stabilizes and finds a new equilibrium. These pairs of electrons have equal

momenta and spin in the opposite directions.

In BCS theory creation of electron pairs are represented by the Cooper pair creation

operator

Λ† =
∑
k

gkc
†
k,↑c

†
−k,↓

and the BCS ground state is given by

|ΨBCS⟩ = exp(Λ†) |0⟩

=
∏
k

(
1 + gkc

†
k,↑c

†
−k,↓

)
|0⟩

Cooper pairs in superconductivity might be the most noteworthy pairs in physics but

particle pairs can be found in other phenomena such as quantum hall systems [74],

bosonic atoms in optical lattices [61, 78], BEC-BCS crossover [49] or superfluid-

ity [64]. Also, it is noteworthy that observation of correlations in time-of-flight ex-

periments can reveal important pairing properties of these quantum systems [2,33,34].

Pairing correlations and entanglement are indeed different quantum correlations in-

terfaced by the indistinguishability of particles. However, it is shown that Cooper

pairs can be coherently spatially split into different quantum dots and turned into spin

entangled pairs, a process known as Cooper Pair Splitting(CPS) [51, 67, 68]. One of

the conceptual challenges for entanglement in many-body systems is to differentiate
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quantum correlations present in many-body systems from entanglement. Entangle-

ment is an essential resource for quantum information tasks [41] however quantum

correlations cannot substitute entanglement in QIT, although as it is noted before

quantum correlations can be converted into useful entanglement. An interesting dif-

ference is that entanglement is relative to partitioning of a large many-body system

on the other hand pairing correlations are not. Pairing correlations are strictly be-

tween particles therefore they are basis independent. A system composed of large

number of particles and subject to various external parameters, can be virtually par-

titioned into modes infinitely many different ways. Indeed, entanglement between

these partitions will depend on the geometry and size of these partitions. Pairing

correlations on the other hand cannot be relative and such artificial partitioning is ir-

relevant. In [46] measurement and detection of pairing correlations based on witness

formalism is discussed. We extend this approach to Bosonic pairing. Bosonic pairing

compared to Fermionic pairing is elusive. Nonetheless bosonic pairing is an active

research topic [43, 72]. The work in this chapter previously published in [1].

A fermionic state of N independent particles in Hartree-Fock approximation regime

|Ψ⟩ = c†1c
†
2 · · · c

†
N |0⟩ . (3.1)

Here c†i are creation operators for fermions and |0⟩ is the fermionic vacuum. This state

is defined as product state in [69], a state with a single elementary Slater determinant.

However, as discussed in Chp.2 for some other approaches with different definition

of entanglement, this state Eq. (3.1) is entangled. Kraus et. al. [46] have shown

that, there are states which are entangled according to Slater rank criteria but does

not have any pairing correlations. Also, they have defined mixtures of states. (3.1)

as separable. Then non-separable states are quantum correlated. In this work we

follow the same separability definitions in [46]. First, witness formalism is borrowed

and adopted to pairing correlations then bounds for the witness operator for fermions

and bosons are found. In the witness formalism a witness operator quantifies the

correlation of a state by its average over the state. It turns out only witness opera-

tors of 2-particle operators,
∑
Aijklc

†
ic

†
jc

†
kc

†
l are proper witness operators for pairing

correlations.
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3.1 Pairing Witness

Only 2-particle observables reveal the pairing correlations. In the following building

on this a pairing witnesses will be constructed. Note that there can be many different

witness operators for this purpose. We define Q operators as follows:

Q =
1

2

∑
ij

Aijcicj ,

A is a square matrix with complex entries and ci are particle annihilation operators.

Following canonical anticommutaion relations (CAR) and canonical commutation

relation (CCR), A is antisymmetric or symmetric respectively. Obviously the former

case is fermionic whereas the later one is bosonic. There exist unitary transformation

U where ci → c′i =
∑

j(U
−1)ijcj and A → A′ = UTAU such that (i) Fermionic

case: A = diagonal[A0, A1 · · ·AM ] with A0 = 0 and Ai = 2 × 2 anti-symmetric

blocks and (ii) Bosonic case: A is diagonal. Also it is possible to make A matrices

real. We will focus on observables of the form Q†Q. Now we shall assume a unitary

transformation suiting our needs are found and Q operators are redefined as,

Q = A1c1c2 + A2c3c4 + · · ·+ Arc2r−1c2r (fermions) , (3.2)

Q =
1

2
(A1c

2
1 + A2c

2
2 + · · ·+ Arc

2
r) (bosons) , (3.3)

where A1, . . . , Ar ∈ R+ . r is the rank of Q operator. Unfortunately, it is extremely

difficult to solve this problem for arbitrary A’s. To simplify and solve the problem we

chose A1 = A2 = · · · = Ar = 1.

We will denote the largest expectation value of Q†Q over separable states, with rank

r operator Q, by Λsep
r,N such that

Λsep
r,N = sup

ρsep

tr ρsepQ
†Q , (3.4)

The supremum is taken over the set of separable states ρsep. The supremum can

equivalently be taken over the pure product states |Ψprod⟩,

Λsep
r,N = sup

|Ψprod⟩
⟨Ψprod|Q†Q|Ψprod⟩ . (3.5)
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Once the supremum Λsep
r,N , we can construct the witness observable

W = Λsep
r,N1−Q†Q . (3.6)

If the average of W , is negative which is possible if and only if ⟨Q†Q⟩ > Λsep
r,N then

the state is correlated. We will show that the maximum eigenvalue of Q†Q, which

will be denoted by λr,N , can be larger than Λsep
r,N and this is a necessary and sufficient

condition for W to be a witness operator for some correlated states.

