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YİĞİT URHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

SEPTEMBER 2022





Approval of the thesis:

PHYSICS-BASED GROUND MOTION SIMULATION OF THE 2020 SAMOS
EARTHQUAKE
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ABSTRACT

PHYSICS-BASED GROUND MOTION SIMULATION OF THE 2020 SAMOS
EARTHQUAKE

Urhan, Yiğit

M.S., Department of Civil Engineering

Supervisor: Prof. Dr. Ayşegül Askan Gündoğan

September 2022, 118 pages

In this thesis, low-frequency ground motions of the 2020 Samos Earthquake at se-

lected ground motion stations are simulated using the spectral element method. For

this purpose, rigorous mathematical derivation of the classical wave equation is pre-

sented first. Next, the spatiotemporal discretisation scheme involved in finite element

and spectral element methods are derived. Then, a velocity model is constructed

based on the velocity profiles provided by AFAD. For the source model, moment

tensor solution of the Samos Earthquake is utilised with a Gaussian source time func-

tion, since the event is located at far distances from the studied stations admitting

point source model. Finally, comparison of synthetic records with the observed data

is presented and then station-wise comparison of ground motion parameters is made.

Keywords: spectral element method, finite element method, physics-based, determin-

istic, ground motion simulations, elastic wave propagation
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ÖZ

2020 SAMOS DEPREMİ YER HAREKETİNİN FİZİK TABANLI
BENZEŞTİRİLMESİ

Urhan, Yiğit

Yüksek Lisans, İnşaat Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ayşegül Askan Gündoğan

Eylül 2022 , 118 sayfa

Bu tez kapsamında, 2020 Samos Depremi’nin yaratmış olduğu düşük frekanslı yer

hareketleri, bölgede seçilen istasyonlar üzerinde spektral eleman yöntemi kullanıla-

rak benzeştirilmiştir. Bunun için, ilk adımda dalga denkleminin detaylı matematiksel

türetimi gösterilmiş, bir sonraki adımda ise elde edilen dalga denkleminin sonlu ele-

man ve spektral eleman metodlarıyla uzay-zamansal olarak ayrıştırılması sunulmuş-

tur. Ardından, AFAD üzerinden elde edilen verilerle bölgeye ait bir dalga hız profili

üretilmiştir. Kaynak modeli için, depremin seçilen istasyonlardan uzaklığı göz önüne

alınarak nokta kaynak modeli uygulanmış olup, Samos Depremi’ne ait sismik mo-

ment tensör çözümü ile Gauss kaynak-zaman fonksiyonu kullanılmıştır. Son olarak,

üretilen sentetik kayıtlarla gözlenmiş verilerin kıyaslaması, belirli istasyonlar için su-

nulmuş ve seçilen her bir istasyon için yer hareketi parametreleri kıyaslanmıştır.

Anahtar Kelimeler: spektral eleman yöntemi, sonlu eleman yöntemi, fizik-tabanlı,

deterministik, yer hareketi benzeşimleri, elastik dalga yayılımı
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Askan Gündoğan, who is the most productive and hardworking person I have ever

met in my life, for her boundless trust and faith in me and the extraordinary freedom

she has granted me throughout my thesis study. Despite her extreme workload, she

has always been available and never stopped providing regular guidance.

I would like to thank the examining comitee members Prof. Dr. Murat Altuğ Erberik,
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CHAPTER 1

INTRODUCTION

1.1 General

Among catastrophic disasters, earthquakes comprise the most devastating ones that

have left cataclysmic impacts on many civilizations throughout history. The Great

Lisbon earthquake of 1755 constitutes a prominent example of such an event consid-

ering its influence on eminent philosophers of the enlightenment era and the develop-

ment of modern seismology [1]. Immanuel Kant [2], a central figure in the European

Enlightenment whose comprehensive works on various philosophical topics made

him one of the most influential philosophers, attempted to describe the driving mech-

anism of earthquakes systematically. Although his explanations are not legitimate, it

would not be inaccurate to regard his work as the beginning of modern seismology.

Considering Kant’s work on the Great Lisbon earthquake of 1755 as the breakthrough

event in the development of contemporary seismology, the chronological evolution of

the science of seismology is concisely presented by Ben-Menahem [3] describing

proceedings of 1755’s aftermath.

Given the tectonic setting of Turkey, a historical perspective of major earthquakes also

immediately shows the severity of the situation in Turkey. A decade after the 1755

Lisbon earthquake, a severe earthquake shook Istanbul in 1766 that even caused a

tsunami, killed thousands of people, and damaged terrifically the city [4]. The Great

Erzincan earthquake of 1939, and the Golcuk earthquake, followed by the Duzce

earthquake of 1999, are tragic incidents that occurred in the last few decades. In

this regard, considering the potential of severe destruction, a comprehensive study of

earthquakes requiring interdisciplinary collaboration is necessary to understand their

1



nature better and develop systematic approaches to mitigate the adverse effects caused

by earthquakes.

Fortunately, with the immense contributions of a myriad of scientists, many of whose

contributions are honored in [3], the nature and the causes of earthquakes are now

better understood. In addition, thanks to advancements in computer technology and

computer science providing numerous novel algorithms, simulations of earthquakes

in a computer environment are possible, enabling engineers and scientists to perform

scenario earthquakes leading to a robust, systematized approach, so-called the ground

motion simulation methodology.

Although the incorporation of heterogeneity and anisotropy in the classical wave the-

ory is possible, this requires intensive efforts to handle complex geometries composed

of different materials, which is often the case in geodynamic problems. Henceforth,

this necessitates the ground motion simulation studies providing numerical solutions

in favor of an analytic solution. The ground motion simulation methodology involves

an accurate representation of the topography, source mechanism, and seismic param-

eters of a region under interest. Then, with the employment of numerical solution

techniques, a representative solution is obtained for that region. In achieving this,

ground motion simulation approaches are divided into three groups, namely determin-

istic methods, stochastic methods, and hybrid methods. In this thesis, deterministic

ground motion simulation methods will be followed.

1.2 Historical Development of Classical Wave Theory

Deterministic methodologies rely upon the numerical solution to the classical wave

equation. Therefore, it would be wise first to give a brief, concise historical review of

the development of classical wave theory to gain insight into the intrinsic properties

of wave motion. In [5], a neat study of the history of classical wave theory may be

found along with the translated version of original papers contributing to the wave

theory. Table 1.1 depicts the chronological progress made by numerous scientists re-

spectively. Nevertheless, it would be enlightening to briefly mention the first attempts

in describing the motion made by Aristotle and then Galileo’s remarkable contribu-

2



tion to the perception of motion that radically changed the study of mechanics. The

classical wave equation is essentially the consequence of the law of conservation of

linear momentum stemming from the translation symmetry, or as given in [6], ho-

mogeneity of space. The concept of conservation of linear momentum dates back to

Aristotle, who erroneously relates an object’s velocity with the applied force on it. He

did not consider friction as a force and hence drew the wrong conclusion regarding the

motion. An interested reader may like to delve into [7] for the mathematical formula-

tion of Aristotle’s Law of Motion and its consequences. After Aristotle, Galileo made

a breakthrough in the history of classical mechanics with his works on falling bodies

that laid the foundation of classical mechanics and put an end to the Aristotelian view

of motion by correcting Aristotle’s Law of Motion [8]. He concluded that all bod-

ies fall from the same height at equal times, an implicit statement of the principle of

inertia that would be known later as Newton’s first law of motion. Of course, Table

1.1 includes only scientists central to the development of the classical wave theory.

For a more comprehensive historical background, the masterwork of A.E.H Love [9]

is strongly recommended to the interested reader. Further, his astonishing piece [10]

regarding geodynamics covers the wave propagation problem on a planetary scale. In

addition, for the mathematical developments accompanying the classical wave theory,

the reader may refer to [11].

1.3 Literature Review on Deterministic Methods

Deterministic methodologies in ground motion simulation studies often cover various

numerical solution schemes in solving the wave equation unless the problem under

consideration permits an analytical solution. In rather simple geometries, where spa-

tial and material heterogeneities are not too much involved, an analytical solution to

the wave equation is also possible. In the case of elasticity, the wave equation can be

readily solved analytically if the source is rather simple. In cases where the source

involves complexities, an integral formulation might be obtained, maintaining the an-

alyticity of the solution. [12], [13], [14] provides a rigorous mathematical treatment

of the subject, including the geometrical ray theory permitting an analytical solution

to the wave equation in vertically heterogeneous domains. However, most of the

3



Table 1.1: Contributions to the development of classical elastic wave theory. Table is

adapted from [5]

Year Contr�butor Major contr�but�on �n th�s volume

1678 Robert Hooke Hooke der�ved the equat�ons of mot�on for a spr�ng and 
1635–1703 relat�ons between stress and stra�n for a l�near elast�c sol�d,

form�ng the underp�nn�ng of the theory of wave propagat�on.
Hooke’s law.

1827 Claude L. M. H. Nav�er Nav�er extended the work of Hooke to deal w�th elast�c 
1785–1836 bod�es, express�ng the equat�ons of v�brat�onal mot�on �n terms

of d�splacements and Po�sson’s elast�c parameters. 
Nav�er equat�on.

1828 August�n-Lou�s Cauchy Cauchy expanded on the propert�es of both elast�c and 
1789–1857 nonelast�c bod�es, express�ng wave propagat�on �n terms of

stress and stra�n, thus general�z�ng Hooke’s law. Cauchy 
equat�on of mot�on.

1839 George Green Pr�or to Green, the elast�c wave theory was represented �n 
1793–1841 terms of the �nteract�on of �nd�v�dual molecules. By �ntroduc-

�ng the not�on of the stra�n energy funct�on, Green fundamen-
tally changed representat�on of the theory and perm�tted the 
general�zat�on of ex�st�ng concepts of wave propagat�on to 
the an�sotrop�c case (the pr�or molecular descr�pt�ons held 
only for �sotrop�c med�a). In so do�ng, Green correctly 
pred�cted the ex�stence of the 21 �ndependent elast�c constants
(Cauchy’s prev�ous formulat�on perm�tted only 15). 
Stra�n-energy funct�on.

1845 George G. Stokes Stokes expanded on the work of Po�sson to show that 
1819–1903 P-waves were purely compress�onal and that S-waves were

purely rotat�onal and determ�ned the�r veloc�t�es �n terms of 
elast�c constants. Stokes also developed the equat�ons for flu�d
mot�on, g�v�ng r�se to the Nav�er-Stokes equat�ons.

1855 W�ll�am Thomson, Kelv�n made the connect�on between thermodynam�cs and 
Lord Kelv�n elast�c wave propagat�on, relat�ng the convers�on of 
1824–1907 mechan�cal to thermal energy. He also determ�ned the 

relat�ons between stra�n and heat flow. Thermoelast�c�ty.

1877 Elw�n B. Chr�stoffel Chr�stoffel character�zed propagat�on of the wave surface 
1829–1900 �n an�sotrop�c med�a. Start�ng from h�s work on shock fronts 

�n l�qu�ds, he extended those analyses to elast�c med�a.
Chr�stoffel equat�on.
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Table 1.1 (Cont’d): Contributions to the development of classical elastic wave theory.

Table is adapted from [5].

Year Contr�butor Major contr�but�on �n th�s volume

1678 Robert Hooke Hooke der�ved the equat�ons of mot�on for a spr�ng and 
1635–1703 relat�ons between stress and stra�n for a l�near elast�c sol�d,

form�ng the underp�nn�ng of the theory of wave propagat�on.
Hooke’s law.

1827 Claude L. M. H. Nav�er Nav�er extended the work of Hooke to deal w�th elast�c 
1785–1836 bod�es, express�ng the equat�ons of v�brat�onal mot�on �n terms

of d�splacements and Po�sson’s elast�c parameters. 
Nav�er equat�on.

1828 August�n-Lou�s Cauchy Cauchy expanded on the propert�es of both elast�c and 
1789–1857 nonelast�c bod�es, express�ng wave propagat�on �n terms of

stress and stra�n, thus general�z�ng Hooke’s law. Cauchy 
equat�on of mot�on.

1839 George Green Pr�or to Green, the elast�c wave theory was represented �n 
1793–1841 terms of the �nteract�on of �nd�v�dual molecules. By �ntroduc-

�ng the not�on of the stra�n energy funct�on, Green fundamen-
tally changed representat�on of the theory and perm�tted the 
general�zat�on of ex�st�ng concepts of wave propagat�on to 
the an�sotrop�c case (the pr�or molecular descr�pt�ons held 
only for �sotrop�c med�a). In so do�ng, Green correctly 
pred�cted the ex�stence of the 21 �ndependent elast�c constants
(Cauchy’s prev�ous formulat�on perm�tted only 15). 
Stra�n-energy funct�on.

1845 George G. Stokes Stokes expanded on the work of Po�sson to show that 
1819–1903 P-waves were purely compress�onal and that S-waves were

purely rotat�onal and determ�ned the�r veloc�t�es �n terms of 
elast�c constants. Stokes also developed the equat�ons for flu�d
mot�on, g�v�ng r�se to the Nav�er-Stokes equat�ons.

1855 W�ll�am Thomson, Kelv�n made the connect�on between thermodynam�cs and 
Lord Kelv�n elast�c wave propagat�on, relat�ng the convers�on of 
1824–1907 mechan�cal to thermal energy. He also determ�ned the 

relat�ons between stra�n and heat flow. Thermoelast�c�ty.

1877 Elw�n B. Chr�stoffel Chr�stoffel character�zed propagat�on of the wave surface 
1829–1900 �n an�sotrop�c med�a. Start�ng from h�s work on shock fronts 

�n l�qu�ds, he extended those analyses to elast�c med�a.
Chr�stoffel equat�on.
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time, such simplistic cases are not realistic, and hence numerical solutions are often

performed. The Finite Difference Time-Domain Method (FDTDM), Discrete Wave

Number Method (DWNM), Theoretical Green’s Function Method (DGFM), Finite

Element Method (FEM), Spectral Element Method (SEM), and Boundary Element

Method (BEM) are primary methodologies followed in wave propagation literature.

FDTDM, FEM, SEM, and BEM are based on the spatiotemporal discretization of the

classical wave equation. In FDTDM, the strong form of the wave equation discretized

both spatially and temporally employing a finite-difference scheme (e.g., Furumura

and Chen [15], Moczo et al. [16], Moczo et al. [17], Moczo et al. [18], Moczo,

Kristek, and Halada [19], Frankel and Vidale [20], Frankel [21], Yomogida and Et-

gen [22], Aochi and Dupros [23], Aochi, Durand, and Douglas [24], Virieux [25],

Oprsal and Zahradnik [26], Sato, Graves, and Somerville, [27], Aoi et al. [28], Aoi

and Fujiwara [29], Graves [30], Tanırcan [31], Şeşetyan [32]). Unlike FDTDM, in

FEM (e.g., Bielak, Ghattas, and Kim [33], Etienne et al. [34], Li et al. [35], Toshi-

nawa and Ohmachi, [36], Bao et al. [37], Moczo et al. [38]) and SEM (Cohen, Joly,

and Tordjman [39], Priolo, Carcione, and Seriani [40], Seriani and Priolo [41], Ko-

matitsch and Vilotte [42], Komatitsch and Tromp [43], Komatitsch and Tromp [44],

Komatitsch, Coutel, and Mora [45], , Komatitsch et al. [46], Komatitsch et al. [47],

Komatitsch, Barnes, and Tromp [48], Michéa and Komatitsch [49], Di Michele et al.

[50], Casarotti et al. [51], Chaljub et al. [52]) the weak form of the wave equation

is first obtained and then discretized in space by dividing the whole domain of in-

terest into finite subdomains. Then, the resulting semi-discrete form is numerically

integrated in time to arrive at an approximate time-domain solution. Although the

procedure is identical in both methods, the difference in names originates from the

selection of numerical quadrature in approximation to integrals involved and of basis

functions. Whilst in BEM (e.g., Kawase [53], Luco, Wong, and De Barros [54], Ped-

ersen, Sánchez-Sesma, and Campillo [55]), only the boundary of the domain is dis-

cretized instead. However, BEM requires the knowledge of the fundamental solution

to the governing differential equation of the problem under consideration. DWNM

(e.g., Bouchon and Aki [56]), TGFM (e.g., Bouchon [57], Hisada [58], Chen and

Zhang [59]), and EGFM (e.g., Hartzell [60], Irikura [61]) on the other hand depend

upon the construction of Green’s functions to achieve a solution superimposing im-

pulse responses.
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Most of the applications in Turkey involve empirical and stochastic methods. There is

a gap in the literature regarding deterministic strong ground motion simulation studies

on Turkey, except for a few studies (Tanırcan [31], Özmen, Karimzadeh and Askan

[62], Şahin et al. [63]).

1.4 Objective

The main objective of this thesis is to simulate the low frequency content of the 2020

October Samos earthquake at selected stations located in İzmir. As a first attempt

to deterministically model the earthquake, a point source model is simulated with

spectral elements used in spatial discretization. An initial 3D velocity model is con-

structed based on 1D velocity models at the strong ground motion stations in İzmir

operated by AFAD.

1.5 Scope of the Thesis

In Chapter 2, the derivation of the classical elastic wave equation is presented. In

the first part, mathematical descriptions of motion and deformation are given. In

addition, the deformation gradient, a fundamental geometric mapping tool of contin-

uum mechanics, is introduced to develop finite deformation theory from which the

small deformation theory for elastic wave equation is derived. In the second part, the

derivation of the Cauchy stress theorem is given in detail, followed by the derivation

of conservation laws of continuum physics. Furthermore, particular emphasis is made

on the consequences of the entropy imbalance in modeling dissipative media. Next,

the classical elastic wave equation for an isotropic infinite homogeneous media is de-

rived from the variational principles. Finally, the derivation of the analytical solution

to the wave equation is performed in detail.

In Chapter 3, spatiotemporal discretization of the wave equation is presented. In the

first step, weak formulation of the wave equation is performed, and then the mathe-

matical description of the Galerkin FEM discretization scheme is given. In the next

step, the isoparametric formulation of the discretized elements is performed. Then,
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numerical integration schemes, Gauss-Legendre quadrature, and Gauss-Legendre-

Lobatto quadrature are described. Finally, temporal discretization of the semi-discrete

wave equation via Newmark’s β method is performed.

In Chapter 4, numerical simulations of the 2020 Samos earthquake are presented as an

application of the spectral element method. In the first part, background information

on the event and the study area is highlighted. In the second part, the SPECFEM3D

Cartesian Package (https://geodynamics.org) employed in the simulations is intro-

duced, and the main parameters modified within the package are described. In the

next step, numerical details of the simulations, along with the incorporated earth-

quake source and velocity models, are summarized. Finally, strong ground motion

characteristics of the 2020 Samos earthquake recordings at selected stations are pre-

sented, and a comparison of observed data against numerical results is made at these

stations.

In Chapter 5, a summary of the thesis is given first. Then, the main findings of the

thesis are presented. Finally, several points that should be further investigated in

future studies are proposed.

1.6 Further Reading

For precise development of the theory, the masterwork of Aki and Richards [12] is

referred. To compensate the mathematical difficulty, Roach [64], Erdélyi [65], Watan-

abe [66] by is recommended to reader. Pujol [13] might be a good choice to accom-

pany [12] as well. Another astonishingly comprehensive work might be found in

[14] by Ben-Menahem and Singh, investigating almost all aspects of the wave prop-

agation problem analytically. Classics by Achenbach [67] and Rayleigh [68]-[69]

are strongly recommended to be able to gain a solid understanding of the physics

of vibrating bodies along with Love’s masterpiece [9]. To have an intuitive grasp of

classical and analytical mechanics, [6], [7], [70], [71], [72] by the great physicists

Feynman, Landau, Susskind, and Lanczos is referred. In addition, Helmholtz [73]

would be an interesting resource for studying musical vibrations from a mathemati-

cal point of view. To comprehend their knowledge further, [74], [75], [76], [77], [78],

8
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[79], and [80] would be suitable than enough to grasp the fundamentals of wave prop-

agation in general, possibly coupled non-linear, setting. In that case, [81], and [82]

might be useful to develop an intuition regarding the entropy constituting the second

law of thermodynamics and often studied in the development of constitutive theories.

For purely axiomatic formulation of the entropy and the second law of thermodynam-

ics [83] is referred. Furthermore, [84] would provide extensive acquaintance of tensor

algebra and tensor calculus, fundamental mathematical tools in continuum mechan-

ics. For the generic implementation of FEM, [85], [86], and [87] would provide the

reader with the necessary background for further advancement and familiarity with

literature. Lastly, to gain a fundamental understanding regarding the general frame-

work of the computational earthquake engineering [88] is referred.
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CHAPTER 2

CLASSICAL WAVE THEORY

2.1 Kinematics

In the development of classical wave theory, a precise description of kinematics is

needed in the first place to have a solid foundation on which the theory is to be built.