3.2 Fermionic Pairing Witness

The Q operator for fermions are already defined as

Q =
r∑
i=1

c2i−1c2i = c1c2 + c3c4 + · · ·+ c2r−1c2r . (3.7)

We shall define a product state |Ψ⟩ = c†k1c
†
k2
· · · c†kN |0⟩ where kj ∈ I and I is index

set for i. First we need to find the maximum expectation values for ⟨Q†Q⟩. Since

the average of ⟨Q†Q⟩ is equal to the number of occupied orbitals i where both 2i and

2i − 1 are occupied, N ≥ 2r ⟨Q†Q⟩ is maximized when all of the first 2r orbitals

are occupied, hence ⟨Q†Q⟩ = r. On the other hand, when N < 2r the maximum of

⟨Q†Q⟩ is achieved by occupying the first N states. As a result,

Λsep
r,N =

 ⌊N
2
⌋ for N < 2r ,

r for N ≥ 2r .
(3.8)

For the second half, we need to find λr,N . To do so, first define

Jx =
Q+Q†

2
(3.9)

Jy = i
Q−Q†

2
(3.10)

Jz =
NQ − r

2
(3.11)

NQ =
2r∑
i=1

c†ici (3.12)

and note that since [Ji, Jj] = i
∑

k ϵijkJk. It can be seen that an SU(2) algebra is

established. The ladder up and ladder down operators are Q = Jx − iJy and Q† =
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Jx + iJy respectively. Now it is easy to see that Q†Q = J2 − J2
z + Jz. Suppose that

Q |ψ0⟩ = 0 andNQ |ψ0⟩ = ν |ψ0⟩ where ν ≤ r. Using the famous angular momentum

algebra we can show that |ψ⟩ = (Q†)µ |ψ0⟩ where 0 ≤ µ ≤ r − ν is is an eigenstate

of Q†Q with eigenvalue µ(r − ν − µ+ 1). As a result;

λr,N = max
0≤µ≤r,N/2

µ(r + 1− µ) (3.13)

=

 ⌊N
2
⌋(r + 1− ⌊N

2
⌋) for N < 2⌊ r+1

2
⌋ ,

⌊ r+1
2
⌋⌈ r+1

2
⌉ for N ≥ 2⌊ r+1

2
⌋ .

(3.14)

We conclude this part with the following observation: An operator W is a pairing

witness if and only if r > 2 and N ≥ 2 consequently λr,N > Λsep
r,N .

3.3 Bosonic Pairing Witness

Following the same steps in the fermionic case, first product(unpaired) bosonic states

will be defined. Then separation conditions will be calculated. Let HM be M-

dimensional bosonic single particle space with annihilation operators ci : i = {1, . . .M}.

The operators corresponding to an arbitrary single-particle bosonic state ϕ = [ϕ1, ϕ2 . . . ϕM ]T

can be expand as

c(ϕ) =
M∑
i=1

ϕ∗
i ci . (3.15)

Canonical commutation relations between operators of arbitrary single particle states

are then

[c(ϕ), c†(χ)] = ⟨ϕ|χ⟩ =
M∑
i=1

ϕ∗
iχi and [c(ϕ), c(χ)] = 0 . (3.16)

Define a general N-particle bosonic product state as

|Ψ⟩ ≃ c†(ϕ1)c
†(ϕ2) · · · c†(ϕN) |0⟩ (3.17)

up to a normalization constant and where ϕj are single particle states. Note that

ϕ1, ϕ2, . . . ϕN do not have to be orthonormal, they can be identical or non-orthogonal.

Now, it is possible to define two types of product states:
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1. Type 1: ϕj are either mutually orthogonal or mutually identical. Then, it is

possible to find an orthonormal set of single particle orbitals α1, . . . , αp that the

state is

|Ψ⟩ = (c†(α1))
m1

√
m1!

· · · (c
†(αp))

mp√
mp!

|0⟩ (3.18)

where mb is the number of bosons occupying orbital αb and there are N =∑p
b=1mb bosons.

2. Type 2: The single-particle states ϕ1, ϕ2, . . . , ϕN are not necessarily identical

or orthogonal. ϕi and ϕj can overlap therefore ⟨ϕi|ϕj⟩ can be nonzero.

Name the set of all type-1 product states S1 and the set of all type-2 product states S2.

It is easy to see that S1 ⊂ S2. The product states ρsep ∈ S1 can be viewed as a special

case of generalized product states S2 \ S1. It was discussed before that there are

different approaches to indistinguishability and entanglement. According to [30, 31]

symmetrized products of single-particle non-orthogonal bosonic states are entangled

and those of orthogonal bosonic states are separable.

For bosons the Q operator is

Q =
1

2

r∑
i=1

c2i , (3.19)

where r is the rank of Q operator. Computation of an analytical result for the largest

separable expectation value of
〈
Q†Q

〉
for type-2 product states has shown to be ex-

tremely difficult for this case only numerical results for N ≤ 12 will be provided. In

order to compute the largest eigenvalue of Q†Q first, introduce the following commu-

tation relations:

[Q,Q†] = NQ +
r

2
, (3.20)

[NQ, Q
†] = 2Q† , (3.21)

where NQ =
∑r

i=1 c
†
ici is the number operator for the states 1 ≤ i ≤ r. Then note

that Q, Q† and NQ + r/2. Following the same steps in the fermionic case the largest

eigenvalue for common eigenstates of commuting Q†Q will be computed. The ladder

operators for this case areQ† andQ. LetQ |ψ0⟩ = 0 is the state annihilated byQ0 and

let ⟨NQ⟩|ψ0⟩ = ν and the total number of bosons of |ψ0⟩ be ν+ν ′, i.e. ⟨N⟩|ψ0⟩ = ν+ν ′.
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Consequently,

|ψ0⟩ = f(c†1, c
†
2, . . . , c

†
r)g(c

†
r+1 . . .) |0⟩ (3.22)

where f and g are homogeneous polynomials of degree ν and ν ′ respectively. Since

it is required Q |ψ0⟩ = 0, f is also a solution to r-dimensional Laplacian in r-

dimensions. Define

|ψ⟩ = (Q†)µ |ψ0⟩ (3.23)

a state with NQ eigenvalue ν + 2µ and N eigenvalue ν + ν ′ + 2µ Using the above

commutation relations it is straightforward to show that

Q†Q |ψ⟩ = µ(ν +
r

2
+ µ− 1) |ψ⟩ . (3.24)

Now choosing µ = ⌊N
2
⌋ and ν = 0 will give the maximum eigenvalue

λr,N =


N(N+r−2)

4
if N is even,

(N−1)(N+r−1)
4

if N is odd.
(3.25)

In order to complete constructing the witness presented in Eq. 3.6, the separable

bounds for two types of product states are required. The computation for type-1

product states are presented in Appendix A. The separability bounds are

Λ
sep(type 1)
r,N =

 N2

4
if N is even,

N2−1
4

if N is odd.
(3.26)

Note that the type-1 separability bounds Eq. 3.26 do not depend on rank of Q opera-

tors. p = 2 in 3.18 is the maximizing states forQ†Q and since r ≥ 2 the single particle

states lie inside the subspace, hr, spanned by first r basis states, i.e. α1, α2 ∈ hr.

For type-2 product states separability bounds appear to depend on r. In this case the

overlap between single particle states ϕ1, . . . , ϕN maximizing
〈
Q†Q

〉
is non-zero and

there is a dependency on r. However, as long as the single particle states lie inside hr

the value of r will not change the bound;

Λ
sep(type 2)
r,N = Λ

sep(type 2)
N,N for r > N . (3.27)

There is an important distinction between bounds of type-1 and type-2 separable

states for the values 2 ≤ r ≤ N for rank of Q. For type-2 states, it appears that
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Figure 3.1: Type 2 separable-state bound, i.e., maximum expectation value of Q†Q in

type 2 separable states, is plotted as a function of the total number of particles. The

bound also depends on the rank r. The lowest markers are for r = 2 and the value of

r changes by 1 between two successive markers. Note that the value of the bound for

r > N is identical with the bound for r = N .
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Figure 3.2: Type 2 separable-state bound for N = 10 particles for different values of

the rank r. The value r = 2 is equal to the type 1 bound. Also, note that the bound

for r > N is equal to the bound for r = N .
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the bound increases with r and saturates at r = N , this means that a larger mea-

surement range does not increase the accuracy of detection. In fact, experimentally

detection is generally very difficult for Q†Q, as can be seen from

λr,N

Λ
sep(type 1)
r,N

∼ N + r

N
, (3.28)

which implies that for large particle systems this violation is extremely small. For the

numerically computed partsN ≤ 12, it appears that separability bounds Λsep(type 1)
r,N ∼

Λ
sep(type 2)
r,N .

3.3.1 Rank 2 Case

At r = 2, λ2,N = Λ
sep(type 1)
2,N = Λ

sep(type 2)
2,N . This implies that our choice of witness

composed of Q operators does not detect pairing at r = 2 since λr,N > Λsep
r,N is the

necessary requirement. However, this defect can be fixed for type-1 product states by

changing the Q operators in Eq.3.19 to

Q′(r = 2) =
1

2

(
A1c

2
1 + A2c

2
2

)
. (3.29)

All the eigenstates of Q′†Q′ are type-2 product states, this is why modifying Q oper-

ators at r = 2 will not change the situation. Note that S1 ⊂ S2, i.e. type-1 product

states are a subset of type-2 product states there exists rank 2 Q operators that can

witness them. This is illustrated in Fig.3.3

S2
S1

⟨Wr=2⟩

Figure 3.3: S1 is a subset of S2,Wr=2 can witness type-1 product states but not S2\S1
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Table 3.1: The summary of validity of Pairing Witness

Type 1 Type 2

Single particle orbitals are from an orthonormal set Yes No

Separability bound depends on the rank of Q No
for r < N Yes

for r ≥ N No

Witness at rank r = 2 No No
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CHAPTER 4

CORRELATION TESTS BY CHSH INEQUALITY

Any Hermitian operatorX that has correlated eigenstates can be used as a witness for

correlations. In that case, the maximum expectation value in separable states

Λsep,max(X) = max
|ψ⟩ sep

⟨ψ|X|ψ⟩ (4.1)

is expected to be smaller than the maximum eigenvalue λmax(X) of the operator X .

Then, for any state, the strict inequality

Λsep,max(X) < ⟨X⟩ (4.2)

is a proof that the state is separable.