In continuum physics, kinematics characterizes how a material body continuously de-

forms geometrically. By a material body, it is meant that set B composed of infinitely

many material points P ∈ B where B is the region occupying geometrical positions

of three-dimensional Euclidian space R3. In addition, the configuration of the body

B can be described by bijective mapping χ such that for a given particular point

P ∈ B there is a unique material point in a region B ⊂ R3 occupied by P at a given

time t. That is,

χt :

B 7→ Bt ∈ R3

P ∈ B 7→ xt = χt(P) ∈ Bt

(2.1)

where subscript t denotes configurations parametrized by time. Following this defi-

nition, the motion of the body B might be thought of as sequential configurations in

space into which B evolves in time given by the bijective mapping χt. This math-

ematical abstraction of motion provides one with a tool to keep a record of mate-

rial points P and allows for an arbitrary choice of reference configuration relative to

which a given motion is to be characterized as long as bijectivity is preserved. Armed

with the bijective mapping χ and in the light of the concept of motion set forth, now

an accurate prescription to deformation that a continuous body, whether solid or fluid,

undergoes can be given. Let us first give a mathematical definition of the reference

configuration. If the body B is identified at time t0 relative to which the deformation
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is to be measured, it is called the reference configuration given by χ,

χt0 :

B 7→ B ∈ R3

P ∈ B 7→X = χt0(P) ∈ B
(2.2)

whereX denotes material coordinates that each material point P ∈ B occupies in the

reference body B. In a like manner, the current configuration into which eventually

the reference body B evolves might be defined to completely characterize the motion

of B. If the current configuration of B at time t is denoted as S := χt, current

coordinates occupied by a material point P as x, (2.1) becomes

χt :

B 7→ S ∈ R3

P ∈ B 7→ x = χt(P) ∈ S
(2.3)

(2.2), (2.3), enable one to associate each material point P in a physical body B ⊂ R3

with the reference coordinates X ∈ B and the spatial coordinates x ∈ S , re-

spectively, in both configurations. Hence, the nonlinear deformation map φt(X) =

φ(X, t) can be introduced.

φt(X) :

B 7→ S ∈ R3

X ∈ B 7→ x = φt(X) = χt ◦ χ−1
t0 (X)

(2.4)

to directly relate the reference configuration B with the spatial configuration S at a

given time t ∈ R+. It is essential to notice that one may take advantage of the in-

herent flexibility of choice of reference configuration due to its arbitrariness. Hence-

forth, one may select a reference configuration such that B and B coincides, making

χ(X, t) ≡ φ(X, t) equivalent to each other, and therefore eliminates the additional

need for a transformation between reference and current configurations. Nevertheless,

the general description set forth will be followed as it would depict a general picture,

distinguishing the physical body from a rather abstract notion of configuration space.

Before moving on to kinematic and geometric quantities describing the motion and

deformation, it would be useful to briefly remark upon the necessary requirement for

bijectivity. Since it is conjectured that the deformation map φt(X) is bijective, it
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Lagrang�an configurat �on Euler�an configurat �on
(Reference body) (Deformed body)

Euc  l�d�an Space

Figure 2.1: Schematic illustration of motion in Euclidian space R3. Dashed lines

represent the path traversed by a material point initially at reference coordinate X .

SubscriptX indicates that φ(X, t) continuously maps a fixed material point of body

B to current configuration for each time t ∈ R+ expressed by φX(t), whereas sub-

script t signifies that mapping takes place at a specific time instant t giving the current

configuration of the reference body B given by φt(X).
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must, then, as well be inverted, giving the inverse deformation map,

φ−1
t (x) :

S 7→ B ∈ R3

x ∈ B 7→X = φ−1
t (x) = χt0 ◦ χ−1

t (x)
(2.5)

For such a bijective mapping to exist, the Jacobian of the transformation must be

positive-definite.

J := det∇Xφt(X) > 0 (2.6)

The positive-definiteness of the Jacobian ensures that different material points cannot

occupy the same spatial point in the current configuration and guarantees the self-

impenetrability of the body. The direct consequence of this condition is that a given

set of material points possessing the boundary ∂B of reference body B convects with

the material boundary for all time t, implying that any material point P ∈ ∂B re-

stricted to move along the boundary of the body ∂S maintaining the configuration

S . This leads to the fact that any material point occupying the interior body cannot

cross the boundary throughout the motion.

2.1.1 Fundamental Kinematic Quantities Associated with Motion

There are three fundamental fields associated with a given motion that a material body

possesses, namely, displacement field, velocity field, and acceleration field. However,

the definition of motion introduced in Section 2.1 leads to two different descriptions

of a given physical field. The former is called the material, also known as Lagrangian,

description, and the latter is called the spatial, or Eulerian, description. In the former,

a material particle identified at the position X ∈ B in the reference configuration

is used to describe a physical field defined on the body, whereas the latter uses the

spatial location x ∈ S that the material point now occupies in the current configu-

ration describing the same physical field while convecting with the body. Hence, the

material velocity and the material acceleration can be defined as

V (X, t) :=
dφX(t)

dt
=

∂φ(X, t)

∂t
(2.7)

A(X, t) :=
dVX(t)

dt
=

∂V (X, t)

∂t
(2.8)

Denoting the quantities that are the spatial counterparts of the material description

with lower case letters, the spatial description of velocity and the acceleration are
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then given by,

v(x, t) := V
(
φ−1

t (x), t
)
= Vt(X) ◦φ−1

t (x) (2.9)

a(x, t) := A
(
φ−1

t (x), t
)
= At(X) ◦φ−1

t (x) (2.10)

Figure 2.1 depicts both descriptions. It is crucial to notice that both descriptions

describe the same field but with parameterization of X in the former and with x in

the latter. Hence, the presence of two descriptions leads to the question of how to

relate the material and the spatial time derivatives of a given physical field, such as

the acceleration field given by (2.8), (2.10). This brings out the notion of the material

time derivative of a spatial field, the temporal change in a given field experienced by

the observer convecting with the body but identified at the position X ∈ B in the

reference configuration. To give a mathematical definition, let us consider a scalar

spatial field

f(x, t) : φt(B)× R+ 7→ R (2.11)

Then, the material time derivative of f(x, t) yields,

ḟ(x, t) =
∂f(x, t)

∂t

∣∣∣
x
+∇xf(x, t) · v (2.12)

where the first term at the right hand side represents the local temporal change of

f(x, t) at the current configuration, whereas the second term gives the convective

rate of change of f(x, t) body experiences during the motion. A consequence of

the existence of the material time derivative of spatial field is that one can perform

the time derivative operation in the current configuration even without knowing the

reference configuration of the material body. Otherwise, one would need to invert

the mapping φ(X, t) to obtain spatial coordinates of the material body to perform

ordinary time derivative in the spatial coordinates.

Remark: In the development of classical wave theory, deformations involved are

considered to be small so that the reference and spatial descriptions of associated

physical fields coincide. However, to have a profound understanding, it would be

beneficial for one to comprehend the definition of motion in this fashion. Moreover,

transformations regarding deformations would also be helpful to have a better under-

standing of isoparametric formulation given in Chapter 3.

In fact, once the displacement field is known, the velocity and acceleration fields
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can be found on the fly by consecutive differentiation with respect to time. By dis-

placement field, it is understood that the relative deformation that a material body

undergoes measuring how much distortion the body experiences with respect to the

reference configuration. In mathematical terms, if a material point located at X ∈ B
in the reference configuration is mapped to the coordinate x = φt(X) ∈ S in the

current configuration, then the displacement field can be defined as a vector-valued

function u(x, t) : φt(B)× R+ 7→ R3 such that

u(x, t) := x(X, t)−X (2.13)

where the reference coordinate X is fixed and hence independent of time. The dis-

placement field is closely related to the fundamental geometric map deformation gra-

dient, already given by (2.6), F (X, t) := ∇Xφt(X). To understand the meaning of

the deformation gradient F (X, t), it might be convenient first to examine the homo-

geneous deformation case in which the deformation gradient tensor is constant. That

means all material points in a given material deform in the same way. Mathemati-

cally, if a vector Z = Y −X identified in the reference configuration deforms into

its spatial counterpart z = φt(Y )−φt(X), the following equality holds.

F (Y −X)︸ ︷︷ ︸
Z

= φt(Y )−φt(X)︸ ︷︷ ︸
spatial vector z

(2.14)

Pure and simple shear deformations are immediate examples of such deformations.

Now, let us generalize the homogeneous deformation concept so that an arbitrary

deformation can as well be represented by F (X, t). Suppose a material point X +

∆X is located in the small neighborhood of material point X . Then, mapping both

material coordinates via φt would give,

X 7−→ φt(X) and X +∆X 7−→ φt(X +∆X) (2.15)

The spatial vector constructed by the expressionφt(X +∆X)−φt(X) can be recast
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into Gatéaux differential as o(∥∆X∥) → 0, yielding

φt(X +∆X)−φt(X)︸ ︷︷ ︸
spatial vector z

=
d

dϵ
[φt(X + ϵ∆X)]

∣∣∣
ϵ=0

=
d

dϵ

[
φt(X) + ϵ∇Xφt(X)∆X + o

(
ϵ2
)]∣∣∣

ϵ=0

= ∇Xφt(X) ·∆X

= ∇Xφt(X)︸ ︷︷ ︸
F

· (X +∆X −X)︸ ︷︷ ︸
Z

(2.16)

The interpretation of (2.16) is critical to realize the connection between a homoge-

neous and an arbitrary deformation. It follows that an arbitrary deformation is locally

homogeneous that maps material vectors to spatial vectors in a point-wise manner.

To make this interpretation (Figure 2.2), let us assume a material body and let χt0(ϑ)

and χt(ϑ) be material and spatial curves parameterized by ϑ ∈ R on B and S re-

spectively. Then, the tangent vector to the material curve drawn at X = χt0(ϑ) is

mapped onto spatial configuration, denoting the material tangent vector T and the

spatial counterpart t, as follows.

t =
dχt(ϑ)

dϑ
=

dφt ◦ χt0(ϑ)

dϑ
=

∂φt

∂χt0

· dχt0

dϑ

∣∣∣
X=χt0 (ϑ)

= ∇Xφt(X)︸ ︷︷ ︸
F

·T (2.17)

Then, by (2.17), a general definition to deformation gradient F (X, t) might be given.

F (X, t) :

TXB 7−→ TxS

T 7−→ t = F · T
(2.18)

where TXB is the material tangent space TxS is the spatial tangent space.

Having obtained the deformation gradient F (X, t) which would serve as a mean

to represent an arbitrary deformation that a material body possibly undergoes, the

deformation measures, namely stretch and strain tensors, can be introduced. Since,

in general, a given displacement field is not uniform, these deformation measures

represent the local displacement intensity at a given point relative to the reference

configuration. Let us first introduce the stretch, the ratio of the distorted local tangent

vector dx in the spatial configuration to the length of the material counterpart dX .

∥dx ∥
∥dX∥

=

√
dx · dx√
dX · dX

(2.19)
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Figure 2.2: Schematic illustration of fundamental geometric mappings, namely the

tangent map and the normal map as a measure of deformation.

Inserting (2.17) into (2.19) and selecting the length of the reference vector as unity,

i.e., ∥dX∥ = 1,

√
dx · dx =

√
FdX · FdX

=
√
dX · F TFdX

=
√
dX ·CdX (2.20)

where C := F TF is the right Cauchy-Green tensor, measuring the stretch in terms

of material coordinates. The spatial counterpart of the right Cauchy-Green tensor is

the left Cauchy-Green tensor that computes the stretch in terms of spatial coordinates

by selecting ∥dx∥ = 1. However, in small deformation theory, these two measures

coincide; therefore, an explicit definition will not be given. The right Cauchy-Green

tensor allows us to compare the squared lengths of the two tangent vectors additively,

which is very handy in small deformation theory when the ratio of two vectors is too

close to unity. Let us choose a local material vector having unit length ∥dX∥ = 1.

Then,

dx · dx− dX · dX = FdX · FdX − dX · dX

= dX · F TFdX − dX · dX

= dX ·
(
F TF − 1

)
· dX

= dX · 2E · dX (2.21)
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where the Green-Lagrange Strain Tensor E is defined as

E :=
1

2

(
F TF − 1

)
=

1

2
(C − 1) (2.22)

The factor of two in (2.21) is due to the symmetry of the tensor F TF − 1. Since

the stretch is being measured, there is no contribution coming from rigid body rota-

tion, which is the skew-symmetric part of the tensor F TF − 1. However, since it is

already symmetric, the skew-symmetric part vanishes identically. Consequently, all

contribution comes from the symmetric part giving the factor of two.

sym
(
F TF − 1

)
=

1

2

[(
F TF − 1

)
+
(
F TF − 1

)T]
= E +ET = 2E (2.23)

The Green-Lagrange Strain Tensor can be rewritten in terms of the displacement field,

taking the gradient of (2.13) with respect to material coordinates.

∇u = ∇Xφt(X)− 1 = F − 1 (2.24)

Inserting into (2.22), the Green-Lagrange Strain Tensor can be recast into the follow-

ing form.

E =
1

2

[
(∇u+ 1)T (∇u+ 1)− 1

]
=

1

2

[
∇u+∇uT +∇uT∇u

]
(2.25)

In the case of small deformations, i.e., ∥∇u∥ ≪ 1, the last term in (2.25) becomes

negligible, and the Green-Lagrange Strain tensor reduces to the infinitesimal strain

tensor ε often used in the geometrically linear theory of solid mechanics. To demon-

strate this, the Green-Lagrange Strain Tensor might be linearized about the reference

configuration.

ε := sym(∇u) = LinE
∣∣∣
F=1

= Ẽ + (F − 1) :
∂E

∂F

∣∣∣
F=1

(2.26)

Introducing the indicial notation and recognizing that Ẽ := E(F = 1) = 0, (2.26)
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is computed as

εij = (Fij − δij)
∂Eij

∂Fpq

=
1

2
[FijδkpδiqFkj + FijFkiδkpδjq − δijδkpδiqFkj − δijFkiδkpδjq]

=
1

2
[Fijδkpδiqδkj + Fijδkiδkpδjq − δijδkpδiqδkj − δijδkiδkpδjq]

=
1

2
[Fqp + Fpq − δqp − δpq]

=
1

2

[
F T − 1+ F − 1

]
= sym(∇u) (2.27)

yielding the small strain tensor ε which completes the proof. To complete the dis-

cussion, transformations of an infinitesimal volume and an area element on a given

material body will be shown. Let us start from volume transformation and let dV and

dv denote infinitesimal volume elements constructed by the scalar triple product of

local tangent vectors

dXi=1,2,3 ∈ TXB and dxi=1,2,3 ∈ TxS (2.28)

where the scalar triple products of these vectors are defined as

dV := dX1 · (dX2 × dX3) and dv := dx1 · (dx2 × dx3) (2.29)

Incorporating the deformation gradient in the latter

dv = FdX1 · (FdX2 × FdX3)

= det(F )dX1 · (dX2 × dX3)

= det(F )dV (2.30)

where we already introduced the Jacobian J := det∇Xφt(X) = det(F ). Hence,

recalling the restriction on the value of J , the volume transformation can be defined

as follows.

J :

R+ 7−→ R+

dV 7−→ dv = det(F )dV
(2.31)

In a similar manner, let dA and da denote infinitesimal area elements defined by the

reference and spatial area normals

NdA := dX2 × dX3 and nda := dx2 × dx3 (2.32)
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Then, inserting (2.32) into (2.29) would yield

dx1 · nda = FdX1 · nda

= dX1 · F Tnda = JdX1 ·NdA (2.33)

Using the latter equality, we get

dX1 ·
[
F Tnda− JNdA

]
= 0 (2.34)

for arbitrary dX1. Consequently the area transformation relation can be found by

solving (2.34) for nda

nda = JF−TNdA (2.35)

where JF−T maps area normal N in the reference configuration on to the spatial

counterpart n. Taking the norm of both sides would then give the areal Jacobian

da = ȷ dA where ȷ := J∥F−TN∥ (2.36)

where the area normals are unit vectors.

Having completely defined the fundamental kinematic quantities and geometric tools

that are necessary for the development of the classical wave theory, let us move on to

the dynamics part to relate motion with forces to observe their effects on motion. In

the remaining part of this chapter, deformations are considered to be small such that

the reference and the spatial descriptions coincide.

2.2 Cauchy’s Stress Theorem

In rigid body dynamics, the motion is not accompanied by deformations and is com-

posed solely of a combination of rigid body translation and rotation in space. How-

ever, oftentimes, as long as the characteristic length scale is not too large and the

material body is not infinitely rigid, which is the case in most engineering problems,

rigid body approximation is inadequate since deformations taking place during the

motion come to be pronounced, which in turn creates internal stresses. Therefore,

it is necessary to establish a mathematical representation of internal stresses in the

first place. Let us consider a material body B, and suppose that a part of B is cut de-

noted with Bp along with its boundary ∂Bp. Moreover, if the body is under the action
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of external forces, internal forces are developed throughout the body, transferred as

stress fluxes, generating a traction vector on the boundary ∂Bp of the cut part Bp. This

traction is called stress traction vector t or Cauchy stress traction vector, that is, the

force measured per unit deformed surface area. It is essential to notice that the stress

traction vector is defined with respect to deformed configuration.

The stress traction vector associates with Cauchy’s stress tensorσ via Cauchy’s Stress

Theorem given by

t(x, t,n) = σ(x, t) · n (2.37)

where σ denotes a symmetric second order tensor field, the Cauchy stress tensor,

n denotes the surface normal on which the traction vector t is acting. An impor-

tant observation regarding Cauchy’s Stress Theorem is that it encapsulates Newton’s

action-reaction principle. That is,

t(x, t,−n) = −σ(x, t) · n

= −t(x, t, ) (2.38)

for all unit vector n. To prove the Cauchy Stress Theorem, let us first consider a

representation of the stress tensor σ. Imagine a small cube aligned with a back-

ground cartesian bases ei=1,2,3 such that surface normals are parallel to cartesian

bases. Moreover, consider a traction vector t(i) = t(x, t, ei) associated with each

surface normal. Then, on each face, t(i) can be decomposed into its components, that

is,

t(1) = σ11e1 + σ21e2 + σ31e3 (2.39a)

t(2) = σ12e1 + σ22e2 + σ32e3 (2.39b)

t(3) = σ13e1 + σ23e2 + σ33e3 (2.39c)

Following (2.39a), (2.39b), (2.39c) the Cauchy stress tensor σ would be considered

as both mathematical and physical object into which complete information regarding

surface tractions are embedded since any traction vector can be constructed by super-

posing traction vectors constituting the stress tensor σ. Now, consider an arbitrary

surface depicted in Figure 2.3. Assume also that there is a traction vector t(n) acting

on the surface ABC and a body force ρb is present acting downwards on the body.
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Then, by conservation of linear momentum, the following equation can be written.

t(n)∆S + t(−1)∆S1 + t
(−2)∆S2 + t

(−3)∆S3 − ρb∆V = ρa∆V (2.40)

where ∆V denotes the volume of the tetrahedron. In addition, realizing the relation-

ship between surface areas,

∆S1 = ∆Sn1, ∆S2 = ∆Sn2, ∆S3 = ∆Sn3 (2.41)

and incorporating (2.38), (2.41); (2.40) can be recast into following form.

t(n) − t(1)n1 − t(2)n2 − t(3)n3 = ρ(a+ b)
∆V

∆S
(2.42)

If we let the tetrahedron shrink isotropically, i.e. keeping point O and the surface

normal n fixed, in the limit

lim
∆S,∆V→0

= ρ(a+ b)
∆V

∆S
= 0 (2.43)

leading to

t(n) = t(1)n1 + t
(2)n2 + t

(3)n3 (2.44)

Finally, introducing the stress tensor σ into (2.44), we would finally prove the Cauchy

Stress Theorem.

t(n) = n1e1 · σ + n2e2 · σ + n3e3 · σn3

= n · σ = σ · n (2.45)

where in the latter the symmetry property of σ = σT is utilized.

Having obtained the stress tensor σ(x, t), deformations can now be linked to internal

forces via constitutive equations governing the response of the material body, which

will be discussed in the forthcoming section.

2.3 Conservation Laws of Continuum Mechanics

Consider the cutout part Bp of the material body B along with its boundary ∂Bp.