A possible candidate for such an operator is any observable that are used for testing

Bell inequalities, which compare locally realistic theories with quantum mechanics,

or the contextuality inequalities, which compare non-contextual realistic theories with

quantum mechanics. The simplest such observable is

X = A1A2 + A2A3 + · · ·+ Am−1Am − AmA1 , (4.3)

whereAi are dichotomic observables with ±1 values such that successive observables

commute, [Ai, Ai+1] = 0 (i = 1, 2, . . . ,m; we use cyclic order with Am+1 = A1).

Using realistic theories with either non-contextuality or locality assumption, it is pos-

sible to show that

⟨X⟩ ≤ m− 2 . (4.4)

However, quantum mechanics violates this bound [29],

λmax(X) = m cos
π

m
. (4.5)
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The case m = 4 corresponds to the celebrated Clauser-Horne-Shimony-Holt (CHSH)

inequality and the casem = 5 corrseponds to the Klyachko-Can-Binicioğlu-Shumovsky

(KCBS) inequality [45].

For fermionic systems, the number of fermions in an orbital (n = c†c) is a natural

dichotomic variable with two values being 0 and 1. For this reason, the corresponding

observable A = 2n− 1 is a ±1 valued dichotomic variable. The main observable X

can therefore be expressed either in terms ofA operators or the corresponding number

operators. Note that the arguments of realism are no longer applicable for many

fermion systems. For this reason, there is no reason to expect that the separability

bound Λsep,max(X) obeys the inequality in Eq. (4.4). However, numerical calculations

indicate that the separability bound is very close to the realism bound. Unfortunately,

there is no known analytical expressions for the bounds. The case m = 4, i.e., the

analog of CHSH, will be treated below.

4.1 The inequality in terms of the number operators

First, it is necessary to define the mathematical concepts that we will deal with. Let

h denote the one-particle Hilbert space for a fermionic many-particle system. In

other words, h contains the main orbitals that can be filled with fermions. Suppose

that h is d dimensional and let |1⟩, |2⟩, . . . , |d⟩ be an orthonormal basis of h. Let

c1, c2, . . . , cd be the corresponding annihilation operators which satisfy the canonical

anti-commutation relations

{ci, c†j} = δij , (4.6)

{ci, cj} = {c†i , c
†
j} = 0 . (4.7)

Let |α⟩ be an arbitrary one-particle state in h,

|α⟩ = α1|1⟩+ α2|2⟩+ · · ·+ αd|d⟩ . (4.8)

We define the annihilation operator corresponding to the state |α⟩ as

c(α) = α∗
1c1 + α∗

2c2 + · · ·+ α∗
dcd . (4.9)
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It can be shown easily that the canonical anti-commutation relations can be expressed

as follows

{c(α), c†(β)} = ⟨α|β⟩ , (4.10)

{c(α), c(β)} = {c†(α), c†(β)} = 0 . (4.11)

The number operator for a given one-particle state |α⟩ is defined as

n(α) = c†(α)c(α) , (4.12)

and has eigenvalues 0 and 1. The commutator of two number operators is

[n(α), n(β)] = ⟨α|β⟩c†(α)c(β)− ⟨β|α⟩c†(β)c(α) . (4.13)

This shows that two different number operators commute if and only if the corre-

sponding single-particle orbitals are orthogonal,

(for α ̸= eiϑβ) [n(α), n(β)] = 0 ⇐⇒ ⟨α|β⟩ = 0 . (4.14)

This establishes our compatibility condition.

Now, let’s suppose that we have a cyclic list |α1⟩, |α2⟩, . . . , |αm⟩ of m single-particle

orbitals (cyclic means |αm+1⟩ = |α1⟩) such that two succeeding orbitals are orthogo-

nal,

⟨αi|αi+1⟩ = 0 (i = 1, 2, . . . , n) . (4.15)

We define ni = n(αi) and Ai = 2ni − 1 which will form m dichotomic operators

where the successive operators are compatible. Then,

X = A1A2 + · · ·+ Am−1Am − AmA1 (4.16)

= m− 2− 4Y (4.17)

where

Y = (n2 + · · ·+ nm−1)− (n1n2 + · · ·+ nm−1nm − nmn1) . (4.18)

The inequalityX ≤ m−2 is equivalent to Y ≥ 0. However, these are bounds that can

be placed by using the appropriate realism argument. For separability, new bounds

will be obtained. Let’s express these in terms of both a lower and an upper bound,

Λsep,min(X) ≤ ⟨X⟩ ≤ Λsep,max(X) , (4.19)

Λsep,min(Y ) ≤ ⟨Y ⟩ ≤ Λsep,max(Y ) . (4.20)
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where the expectation values are evaluated in separable states. We naturally have

Λsep,max(X) = m− 2− 4Λsep,min(Y ), etc.

4.2 Bounds for separable states

The separable bound in Eq. (4.1) has to be maximized over all possible separable

states formed from all orbitals in h. It will be shown below that, if X is an operator

defined by using c(α1), . . . , c(αm) and the corresponding creation operators, then

Λsep,max(X) can be computed by using separable states formed from the orbitals in

the linear span of α1, . . . , αm.