Recalling the self-impenetrability restriction imposed by the positive-definiteness of

J , the motion of the body B can be equally represented by the cut part Bp. Then, to
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Figure 2.3: Schematic illustration of Cauchy’s stress theorem. a) depicts an arbitrary

surface having an area normal n on which the traction force is acting t(n), while b)

represents projections of traction forces on planes with normals parallel to cartesian

coordinate bases ei=1,2,3 constituting the Cauchy Stress Tensor.

characterize the state of motion, the following fundamental physical quantities might

be identified on Bp

i. Mass m :=

�
Bp

ρdV (2.46a)

ii. Linear Momentum I :=

�
Bp

ρvdV (2.46b)

iii. Angular momentum L :=

�
Bp

r × ρvdV (2.46c)

iv. Kinetic Energy K :=

�
Bp

1

2
ρv · vdV (2.46d)

v. Internal Energy E :=

�
Bp

ρedV (2.46e)

vi. Entropy H :=

�
Bp

ρηdV (2.46f)

vii. Entropy Production Γ :=

�
Bp

ργdV (2.46g)

where the fields ρ(x, t), v(x, t), u(x, t), e(x, t), η(x, t), and γ(x, t) represent the

density, velocity, displacement, internal energy per unit mass, entropy per unit mass,

and entropy production per unit mass, respectively. These are the physical fields
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associated with the state of the body in the thermomechanical framework. However,

these field variables depend upon the very nature of the problem under consideration,

and subsequently, one might need to introduce additional field variables dictated by

the problem.

Unless the body B is in an inertial state, that is, in a state of constant translational mo-

tion, and unless the internal state of B is stationary, there have to be external sources

affecting the state of the body B, and hence the state of the cut part Bp. Restrict-

ing ourselves to a thermomechanical framework, and without loss of generality, these

external sources might be classified into two types, namely mechanical sources and

thermal sources. Both sources manifest themselves as surface and body loads, the

former being the stress traction vector t(x, t) and the heat flux h(x, t), and the latter

being the mass-specific body force b(x, t) and the mass-specific heat source (x, t).

The physical quantities attributed to these loads that are acting on Bp are

i. Mechanical Force F :=

�
Bp

ρbdV +

�
∂Bp

tdA (2.47a)

ii. Mechanical Couple M :=

�
Bp

r × ρbdV +

�
∂Bp

r × tdA (2.47b)

iii. Mechanical Power P :=

�
Bp

ρb · vdV
�
∂Bp

t · vdA (2.47c)

iv. Thermal Power Q :=

�
Bp

ρrdV −
�
∂Bp

hdA (2.47d)

v. Entropy Power S :=

�
Bp

ρ
r

θ
dV −

�
∂Bp

h

θ
dA (2.47e)

with θ(x, t) being the temperature field. Inevitably, then, the question of how to estab-

lish an interrelationship between the state variables and the external loads disturbing

the state would be raised. The answer lies in the conservation laws of continuum

mechanics, along with the entropy imbalance constituting the 2nd law of thermody-
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namics, given by the following relations.

i. Conservation of Mass
dm

dt
= 0 (2.48a)

ii. Conservation of Linear Momentum
dI

dt
= F (2.48b)

iii. Conservation of Angular Momentum
dL

dt
=M (2.48c)

iv. Conservation of Energy
d

dt
(K + E) = P +Q (2.48d)

v. Entropy Imbalance
dH

dt
= Γ + S ≥ 0 (2.48e)

Let us investigate each case incorporating (2.46a)-(2.47e) into (2.48a)-(2.48e). In

what follows, the Gauss Theorem, which relates surface integrals to volume integrals,

will be utilized when necessary to obtain a global expression governing the state of

Bp.

2.3.1 Conservation of Mass

dm

dt
=

d

dt

�
Bp

ρdV =

�
Bp

ρ̇dV = 0 (2.49)

Applying the principle of localization

lim
Bp→dV

�
Bp

ρ̇ dV = 0 (2.50)

yields the local form of the conservation of mass

ρ̇ = 0 (2.51)

2.3.2 Conservation of Linear Momentum

d

dt

�
Bp

ρv dV =

�
Bp

(ρ̇v + ρv̇) dV =

�
Bp

ρb dV +

�
∂Bp

t dA (2.52)

Utilizing Cauchy’s stress theorem on the surface traction t and then applying the

Gauss theorem on the resultant surface integral term would yield
�
∂Bp

t dA
Cauchy
=

�
∂Bp

σ · n dA
Gauss
=

�
Bp

∇ · σ dV (2.53)
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Finally, insertion of the conservation of mass given by (2.51) along with (2.53) gives,

�
Bp

ρv̇ dV =

�
Bp

ρb dV +

�
Bp

∇ · σ dV (2.54)

Then, through the principle of localization

lim
Bp→dV

�
Bp

(ρv̇ − ρb−∇ · σ) dV = 0 (2.55)

we get the local form of the conservation of linear momentum, which governs the

classical wave equation

ρv̇ = ρü = ρb+∇ · σ (2.56)

2.3.3 Conservation of Angular Momentum

d

dt

�
Bp

r × ρv dV =

�
Bp

r × ρb dV +

�
∂Bp

r × t dA (2.57)

where r = x + x0 represents the position vector emanating from an arbitrary origin

obtained by shifting the origin of the reference coordinate system by a constant vector

x0. This time, the transformation of the surface integral term is rather more involved

than the previous part due to cross product term. Let us first express the surface

integral term in indicial notation.

�
∂Bp

r × t dA =

�
∂Bp

ϵijkrjtk dA =

�
∂Bp

ϵijkrjσkpnp dA (2.58)

where we introduce the Levi-Civita symbol defined by

ϵijk =


0, if i = j, or j = k, or k = i

+1, for even permutation of i, j, k; i.e. (123, 231, 312)

−1, for odd permutation of i, j, k; i.e. (132, 213, 321)

(2.59)

implying cyclic-order property, that is, ϵijk = ϵjki = ϵkij = −ϵikj = −ϵjik = −ϵkji.
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Then, applying the Gauss theorem on the latter would eventually give
�
∂Bp

ϵijkrjσkpnp dA =

�
Bp

∂

∂xp

(ϵijkrjσkpnp) dV

=

�
Bp

[
ϵijkδjpσkp + ϵijkrj

∂σkp

∂xp

]
dV

=

�
Bp

ϵijkσkj dV +

�
Bp

ϵijkrj
∂σkp

∂xp

dV

=

�
Bp

ϵikjσkj dV +

�
Bp

ϵijkrj
∂σkp

∂xp

dV

=

�
Bp

−ϵ : σ dV +

�
Bp

r ×∇ · σ dV (2.60)

where in the latter cyclic-order property of the Levi-Civita symbol is introduced.

Moreover, by expanding the time derivative over the integral on left hand side and

inserting (2.51), we would get

d

dt

�
Bp

r × ρv dV =

�
Bp

(ṙ × ρv + r × ρ̇v + r × ρv̇) dV

=

�
Bp

v × ρv dV +

�
Bp

r × ρ̇v dV +

�
Bp

r × ρv̇ dV

=

�
Bp

r × ρv̇ dV =

�
Bp

r × ρü dV (2.61)

using the cross product identity v × v = 0. Finally, combining all terms
�
Bp

r × (ρü− ρb−∇ · σ) dV +

�
Bp

ϵ : σ dV = 0 (2.62)

Realizing further in (2.62) that the first integral corresponds to the conservation of

linear momentum and hence vanishes, the principle of localization on (2.62) yields

lim
Bp→dV

�
Bp

ϵ : σ = 0 ⇝ ϵ · σ = 0 (2.63)

implying, with the insertion of (2.59), that

ϵ123(σ23 − σ32) = 0 ⇝ σ23 = σ32 (2.64a)

ϵ231(σ31 − σ13) = 0 ⇝ σ31 = σ13 (2.64b)

ϵ312(σ12 − σ21) = 0 ⇝ σ12 = σ21 (2.64c)

leading us to the conclusion that as long as there are no body moments analogous to

body forces, the stress tensor σ is always symmetric, obligated by the conservation

of angular momentum. In other words, the net moment caused by external forces is
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counterbalanced by the moment produced by the inertia force, while internal couples

balance out each other.

σ = σT (2.65)

However, it is important to observe that presence of body moments distorts the sym-

metricity of the stress tensor σ prohibiting (2.65).

2.3.4 Conservation of Energy

d

dt

�
Bp

(
1

2
ρv · v + ρe

)
dV =

�
Bp

ρb ·v dV +

�
∂Bp

t ·v dA+

�
Bp

ρr dV −
�
∂Bp

h dA

(2.66)

Analogous to preceding cases, let us first concentrate on the surface integral terms.

The second term representing the power expended by traction forces might be recast

into the following form, recalling the commutativity of the scalar product operator

and exploiting the symmetry of σ.

�
∂Bp

v · t dA =

�
∂Bp

v · σ · n dA =

�
∂Bp

σv · n dA =

�
Bp

∇ · (σv) dV (2.67)

The latter might be expanded to what follows.

�
∂Bp

∇ · (σv) dV =

�
∂Bp

(∇ · σ)v dV +

�
∂Bp

σ : ∇v dV (2.68)

In (2.68), the term ∇v is called the velocity gradient, additive decomposition of

which gives the rate of deformation tensor, so-called strain rate tensor in small de-

formation theory, ε̇ and the spin tensor ω̇, respectively. That is,

d

dt
∇u = ∇u̇ = ∇v =

1

2

(
∇u+∇uT

)
+

1

2

(
∇u−∇uT

)
= sym∇v + skw∇v

= ε̇+ ω̇ (2.69)

where the rotation tensorω := skw∇u obtained from the skew-symmetric part of the

deformation tensor corresponds to rigid body rotation. This suggests that there must

be no contribution to internal energy from the spin tensor ω̇. Let us show that this is
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indeed the case by exploiting the symmetry of σ.

σ : ∇v =
1

2

(
σ : ∇v + σ : ∇vT

)
+

1

2

(
σ : ∇v − σ : ∇vT

)
=

1

2

(
σ : ∇v + σ : ∇vT

)
+

1

2

(
σ : ∇v − (∇v : σ)T

)
=

1

2

(
σ : ∇v + σ : ∇vT

)
= σ : ∇v = σ : ε̇ (2.70)

where in the second step, the transpose operation applies on a scalar quantity hence

leaving the term in parentheses unchanged. Furthermore, the commutativity of the

double contraction operator is also utilized, details of which will be given in the next

section. Next, let us consider the heat flux term. Introducing the heat flux vector q

via Cauchy’s theorem and applying Gauss theorem to transform surface integral to

volume integral, we get�
∂Bp

h dA =

�
∂Bp

q · n dA =

�
Bp

∇ · q dV (2.71)

Lastly, performing the time derivative operation in (2.66) and substituting (2.51)

d

dt

�
Bp

(
1

2
ρv · v + ρe

)
dV =

�
Bp

1

2
ρ̇v · v dV +

�
Bp

ρv · v̇ +

�
Bp

ρ̇e dV +

�
Bp

ρė dV

=

�
Bp

ρv · v̇ dV +

�
Bp

ρė dV (2.72)

Inserting (2.70), (2.71), and (2.72), (2.66) can be recast into following form.�
Bp

v · (ρv̇ −∇ · σ − ρb) dV +

�
Bp

(ρė− σ : ε̇+∇ · q) dV = 0 (2.73)

Noting that the first term vanishes due to the conservation of linear momentum given

by (2.56) and invoking the principle of localization

lim
Bp→dV

�
Bp

(ρė− σ : ε̇+∇ · q) dV = 0 (2.74)

the local form of conservation of energy read as follows.

ρė = σ : ε̇+ ρr −∇ · q (2.75)

2.3.5 Entropy Imbalance

d

dt

�
Bp

ρηdV =

�
Bp

ργdV +

�
Bp

ρ
r

θ
dV −

�
∂Bp

h

θ
dA ≥ 0 (2.76)
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Let us first transform the surface integral into volume integral by applying the Gauss

theorem on (2.76)�
∂Bp

h

θ
dA =

�
∂Bp

q · n
θ

dA =

�
∂Bp

qini

θ
dA

=

�
Bp

∂

∂xi

(qi
θ

)
dV

=

�
Bp

1

θ

∂qi
∂xi

dV −
�
Bp

1

θ2
qi
∂θ

∂xi

dV

=

�
Bp

1

θ
∇qdV −

�
Bp

1

θ2
q · ∇θdV (2.77)

Inserting (2.77) into (2.76) along with the conservation of mass equality given in

(2.51) then would yield�
Bp

ρη̇dV =

�
Bp

ργdV +

�
Bp

ρ
r

θ
dV −

�
Bp

1

θ
∇ · qdV +

�
Bp

1

θ2
q · ∇θdV (2.78)

Applying the principle of localization on (2.78) gives

lim
Bp→dV

�
Bp

(
ρη̇ − ργ − ρ

r

θ
+

1

θ
∇ · q − 1

θ2
q · ∇θ

)
= 0 (2.79)

Rearranging (2.79) and combining with the first law of thermodynamics, that is the

conservation of energy given by (2.75), would eventually yield the entropy imbalance

constituting the second law of thermodynamics.

ργ = ρη̇ − 1

θ
(ρė− σ : ε̇)− 1

θ2
q · ∇θ ≥ 0 (2.80)

The entropy imbalance principle states that the internal entropy production cannot be

negative which puts a strong restriction on the evolution of a physical state, which is

not the case for the first law as it tells about only the current physical state of a given

system. Hence, it enables one to construct thermodynamically admissible material,

or so-called constitutive equations a priori satisfying the entropy imbalance law. To

demonstrate this, let us modify the entropy imbalance law given by (2.80) expression

to have a better understanding. Let D be the mass-specific dissipation defined as

ρD := ρθγ ≥ 0 (2.81)

where θ is the absolute temperature, i.e. θ > 0. Then, multiplying both sides of (2.80)

and employing (2.81), the Clausius-Duhem Inequality (CDI) is obtained.

ρD = ρθη̇ −
(
ρė− σ : ε̇− 1

θ
q · ∇θ

)
≥ 0 (2.82)
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The Clausius-Duhem Inequality can additively be splitted into local Dloc and conduc-

tive Dcon terms.

ρDloc := σ : ε̇− ρė+ ρθη̇ ≥ 0 (2.83)

ρDcon := −1

θ
q · ∇θ ≥ 0 (2.84)

where the former is called Clausius-Planck Inequality (CPI) and the latter is called

Fourier Inequality (FI). The decomposition of CDI into CPI and FI puts firmer restric-

tion that requires (2.83), (2.84) to be satisfied, exploiting decoupled mechanism of the

local and conductive dissipation phenomena. As it can be observed from (2.83), local

dissipation depends upon the temporal change of the state variables, whereas the con-

ductive term depends on the absolute temperature gradient involving the non-local

transport phenomenon. On the other hand, the dependence of CPI on the temporal

change of the entropy is not suitable to arrive at a material equation for solids as it

would be very challenging to control entropy as an independent state variable for a

given material. Hence, rather than using the entropy as an independent state vari-

able, the absolute temperature θ can alternatively be used by introducing Helmholtz’s

Free Energy Ψ via the Legendre transformation of the internal energy e that shifts the

dependency on entropy η to the absolute temperature θ.

Ψ := e− θη (2.85)

Inserting (2.85) into (2.83), we would obtain the modified Clausius-Planck Inequality.

ρDloc = σ : ε̇− ρė+ ρθη̇ ≥ 0

= σ : ε̇− ρ ˙(
Ψ+ θη

)
+ ρθη̇ ≥ 0

= σ : ε̇− ρΨ̇− ρθ̇η ≥ 0 (2.86)

With the modified Clausius-Planck Inequality given by (2.86), the initial-boundary

value problem (IBVP) for wave propagation in a dissipative thermoinelastic medium

with thermal coupling can be formulated through the introduction of the set of internal

state variables I ,

I :=
{
(α1,α2, . . . ,αn) ∈ Rn × Rm . . .× Rk | ρDloc ≥ 0

}
(2.87)

with αi corresponding to ith generalized internal variable vector, while n, m, and k

are positive integers denoting the dimension of the corresponding internal variable
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vector. The overall state of the medium, then, can be described by the state variables

State(x, t) = {ε(x, t), θ(x, t),I(x, t)} (2.88)

where

ε(x, t) : the total strain tensor (external),

θ(x, t) : the absolute temperature field (external),

I(x, t) : the set of internal state variables (internal).

By the principle of equipresence, which states that the material equations should de-

pend on the same set of variables, the Helmholtz free energy function takes the form

Ψ = Ψ̂(ε, θ,I). Then, the modified CPI in (2.86) takes the following form.

ρDloc = σ : ε̇− ρ
[
∂εΨ̂ : ε̇+ ρ∂θΨ̂θ̇ + ∂IΨ̂ • İ + θ̇η

]
≥ 0 (2.89)

where (•) represents the generalized inner product operator. Rearranging (2.89)

yields the general form of the local dissipation ρDloc.

ρDloc =
[
σ − ρ∂εΨ̂

]
: ε̇−

[
ρ∂θΨ̂ + ρη

]
θ̇ − ρ∂IΨ̂ • İ ≥ 0 (2.90)

In accordance with Coleman’s exploitation method [89], which states that ρDloc should

hold for arbitrary rates ε̇ and θ̇ to a priori satisfy the second law of thermodynamics,

the first and the second terms of (2.90) should vanish identically. Thus, by introducing

the set of thermodynamical variables conjugate to the set of internal state variables

F :=
{
(β1,β2, . . . ,βn) ∈ Rn × Rm . . .× Rk | ρDloc = F • İ ≥ 0

}
(2.91)

the stress tensor σ and the entropy field η can be expressed as follows.[
σ − ρ∂εΨ̂

]
⇝ σ = ρ∂εΨ̂ and

[
η + ∂θΨ̂

]
⇝ η = −∂θΨ̂ (2.92)

Insertion of (2.91) into (2.86), and introducing the material evolution equation de-

scribing the evolution of internal variables İ := Σ = Σ̂(ε̇, ε,I, θ) depending upon

the state given by (2.88) and the total strain rate, would eventually yield the general

form of the local material dissipation.

ρDloc = −ρ∂IΨ̂ • İ = F • Σ̂(ε̇, ε,I, θ) ≥ 0 (2.93)
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Table 2.1: The IBVP of thermally coupled wave propagation in thermoinelastic

medium

IBVP of Thermally Coupled Wave Propagation in Thermoinelastic Medium

1. Balance Equations

Linear Momentum ρü = ∇ · σ + ρb

Energy ρė = σ : ε̇+ ρr −∇ · q

2. Constitutive Equations

Stress Field σ = ρ∂εΨ̂(ε,I, θ)

Entropy Field η = −∂Ψ̂(ε,I, θ)

Thermodynamic Force F = −ρ∂IΨ̂(ε,I, θ)

Evolution Equations İ = ˆΣ(ε̇, ε,I, θ)

Heat Flux q = q̂
(
θ̇, θ,∇θ

)
(FI)

3. Boundary Conditions

Displacement u = ū on ∂Bu

Traction t = t̄ = σn on ∂Bt

Temperature θ = θ̄ on ∂Bθ

Heat Flux h = h̄ on ∂Bh

4. Initial Conditions

Displacement u(x, t0) = u0(x) in B

Velocity v(x, t0) = v0(x) in B

Temperature θ(x, t0) = θ0(x) in B
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In Table 2.1, boundary ∂B of B is decomposed into four distinct sets on which the

displacement field u, the temperature field θ, the stress traction t, and the heat flux h

are prescribed respectively.

∂Bu : on which the displacement field u is prescribed (Dirichlet BCs)

∂Bθ : on which the temperature field θ is prescribed (Dirichlet BCs)

∂Bt : on which the stress traction t is prescribed (Neumann BCs)

∂Bh : on which the heat flux h is prescribed (Neumann BCs)

It is essential to note that the Dirichlet and Neumann boundaries are disjoint, that is,

they cannot simultaneously be prescribed on a boundary. The mathematical statement

of this observation is as follows.

∂B = (∂Bu ∪ ∂Bt) ∪ (∂Bθ ∪ ∂Bh) (2.94)

∂Bu ∩ ∂Bt = ∅ and ∂Bθ ∩ ∂Bh = ∅ (2.95)

This concludes the discussion on conservation laws and on the thermodynamical as-

pects of constitutive modeling. In the following section, classical elastic wave theory

will be discussed and the analytical solution to the 3D wave propagation problem

through isotropic elastic medium extending to infinity will be derived starting from

the formulation of the balance of linear momentum utilizing variational principles.

Derivations involved

2.4 Elastic Wave Equation

The general form of the wave equation given in Table 2.1 can be reduced to classi-

cal elastic wave equation that has an analytical solution provided that the following

assumptions hold.

i. There is no heat transfer (∇ · q ≈ 0), i.e., the deformation takes place at very

high rate,

ii. There is no energy dissipation, i.e., the medium is perfectly elastic,

iii. Thermoelastic heating is negligible,
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iv. The medium is isotropic, homogeneous and infinite,

v. There is no heat source present (ρr = 0),

vi. The response of the medium is time-invariant, i.e., LTI system.