First, consider an arbitrary separable state with k fermions defined through the cre-

ation operators of k orbitals β1, . . . , βk,

|ψ⟩ = c†(β1)c
†(β2) . . . c

†(βk)|0⟩ . (4.21)

What is important to notice is that this state actually depends on the linear subspace

V spanned by the k orbitals β1, . . . , βk. In fact, if γ1, . . . , γk is another set of orbitals

spanning the same subspace, so that there is a k × k matrix M with

βi =
k∑
j=1

Mijγk , (4.22)

then it can be shown that

c†(β1)c
†(β2) . . . c

†(βk) = (detM)c†(γ1)c
†(γ2) . . . c

†(γk) . (4.23)

In other words, the same separable state |ψ⟩ can be defined by filling γ–orbitals as

well. The only difference between the two sets of orbitals is the multiplication of |ψ⟩
by a complex number, which doesn’t change the corresponding quantum state.

Next, it will be shown that if |ψ⟩ is a separable state (for example, the state in

Eq. (4.21)), then

|ψ′⟩ = c(ϕ1) . . . c(ϕp)|ψ⟩ (4.24)

is also a separable state. To show this, consider the subspace V = span{β1, . . . , βk}
of h. Let V⊥ be the orthogonal complement of V . Let ϕ′

i and ϕ′′
i be the projection of

ϕi on the subspaces V and V⊥, respectively. Since

ϕi = ϕ′
i + ϕ′′

i (4.25)
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and since c(ϕ′′
i )|ψ⟩ = 0, we have

|ψ′⟩ = c(ϕ′
1) . . . c(ϕ

′
p)|ψ⟩ (4.26)

At this point, we notice that ϕ′
1, . . . , ϕ

′
p spans a p-dimensional subspace of V . Con-

struct a new basis ω1, . . . , ωk of V such that the first k vectors span that subspace,

i.e.,

span{ω1, . . . , ωp} = span{ϕ′
1, . . . , ϕ

′
p} (4.27)

span{ω1, . . . , ωp, ωp+1, . . . , ωk} = V . (4.28)

Consequently |ψ⟩ = (const)c†(ω1) · · · c†(ωk)|0⟩ and

|ψ′⟩ = (const′)c(ω1) · · · c(ωp)|ψ⟩ (4.29)

= (const′′)c†(ωp+1) · · · c†(ωk)|0⟩ , (4.30)

which is obviously a separable state. We can generalize the above statement as fol-

lows: A product of a set of creation and annihilation operators applied to the vacuum

state,

c(β1) · · · c(βp)c†(γ1) · · · c†(γq)c(δ1) · · · c(δr) · · · c†(ω1) · · · c†(ωk)|0⟩ , (4.31)

is a separable state.

Now, to show what we have started with, suppose that X is any operator defined by

using creation and annihilation operators of m orbitals α1, . . . , αm and let |ψ⟩ be a

separable state with M particles. Let V be a linear span of α1, . . . , αm. Choose an

orthonormal basis β1, β2, . . . of the orthogonal complement V⊥. The state |ψ⟩ can be

expanded in terms of the creation operators of the α and β orbitals. Let

|ψ⟩ =
M∑
p=0

∑
k1<···<kp

Ak1k2...kpc
†(βk1)c

†(βk2) · · · c†(βkp)|Φk1k2...kp⟩ (4.32)

be that expansion where Ak1k2...kp are expansion coefficients and each |Φk1k2...kp⟩ is a

normalized state formed from creation operators of αi, i.e.,

|Φk1k2...kp⟩ = F (c†(α1), c
†(α2), . . . , c

†(αm))|0⟩ , (4.33)

for some function F . Now, it can be seen that each |Φk1k2...kp⟩ is separable because

|Φk1k2...kp⟩ = (Proj)c(βkp) · · · c(βk2)c(βk1)|ψ⟩ (4.34)
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where

Proj = c(β1)c
†(β1)c(β2)c

†(β2) · · · (4.35)

is a projection operator on the Fock space that projects to subspaces where all β

orbitals are empty.

Computing the expectation value of X in the state in Eq. (4.32), we get

⟨X⟩ψ =
∑
p

∑
k1<k2<···<kp

|Ak1k2...kp |2⟨X⟩Φk1...kp
. (4.36)

This shows that the separable-state expectation value ⟨X⟩ψ is an average of the separable-

state expectation values ⟨X⟩Φk1...kp
where the filled orbitals are from V subspace. For

the case ⟨X⟩ψ is maximum, all other individual expectation values must be equal to

that maximum value. This shows that the maximum value Λsep,max(X) can be ob-

tained from separable states where all fermions are filled to an orbital in V .

4.3 Computation of Λsep,max(X)

In short, this implies that for the CHSH based expression, which is formed from m =

4 orbitals, Λsep,max(X) can be computed by using 4 orbitals. This is also equivalent

to taking the single-particle Hilbert space h to be 4-dimensional. This assumption is

made in all of the following analysis.