With the above assumptions, the classical wave equation can be obtained directly

from Table 2.1. However, to obtain a deeper insight, the balance of linear momentum

(2.75) will be derived from the variational principles [72]. The physical interpretation

of the principle can be found in [71], [72], and [90]. In addition, the fundamentals of

the calculus of variations can be found in [91].

2.4.1 Principle of Stationary Action

Let S denotes the action of the system and δS denotes the first variation of the ac-

tion, respectively. Then, the principle of stationary action states that the system is in

dynamic equilibrium when the first variation δS of the system vanishes.

δS =

� t2

t1

[L(x,u+ ϵδu, u̇+ ϵδu̇, sym(∇u+ ϵ∇δu))− L(x,u, u̇, sym(∇u))]dt

=

� t2

t1

d

dϵ
[L(x,u+ ϵδu, u̇+ ϵδu̇, sym(∇u+ ϵ∇δu))]

∣∣∣
ϵ=0

dt

=

� t2

t1

(
∂L

∂u
· δu+

∂L

∂u̇
· δu̇+

∂L

∂ε
: ∇δu

)
dt (2.96)

In (2.96), the virtual velocity and the virtual strain fields δu̇, sym(∇u) are present in

addition to the virutal displacement field. Therefore, both the time derivative and the

gradient operator are required to be shifted by applying integration by parts on (2.96).

That is,
� t2

t1

(
∂L

∂u
· δu+

∂

∂t

[
∂L

∂u̇
· δu

]
− ∂

∂t

∂L

∂u̇
· δu+∇ ·

[
∂L

∂ε
· δu

]
−∇ · ∂L

∂ε
· δu

)
dt

(2.97)

where (2.97) can be recast into the following form.

� t2

t1

dt

(
∂L

∂u
− ∂

∂t

∂L

∂u̇
−∇ · ∂L

∂ε

)
· δu+

� t2

t1

∇ ·
[
∂L

∂ε
· δu

]
dt+

[
∂L

∂u̇
· δu

]∣∣∣∣∣
t=t2

t=t1
(2.98)
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In (2.96), (2.97), and (2.98) L denotes the Lagrangian or action function for a given

differential volume element and given by (2.99)

L = K − Π (2.99)

where K is the kinetic energy and Π := Πint + Πext is the total potential energy due

to internal and external forces.

K =

�
V

1

2
ρu̇ · u̇dV and Π =

�
V

Ψ̂(ε)dV −
�

V

ρb · udV −
�

∂V

t̄ · udA
(2.100)

Inserting the above expressions into variational formulation would yield the differen-

tial form of the equation of motion, the conservation of linear momentum principle.

δS =

� t2

t1

dt

[�
V

dV

(
ρb− ρü+∇ · ∂Ψ̂

∂ε

)
+

�
∂V

dA

(
t̄− ∂Ψ̂

∂ε
· n
)]

· δu

(2.101)

(2.101) gives the stationary action principles and always be fulfilled whenever δS

vanishes. Since the virtual displacement field can take arbitrary values, the terms in

brackets in (2.101) must vanish accordingly. Hence, recognizing ∂εΨ̂ is the Cauchy

stress tensor σ, which will be shown in the subsequent section, (2.101) would yield

the strong form of the local form of the conservation of linear momentum law.

2.4.2 Elastic Wave Equation For Isotropic, Homogeneous and Infinite Media

Having established the governing differential equation for the displacement fieldu(x, t),

the wave equation for an isotropic and infinitely homogeneous medium can be written

by introducing the following Helmholtz Free Energy Ψ̂(ε) into the balance equation

given in Table 2.2.

Ψ = Ψ̂(ε) =
λ

2
tr2(ε) + µε : ε (2.102)

In the above equation tr(•) is the trace operator and defined as, employing Ein-

stein summation convention, tr(A) := Akk. Similarly, double contraction operator

(•) : (•) is defined for an arbitrary tensorsA andB as follows.

A : B := tr
(
ABT

)
= ABT : 1 = AikBjkδij = AikBik (2.103)
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Table 2.2: The formulation of the IBVP of elastodynamics

Elastodynamics

1. Balance Equations

Linear Momentum ρü = ∇ · σ + ρb

2. Constitutive Equations

Stress Field σ = ∂εΨ̂(ε)

3. Boundary Conditions

Displacement u = ū on ∂Vu

Traction t = t̄ = σn on ∂Vt

4. Initial Conditions

Displacement u(x, t0) = u0(x) in V

Velocity v(x, t0) = v0(x) in V
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Now, expression for the stress field can be found as follows.

σ =
∂Ψ

∂ε
=

λ

2

∂tr2(ε)
∂tr(ε)

∂tr(ε)
∂ε

+ µ
∂ε

∂ε
: ε+ µε :

∂ε

∂ε

= λtr(ε)
∂εkk
∂εij

+ µ
∂εpq
∂εij

εpq + µεpq
∂εpq
∂εij

= λtr(ε)δkiδkj + 2µδpiδqjεpq

= λtr(ε)δij + 2µεij

= λtr(ε)1+ 2µε (2.104)

In order to be able to take the divergence of the stress field, the last equation should

be rewritten in terms of the displacement field. That is,

σ = λtr(sym(∇u))1+ 2µ sym(∇u) (2.105)

where

sym(∇u) := 1

2

[
∇u+∇uT

]
and tr(sym(∇u)) = tr(∇u) (2.106)

The latter equality can be derived as follows.

tr(sym∇u) = 1

2

[
∇u : 1+∇uT : 1

]
=

1

2

[
∂ui

∂xj

δij +
∂uj

∂xi

δij

]
=

∂ui

∂xi

= ∇ · u = tr(∇u) (2.107)

Then, taking the divergence of the stress field yields

∇ · σ =
∂σij

∂xj

= λ
∂

∂xj

[
∂uk

∂xk

]
δij + µ

∂

∂xj

[
∂ui

∂xj

+
∂uj

∂xi

]
= λ

∂

∂xi

∂uk

∂xk

+ µ
∂

∂xj

∂ui

∂xj

+ µ
∂

∂xj

∂uj

∂xi

= (λ+ µ)
∂

∂xi

∂uj

∂xj

+ µ
∂

∂xj

∂ui

∂xj

= (λ+ µ)∇∇ · u+ µ∇ ·∇u (2.108)

Finally, governing differential equation for the elastic wave equation can be obtained.

ρü = (λ+ µ)∇∇ · u+ µ∇ ·∇u+ ρb (2.109)
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2.4.3 Lamé’s Solution

Analytical solution to wave equation can be achieved by invoking Lamé’s Theorem,

which requires decomposition of the displacement field into divergence-free and curl-

free parts utilizing Helmholtz’s Decomposition Theorem introducing scalar potential

ϕ(x, t) and vector potential ψ(x, t). Then, the displacement field u(x, t) can be

represented as u(x, t) = ∇ϕ+∇×ψ. Before inserting the displacement expression

into the wave equation, introducing the identity ∇×∇×A = ∇∇·A−∇·∇A
is useful to be able to split the wave equation into two independent IBVP. The proof

is as follows.

∇×∇×A = ∇×
(
ϵijk

∂Ak

∂xj

)
= ϵipqϵijk

∂

∂xq

∂Ak

∂xj

= [δpjδqk − δpkδqj]
∂

∂xq

∂Ak

∂xj

= δqk
∂

∂xq

∂Ak

∂xj

δpj − δqj
∂

∂xq

∂Ak

∂xj

δpk

=
∂

∂xp

∂Ak

∂xk

− ∂

∂xj

∂Ap

∂xj

= ∇∇ ·A−∇ ·∇A (2.110)

Recasting the wave equation would, then, yield

ρü = (λ+ 2µ)∇∇ · u− µ∇×∇× u+ ρb (2.111)

Decomposing the displacement and external force fields as u(x, t) = ∇ϕ+∇× ψ

and ρb = ∇Φ + ∇ × Ψ, respectively, recasting (2.111) by inserting (2.110) and

utilizing the Lamé’s Theorem would yield two independent scalar and vector wave

differential equations.

ρ
(
∇ϕ̈+∇× ψ̈

)
= ∇(∇ ·∇ϕ) + µ∇×∇ ·∇ψ +∇Φ +∇×Ψ (2.112)

Rearranging (2.112) yields the differential equations for the displacement potential.

∇ϕ̈−α2∇(∇ ·∇ϕ)− 1

ρ
∇Φ+∇× ψ̈−β2∇×∇·∇ψ− 1

ρ
∇×Ψ = 0 (2.113)

Exploiting the distributive property of ∇(•) and ∇× (•) operators, (2.113) further

reduced to following form.

∇
(
ϕ̈− α2∇2ϕ− 1

ρ
Φ

)
+∇×

(
ψ̈ − β2∇2ψ − 1

ρ
Ψ

)
= 0 (2.114)
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(2.114) can be satisfied unless terms in parentheses do not vanish. Hence, two uncou-

pled partial differential equations are obtained.

ϕ̈ = α2∇2ϕ+
1

ρ
Φ and ψ̈ = β2∇2ψ +

1

ρ
Ψ (2.115)

where α2 = (λ+ 2µ)/ρ denotes the squared speed of dilatational waves and β2 =

µ/ρ denotes the squared speed of the transverse or shear waves. In order to be able

to solve for the scalar and vector potentials, Green’s function G(x, t) might be found

as a first step. Then, assuming that the response of the medium is time-invariant and

linear, the superposition of shifted impulse responses under a given external source

would yield the solution. To illustrate this, let I(x, t) = δ(x)δ(t) be isotropic, i.e.

spherically symmetric, force field so that the directionality of the source is immaterial.

Then,

G̈ = α2∇2G+ δ(x)δ(t) (2.116)

On the other hand, the external force field can be rewritten by distributing throughout

the domain and distributing in time utilizing Dirac distribution.

Φ(x, t) =

� ∞

−∞
dτ

�
V

Φ(ξ, τ)δ(x− ξ)δ(t− τ)dV (ξ) (2.117)

Inserting the latter equation into the differential equation for scalar potential,

ϕ̈ = α2∇2ϕ+
1

ρ

� ∞

−∞
dτ

�
V

Φ(ξ, τ)δ(x− ξ)δ(t− τ)dV (ξ) (2.118)

Lastly, inserting the former into the last equation,

ϕ̈ = α2∇2ϕ+
1

ρ

� ∞

−∞
dτ

�
V

Φ(ξ, τ)
[
G̈(x, t; ξ, τ)− α2∇2G(x, t; ξ, τ)

]
dV (ξ)

(2.119)

Noting that the gradient and the time derivative are taken with respect to receiver

coordinates and time, i.e. x and t, the following expression is obtained.[
∂2

∂t2
− α2∇2

]
ϕ(x, t) =

1

ρ

[
∂2

∂t2
− α2∇2

]� ∞

−∞
dτ

�
V

Φ(ξ, τ)G(x, t; ξ, τ)dV (ξ)

(2.120)

Introducing the d’Alembert operator, or d’Alembertian □α := ∂tt − α2∇2, and rear-

ranging the last equality, the scalar potential can be expressed as the convolution of

the source function with the Green’s function.

□α

[
ϕ(x, t)− 1

ρ

� ∞

−∞
dτ

�
V

Φ(ξ, τ)G(x, t; ξ, τ)dV (ξ)

]
= 0 (2.121)
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To satisfy the above equality, the term in brackets must vanish. Hence,

ϕ(x, t) =
1

ρ

� ∞

−∞
dτ

�
V

Φ(ξ, τ)G(x, t; ξ, τ)dV (ξ) (2.122)

2.4.4 Green’s Function for the Scalar Wave Equation

The problem is now reduced to finding Green’s function G(x, t) for the scalar wave

equation. Although the derivations are given in a detailed manner, the discussion of

the theory of distributions are not presented here. [12], [13], [92] are referred for a

detailed discussion of the theory of distributions and the Green’s function.

Let us align background Cartesian coordinates such that the origin coincides with the

source location. Hence, the position and time coordinates between source and re-

ceiver locations become simply (x, t). Let us, further, take the spatial Fourier Trans-

form of the scalar wave equation given that the spatial Fourier Transform of Green’s

function has the following form.

F{G(x, t)} = Ĝ(k, t) =

� ∞

−∞
dx

� ∞

−∞
dy

� ∞

−∞
G(x, t)e−i(kxx+kyy+kzz)dz (2.123)

where kx, ky, kz denote the spatial angular frequencies, or angular wavenumbers prop-

agating in x,y, and z directions respectively. Utilizing linearity of d’Alembertian □α,

F

{
∂2G

∂t2
− α2∇2G

}
=

∂2

∂t2
F{G(x, t)} − α2∇2F{G(x, t)}

=
∂2Ĝ(k, t)

∂t2
− α2∇2Ĝ(k, t) (2.124)

Laplacian of spatially transformed Green’s function yields

∇2Ĝ(k, t) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

) � ∞

−∞
dx

� ∞

−∞
dy

� ∞

−∞
G(x, t)e−i(kxx+kyy+kzz)dz

=
(
i2k2

x + i2k2
y + i2k2

z

) � ∞

−∞
dx

� ∞

−∞
dy

� ∞

−∞
G(x, t)e−i(kxx+kyy+kzz)dz

= −k2Ĝ(k, t) (2.125)

where k is the angular wavenumber vector for which the identity k2 = k2
x+k2

y+k2
z =

k ·k holds. Then, recognizing that the Fourier Transform of spatial Dirac distribution

yields unity resulting. That is,

F{δ(x)δ(t)} =

� ∞

−∞
dx

� ∞

−∞
dy

� ∞

−∞
δ(x)δ(t)e−i(kxx+kyy+kzz)dz = δ(t) (2.126)
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The transformed scalar wave equation takes the form,

∂2Ĝ(k, t)

∂t2
+ k2α2Ĝ(k, t) = δ(t) (2.127)

Assuming Ĝ(k, t) has the form Ĝ(k, t) = eκt, where κ is function of angular wavenum-

ber vector k , i.e. κ = κ̂(k), the above equation yields for t ̸= 0[
κ2 + k2α2

]
eκt = 0 (2.128)

which is an eigenvalue problem having eigenvalues κ1,2 = ±ikα and corresponding

eigenfunctions Ĝ1 = K1e
ikαt and Ĝ2 = K2e

−ikαt with complex constants K1, K2.

The superposition of two solutions would then give the solution. Since unknown

constants are arbitrary complex numbers, K2 might be taken as complex conjugate of

K1, that is, K2 = K1 to utilize the identities

cosx = Re
{
eix
}
=

1

2

[
eix + e−ix

]
and sinx = Im

{
eix
}
=

1

2i

[
eix − e−ix

]
(2.129)

Hence, solution becomes, with K
′
1 = Re{K1} and K

′
2 = Im{K1}

Ĝ(k, t) = K
′

1 cos kαt+K
′

2 sin kαt ∀t ∈ R+ ∪ {0} (2.130)

The last equality implies causality. That means the system or medium through which

waves propagate cannot respond before the excitation due to source activity. In other

words, the cause always antecedes the response of a system. Hence, Ĝ(x, t) is con-

tinuous at time t = 0, when the source is applied. Then,

Ĝ(k, t) = K
′

2 sin kαt ∀t ∈ R+ ∪ {0} (2.131)

To find the unknown K
′
2, let us integrate the transform wave equation over the interval

(t− ϵ, t+ ϵ), around the small neighbourhood of t = 0.

∂Ĝ(k, t)

∂t

∣∣∣+ϵ

−ϵ
+ k2α2

� +ϵ

−ϵ

Ĝ(k, t)dt = 1 (2.132)

Taking the limit as ϵ → 0, and noticing that Ĝ(k, t) is continuous at time t = 0, we

would get

lim
ϵ→0

∂Ĝ(k, t)

∂t

∣∣∣+ϵ

−ϵ
= 1 (2.133)

implying discontinuity at time t = 0 manifesting itself as a unit jump. That means, the

response of the system starts to evolve immediately after the source has been applied.
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Therefore,

Ĝ(k, t) =
sin kαt

kα
;

∂Ĝ(k, t)

∂t

∣∣∣
t=0

= kαK
′

2 = 1; K
′

2 =
1

kα
(2.134)

In the final step, to turn back to the spatial domain inverse Fourier transform is applied

to the transformed equation.

F−1
{
Ĝ(k, t)

}
= G(x, t) =

1

(2π)3

� ∞

−∞
dkx

� ∞

−∞
dky

� ∞

−∞
Ĝ(k, t)ei(kxx+kyy+kzz)dkz

=
1

(2π)3

� ∞

−∞
dkx

� ∞

−∞
dky

� ∞

−∞
Ĝ(k, t)eik·xdkz

(2.135)

To be able to evaluate the triple integral, integral variables might be changed to spher-

ical coordinates by defining a sphere having radial coordinate |k| and centered at

|k| = 0, polar angle θ as the angle between radius vector k and position vector x

directed along vertical axis such that k · x = |k||x||cosθ, and azimuthal angle φ.

Then, differential volume element dV has to be modified to be uniquely mapped onto

new coordinate space by dV = dkxdkydkz = Jdkdθdφ where J is the Jacobian

of the transformation given by J = k2 sin θdkdθdφ.Inserting Ĝ(k, t) and changing

variables along with the limits would yield

G(x, t) =
1

(2π)2α

� ∞

0

sin kαt dk

� π

0

keik|x| cos θ sin θdθ (2.136)

Integration with respect to polar angle θ along with the introduction of the trigono-

metric identities given in the preceding section

G(x, t) =
1

(2π)2α

� ∞

0

sin kαt dk

[
1

i|x|
eik|x| cos θ

]θ=0

θ=π

=
1

(2π)2α|x|

� ∞

0

2 sin k|x| sin kαt dk

=
2

(2π)2α|x|

� ∞

0

(
eik|x| − e−ik|x|)

2i

(
eikαt − e−ikαt

)
2i

dk

=
1

(2π)2α|x|

� ∞

0

(
eik(|x|−αt) + e−ik(|x|−αt)

2
− eik(|x|+αt) + e−ik(|x|+αt)

2

)
dk

=
1

(2π)2α|x|

� ∞

0

[cos k(|x| − αt)− cos k(|x|+ αt)]dk (2.137)

Let us investigate the Fourier Transform of δ(x− x0) where x0 is an arbitrary shift.

F{δ(x− x0)} =

� ∞

−∞
e−ikxδ(x− x0)dx = e−ikx0 (2.138)
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Now, if the Dirac Delta function is rewritten in terms of its Fourier Transform

δ(x− x0) =
1

2π

� ∞

−∞
e−ikx0eikxdk =

1

2π

� ∞

−∞
eik(x−x0)dk (2.139)

Since the source signal that we are dealing with is a real signal, taking the real part of

the right hand side and using the evenness of the cosine function,

δ(x− x0) =
1

2π

� ∞

−∞
Re
{
eik(x−x0)

}
dk =

1

π

� ∞

0

cos k(x− x0)dk (2.140)

The integral in the last equality turns out to be a summation of two shifted delta

functions, namely, δ(|x| − αt) and −δ(|x|+ αt). Hence, Green’s function G(x, t) is

found as follows.

G(x, t) =
1

4πα|x|
[δ(|x| − αt)− δ(|x|+ αt)] (2.141)

It should be noted that the second delta function is always zero since the argument

|x| + αt is always positive as negative t values imply violation of the causality prin-

ciple meaning that the response precedes its cause. Hence, utilizing the evenness and

scaling properties of the delta function; i.e., δ(x) = δ(−x) and δ(αx) = α−1δ(x)

G(x, t) =
1

4πα

δ(|x| − αt)

|x|
=

1

4πα

δ(αt− |x|)
|x|

=
1

4πα2

δ
(
t− |x|

/
α
)

|x|
(2.142)

Further generalization might be made by shifting source coordinates spatially by ξ

and shifting in time by τ , yielding G(x, t; ξ, τ)

G(x, t; ξ, τ) =
1

4πα2

δ
(
t− τ − |x− ξ|

/
α
)

|x− ξ|
(2.143)

Having Green’s function for the scalar potential at hand, a solution to elastic wave

equation can be constructed systematically by first finding dyadic Green’s function G̃

in which responses to unit impulses applied in each orthogonal direction are embed-

ded. Then, the convolution of dyadic Green’s function with an arbitrary concentrated

force, possibly varying with time, would give the total displacement field u(x, t) at

the observation point. Before moving on to the construction of dyadic Green’s func-

tion, however, a solution to Poisson’s equation, i.e. static solution of scalar potential

given in equation, might be obtained to utilize Helmholtz’s Decomposition in finding

the source potentials Φ and Ψ. Inserting the scalar Green’s function into the scalar
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potential equation,

ϕ(x, t) =
1

4πα2ρ

� ∞

−∞
dτ

�
V

Φ(ξ, τ)
δ
(
t− τ − |x− ξ|

/
α
)

|x− ξ| dV (ξ)

=
1

4πα2ρ

�
V

Φ
(
ξ, t− |x− ξ|

/
α
)

|x− ξ|
dV (ξ) (2.144)

If the scalar field is time independent, then the governing differential equation and

its solution obtained by removing the time dependency from the above solution, have

the following form.

∇2ϕ = − 1

α2ρ
Φ where ϕ(x) = − 1

4πα2ρ

�
V

Φ(ξ)

|x− ξ|
dV (ξ) (2.145)

Let U , V be scalar and vector fields, and let F be a static source vector for the vector

Poisson’s equation ∇2W = F , whereW (x) is a static vector potential to be solved

for. Utilizing the vector calculus identities, Poisson’s equation can be transformed to

∇∇ ·W −∇×∇×W = F . Then, defining U := ∇ ·W and V := −∇×W ,

the source vector can be written as ∇U +∇× V = F . To find the vector potential

W (x), solution to the scalar field with α2ρ term taken as unity can be utilized as

Laplacian operator ∇2 in cartesian coordinates yields three independent differential

equations for each coordinate, i.e. ∇2W = ∇2W1e1 + ∇2W2e2 + ∇2W3e3 =

F1e1 + F2e2 + F3e3. Therefore,

W (x) = − 1

4π

�
V

F (ξ)

|x− ξ|
dV (ξ) or Wi(x) = − 1

4π

�
V

Fi(ξ)

|x− ξ|
dV (ξ)

(2.146)

where ∀i ∈ {1, 2, 3}. Now, dyadic Green’s function can be constructed by ap-

plying unit impulse in the direction of each cartesian coordinate sequentially. Let

F (x, t) = δ(t)δ(x)e1 be a unit impulse applied in x1 direction. Then, the vector po-

tential W (x, t) can be written as follows while noticing the decoupling of time and

spatial coordinates.

W (x, t) = − 1

4π

�
V

δ(t)δ(ξ)

|x− ξ|
e1 dV (ξ) = − δ(t)

4π|x|
e1 (2.147)

Employing Helmholtz’s Decomposition set forth in the preceding discussion, the

source term F (x, t) can be additively decomposed into irrotational and solenoidal

parts as F (x, t) = ∇Φ+∇×Ψ where Φ(x, t) = ∇·W , and Ψ(x, t) = −∇×W .

Using the vector potential expressionW (x, t), the scalar source field Φ(x, t) is found

as,

Φ(x, t) = ∇ ·W = −δ(t)

4π

∂

∂x1

1

|x|
(2.148)
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Similarly, the vector source field Ψ(x, t) can be expressed as

Ψ(x, t) = −∇×W =ϵijk∂jWk

=−
(
∂W3

∂x2

− ∂W2

∂x3

)
e1 −

(
∂W1

∂x3

− ∂W3

∂x1

)
e2

−
(
∂W2

∂x1

− ∂W1

∂x2

)
e3

=−
(
0, −δ(t)

4π

∂

∂x3

1

|x|
,

∂

∂x2

1

|x|

)
(2.149)

Employing the solution of scalar potential field, the scalar and vector potential fields

that are to be used to construct total displacement field u(x, t) would finally be ob-

tained. To illustrate the solution steps, the scalar field will be used as the construction

of vector potential follows identical steps but for each direction.

ϕ(x, t) = − 1

(4πα)2ρ

�
V

δ
(
t− |x− ξ|

/
α
)

|x− ξ|
∂

∂ξ1

1

|ξ|
dV (ξ) (2.150)

The volume integral might be evaluated via potential theory. If the distance travelled

by the waves throughout the volume V (ξ), that is, |x − ξ|, during time interval τ is

rewritten as |x− ξ| = ατ , the integral can be expressed as follows.

ϕ(x, t) = − 1

(4πα)2ρ

� ∞

0

δ(t− τ)

ατ
αdτ

�
S

∂

∂ξ1

1

|ξ|
dS(ξ)

= − 1

(4πα)2ρ

� ∞

0

δ(t− τ)

τ
dτ

�
S

∂

∂ξ1

1

|ξ|
dS(ξ) (2.151)

The surface integral can be taught of as finding the electric field acting on a fictitious

electric charge in the e1 direction due to electric potential generated by distributed

electric charges over a spherical surface. Similarly, this might be a gravitational field

due to gravitational potential as well. Now, let us introduce the coordinate η at which

the potential is to be calculated. Let us also introduce the distance to the surface

R := |ξ−η| and the distance to the center of the sphere r := |x− ξ|, and let θ be the

angle between the vectors x− η and x− ξ. Then, the partial derivative operator can

be taken outside the integral noticing that

∂

∂ξ1

1

R
=

∂R−1

∂R

∂R

∂ξ1
= −∂R−1

∂R

∂R

∂η1
= − ∂

∂η1

1

R
(2.152)

Now, defining the infinitesimal surface area element as a shell element having thick-

ness ατ and average perimeter 2πατ sin θ dθ, surface integral can be evaluated as

follows.

− ∂

∂η1

�
S

dS

R
= − ∂

∂η1

(
2πα2τ 2

� π

0

sin θ

R
dθ

)
(2.153)
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Furthermore, using the law of cosines, the relationship between R and θ is obtained

to further transform the integral as the angle θ also depends on R.

R2 = r2 + α2τ 2 − 2rατ cos θ and 2RdR = 2rατ sin θ dθ (2.154)

Inserting (2.154) into (2.153) and recasting,

− ∂

∂η1

2πατ

r

� |r+αt|

|r−αt|
dR =


4πατ if τ > r

/
α

4πα2τ 2

r
if τ < r

/
α

 (2.155)

Since there is no dependency on the distance term inside the sphere there would be

no net force acting on a particle as they cancel out each other. Therefore , the force

component in the e1 direction while η → 0 can be written as,

− ∂

∂η1

4πα2τ 2

r

∣∣∣∣∣
η=0

= 4πα2τ 2
∂

∂x1

1

|x|
(2.156)

Inserting this into the scalar potential

ϕ(x, t) = − 1

4πρ

(
∂

∂x1

1

|x|

) � |x|/α

0

τδ(t− τ)dτ (2.157)

Similarly, the vector potential can be calculated as

Ψ(x, t) = − 1

4πρ

(
0, − ∂

∂x3

1

|x|
,

∂

∂x2

1

|x|

) � |x|/β

0

τδ(t− τ)dτ (2.158)

With the scalar and vector Lamé potentials at hand, the displacement field u(x, t) due

to unit impulse directed along e1 direction, which constitutes the first column of the

dyadic Green’s function G(x, t), can be found invoking Lamé’s Theorem. That is,

u(x, t) = ∇ϕ+∇×Ψ (2.159)

In what follows, Leibniz integral rule is explicitly used, that is,

d

dx

(� g(x)

h(x)

f(τ)dτ

)
= f(g(x))g′(x)− f(h(x))h′(x) (2.160)

Denoting the ith coordinate as xi, the irrotational part of the displacement field is
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given by

∇ϕ =− 1

4πρ

[
∂2

∂x1∂x1

1

|x|

� |x|/α

0

τδ(t− τ)dτ +
|x|
α2

∂|x|
∂x1

∂

∂x1

1

|x|
δ
(
t− |x|

/
α
)]
e1

− 1

4πρ

[
∂2

∂x2∂x1

1

|x|

� |x|/α

0

τδ(t− τ)dτ +
|x|
α2

∂|x|
∂x2

∂

∂x1

1

|x|
δ
(
t− |x|

/
α
)]
e2

− 1

4πρ

[
∂2

∂x3∂x1

1

|x|

� |x|/α

0

τδ(t− τ)dτ +
|x|
α2

∂|x|
∂x3

∂

∂x1

1

|x|
δ
(
t− |x|

/
α
)]
e3

(2.161)

Similarly, the solenoidal part of the displacement field is given by

∇×Ψ =− 1

4πρ

[
∂2

∂x2∂x2

1

|x|

� |x|/β

0

τδ(t− τ)dτ +
|x|
β2

∂|x|
∂x2

∂

∂x2

1

|x|
δ
(
t− |x|

/
β
)]
e1

− 1

4πρ

[
∂2

∂x3∂x3

1

|x|

� |x|/β

0

τδ(t− τ)dτ +
|x|
β2

∂|x|
∂x3

∂

∂x3

1

|x|
δ
(
t− |x|

/
β
)]
e1

+
1

4πρ

[
∂2

∂x2∂x1

1

|x|

� |x|/β

0

τδ(t− τ)dτ +
|x|
β2

∂|x|
∂x1

∂

∂x2

1

|x|
δ
(
t− |x|

/
β
)]
e2

+
1

4πρ

[
∂2

∂x3∂x1

1

|x|

� |x|/β

0

τδ(t− τ)dτ +
|x|
β2

∂|x|
∂x1

∂

∂x3

1

|x|
δ
(
t− |x|

/
β
)]
e3

(2.162)

To superimpose contributions from both parts, the integral term in the direction of the

applied force can be further reduced by noticing the relationship

∂2

∂x1∂x1

1

|x|
= ∇2 1

|x|
− ∂2

∂x2∂x2

1

|x|
− ∂2

∂x3∂x3

1

|x|
where ∇2 1

|x|
= −4πδ(x)

(2.163)

The latter follows from Poisson’s equation given in the preceding chapter in which

Green’s function, under the assumption of unit propagation speed and density, is

found to be

G(x) = − 1

4π

δ(x)

|x|
and ∇2G(x) = δ(x) (2.164)

Therefore, unless the radial distance to the receiver is not zero, the laplacian of the

reciprocal of distance would always be zero. Hence, the contribution from the convo-

lution integral due to applied force in e1 direction becomes

uIβα
1 :=− 1

4πρ

∂2

∂x1∂x1

1

|x|

� |x|/α

0

τδ(t− τ)dτ

− 1

4πρ

(
∇2 1

|x|
− ∂2

∂x1∂x1

1

|x|

) � |x|/β

0

τδ(t− τ) (2.165)
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Recasting (2.165) employing (2.163)then yields the following.

uIβα
1 =

1

4πρ

(
∂2

∂x1∂x1

1

|x|

) � |x|/β

|x|/α
τδ(t− τ)dτ (2.166)

Secondly, contributions from time-shifted delta distributions might also be put in a

form that can be generalized for arbitrarily oriented sources. Let us consider the

following derivative

∂

∂x1

1

|x|
= − 1

|x|2
∂|x|
∂x1

where
∂|x|
∂x1

=
x1

|x|
= γ1 (2.167)

where γ1 is the direction cosine between the distance vector x and the coordinate axis

x1. It follows that

∂|x|
∂x1

∂|x|
∂x1

+
∂|x|
∂x2

∂|x|
∂x2

+
∂|x|
∂x3

∂|x|
∂x3

= γ2
1 + γ2

2 + γ2
3 = 1 (2.168)

Similar to the previous step, the latter equality can be written in terms of x1 coordi-

nate. That is,

∂|x|
∂x2

∂|x|
∂x2

+
∂|x|
∂x3

∂|x|
∂x3

= 1− ∂|x|
∂x1

∂|x|
∂x1

(2.169)

Inserting this expression into (2.159), contribution from the convolution integral in e1

direction becomes

uδβα
1 :=

1

4πρα2|x|

(
∂|x|
∂x1

∂|x|
∂x1

)
δ
(
t− |x|

/
α
)

+
1

4πρβ2|x|

(
1− ∂|x|

∂x1

∂|x|
∂x1

)
δ
(
t− |x|

/
β
)

(2.170)

Then, the total displacement field due to an impulsive force applied in e1 direction

can be expressed as

u(x, t) = uIβα(x, t) + uδβα(x, t)

=
(
uIβα
1 + uδβα

1

)
e1 +

(
uIβα
2 + uδβα

2

)
e2 +

(
uIβα
3 + uδβα

3

)
e3 (2.171)
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where components of the displacement field u(x, t) are given by

u1(x, t) = uIβα
1 (x, t) + uδβα

1 (x, t) =
1

4πρ

(
∂2

∂x1∂x1

1

|x|

) � |x|/β

|x|/α
τδ(t− τ)dτ

+
1

4πρα2|x|

(
∂|x|
∂x1

∂|x|
∂x1

)
δ
(
t− |x|

/
α
)

+
1

4πρβ2|x|

(
1− ∂|x|

∂x1

∂|x|
∂x1

)
δ
(
t− |x|

/
β
)

(2.172a)

u2(x, t) = uIβα
2 (x, t) + uδβα

2 (x, t) =
1

4πρ

(
∂2

∂x2∂x1

1

|x|

) � |x|/β

|x|/α
τδ(t− τ)dτ

+
1

4πρα2|x|

(
∂|x|
∂x2

∂|x|
∂x1

)
δ
(
t− |x|

/
α
)

+
1

4πρβ2|x|

(
−∂|x|

∂x2

∂|x|
∂x1

)
δ
(
t− |x|

/
β
)

(2.172b)

u3(x, t) = uIβα
3 (x, t) + uδβα

3 (x, t) =
1

4πρ

(
∂2

∂x3∂x1

1

|x|

) � |x|/β

|x|/α
τδ(t− τ)dτ

+
1

4πρα2|x|

(
∂|x|
∂32

∂|x|
∂x1

)
δ
(
t− |x|

/
α
)

+
1

4πρβ2|x|

(
−∂|x|

∂x3

∂|x|
∂x1

)
δ
(
t− |x|

/
β
)

(2.172c)

Introducing Kronecker’s delta δij and denoting δi1 for the contribution in e1 direction,

the displacement field can be written in a more compact form

ui(x, t) = uIβα
i (x, t) + uδβα

i (x, t)

=
1

4πρ

(
∂2

∂xi∂x1

1

|x|

) � |x|/β

|x/α|
τδ(t− τ)dτ

+
1

4πρα2|x|

(
∂|x|
∂xi

∂|x|
∂x1

)
δ
(
t− |x|

/
α
)

+
1

4πρβ2|x|

(
δi1 −

∂|x|
∂xi

∂|x|
∂x1

)
δ
(
t− |x|

/
β
)

(2.173)

This constitutes the first column of dyadic Green’s function Gi1. Generalizing the

direction through which the impulsive source is to be applied, and embedding the re-

sulting displacement fields into the dyadic Green’s function G, complete information

regarding the displacement field resulting from an impulse applied in xj direction can
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be obtained.

Gij(x, t) =
1

4πρ

(
∂2

∂xi∂xj

1

|x|

) � |x|/β

|x/α|
τδ(t− τ)dτ

+
1

4πρα2|x|

(
∂|x|
∂xi

∂|x|
∂xj

)
δ
(
t− |x|

/
α
)

+
1

4πρβ2|x|

(
δij −

∂|x|
∂xi

∂|x|
∂xj

)
δ
(
t− |x|

/
β
)

(2.174)

Evaluating the double gradient term using direction cosines γi and γj and Kronecker’s

delta δij

∂2

∂xi∂xj

1

|x|
=

∂

∂xi

(
∂

∂|x|
|x|−1∂|x|

∂xj

)
=

∂

∂xi

(
−|x|−2∂|x|

∂xj

)
(2.175)

where the last equation is evaluated as

∂

∂xi

(
−|x|−2∂|x|

∂xj

)
= −

(
∂

∂xi

|x|−2

)
∂|x|
∂xj

− |x|−2 ∂

∂xi

∂|x|
∂xj

(2.176)

in which the first term on the right hand side is expressed as

−
(

∂

∂xi

|x|−2

)
∂|x|
∂xj

= 2|x|−3∂|x|
∂xi

∂|x|
∂xj

= 2|x|−3γiγj (2.177)

and similarly, the second term is given by

−|x|−2 ∂

∂xi

∂|x|
∂xj

= −|x|−2 ∂

∂xi

(
xj

|x|

)
= −∂xj

∂xi

|x|−3 − |x|−1 xj

|x|
∂

∂|x|
|x|−1∂|x|

∂xi

(2.178)

that can be rewritten

−|x|−2 ∂

∂xi

∂|x|
∂xj

= −|x|−3δij + |x|−3∂|x|
∂xi

∂|x|
∂xj

= |x|−3γiγj − |x|−3δij (2.179)

which leads to
∂2

∂xi∂xj

1

|x|
=

1

|x|3
(3γiγj − δij) (2.180)

Inserting (2.167), (2.180) into dyadic Green’s function expression given by (2.174)

would then yield the following.

Gij(x, t) =
1

4πρ
(3γiγj − δij)

1

|x|3

� |x|/β

|x|/α
τδ(t− τ)dτ +

1

4πρα2|x|
γiγjδ

(
t− |x|

/
α
)

+
1

4πρβ2|x|
(δij − γiγj)δ

(
t− |x|

/
β
)

(2.181)
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In tensorial form, introducing tensor product operator (•) ⊗ (•) and denoting Γ as

direction vector of |x|, we would get

G(x, t) =
1

4πρ
(3Γ⊗ Γ− 1)

1

|x|3

� |x|/β

|x|/α
τδ(t− τ)dτ +

1

4πρα2|x|
Γ⊗ Γδ

(
t− |x|

/
α
)

+
1

4πρβ2|x|
(1− Γ⊗ Γ)δ

(
t− |x|

/
β
)

(2.182)

The dyadic Green’s function carries the complete information of the displacement

field resulting from unit impulses applied in each direction. Hence, using linear-

ity, a point force can be additively decomposed into its components each of which

is oriented along the principle cartesian coordinate axis. Therefore, the total dis-

placement field u(x, t) can be found by superposing contributions from each compo-

nent, each of which is given by convolution in time with the Dirac distribution. Let

F (x, t) = F (t)δ(x) be the point source varying with time located at ξ = 0. Then,

ui(x, t) = Gij ∗ Fj

=
1

4πρ
(3γiγj − δij)

1

|x|3

� |x|/β

|x|/α
τFj(t− τ)dτ +

1

4πρα2|x|
γiγjFj

(
t− |x|

/
α
)

+
1

4πρβ2|x|
(δij − γiγj)Fj

(
t− |x|

/
β
)

(2.183)

Recognizing that the integral in the dyadic Green’s function in (2.182) yields a ramp

function represented by Heaviside function H
(
t− |x|

/
α
)
−H

(
t− |x|

/
β
)

multiplied

with time t ∈
(
|x|
/
α, |x|

/
β
)
, the displacement field can be written as a convolution

in time.

u(x, t) = G ∗ F

=
1

4πρ|x|3
(3Γ⊗ Γ− 1)F (t) ∗ t

[
H
(
t− |x|

/
α
)
−H

(
t− |x|

/
β
)]

+
1

4πρα2|x|
(Γ⊗ Γ)F (t) ∗ δ

(
t− |x|

/
α
)

+
1

4πρβ2|x|
(1− Γ⊗ Γ)F (t) ∗ δ

(
t− |x|

/
β
)

(2.184)

It is remarkable that (2.183) is identical to the solution given by Stokes [93] in which,

however, the propagation of light through an elastic medium, called the luminiferous

aether, is sought. (2.183), (2.184) can be modified to represent an earthquake source

f = −M · ∇(x− ξ)S(t) (2.185)
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which can be used to represent various seismic sources acting at a point [44]. In

(2.185), M denotes the seismic moment tensor magnitude of which yields the seismic

moment M : M = M0. The seismic moment tensor M can be constructed via taking

the Gatéaux derivative of (2.183) [12], [13]. Furthermore, S(t) in (2.185) represents

the source-time function of the seismic event.
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CHAPTER 3

NUMERICAL DISCRETIZATION: FINITE AND SPECTRAL ELEMENT

IMPLEMENTATION OF 3-D WAVE EQUATION

Analytical solution to classical wave equation requires tremendous and rigorous math-

ematical analysis and depends upon assumptions set forth in the preceding chapter.

Therefore, obtaining a closed-form solution would not often be possible unless a sub-

stantial amount of idealizations are incorporated into the solution process. These

made the utilization of numerical solution methods inevitable. Fortunately, with the

advent of computer technology and remarkable developments in computer science,

enabling us to perform large-scale computations in solving complex problems with

great accuracy in a decent amount of time, there are now a vast variety of numeri-

cal schemes, e.g., FDM, FEM, BEM, DWNM, SEM to name a few, available in the

literature to solve complex partial differential equations, among which FEM will be

explained in what follows.