Let Λsep,max,k(X) be the maximum evaluated from k-particle separable states. By

using particle-hole transformation, it is possible to see that

Λsep,max,k(X) = Λsep,max,4−k(X) (4.37)

For every separable state, |ψ⟩ = c†(γ1) · · · c†(γk)|0⟩ of k fermions, there is a cor-

responding state of 4 − k fermions (equivalently k holes), |ψ̃⟩ = c(γ1) · · · c(γk)|F ⟩
where |F ⟩ is the state where all 4 orbitals are filled with fermions. This is a trans-

formation that changes each number operator ni to 1 − ni. Equivalently, in terms of

the Ai = 2ni − 1, the transformation amounts to changing the sign of each Ai. Con-

sequently X is invariant under this transformation. This proves that the maximum

separable value of ⟨X⟩ for k fermions is equal to the maximum separable value for k

holes. The identity above then follows.
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For this reason, we need to compute Λsep,min,k(X) and Λsep,max,k(X) for k = 0, 1, 2

only. In each case, instead of computing the upper separable bound for X , we are

going to check the lower bound Y ≥ 0 for

Y = n2 + n3 − (n1n2 + n2n3 + n3n4 − n4n1) . (4.38)

It is easy to see that

⟨0|Y |0⟩ = 0 , (4.39)

and therefore

Λsep,min,0(Y ) = Λsep,max,0(Y ) = 0 . (4.40)

For k = 1 fermion states, we have

⟨nini+1⟩ = 0 (4.41)

because it is not possible that two different orbitals to be occupied at the same time.

It is also easy to see that the bounds 0 ≤ ⟨Y ⟩ ≤ 1 is also satisfied for k = 1.

Consequently,

Λsep,min,1(Y ) = 0 , (4.42)

Λsep,max,1(Y ) = 1 . (4.43)

What is left is to find the bounds for 2-fermion separable states. First, remember

that α1, . . . , α4 are a set of orbitals where the successive orbitals are orthogonal to

each other. This means that α1 and α3 are orthogonal to α2 and α4. Let W be the

2-dimensional subspace spanned by α1 and α3. The orthogonal complement W⊥ is

therefore spanned by α2 and α4.

Consider a 2-fermion separable state

|ψ⟩ = c†(β1)c
†(β2)|0⟩ . (4.44)

Let V be the 2-dimensional space spanned by β1 and β2, i.e., the subspace of the

occupied orbitals. It is possible to choose the basis {β1, β2} for V such that their

projections onto W are also orthogonal. This also implies the orthogonality of their

projections onto W⊥.
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At this point, we describe the vectors in h as 4 × 1 column matrices. Let W be the

space spanned by the first two standard basis vectors. Then, the following assignment

of the six vectors is the most general one.

β1 =


cos Ω1

2

0

sin Ω1

2

0

 β2 =


0

cos Ω2

2

0

sin Ω2

2

 , (4.45)

α1 =


cos θ1

2

eiφ1 sin θ1
2

0

0

 α2 =


0

0

cos θ2
2

eiφ2 sin θ2
2

 (4.46)

α3 =


cos θ3

2

eiφ3 sin θ3
2

0

0

 α4 =


0

0

cos θ4
2

eiφ4 sin θ4
2

 (4.47)

The expectation values can be computed as

⟨ni⟩ = |⟨β1|αi⟩|2 + |⟨β2|αi⟩|2 (4.48)

⟨nini+1⟩ =

∣∣∣∣∣∣det
⟨β1|αi⟩ ⟨β1|αi+1⟩
⟨β2|αi⟩ ⟨β2|αi+1⟩

∣∣∣∣∣∣
2

. (4.49)

Computing all expressions, we get the following

⟨Y ⟩ = 1

8

(
6 + 2 cosΩ1 cosΩ2+

(1− cosΩ1 cosΩ2)
[
cos θ1 cos θ2 + cos θ2 cos θ3

+ cos θ3 cos θ4 − cos θ4 cos θ1

]
+ sinΩ1 sinΩ2

[
sin θ1 sin θ2 cos(φ1 − φ2) + sin θ2 sin θ3 cos(φ2 − φ3)

+ sin θ3 sin θ4 cos(φ3 − φ4)− sin θ4 sin θ1 cos(φ4 − φ1)
])

. (4.50)

There are 10 angle variables, each of which appears with a simple trigonometric func-

tion in here. We will first find the extrema of this expression with respect to the Ωi

angles.
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Extremization with respect to Ωi appears to be simple as the expression above is of

the form

⟨Y ⟩ = a cosΩ1 cosΩ2 + b sinΩ1 sinΩ2 + c , (4.51)

for some a, b and c. The expression above can be written as

⟨Y ⟩ = a− b

2
cos(Ω1 + Ω2) +

a+ b

2
cos(Ω1 − Ω2) + c . (4.52)

This shows that the extrema of ⟨Y ⟩ appears at Ω1±Ω2 = 0, π with the corresponding

extreme value being

max / min
Ω1,Ω2

⟨Y ⟩ = ∓
(∣∣∣∣a− b

2

∣∣∣∣+ ∣∣∣∣a+ b

2

∣∣∣∣)+ c . (4.53)

There are two possible solutions. One is Ω1 = Ω2 = 0, which gives ⟨Y ⟩ = 1 and the

other is

Ω1 = Ω2 =
π

2
. (4.54)

In the latter case, the expectation value of Y is simplified to

⟨Y ⟩ = 1

8

(
6 +

[
cos θ1 cos θ2 + cos θ2 cos θ3

+ cos θ3 cos θ4 − cos θ4 cos θ1

]
+
[
sin θ1 sin θ2 cos(φ1 − φ2) + sin θ2 sin θ3 cos(φ2 − φ3)

+ sin θ3 sin θ4 cos(φ3 − φ4)− sin θ4 sin θ1 cos(φ4 − φ1)
])

, (4.55)

which depends on 8 angle variables. Let’s define 4 unit vectors ûi in 3D real space

such that θi, φi are the corresponding spherical coordinates,

ûi = sin θi(cosφix̂+ sinφiŷ) + cos θiẑ . (4.56)