The formulation of the classical wave equation in R3 yields an initial-boundary value

problem (IBVP) that depends both on the spatial variablesx(x, y, z) ∈ Ω and the time

variable t ∈ Rt. If the problem is well-posed, i.e. satisfies the following properties,

i. a solution exists,

ii. that solution is unique,

iii. the solution changes continuously with changes in the initial conditions,

then it might be implemented by a stable numerical algorithm without a need for re-

formulation in order to be able to perform numerical solutions. The latter condition

might be difficult to show for the wave propagation problem in an inelastic anisotropic
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nonhomogeneous medium which requires rigorous mathematical treatment. How-

ever, proofs of the first and the second conditions can be found in Aki. Hence, at

least, given the initial and boundary conditions the displacement field u(x, t) can

be determined uniquely permitting the implementation of FEM or other numerical

schemes discussed.

In FEM, the spatial domain Ω is discretized into finite subdomains Ωe ⊂ Ω such

that Ω =
⋃nel

e=1 Ω
e where nel denotes the number of subdomains, the so-called finite

elements, the spatial domain Ω is to be partitioned. Then, the functional form of state

variables describing the system is presumed within each subdomain. In this way,

rather than solving the governing differential equation for an infinitesimal material

volume to obtain continuous solution throughout the domain, solution that is of class

Ck, that is, k− times continuously differentiable where k = 0 in general, implying

piecewise continuity on Ω, is obtained within each element Ωe. Then, the overall so-

lution is easily constructed by distributing the solutions found at sampling points via

interpolation functions, or so-called shape functions, inside each subdomain. Having

roughly described the conceptual framework of FEM, generic discretization steps of

IBVP governing the wave equation might be given as follows:

i. Accurate description of the IBVP in its strong form;

ii. Construction of weak from via principle of stationary action or multiplication

the strong form with test function;

iii. Spatial discretization of the weak form;

iv. Temporal discretization of the spatially discretized weak form;

v. Solving the system of algebraic equations.

Let us first describe the strong form of the wave equation. In what follows, the domain

will be represented by the union of the internal domain with its boundary, i.e. Ω̄ =

Ω ∪ Γ. Furthermore, the boundary Γ is allowed to have a decomposition such that

Γ = Γu ∪ Γt and Γu ∩ Γt = ∅. Finally, the time interval over which the solution is

sought is denoted as open interval ]t0, T [ to differentiate the initial conditions at time

t0 ∈ Rt. Having posed the strong form of the wave equation, the corresponding
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Table 3.1: Strong formulation of the classical wave equation.

(S) Strong form of the wave equation

Given f : Ω×]t0, T [7→ R3, ū : Γu×]t0, T [ 7→ R3, t̄ : Γt×]t0, T [ 7→ R3,

u0 : Ω 7→ R3 and v0 : Ω 7→ R3, find u(x, t) : Ω̄ × [t0, T ] 7→ R3 such that

followings are satisfied.

1. Balance Equation

Linear Momentum ∇ · σ + f = ρü in Ω×]t0, T [

2. Constitutive Equations

Stress Field σ = ∂εΨ̂(ε)

3. Boundary Conditions

Displacement u = ū on Γu×]t0, T [

Traction t = t̄ = σ · n on Γt×]t0, T [

4. Initial Conditions

Displacement u(x, t0) = u0(x) in Ω

Velocity v(x, t0) = v0(x) in Ω

57



weak form (W) needs to be constructed as a second step. Let us consider (3.1),

denoting the first variation of the action function.

δS =

� t2

t1

(
∂L
∂u

· δu+
∂L
∂u̇

· δu̇+
∂L
∂ε

: ∇δu

)
dt (3.1)

Applying integration by parts on the second term would yield,

δS =

[
∂L
∂u̇

· δu
]∣∣∣∣∣

t=t2

t=t1

+

� t2

t1

(
∂L
∂u

· δu− ∂

∂t

∂L
∂u̇

· δu+
∂L
∂ε

: ∇δε

)
dt (3.2)

Since the displacement fields u(x, t1) and u(x, t2) are assumed to be prescribed at

times t1 and t2, the variation δu vanishes and hence the first term at the right hand

side. It should be noted that, even if the displacement field at times t1 and t2 are not

known, the virtual displacement field δu can be selected as zero at t1 and t2. Then,

incorporating the definition of Lagrangian given in (2.99), (2.100), and invoking the

principle of stationary action given by (2.101), the virtual work formulation is ob-

tained.

δS =

� t2

t1

dt

[�
Ω

f · δudΩ +

�
∂Ω

t̄ · δudΓ−
�

Ω

σ : δεdΩ−
�

Ω

ρü · δu
]
= 0

(3.3)

Unless t1 = t2, the only possible way to satisfy the latter equality is that terms in

brackets should vanish, yielding the weak form (W).
�

Ω

δε : σdΩ +

�
Ω

δu · ρüdΩ =

�
Ω

δu · fdΩ +

�
∂Ω

δu · t̄dΓ (3.4)

The virtual displacement field δu does not even need to depend on time, though it

is ambiguous from the Hamiltonian’s formulation due to the second term involving

the time derivative of the virtual displacement field. To clarify this, an alternative

formulation might be implemented. Let us multiply the strong form (S) with the

virtual displacement field δu and integrate it over the domain.�
Ω

δu · ρüdΩ =

�
Ω

δu · ∇ · σdΩ +

�
Ω

δu · fdΩ (3.5)

Applying integration by parts on the second term would then yield,�
Ω

δu · ρüdΩ =

�
Ω

∇ · [δu · σ]dΩ−
�

Ω

∇δu : σdΩ+

�
Ω

δu · fdΩ (3.6)

Introducing the Gauss Theorem on the first term at the right hand side�
Ω

δu · ρüdΩ =

�
∂Ω

δu · σ · ndΓ−
�

Ω

∇δu : σdΩ +

�
Ω

δu · fdΩ (3.7)
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Finally, recognizing σ · n = t̄ and ∇δu = δε, we obtain the weak formulation (W)

identically.
�

Ω

δε : σdΩ +

�
Ω

δu · ρüdΩ =

�
Ω

δu · fdΩ +

�
∂Ω

δu · t̄dΓ (3.8)

The immediate advantage of weak formulation (W) over strong formulation (S) is that

the Natural (i.e. Neumann) boundary conditions are automatically satisfied explicitly.

This property is especially pronounced in the modeling of seismic wave propagation

as Earth’s free surface boundary discards the boundary term out reducing the com-

plexity of the problem considerably concerning complicated topographies that would

be formidable to involve in the solution. In addition, it should be noticed that no as-

sumption is made on the time dependency of the virtual displacement field. However,

although there is a large family of functions that can be used as virtual or so-called

weight functions, they must still satisfy certain properties that will be given in the

discretization part. Let us describe the weak form of the wave equation in a form that

is similar to the representation of the strong from (S). In what follows, U denotes

the collection of kinematically admissible test function space, i.e. collection of test

functions satisfying homogeneous essential boundary condition on Γu, that can be

mathematically stated along with the square-integrability condition as

U = {δu(x) ∈ H1(Ω)|Ω 7→ R3; δu(x) = 0 on Γu} (3.9)

where H1(Ω) denotes the Sobolev space of order one including all functions satisfy-

ing the square-integrability condition.

It is crucial to observe the equivalence between the strong form (S) given in Table

3.1 and the weak form (W) given in Table 3.2. They are different manifestations of

a given problem where in the latter the problem is weakened by explicitly incorpo-

rating Natural boundary conditions, which are automatically satisfied under certain

conditions on the selection of trial functions (convergence requirements). Moreover,

the essential boundary conditions along with the initial conditions are also multiplied

with the test function to fulfill the virtual work principle. However, for the sake of

clarity, they are given explicitly in the statement of (W). In the following section,

they will also be given in the bilinear form. In this part, Galerkin discretization on

the weak form (W) will be described, which is known as Galerkin FEM in literature.

In order to be able to have a clear treatment of the subject, let us first define function
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Table 3.2: The weak formulation of the classical wave equation.

(W) Weak form of the wave equation

Given f : Ω×]t0, T [ 7→ R3, ū : Γu×]t0, T [ 7→ R3, t̄ : Γt×]t0, T [ 7→ R3,

u0 : Ω 7→ R3 and v0 : Ω 7→ R3, find u(x, t) : Ω̄× [t0, T ] 7→ R3 such that for all

δu ∈ U followings are satisfied.

1. Bilinear Form of Balance Equation

�
Ω

δε : σdΩ +

�
Ω

δu · ρüdΩ =

�
Ω

δu · fdΩ +

�
∂Ω

δu · t̄dΓ

2. Constitutive Equations

Stress Field σ = ∂εΨ̂(ε)

3. Boundary Conditions

Displacement u = ū on Γu×]t0, T [

4. Initial Conditions

Displacement u(x, t0) = u0(x) in Ω

Velocity v(x, t0) = v0(x) in Ω
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spaces from which trial and weight functions are to be selected. Let Ut denote a set

of trial functions and W denote a set of weight functions respectively. That is,

Ut = {u(x, t) ∈ H1
(
Ω
)∣∣ Ω× T 7→ R3; u(x, t) = ū on Γu × T } (3.10)

W = {w(x) ∈ H1
(
Ω
)∣∣ Ω 7→ R3; w(x) = 0 on Γu} (3.11)

where T denotes time interval t ∈ [t0, T ]. This definition of W guarantees that all

weight functions in W are kinematically admissible, that is, satisfy homogeneous

essential boundary conditions on Γu. Secondly, let us construct subspaces of these

function spaces consisting of U h
t and W h that are finite approximations to functions

in Ut and W , representing the collection of trial and weight functions accompanying

to each subdomain Ωe having boundaries Γe
u and Γe

t such that Ω =
⋃nel

e=1Ω
e, Γu =⋃nel

e=1 Γ
e
u, Γt =

⋃nel

e=1 Γ
e
t. h in U h

t and W h denotes the characteristic length scale

of mesh discretization of Ω. This construction of function spaces assures that all

properties that Ut, W have identically applies to U h
t , W h, respectively. That is, if

an ansatz uh = ue(x, t) ∈ Ut, then it is also contained in U h
t , i.e. ue(x, t) ∈ U h

t

implying that U h
t ⊂ Ut. The argument also applies to weight functions wh ∈ W h.

Having constructed all the necessary function spaces, we are now in a good position

to establish the Galerkin FEM discretization scheme. The underlying principle of

Galerkin FEM discretization is that identical basis functions are used to construct

weight and trial functions by taking the advantage of the fact that the space W h ⊂
W consists of only the kinematically admissible functions. To illustrate this, let us

assume that the approximate solution uh = ue(x, t) for a given subdomain Ωe is

additively decomposable into the following form.

uh = vh + ūh (3.12)

where, vh = ve(x, t) ∈ W h is the trial solution at an elemental level and ūh =

ūe(x, t) ∈ U h
t is the prescribed essential boundary condition on an element bound-

ary. Since vh belongs to space of weight functions W h, it vanishes at boundaries.

Another thing to notice is that, although the function space W h does not include

time dependent functions, vh is shown to be contained in W h. The reason is that,

for each fixed time, vh has a spatial distribution specific to that instant which can be

represented by functions belonging to W h. An immediate consequence of such de-

composition is that uh and vh can be selected from the same collection of functions
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belonging to W h ∈ W up to ūh. Hence, selecting vh = δuh, and defining Galerkin

functional as

Gint(δu,u) = Gext(δu) (3.13)

where

Gint(δu,u) :=

�
Ω

δε : σdΩ +

�
Ω

δu · ρüdΩ (3.14)

Gext(δu) :=

�
Ω

δu · fdΩ +

�
∂Ω

δu · t̄dΓ (3.15)

and introducing bilinear symmetric forms B(·, ·), (·, ·), (·, ·)∂Ω Galerkin Weak Form

(G) is obtained.

(G) in Table 3.3 represents the spatially discretized weak form of the wave equation.

In each subdomain, then, an approximate solution is sought on nodes by introducing

shape functions Nn ∈ W h where n denotes node number up to which an element

subdomain is to be discretized.

uh(x, t) =
∑
A

NA(x)dA(t) and δuh(x) =
∑
A

NA(x)wA (3.16a)

∇uh(x, t) =
∑
A

dA(t)⊗ ∂xNA(x) and ∇δuh(x) =
∑
A

wA ⊗ ∂xNA(x)

(3.16b)

where d(t) represents nodal solutions over an element domain, w represents arbi-

trary weighting coefficient vector at each node. In most engineering applications,

Lagrange interpolation functions with C0 continuity are employed as shape functions

due to their practicality and due to the ease of satisfying convergence requirements of

smoothness, continuity across element boundaries, and completeness. Generic algo-

rithms to construct arbitrary order Lagrange interpolation functions are presented in

detail in Hughes [85].

3.1 Spatial Discretization

In most engineering problems, the geometry of a given domain under consideration

is often irregular in shape necessitating the construction of shape functions for each

particular problem, which is not feasible. However, to overcome this problem, the
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Table 3.3: The Galerkin Weak formulation of the classical wave equation.

(G) Galerkin Weak form of the wave equation

Given f : Ω×]t0, T [7→ R3, ū : Γu×]t0, T [ 7→ R3, t̄ : Γt×]t0, T [ 7→ R3,

u0 : Ω 7→ R3 and v0 : Ω 7→ R3, find uh(x, t) = δuh + ūh : Ω̄e × [t0, T ] 7→ R3,

uh ∈ U h
t such that for all δuh ∈ W h followings are satisfied.

1. Bilinear Form of Balance Equation

Gint

(
δuh,uh

)
= Gext

(
δuh
)

B
(
δuh,uh

)
+
(
δuh, ρüh

)
=

(
δuh,f

)
+
(
δuh, t̄

)
−B

(
δuh, ūh

)
−
(
δuh, ρ ¨̄uh

)
2. Constitutive Equations

Stress Field σ = ∂εΨ̂(ε)

3. Boundary Conditions

Displacement u = ū on Γu×]t0, T [

4. Initial Conditions

Displacement u(x, t0) = u0(x) in Ω

Velocity v(x, t0) = v0(x) in Ω
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domain mapping technique is utilized. That is, each element Ω̄e domain is bijectively

mapped on to a reference element or so-called parent domain often denoted by □.

In this way, any element located in a given physical element can be mapped on to

the parent domain eliminating the construction of shape functions for each particular

physical element domain, as long as bijectivity is preserved. It is important to notice

that the domain mapping technique is mathematically identical to the geometric map-

ping concept given in Chapter 2. In other words, physical elements are constructed

via the deformation of parent elements, or vice versa, that is x : □ → Ω̄e. That is,

every point (ξ, η, ζ) ∈ □ is mapped on to (x, y, z) ∈ Ω̄e via

x(ξ, η, ζ) =
∑
A

NA(ξ, η, ζ)x
e
A (3.17)

where xA = (xA, yA, zA) is the global nodal coordinates of the Ath node of physical

element, NA(ξ, η, ζ) is the shape function used in discretization step where (ξ, η, ζ) ∈
[−1, 1]×[−1, 1]×[−1, 1]. 3.17, along with (3.16a) and (3.16b) constitutes the isopara-

metric formulation often involved in FEM. That is, the same basis functions are used

to discretize the geometry and the solution. However, in SEM higher order Lagrange

polynomials are used for the representative solution over an element, whereas the

geometry is discretized with first or second order Lagrange polynomials in practice

[44].

To be able to incorporate isoparametric elements into semi-discretized Galerkin weak

formulation (G), the Jacobian matrix of the transformation is needed for each element

represented by (3.17). More explicitly,

J = ∂ξx =
∑
A

(∂ξNA)xA (3.18)

where ξ, and x are the parent domain coordinate vector, and the global element co-

ordinate vector respectively. The determinant of J gives the Jacobian of the transfor-

mation, namely det(J) = J(ξ, η, ζ), which is identical to (2.6). Then, infinitesimal

small volume elements in (G) is given by dxdydz = Jdξdηdζ . In addition, the spa-

tial derivative term in the virtual strain energy integral can also be written in terms of

parent coordinates employing (3.17). To complete the isoparametric formulation, let

us select element shape functions N (x(ξ, η, ζ)) as Lagrange polynomials. For n+ 1

sampling points over one coordinate line, say ξ ∈ [−1, 1] defined on parent domain
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□, the Lagrange polynomials of order n can be written as

ℓna(ξ) =
n∏

k=0,k ̸=a

ξ − ξk
ξa − ξk

=
(ξ − ξ0)(ξ − ξ1) . . . (ξ − ξa−1)(ξ − ξa+1) . . . (ξ − ξn)

(ξ − ξ0)(ξ − ξ1) . . . (ξ − ξa−1)(ξ − ξa+1) . . . (ξ − ξn)

(3.19)

which yields Kronecker’s delta function

ℓna(ξb) = δab (3.20)

which significantly simplifies the numerical integration step in combination with the

Gauss-Lobatto-Legendre integration method in SEM. It is straightforward to gener-

alize (3.19) to three dimensions. That is, for a given node A, corresponding shape

function NA can be written as

NA(ξ, η, ζ) = ℓna
a (ξ)ℓnb

b (η)ℓnc
c (ζ) (3.21)

where na, nb, nc, denotes the order or each Lagrange polynomial in each standard

coordinate directions ξ, η, ζ . Discretization steps involved in both FEM and SEM are

identical up to the selection of representation functions on the elements. The main

difference between FEM and SEM is that, in the former isoparametric formulation is

often used in practice, whereas in the latter higher order polynomials are used to rep-

resent the solution although the geometric discretization is identical to FEM. Having

defined the shape functions, numerical integration schemes might be introduced as a

next step.

3.2 Numerical Integration

3.2.1 Gauss Quadrature

To evaluate integral terms in (G), a numerical quadrature scheme is needed to be em-

ployed for a computer algorithm. In FEM literature, the Gauss Quadrature is one of

the most utilized quadrature schemes due to its remarkable accuracy, and efficiency as

it requires n points to exactly integrate a 2n− 1th order polynomial. The fundamen-

tal principle behind the Gauss Quadrature is to utilize the orthogonality of Legendre

polynomials, which can be obtained from the monomial basis {1, x, x2 . . . xn} via
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Gram-Schmidt orthogonalization process. That is, for the nth order Legendre polyno-

mial,

Ln = xn −

� 1

−1

xnL0dx

� 1

−1

L0L0dx

L0 − . . .−

� 1

−1

xnLn−1dx

� 1

−1

Ln−1Ln−1dx

Ln−1 (3.22)

Then, a polynomial of degree 2n− 1 can be represented by

P2n−1 = LnQn−1 +Rn−1 (3.23)

where subscripts denote the order of polynomials, R represents the residual term, Q

represents the quotient. Since Ln is an orthogonal polynomial, weighted integral of

(3.23) over the standard domain [−1, 1] would yield

� 1

−1

wP2n−1dx =

� 1

−1

wLnQn−1dx+

� 1

−1

wRn−1dx =

� 1

−1

wRn−1dx (3.24)

where w is an arbitrary weight function. Furthermore, since the remainder term Rn−1

is degree of n − 1, one can choose n sampling points to construct Rn−1 exactly by

interpolation,

Rn−1 =
n∑

r=1

R(xr)pr(x) (3.25)

If, sampling points are selected to be roots of Legendre Polynomial Ln as well, then

(3.23) reduces to

P2n−1(xr) = Ln(xr)Qn−1(xr) +Rn−1(xr) = Rn−1(xr) (3.26)

Incorporating (3.26), (3.25) into (3.24) would then finally yield,

� 1

−1

wP2n−1dx =

� 1

−1

wRn−1dx =

� 1

−1

w(x)
n∑

r=1

R(xr)pr(x)

=
n∑

r=1

R(xr)

� 1

−1

w(x)pr(x)dx

=
n∑

r=1

wrR(xr) (3.27)

the Gauss Quadrature scheme proving that any polynomial of degree 2n − 1 can be

exactly integrated by Gauss Quadrature using only n sampling points. Since the ap-

proximation functions used in the numerical solution of the wave equation are all
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polynomials, no further errors are introduced into the solution. Moreover, generaliza-

tion to three dimensions can be shown as follows.� 1

−1

� 1

−1

� 1

−1

f(x, y, z)dx dy dz ≈
∑
i

∑
j

∑
k

wiwjwkf(xi, yj, zk) (3.28)

Noticing that all the terms inside integrals given by (G) are scalars, it would be useful

to implement the Gauss Quadrature scheme on a general scalar-valued function. Let

f(x(ξ, η, ζ)) be a scalar-valued function of position x over the domain Ωe. Then, the

volumetric integral of f might be approximated numerically as�
Ωe

f(x)dxdydz =

� 1

−1

� 1

−1

� 1

−1

f(x(ξ, η, ζ))J(ξ, η, ζ)dξdηdζ

≈
∑
a

∑
b

∑
c

f(ξa, ηb, ζc)J(ξa, ηb, ζc) (3.29)

or in a compact form by denoting f(ξa, ηb, ζc) = fabc, J(ξa, ηb, ζc) = Jabc,
�

Ωe

f(x)dΩ ≈
∑
a

∑
b

∑
c

wawbwcf
abcJabc (3.30)

3.3 Gauss-Lobatto-Legendre Quadrature

In SEM, Gauss-Lobatto-Legendre Quadrature is used as it admits the construction of

diagonal mass matrix, which is not the case in FEM without introducing mass lump-

ing techniques. Therefore, SEM gains very desirable property over FEM through the

Gauss-Lobatto-Legendre scheme due to a remarkable reduction in the time complex-

ity of the algorithm by eliminating the inversion step of the mass matrix. To achieve

this, instead of Gauss points, the method introduces Gauss-Lobatto-Legendre (GLL)

points that are the roots of the first derivative of the Legendre polynomials. In this

way, the element end points are always included in the numerical integration step

yielding a mass lumping scheme with the utilization of (3.20). To illustrate this, let

us consider the second term of (G) in (3.14). Inserting (3.16a), (3.20), (3.28) into the

second term of (3.14) yields the following.
�

Ωe

ρü · δudΩ ≈
∑
a,b,c

wawbwcρ(ξa, ηb, ζc)J(ξa, ηb, ζc)
∑
i

wabc
i üabc

i (t) (3.31)

(3.31) emphasizes that the elemental mass matrices and consequently the global mass

matrix are diagonal since the weighting coefficients wi are arbitrary.
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Armed with (3.16a), (3.16b), (3.30), (3.31), the complete discretization of (G) would

be performed with FEM and SEM respectively. Detailed construction of elemental

and global matrices can be found in [42], [44], [94]. Next, the temporal discretization

of semi-discrete Galerkin Weak Form (G) via Newmark-β scheme will be briefly

presented.

3.4 Temporal Discretization

Temporal discretization of semi-discretized Galerkin Weak Form (G) is done by intro-

ducing Newmark’s β Scheme [95]. There are numerous numerical algorithms avail-

able for the semi-discrete equation of motion given by (G). For a detailed discussion

of a substantial amount of such numerical algorithms, [85], [86] are referred. New-

mark’s β method is based on the first order Taylor’s expansion of acceleration with

the weighted averaged time derivative term.

a(t+∆t) = a(t) + ȧ∆t+ . . . (3.32a)

v(t+∆t) = v(t) + a∆t+ ȧ
∆t2

2!
+ . . . (3.32b)

u(t+∆t) = u(t) + v∆t+ a
∆t2

2!
+ ȧ

∆t3

3!
+ . . . (3.32c)

Truncating the second order terms and expressing the time derivative of acceleration

as

a ≈ [a(t+∆t)− a(t)]/∆t (3.33)

(3.32a), (3.32b) can be rewritten as

v(t+∆t) = v(t) + a∆t+
∆t

2!
[a(t+∆t)− a(t)] (3.34a)

u(t+∆t) = u(t) + v∆t+ a
∆t2

2!
+

∆t2

3!
[a(t+∆t)− a(t)] (3.34b)

Introducing parameters γ ∈ [0, 1] and β ∈ [0, 0.5] to represent the derivative of

acceleration as a weighted average of its current and past values, (3.34a), (3.34b) can

be put into final form.

v(t+∆t) = v(t) + ∆t[γa(t+∆t) + (1− γ)a(t)] (3.35a)

u(t+∆t) = u(t) + v∆t+
∆t2

2
[2βa(t+∆t) + (1− 2β )a(t)] (3.35b)
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(3.35a), (3.35b) give the general Newmark’s β scheme. Depending on the parameters

γ and β, the method coincides with the other well-known numerical schemes. For

instance, when γ = 0.5 and β = 0, the explicit central difference scheme would be

obtained. On the other hand, if β = 0.5 is selected while keeping γ the same, the

average constant acceleration method would be obtained. In that case, the resultant

scheme is unconditionally stable allowing one to select larger time steps. However,

since the semi-discrete equation of motion involves inversion of mass matrix requiring

considerable computational effort, explicit Newmark’s scheme, i.e. explicit central

difference scheme with γ = 0.5, β = 0, would be useful since it eliminates the mass

matrix inversion step.

The semi-discrete equation of motion with initial conditions u(x, t0) = u0 and

v(x, t0) = v0

Ma+Cv +Ku = F (3.36)

can be updated at each time step ∆t via Newmark’s β method in the form of a

predictor-corrector algorithm. In (3.36), M denotes the global mass matrix, C de-

notes the absorbing boundary matrix, K denotes the global stiffness matrix, and F

denotes the global force vector.
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Table 3.4: The temporal discretization of the semi-discrete wave equation via New-

mark’s β method in the form of a predictor-corrector algorithm.

Implementation of the Newmark-β Method

Given initial conditions u0, v0, the predictor-corrector algorithm for the

semi-discrete equation of motion can be constructed as follows.

1. Initial Acceleration

an =M−1[Fn −Cvn −Kun]

2. Predictor

ũ = un + vn +
∆t2

2
(1− 2β)an

ṽ = vn + (1− γ)∆tan

3. Corrector

an+1 = M̄
−1F̄

vn+1 = ṽ +∆tγan

un+1 = ũ+∆t2βan

where M̄ =M + γ∆tC + β∆t2K and F̄ = F −Cṽ −Kũ
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CHAPTER 4

NUMERICAL SIMULATION OF THE 2020 SAMOS EARTHQUAKE: AN

APPLICATION OF THE SPECTRAL ELEMENT METHOD

4.1 General

This chapter presents deterministic ground motion simulations of the MW 7.0 Samos

Island (Aegean Sea) Earthquake that occurred on October 30th, 2020. The event

exhibits significant ground motion amplifications at low frequencies (0.5 − 1.5 Hz)

particularly in the Karşıyaka and Bayraklı districts due to the existence of soft soil

deposits[96] and hence selected as the case study for the deterministic ground mo-

tion simulation with the spectral element method. Section 4.2 provides background

information on the study area. Section 4.3 introduces the SPECFEM3D Cartesian

Package used in numerical simulations. Earthquake source and path parameters are,

then, given in Section 4.4, while shear wave velocity, β and compressional wave ve-

locity α models incorporated in the model are described in Section 4.5, followed by

the numerical details highlighted in Section 4.6. Finally, in Section 4.7, a comparison

of synthetic acceleration records with the observed data is illustrated.

4.2 Background Information on the Samos 2020 Earthquake and the Study

Area

On October 30th, 2020, an earthquake of MW 7.0 with an east-west striking, north

dipping normal fault mechanism [97] occurred on the northern coast of Samos Island

in the Aegean Sea that severely affected both Greece and Turkey, causing various im-

pacts on both countries. The earthquake led to a tsunami wave that had a fierce effect
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on coastal areas near the epicenter, particularly on the northern coast of Samos Island

in Greece and on the Sığacık Bay in Turkey [98]. Furthermore, ground shaking local-

ization, and a variety of geotechnical phenomena, all of which led to the collapse of

structures and consequently to 119 fatalities, were observed. On the Turkey side, the

impacts of the earthquake were intensified in İzmir city due to basin and site effects,

especially in Bayraklı District because of soft soil conditions leading to amplifying

ground motions in the low-frequency range.

Figure 4.1: Seismicity of the region. The yellow stars represent the epicenter of

historical major earthquakes, whereas the blue and red stars point to the location of

the mainshock according to AFAD and KOERI, with white stars depicting the major

sequential events. Seismic stations are represented as colored triangles with colors

indicating the site class. The inverted triangles shown in white, on the other hand,

indicate the geodetic stations. The figure is adapted from [96].

Samos Island and the west coast of Turkey have been repeatedly struck by destructive
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earthquakes in both ancient and modern times. Early in the 20th century, on August

11, 1904, a MW 6.8 earthquake hit the south coast of Samos, intensely damaging the

Greek islands and annihilating a large number of settlements in western Anatolia [99].

Furthermore, between 1700 and 1799, around twelve major earthquakes occurred in

and near Samos between the years 201–197 BC, 46–47 AD, and 1700–1799 [100].

Large earthquakes, in particular, struck the area on July 10, 1688, in 1739, and in

1788, all of which had disastrous effects on the city of Izmir [101]. More recently,

buildings in the region suffered severe damage by sequential seismic events of mod-

erate magnitude. Figure 4.1 illustrates the seismicity of the region highlighting the

historical events.

Figure 4.2: Regional tectonic setting. The escape of the Anatolian plate towards the

Aegean due to squeezing action by the Arabian plate through the East Anatolian Fault

Zone (EAFZ) and Dead Sea Fault Zone (DSFZ) and by the Eurasian plate through the

North Anatolian Fault Zone (NAFZ), stretching of the Aegean and Western Anatolian

crust triggered by the subducting eastern Mediterranean plate under the Aegean are

the driving mechanisms of the seismicity that affects the region. Figure is adapted

from [102].

The study area is located in the Aegean region exhibiting significant seismic activity
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due to the tectonic setting of the region. The African, Arabian, and Eurasian plates

squeeze the Anatolian plate through the Dead Sea Fault Zone (DSFZ), East Anatolian

Fault Zone (EAFZ), and North Anatolian Fault Zone (NAFZ), respectively. This con-

tinuous motion between the plates leads to the escape of the Anatolian plate towards

the Aegean. On the other hand, the subducting Mediterranean plate under the Aegean

triggers the stretching of the Aegean and Western Anatolian crust. Figure 4.2 depicts

the regional tectonic setting of the study area and illustrates the driving mechanisms

of the seismicity that affects the region.

4.3 Introduction to SEM Software: The SPECFEM3D Cartesian Package

The SPECFEM3D Cartesian package [103] is a deterministic seismic wave propaga-

tion simulation software package (the main historical authors are Dimitri Komatitsch

and Jeroen Tromp) well suited to perform local or regional ground motion simu-

lations utilizing the spectral element method (SEM) fundamentals of which have

already been given in the preceding chapter. It is capable of proper treatment of

highly distorted mesh elements without sacrificing the accuracy of the model ([41],

[104], [105], [106]) and has remarkable convergence properties as it exploits hp-

convergence schemes. In addition to remarkable accuracy and convergence char-

acteristics, its applicability to parallel computation on clusters of high-performance

computers and GPU-accelerating graphics cards ([49], [107]) makes the package very

efficient and considerably fast.

The geometry of the region under consideration, including topography, bathymetry,

and 3D crustal model, can be handled as well by the SPECFEM3D package. To

discretize the geometry, either the internal mesher or an external mesher (e.g., Gmsh

[108], CUBIT [109]) can be used. However, to be able to use high-order elements

than the conventional 8-node brick element and to handle finite fault sources, which is

required for near-field studies, an external mesher is needed. Currently, the package

supports up to 27-node hexahedral elements (HEX27) in simulations. Apart from

geometry, anisotropy and material dissipation can also be employed to accommodate

wave polarization and attenuation. Furthermore, in addition to viscoelastic and pure

elastic materials, poroelastic materials can be utilized for the realistic modeling of
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granular soils.

To handle absorbing boundaries to avoid numerical instabilities and to prevent syn-

thetic records from distortion due to reflected waves from domain boundaries, the

package offers both Clayton-Engquist absorbing boundary conditions [110] and Con-

volution Perfectly Matched Layers (C-PML) boundary conditions [111] to be utilized;

where in the former the artificial dampers are used along boundary edges relating the

surface tractions with the shear wave velocity, whereas in the latter complex coordi-

nates are employed to stretch boundaries creating artificial absorbing layers along the

domain edges.

Representation of coupled solid-fluid domains is, too, possible with the SPECFEM3D

Cartesian package. Yet, it is restricted to modeling linear elastic compressible fluids

and hence cannot handle non-linear and viscous fluid behavior. Furthermore, vis-

coplastic material models are also not readily available to implement realistic soil

behavior on shallow layers that are significant to structural and geotechnical engi-

neering applications.

Figure 4.3 illustrates the workflow of the SPECFEM3D package. The first step in-

volves creating and discretizing the geometry. In the second step, partitioning of

the discretized geometry is performed and distributed to processors for parallel pro-

cessing. In this step, if an external mesher is used, the SCOTCH library [112], ac-

commodating efficient mesh partitioning schemes, must be installed. On the other

hand, if the internal mesher is used, it is sufficient to edit the number of processors

in the Mesh_par_file for mesh partitioning. Once the mesh partitioning step is

done, a database is constructed, which assigns the Gauss-Legendre-Lobatto (GLL)

points and material properties to distributed mesh blocks and creates all the neces-

sary data before the execution of the solver. Once the database creation is successful,

the solver is ready to be run. Before running the solver, the earthquake source and

stations on which the synthetic seismograms are to be recorded must be described

in CMTSOLUTION or FORCESOLUTION file depending on the source type and in

STATIONS file, respectively. If the solver successfully halts, synthetic records can

be post-processed for visualization and interpretation regarding the success of the

simulation. In the next section, parameters modified for numerical simulations will
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be highlighted. For comprehensive reading, the SPECFEM3D Cartesian official man-

ual [113] is referred to the reader.

Figure 4.3: General workflow of the SPECFEM3D Cartesian package. In the first

stage, the geometry is discretized either by utilizing the internal mesher by executing

xmeshfem3D or using an external mesher. In the latter case, the mesh is decomposed

and distributed to processors employed with the help of SCOTCH library, which pro-

vides efficient mesh partitioning schemes, executing xdecompose_mesh followed

by database generation stage to assign GLL points and corresponding material prop-

erties to mesh blocks by xgenerate_databases. Once the database generation

is done, the solver is run calling the executable xspecfem3D.

4.3.1 Parameter Configuration

Before running the solver xspecfem3D, the following input files are required.

a) Par_file to configure simulation parameters,

b) CMTSOLUTION or FORCESOLUTION file to represent earthquake source,
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c) STATIONS file to record synthetic seismograms.

The file Par_file includes all necessary configuration parameters required to be

set by the user. In this part, only the parameters modified for the simulations are

presented. For thorough examination, the official manual is referred. Let us start with

the Par_file.

SIMULATION_TYPE Controls the type of simulation. There are three flags avail-

able, 1 for forward simulations, 2 for inverse simulations, and 3 for adjoint simula-

tions. Set to 1.

UTM_PROJECTION_ZONE UTM projection zone that the model occupies. For the

region under interest, UTM projection zone is set to 35.

SUPRESS_UTM_PROJECTION_ZONE Boolean variable. False if the model is spec-

ified in geographical coordinates, true if the model is defined in cartesian coordinates

instead. Set to .false. since the selected stations are given in geographical coor-

dinates.

NPROC Number of processors assigned for parallel processing. Set to 12.

NSTEP Total number of time steps of the simulation. Set to 15000.

DT Duration of each time step determined by Courant’s stability criterion. Set to

∆t = 7 ms.

NGNOD Number of element nodes. Either HEX8 (brick element) or HEX27 (27-

node hexahedral elements) are available. In the case of internal mesher, only HEX8

elements are supported. Set to HEX27

MODEL Velocity model to be incorporated. There are two options available to use an

external tomographic model. One may set this flag either to tomo or to default.

However, in the latter case, for each element in the mesh a uniqe negative identifier

must be defined.

ATTENUATION Boolean variable to accommodate attenuation. Set to .false. to

reduce memory requirements.

77



ANISOTROPY Boolean variable to incorporate anisotropy. Set to .false. to con-

sider only linear isotropic elastic case.

TOMOGRAPHY_PATH Path to tomography files incorporated if an external model is

used. Set to the directory in which tomographyfile.xyz resides.

USE_OLSEN_ATTENUATION Boolean variable to activate Olsen’s attenuation that

is adjusted in accordance with the shear wave speed. Set to .false..

PML_CONDITIONS Boolean variable to switch C-PML boundary conditions on. Set

to .false..

PML_INSTEAD_OF_FREE_SURFACE Boolean variable to switch C-PML bound-

ary conditions on the free surface. Set to .false..

STACEY_ABSORBING_CONDITIONSBoolean variable to switch Clayton-Engquist

absorbing boundary conditions on. Set to .true..

STACEY_INSTEAD_OF_FREE_SURFACE Boolean variable to switch

Clayton-Engquist absorbing boundary conditions on the top free surface. Set to

.false..

BOTTOM_FREE_SURFACE Boolean variable to switch Clayton-Engquist absorbing

boundary conditions on the bottom free surface provided that

STACEY_ABSORBING_CONDITIONS is set to .true.. Set to .false..

USE_FORCE_POINT_SOURCE Boolean variable to switch force point source on.

By default, moment-tensor source is read by the solver from the file CMTSOLUTION.

Set to .false..

USE_RICKER_TIME_FUNCTION Boolean variable to switch Ricker source time

function on. Set to .false..

GPU_MODE Boolean variable to enable GPU use. Set to .true..
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Table 4.1: Location, given in geographical coordinates, date, and the moment tensor

solution of the source.

Moment Tensor Components (in dyn-cm)

Mrr Mθθ Mϕϕ Mrθ Mrϕ Mθϕ

-3.47+E26 -3.69+E26 -2.18+E25 -1.38+E26 1.66+E25 -4.44+E25

Date
Centroid Time: 11:51:34.8 GMT

30 October 2020

Latitude 37.91◦

Longitude 26.78◦

Depth 12.0 km

Half Duration 1.8 s

Strike 276◦

Dip 34◦

Slip -90◦

MW 7.0

4.4 Earthquake Source Model

The earthquake source in the model is selected as a point source as the source is

sufficiently far from the stations with which comparisons are to be made. However,

to be able to accurately simulate near-field effects of the event, a finite fault model will

be implemented in future studies as recommended in Chapter 5. Table 4.1 highlights

the Global Centroid-Moment-Tensor (GCMT) solution retrieved from the Harvard

Catalogue www.globalcmt.org as a source to implement in simulations.

4.5 Compressional and Shear Wave Velocity Models

To be able to model basin effects observed in the region, a high-resolution seismic

velocity profile of the region of interest up to engineering bedrock is often needed for

accurate and reliable results. However, since the selected region is considerably large

including the Aegean Sea, and due to inadequate velocity data in the literature for the
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whole region, it could not be achieved to obtain a high-resolution profile. Table 4.2

lists stations used to construct velocity profile that are taken from AFAD database.

The maximum available depth for both shear and compressional wave velocities is 32

m for all stations.

26°30'E 27°00'E 27°30'E 28°00'E

38°00'N

38°30'N

Epicenter
Stations for validation
Stations for 1D velocity data

TK 3513

TK3514

TK 3518

TK 3520

TK 3522

TK 3526

Figure 4.4: Stations used to construct velocity model. Triangles in red are the selected

stations to compare synthetic seismograms with the observed recordings.

The first 32 m depth is hence modeled via scattered interpolation of the available

velocity data to obtain a three-dimensional velocity profile of the study area. Regions

that are outside of the interpolation range are modeled with a constant velocity as a

continuation of the interpolated velocities. Extrapolation was also tested, however,

yielded rather unrealistic and nonsensical results. Between 32− 3000 m, Preliminary

Earth Model (PREM1D) [114] is integrated into the model by linearly interpolating

velocities at depth 32 m up to 3000 m. Having obtained a homogeneous velocity

profile, only PREM data is used until the final depth of 22000 m.
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The water layer was attempted to incorporate in the model as well, yet in the meshing

stage, the geometry of the region could not be modeled due to rugged topography

necessitating very fine mesh sizes at rugged surfaces. Therefore, tomographic model

is used to approximately include the sea layer.