In that case, the expectation value can be expressed as

⟨Y ⟩ = 1

8

(
6 + û1 · û2 + û2 · û3 + û3 · û4 − û4 · û1

)
(4.57)

At this point, we note that the expression can be written as

⟨Y ⟩ = 1

8

(
6 + û1 · (û2 − û4) + û3 · (û2 + û4)

)
(4.58)
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which is more suitable to extremization with respect to û1 and û3. These vectors have

to be chosen parallel to the vectors they are multiplied with. Consequently,

min /max
û1,û3

⟨Y ⟩ = 1

8

(
6∓ |û2 − û4| ∓ |û2 + û4|

)
(4.59)

Finally, choosing û2 and û4 to be perpendicular to each other gives the extremum

values

⟨Y ⟩min,max =
1

8
(6∓ 2

√
2) =

3±
√
2

4
. (4.60)

Summarizing, we find that

Λsep,min(Y ) = min
k

Λsep,min,k(Y ) = 0 , (4.61)

Λsep,max(Y ) = max
k

Λsep,max,k(Y ) =
3 +

√
2

4
≈ 1.10355 . (4.62)

At this point, we notice that the bounds on Y implied by realism arguments is 0 ≤
⟨Y ⟩1. Therefore, the lower bound coincides. If we express the bounds in terms of the

X observable, we get

−(1 +
√
2) ≤ ⟨X⟩ ≤ 2 . (4.63)

4.4 Violation of separability bounds

It is quite straightforward to show that the separability bound ⟨Y ⟩ ≥ 0 is violated by

a correlated state. The simplest example can be constructed by closely following the

violation of CHSH inequality by entangled states. Let

|ψ⟩ = c†1c
†
2 + c†3c

†
4√

2
|0⟩ ,

which is clearly a correlated state. The expectation values of number operators and

their products are

⟨n(α)⟩ = 1

2
, (4.64)

⟨n(α)n(β)⟩ = 1

2
|α1β2 − α2β1 + α3β4 − α4β3|2 . (4.65)
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It is appropriate to choose the α orbitals as follows

α1 =


cos θ1

2

0

eiφ1 sin θ1
2

0

 α2 =


0

cos θ2
2

0

eiφ2 sin θ2
2

 (4.66)

α3 =


cos θ3

2

0

eiφ3 sin θ3
2

0

 α4 =


0

cos θ4
2

0

eiφ4 sin θ4
2

 (4.67)

Defining the unit vectors ûi in the same way as in Eq. (4.56), we get

⟨Y ⟩ = 1− 1

4
(2 + û1 · û2 + û2 · û3 + û3 · û4 − û4 · û1) (4.68)

Minimization as before gives us the minimum value

⟨Y ⟩min = −
√
2− 1

2
, (4.69)

which is negative. The same example can be used for computing the maximum value

⟨Y ⟩max =

√
2 + 1

2
, (4.70)

which can be shown to exceed the bound in Eq. (4.62). Note that these also corre-

spond to ⟨X⟩ being ±2
√
2. In other words, the maximum violation of separability

inequality and the maximum violation of Bell inequality is achieved with the same

value of ⟨X⟩.

39



40



CHAPTER 5

CONCLUSION

This research aimed to find a new outlook on the correlations in many-body systems.

In order to do this we have utilized a powerful tool from the quantum information

toolkit, namely the witness formalism. Witness formalism has enabled experimen-

tally detection and quantification of quantum entanglement. At the core of the witness

formalism is the convexity of the separable states. Separable states form a convex set

in the state space. Hyperplane separation theorem states that there exists hyperplanes

outside of this convex set separating it from all space. From a physical point of view

these hyperplanes correspond to expectation values of observables. However, there

are certain conditions for observables to function as witness operators. The seminal

works that established the entanglement criteria for 2 × 2 and 2 × 3 bipartite states

had shown that there are positive but not completely positive maps that have negative

eigenvalues for inseparable states. Although this criteria is profound, it is abstract

and requires knowledge of the state. Choi-Jamiołkowsky isomorphism rescues the

day by pointing out the fact that there exists an operator for every map. This result

paved the way for entanglement witness formalism. Witness formalism applies to all

dimensions and it is possible to find a witness operator for almost all entanglement

scenarios.

The complicated relation between indistinguishability and entanglement has been the

subject of many studies. The main challenge comes from the symmetrized or anti-

symmetrized wavefunctions of identical particles mathematically appear like entan-

gled states. This coincidence has been treated with different approaches. Although, it

is difficult to announce a consensus on the matter, from quantum information point of

view any meaningful entanglement definition should fall within the LOCC paradigm,
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which means entanglement cannot increase under local operations and classical com-

munications.

Equipped with all the necessary tools and concepts mentioned above in Chp.2 from

quantum information we introduced witness for pairing correlations in Chp 3. In order

to do so, we first defined the set of separable states for both fermions and bosons. The

results for fermions matches with [46], however there is no bosonic counterpart for

witnessing pairing correlations in the literature. In this study this gap is filled. For

bosonic pairing we defined two kinds of unpaired states, and named them type-1 and

type-2 product states. The main idea is to compare the largest eigenvalue to largest

separability bound. A straightforward calculation for the separability bound for type-

1 states was possible, unfortunately an analytical result for type-2 separability bounds

could not be found. Instead numerical results were shown.