Table 4.2: Station list located in İzmir city to construct the tomographic model. Re-

trieved from AFAD https://tadas.afad.gov.tr

Network Code Latitude Longitude
Elevation

(m)

Vs30

(m/s)
District

TK 3501 38.459 27.167 15 196 Bayraklı

TK 3502 38.455 27.227 35 270 Bornova

TK 3503 39.074 26.889 3 193 Dikili

TK 3504 38.662 26.759 13 328 Foça

TK 3505 38.668 26.752 - 384 Foça

TK 3506 38.394 27.082 26 771 Konak

TK 3507 38.304 26.373 - 1030 Çeşme

TK 3508 39.088 27.375 71 558 Kınık

TK 3509 38.216 27.965 112 286 Ödemiş

TK 3510 38.409 27.043 3 313 Balçova

TK 3511 38.421 27.257 76 827 Bornova

TK 3512 38.401 27.152 79 468 Buca

TK 3513 38.458 27.167 2 196 Bayraklı

TK 3514 38.476 27.158 197 836 Bayraklı

TK 3515 38.465 27.094 4 171 Karşıyaka

TK 3516 38.371 26.891 17 460 Güzelbahçe

TK 3517 38.376 27.194 136 695 Buca

TK 3518 38.431 27.144 7 298 Konak

TK 3519 38.453 27.111 10 131 Karşıyaka

TK 3520 38.478 27.211 184 875 Bornova

TK 3521 38.468 27.0764 1 145 Karşıyaka

TK 3522 38.434 27.199 68 249 Bornova

TK 3523 38.328 26.771 76 414 Urla

81

https://tadas.afad.gov.tr


TK 3524 38.497 27.107 64 459 Karşıyaka

TK 3525 38.372 27.108 106 745 Karabağlar

TK 3526 38.578 26.980 6 205 Menemen

TK 3527 38.639 26.513 60 207 Karaburun

TK 3528 38.304 26.373 17 532 Çeşme

TK 3529 37.944 27.368 15 306 Selçuk

TK 3530 38.453 27.224 35 270 Bornova

TK 3531 38.220 27.649 104 271 Bayındır

TK 3532 38.1591 27.360 39 328 Torbalı

TK 3533 38.257 27.130 127 415 Menderes

TK 3534 38.662 26.759 13 328 Foça

TK 3535 38.796 26.963 17 361 Aliağa

TK 3536 38.197 26.838 34 1141 Seferihisar

TK 3537 39.109 27.171 52 608 Bergama

4.6 Numerical Details of Simulations

The simulation region covers a volume of 139km × 133km × 22km ranging between

longitudes 26.3E − 28.0W and between latitudes 37.7N − 39.0N. In the simulation

step, the first attempt was made to be able to include the topography and bathymetry

data in the model. Yet, due to mountainous shape of the region and rugged surfaces

around coastal zones made the meshing process very challenging. Hence, topography

could not be included in simulations as it requires very fine grids around those loca-

tions distorting the mesh quality. To be able to achieve a smooth meshing process,

an external geometric data file is therefore needed to be constructed first, which will

be done in the scope of the TUBITAK-MAG project (Project No. 221M169) during

2022-2025.

The second attempt was to include the fluid-solid coupling beneath the sea and near

coastal zones. Due to the absence of bathymetry data, a constant water layer depth is

used and the domain is decomposed into several parts. In this case, however, although
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the meshing process was successful absorbing boundaries on each edge could not be

incorporated into the model due to the inaccurate decomposition of small surfaces

during the meshing process.

In the third step, the region is decomposed into three distinct layers given in Figure

4.6, the first layer ranging from 0m to 3000m, the second layer ranging from 3000m

to 15000m, and finally the third layer ranging from 15000m to 22000m. The decom-

position is made in accordance with the velocity models included. For the first layer,

a tomographic model, constructed with the AFAD database obtained from the stations

shown in Figure 4.4 in combination with PREM1D is used, while the second and the

third layers are modeled in accordance with the PREM1D only. Table 4.3. highlights

the model parameters. In addition, the density of the top layer is selected as constant

having a value of ρ = 2600 kg/m3.

Table 4.3: Decomposition of the model into three subdomains.

Model Data

Depth (km) Domain α (m/s) β (m/s) ρ (kg/m3) Qκ (−) Qµ (−)

0-3 elastic tomographyfile.xyz

3-15 elastic 5800 3200 2600 ∞ ∞
15-22 elastic 6800 3800 2900 ∞ ∞

In Table 4.3, the attenuation parameters Qκ and Qµ are numerically set to 9999 to

simulate purely elastic wave propagation without attenuation.

In addition, tomographyfile.xyz file contains externally employed material pa-

rameters for each grid point given in cartesian coordinates. A total of nel = 535392

spectral elements are employed in simulations with the minimum characteristic length

size ∆h = 500 m. Furthermore, the time step is selected as ∆t = 7ms to maintain

stability as per Courant stability criterion given by (4.2) and simulations were run

through 15000 steps (105 seconds). The source is incorporated as a double-couple

moment source obtained from Harvard Global CMT Catalog. The time rate of the

source is modeled as a Gaussian wavelet with a half duration of 1.8s. The mesh
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stability is checked by controlling the spatial resolution with the following criterion.

N∆x =
Vs

fmax
= λmin (4.1)

where N = 5 is the number of grid points per wavelength determined by the order of

Lagrange interpolant used to approximate the solution on elements, ∆x is the distance

between adjacent grid points in an element, Vs is the average shear wave velocity for

an element, fmax is the maximum resolution desired to be resolved, and λmin is the

minimum wavelength to be resolved. Due to large memory requirements, the element

size ∆h = (N − 1)∆x, where N is determined by the number of GLL points used,

is selected first and in accordance with (4.1) fmax is 0.6 Hz. The Courant stability

condition on the other hand is directly determined by the solver in accordance with

the following equation.

C = ∆t

(
Vs

∆x

)
max

(4.2)

where C is the Courant number, which is taken as 0.3. In accordance with (4.2), the

maximum allowable time step is given by the solver as ∆t = 0.0074s, and hence

∆t is selected as 0.007 s. The importance of the Courant stability condition is that

it guarantees that waves do not propagate faster than the shear wave velocity in an

element.

4.7 Numerical Results and Comparison with Observed Data

4.7.1 Strong Ground Motion Characteristics

Stations TK3506, TK3511 TK3512, TK3513, TK3514, TK3516, TK3517, TK3518,

TK3519, TK3520, TK3521, TK3522, TK3523, TK3524, TK3526, TK3527, TK3528,

TK3533, TK534, and finally TK3536 are incorporated in the simulations. Stations

TK3513, TK3514, TK3518, TK3520, TK3522 and TK3526 are selected for compar-

ison. Strong ground motion characteristics of the selected stations is highlighted in

this subsection to have a better interpretation of the synthetic records.

Stations 3513 and 3514 are settled on soft soil deposits with an average shear wave

velocity of Vs30 = 196 m/s (site class D) for the upper 30 m depth and rock with an

average shear wave velocity of Vs30 = 836 m/s for the upper 30 m depth, respectively,
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and are both close to Bayraklı district where the severest structural failures took place.

Long-period amplification of up to 1.5 s is observed at station TK3513, while no

comparable amplification is seen at station TK3514 located in the same district [98].

Similarly, Makra et al. [115] states that the geological interpretation of the existence

of two overlaid basins with station TK3514 being located on top of the formations

of the older basin and station TK3513 on top of the younger basin overlying the

older basin, implies the possibility of the contribution of a greater structure to the

amplification at frequencies lower than 0.5 Hz. In addition, Makra also adds that the

difference between the maximum amplitudes for frequencies below 1.0 Hz indicates

that the surface wave content is pronounced at station TK3513 due to diffraction at the

discontinuities around the younger sedimentary basin. Similar to [98], in Gülerce et

al. [116], it is shown that stations TK3513, TK3518, and TK3522 which are located

within the basin exhibit low Vs30 values (between 196-298 m/s) and have relatively

long seismic bedrock depths conforming to the presence of thick basin fill. Rather

complicated interaction between the site and basin amplification is revealed by the

long period ground motion content of the strong ground motion records, in agreement

with [115]. Stations TK3514 and TK3520, on the other hand, are located at the

basin edge, exhibiting relatively high Vs30 values, 836 m/s, and 875 m/s respectively.

Furthermore, seismic bedrock depth is shallower than the stations within the basin.

The presence of high energy content in long period (0.5-1.5 s) strong ground motions

of the Samos earthquake is observed in all stations selected, regardless of the site class

[98], [116]. Figure 4.7 shows the geological map of the İzmir Bay at which ground

motion stations are located.

4.7.2 Station TK3513

Station TK 3513 is located in İzmir City Bayraklı District with an Rjb distance of

85.63 km implying that the point source approximation made in numerical simula-

tions can be acceptable on synthetic records obtained from this station. Moreover,

rather low Vs30 velocity of the location suggests pronounced low frequency ground

motions as it might be observed from Table 4.4 and from Figure 4.8. In Figure 4.8,

the Fourier Amplitude Spectra of both synthetic and observed records, which are low-

pass filtered with a cut-off frequency of fc = 0.6 Hz, show an acceptable match in
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pattern between 0.05−0.6 Hz in both directions. On the other hand, the amplitudes of

synthetic records obtained are greater in magnitude than the observed data. Further-

more, a rather crude form of the velocity model used in simulations would probably

introduce additional errors in synthetic records. Moreover, when the time series pat-

tern of recordings is observed, the real records are seemed to be delayed. This might

be due to the poor representation of the water layer in the model as residual shear

waves due to the non-zero velocity layer might introduce additional noise. The am-

plification due to soft soil conditions on site, on the other hand, can be observed as

well from Figure 4.8. Finally, Table 4.5 highlights the misfit of both PGA and FAS

data. To find the misfit in the frequency domain and between the PGA values in all

stations, the misfit function by Karimzadeh [118] is incorporated as follows.

MisfitPGA =

∣∣∣∣PGAsynth

PGAobs

∣∣∣∣− 1 and MisfitFAS =
1

nf

∑
f

∣∣∣∣ log(FASsynth(f)

FASobs(f)

)∣∣∣∣
(4.3)

where nf is the number of discrete frequencies employed.

Table 4.4: Station TK 3513

Station ID Latitude Longitude
Vs30

(m/s)

Rjb

(km)
Province District

TK 3513 38.456 27.167 196 85.63 İzmir Bayraklı

Table 4.5: PGA and FAS misfits of synthetic and observed records at TK3513

PGA (m/s2) PGV (m/s)

Real Synthetic Real Synthetic MisfitPGA MisfitFAS Direction

0.25 0.50 0.05 0.29 0.99 1.12 E-W

0.20 0.41 0.05 0.28 1.10 1.08 N-S

4.7.3 Station TK3514

Similar to Station TK 3513, Station TK 3514 is located in İzmir City Bayraklı District

having Rjb distance of 86.77 km. However, when compared to TK 3513, it comprises
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higherVs30 velocity and hence a stiffer soil profile. Therefore, low frequency ground

motions are not as much pronounced as in the case of TK 3513, and can be observed

from Table 4.6 and from Figure 4.9. In Figure 4.9, the low-pass filtered (fc = 0.6 Hz)

Fourier Amplitude Spectra of both synthetic and observed records are shown. How-

ever, in this case, amplitudes are almost three times lower than the ones observed in

TK 3513, which might qualitatively indicate the stiffer soil condition on the site. The

rather crude form of the velocity model used in simulations would probably introduce

additional errors in synthetic records. Unlike in the case of TK3513, site amplifica-

tion is not pronounced due to stiff soil conditions. Table 4.7 highlights the goodness

of fit of PGA and FAS data.

Table 4.6: Station TK 3514

Station ID Latitude Longitude
Vs30

(m/s)

Rjb

(km)
Province District

TK 3514 38.4762 27.1581 836 86.77 İzmir Bayraklı

Table 4.7: PGA and FAS misfits of synthetic and observed records at TK3514

PGA (m/s2) PGV (m/s)

Real Synthetic Real Synthetic MisfitPGA MisfitFAS Direction

0.07 0.17 0.02 0.17 1.48 0.97 E-W

0.06 0.22 0.01 0.11 2.49 0.97 N-S

4.7.4 Station TK3518

Station TK 3518 is located in İzmir City Konak District having an Rjb distance of

81.97 km. It exhibits low Vs30 velocity and has a softer soil condition similar to TK

3513. In Figure 4.10, the low-pass filtered (fc = 0.6 Hz) Fourier Amplitude Spectra

of both synthetic and observed records are shown. Amplitudes of synthetic records

in both directions reach two to four times the amplitudes of real records suggesting

that the resolved frequency range is not enough to capture the frequency range of

the low frequency ground motions carrying high energy. In the E-W direction, the

FAS of both the synthetic and real recordings show a very close match between the

87



0.05 − 0.6 Hz frequency range. In the N-S direction, however, simulated ground

motions are four times higher than the real recordings. However, the amplification

characteristic of the soft soil condition again is qualitatively observed at least in the

E-W direction. Table 4.9 highlights the goodness of fit of PGA and FAS data.

Table 4.8: Station TK 3518

Station ID Latitude Longitude
Vs30

(m/s)

Rjb

(km)
Province District

TK 3518 38.4312 27.1435 298 81.97 İzmir Konak

Table 4.9: PGA and FAS misfits of synthetic and observerd records at TK3518

PGA (m/s2) PGV (m/s)

Real Synthetic Real Synthetic MisfitPGA MisfitFAS Direction

0.22 0.40 0.04 0.29 1.13 0.96 E-W

0.09 0.30 0.03 0.22 3.08 1.06 N-S

4.7.5 Station TK3520

Station TK 3520 is located in İzmir City Bornova District having an Rjb distance

of 89.68 km comprising stiffer soil deposit. In Figure 4.11, the low-pass filtered

(fc = 0.6 Hz) Fourier Amplitude Spectra of both synthetic and observed records

are shown and a close match is observed in the frequency domain. In addition, time

series waveforms show also similar patterns. In the E-W direction, amplitudes of the

simulated and observed ground motions are relatively close to each other. Hence, the

same reasoning might be made similar to previous cases. Table 4.11 highlights the

goodness of fit of PGA and FAS data.

4.7.6 Station TK3522

Station TK 3522 is located in İzmir City Bornova District having an Rjb distance of

85.32 km. Although located in the same district, it has a lower Vs30 value and hence
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Table 4.10: Station TK 3520

Station ID Latitude Longitude
Vs30

(m/s)

Rjb

(km)
Province District

TK 3520 38.478 27.2111 875 89.68 İzmir Bornova

Table 4.11: PGA and FAS misfits of synthetic and observed records at TK3520

PGA (m/s2) PGV (m/s)

Real Synthetic Real Synthetic MisfitPGA MisfitFAS Direction

0.11 0.18 0.04 0.11 0.63 0.97 E-W

0.08 0.15 0.02 0.17 1.00 0.98 N-S

a softer soil deposit suggesting a potential soil amplification in the low frequency

range. When Figure 4.12 is observed, it is seen that the FAS of synthetic records

yields larger amplitudes as the frequency gets lower. The closest match is observed

between 0.1−0.6 Hz range in the E-W, whereas in the N-S direction frequency range

of 0.05− 0.6 Hz exhibits good agreement with each other. As in the case of stations

located at regions having softer soil deposits, soil amplification is observed in the low

frequency range. Table 4.13 highlights the goodness of fit of PGA and FAS data.

Table 4.12: Station TK 3522

Station ID Latitude Longitude
Vs30

(m/s)

Rjb

(km)
Province District

TK 3522 38.4357 27.1987 249 85.32 İzmir Bornova

4.7.7 Station TK3526

Station TK 3526 is located in İzmir City Menemen District having an Rjb distance of

89.17 km. Unlike other selected stations, it is located outside the basin as shown in

Figure 4.4 and has a lower Vs30 value and hence a softer soil deposit. When Figure

4.13 is observed, it is seen that there is a close match between the FAS of synthetic
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Table 4.13: PGA and FAS misfits of synthetic and observed records at TK3522

PGA (m/s2) PGV (m/s)

Real Synthetic Real Synthetic MisfitPGA MisfitFAS Direction

0.17 0.35 0.04 0.21 1.03 1.05 E-W

0.13 0.35 0.04 0.22 1.57 0.92 N-S

recordings and the FAS of real recordings in both directions throughout the frequency

range of 0.05 − 0.6 Hz. This might be attributed to the location of the station as it

does not reside in the Bornova Basin and is considerably far away from the epicenter.

Table 4.15 highlights the goodness of fit of PGA and FAS data.

Table 4.14: Station TK 3526

Station ID Latitude Longitude
Vs30

(m/s)

Rjb

(km)
Province District

TK 3526 38.5782 26.9795 205 89.17 İzmir Menemen

Table 4.15: PGA and FAS misfits of synthetic and observed records at TK3526

PGA (m/s2) PGV (m/s)

Real Synthetic Real Synthetic MisfitPGA MisfitFAS Direction

0.19 0.30 0.05 0.05 0.59 0.97 E-W

0.22 0.40 0.25 0.26 0.82 0.97 N-S
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(a) Top view

(b) Side view

Figure 4.6: Mesh used in the simulations. Geometry is decomposed into three rect-

angular prisms. The tomographic velocity model is incorporated into the top layer,

while the PREM1D model is applied to bottom layers.
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(a) Geological map of the İzmir Bay

(b) Ground motion stations and 3D site characteristics at which they are located.

Figure 4.7: Close-up view of İzmir Bay illustrating the geological setting of the area.

(a) depicts the geological map of the Bornova Basin and its surroundings.(b) shows

the positions of ground motion stations located in the basin with color codes charac-

terizing the site on which the stations are settled. The figure is adapted from [117].
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CHAPTER 5

CONCLUDING REMARKS

5.1 Summary

In this thesis, low frequency ground motions of the 2020 Samos Earthquake at se-

lected ground motion stations are simulated using the spectral element method. For

this purpose, the mathematical derivation of the classical wave equation is derived

first. Next, the spatiotemporal discretization scheme involved in finite element and

spectral element methods is performed. Then, an initial velocity model of the region

is constructed based on the 1D velocity profiles provided by AFAD. For the source

model, the moment tensor solution of the Samos Earthquake is utilized with a Gaus-

sian source time function since the event is located at far distances from the studied

stations admitting point source model utilization. The comparisons of simulated and

observed data are performed in terms of FAS, velocity, and acceleration time history

5.2 Main Findings

Based on the numerical results obtained in this study, the following main conclusions

are derived.

• This study constitutes an initial attempt to use spectral elements to model the

low frequency ground motions of a large earthquake in Turkey. There are

stochastic models of this particular event, but this thesis is the first deterministic

attempt to simulate the 2020 Samos Earthquake.

• Point source assumption of the earthquake source provides acceptable esti-
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mates. However, the simulated spectral and time domain amplitudes overes-

timate the observations. In addition, the velocity model affects the accuracy of

the results clearly.

• Stations located on softer soil conditions in the Bornova basin exhibit surface

waves with longer period content. These waves could also be modeled in the

simulations. The structural damage observed in several high-rise buildings can

be attributed to surface waves. Thus it is important to model these waves, which

is not possible to simulate with stochastic approaches.

• For all cases, the N-S component of simulated ground motions shows an ac-

ceptable match with the observed data, whereas amplitudes of U-D components

deviate too much from each other. This discrepancy could be due to the issues

with the P-wave velocities.

• It is observed that the numerical model could resolve the complete frequency

range of 0 − 0.6 Hz. Simulation of higher frequencies can also be possible in

future studies with better-refined velocity models.

• At stations located on soft soils, site amplification effects are observed in both

recorded and simulated data. It is particularly significant to capture the local

site effects in simulated data.

• The poorest performance is observed at station TK3514 in terms of PGA misfit.

This could be considered reasonable as TK3514 stays on a stiff soil deposit

in which higher frequency ground motions are pronounced. Therefore, such

a deviation is expected as the numerical model is only capable of resolving

frequencies up to roughly 0.6 Hz.

• In all cases, FAS misfits are observed to be around the same order, slightly de-

viating from 1, between the discrete frequencies 0.05−0.6 Hz, which conforms

with qualitative inspection of FAS data presented in related figures.

• In all stations selected, the Joyner-Boore distance (Rjb) is computed to be suf-

ficiently large to avoid errors that might be introduced by point source approx-

imation employed in the model. However, in the future, simulation of finite

fault models is necessary.
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5.3 Future Work

The following articles highlight the assumptions made in this study and propose some

points which should be investigated in a detailed manner in future studies.

• This study aimed to simulate only the low frequency portion of the recorded

motions. The high frequency portions can be modeled with the stochastic ap-

proaches. In the future, it is important to provide broadband motions with a

hybrid approach.

• The source model is assumed to be a point source due to large source-to-site

distances at the sites in İzmir. However, it is important to model large events

with finite fault models in the future to study the near-fault effects.

• The earth model here is an initial approximation based on 1D profiles at AFAD

stations. Well-refined velocity models should be formed in the future in order

to represent wave propagation better.

• All of the simulations herein are based on purely isotropic elastic materials. In

order to be able to simulate the realistic behavior of soils, different material

models are needed to be integrated into simulations in future studies.

• In addition, material dissipation due to viscoplastic behavior is not included

in the simulations due to considerable memory requirements. Therefore, such

dissipative material models are also needed for the purpose of accuracy. Poroe-

lastic soil models would be integrated as well for realistic simulations in future

studies.

• To be able to capture the regional geometry realistically, a geometric model

constructed from bathymetry and topography data is required to capture topog-

raphy and sea effects on propagated waves.

• In this thesis, strong motion data is used only for practical purposes to test

the spectral element models. Broadband data around the earthquake could be

employed in future studies.
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• This thesis only involves a first order approximation to the ground motion sim-

ulation of the 2020 Samos Earthquake. Due to a lack of regional data and the

significant memory requirements of such a large-scale event, it was challenging

to include a wide range of phenomena reported during the event in the simu-

lations. However, with the accumulation of regional data during the course

of undergoing the TUBITAK-MAG project (Project No. 221M169), it would

be possible to construct precise geometry, including the topography as well as

the bathymetry, and tomographic model with higher resolution of the region,

enabling us to perform higher order simulations.
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