In the same spirit of adopting witness formalism we have adopted Bell-type operators

for a fermionic set up in Chp. 4. Originally Bell-type operators provide a test for

non-locality. In this case we do not claim a non-locality inequality but one for the

correlation among fermionic number states. First a CHSH inequality with a fermionic

dichotomic number operators is established, then the separability bounds are found

and finally it is shown that these bounds can be violated. Adopting a CHSH test in

the fermionic and bosonic Fock space could produce interesting results.

One of the triumphs of pairing is to expose a macroscopic effect, that is superconduc-

tivity, which has no classical explanation. Physical consequences of pairing correla-

tions, thus, may be seen at the macroscopic boundaries of quantum mechanics. It’s

not meaningless to assume pairing correlations exist in almost every many-particle

systems. Although, observing the effects of pairing or its significance at that matter

is another subject. The idea behind this work which is adopting quantum informa-

tion toolkit to many-body systems is attracting more interest and becoming a part of

condensed matter physics [50].
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APPENDIX A

SEPARABILITY BOUND FOR TYPE 1 PRODUCT STATES

Type-1 product states were already defined in Eq. (3.18). First, the expectation value

of Q†Q will be simplified. Begin with rewriting type-1 product states,

|Ψ⟩type−1 =
(b†(α1))

m1

√
m1!

· · · (b
†(αp))

mp√
mp!

|0⟩ = |m1,m2, . . . ,mp⟩ ,

where b†(αλ) =
∑
αλic

†
i and Q = 1

2

∑r
i=1 c

2
i operators for bosons. Now, note that〈

Q†Q
〉
= ⟨Ψ|Q†Q|Ψ⟩

= ||Q |Ψ⟩ ||2 .

We only need to compute Q |Ψ⟩. Now using the commutation relation
[
ci, b

†(αλ)
]
=

αλi, we can show that;

⟨Q†Q⟩Ψ =
∑
a<b

|Rab|2mamb +
∑
a

1

4
|Raa|2ma(ma − 1) , (A.1)

where

Ra,b =
r∑
i=1

αa,iαb,i , (A.2)

and ma are positive integers that satisfy
∑

ama = N . Rab can be expressed as Rab =

Rba = ⟨α∗
a|P |αb⟩, i.e., the overlap between α∗

a and αb on the subspace corresponding

to ad hoc single particle states, where P is the projection onto the said subspace which

is the space spanned by the first r single-particle states. Let defineDab = |Rab|2. Note

that Dab is a p× p, symmetric, doubly substochastic matrix, i.e.,
p∑
b=1

Dab ≤ 1 .

Now, we can express the expectation value
〈
Q†Q

〉
as a linear function of the elements

of D as follows;

f(D) ≡ 1

2

∑
a̸=b

Dabmamb +
1

4

∑
a

Daama(ma − 1) . (A.3)
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A direct approach to maximization problem would follow in two steps: First maxi-

mize over the set of D matrices then maximize over the number of particles ma. Un-

fortunately, this is not possible due to restrictions Dab = |Rab|2 along with Eq. (A.2).

To remedy this situation; assume that f(D) has a maximum over the whole set of

substochastic matrices and there is a D matrix that yields this maximum and satisfies

the restrictions mentioned before.

D matrices are doubly-stochastic matrices with non-negative elements,i.e.
∑

bDab =∑
bDba = 1. Birkhoff’s theorem [39] states that extreme points of the set of doubly-

stochastic matrices (which is a convex set) are permutation matrices. Therefore, since

the function f(D) is maximized at these extreme points, it is maximized by a permu-

tation matrix D.Permutation matrices have single entry 1 at each row and column.

Now, it will be shown that the D matrices with 2-cycle structures produce the max-

imization of f(D). Suppose that D has an ℓ-cycle structure then there will be terms

of
1

2
(m1m2 +m2m3 + · · ·+mℓm1) (A.4)

in Eq. (A.3). Note that a relabeling is implied. So that, for ℓ ≥ 5 there will be a term

m1m2 +m2m3 +m3m4 +m4m5 +mℓm1. If two different pairs of labels are let to

conjoin then the ℓ-cycle can be replaced by an (ℓ− 2)-cycle thus this increases f(D),

which can be seen from

mℓm1 +m1m2 +m2m3 +m3m4 +m4m5

< mℓ(m1 +m3) + (m1 +m3)(m2 +m4) + (m2 +m4)m5 . (A.5)

Similarly 4-cycle and 3-cycle permutations can be replaced by a 2-cycle permutation

by making the observations;

1

2
(m1m2 +m2m3 +m3m4 +m4m1) < (m1 +m3)(m2 +m4) , (A.6)

1

2
(m1m2 +m2m3 +m3m1) < m1(m2 +m3) , (A.7)

for the latter case m1 ≥ m2,m3 is required. Consequently, the maximum is attained

at p = 2 orbitals with the corresponding matrices

D = R =

 0 1

1 0

 . (A.8)
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This result suggests that ⟨α∗
1|α2⟩ = ⟨α∗

2|α1⟩ = 1, and α∗
2 = α1, α∗

1 = α2. Each α

single-particle orbitals are superposition of the first r basis states.

Finally, it can be seen that

Λ
sep(type1)
r,N = max

m1+m2=N
m1m2 (A.9)

=

 N2

4
if N is even

N2−1
4

if N is odd
(A.10)

Since the number of single-particle states is p = 2, the rank of Q operators r does not

change this result as long as r ≥ 2.
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