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ABSTRACT

FINITE DIFFERENCE METHOD SOLUTION OF
MAGNETOHYDRODYNAMIC FLOW IN CHANNELS WITH
ELECTRICALLY CONDUCTING AND SLIPPING WALLS

ARSLAN, SİNEM

M.S., Department of Mathematics

Supervisor : Prof. Dr. Münevver Tezer

May 2018, 68 pages

In this thesis, the laminar, steady and fully developed magnetohydrodynamic

(MHD) flow is considered in a pipe (channel) along with the z-axis under an

external magnetic field applied perpendicular to the pipe. The velocity and the

induced magnetic field depend only on the plane coordinates x and y on the

cross-section of the pipe (duct) when the flow reaches to fully-developed case.

This results in two-dimensional MHD duct flow. When the lateral channel walls

are extended to infinity the flow is considered between two parallel plates (Hart-

mann flow). Then, the variations of the velocity and the induced magnetic field

are only with respect to the coordinate y between the plates which are perpen-

dicular to the external magnetic field and the problem becomes one-dimensional

MHD flow between parallel plates. The finite difference method (FDM) is used

to solve the governing equations of 1D and 2D MHD flow problems with the

boundary conditions which include both the slip and the varying conductivity

of the walls. The numerical results obtained from FDM discretized equations
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are compared with the exact solution derived for the 1D MHD flow between

parallel plates with the most general case of slipping and variably conducting

boundary conditions. On the other hand, for the validation of the numerical

results obtained from the FDM for the 2D MHD flow in a square duct with the

exact solution, the case of no-slip and insulated duct walls is considered and the

agreement is obtained. Also, for both of the 1D and the 2D MHD flow problems,

the velocity of the fluid and the induced magnetic field are simulated for each

special case of boundary conditions including no-slip to highly slipping and insu-

lated to perfectly conducting plates. The well-known characteristics of the MHD

flow and the influences of slipping and electrically conducting plates on the flow

and the induced magnetic field are observed. Thus, the FDM which is simple to

implement, enables one to depict the effects of Hartmann number, conductivity

parameter and the slip parameter on the behavior of both the velocity of the

fluid and the induced magnetic field at a small expense.

Keywords: MHD Flow, FDM, Slipping Velocity, Variable Conductivity
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ÖZ

ELEKTRİKÇE GEÇİRGEN VE KAYMA SINIR KOŞULLU
KANALLARDA MAGNETOHİDRODİNAMİK AKIŞIN SONLU

FARK YÖNTEM ÇÖZÜMÜ

ARSLAN, SİNEM

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Münevver Tezer

Mayıs 2018 , 68 sayfa

Bu tezde; laminer, kanallardaki zamandan bağımsız ve tam gelişmiş, z-ekseni

boyunca uzanan bir boru (kanal) içerisinde olan ve boruya dik olarak uygulanan

dış manyetik alan etkisindeki magnetohidrodinamik (MHD) akış ele alınmıştır.

Akış tam gelişmiş duruma ulaştığında, hız ve indüklenen manyetik alan, boru-

nun (kanalın) enine kesitinde sadece x ve y düzlem koordinatlarına bağlıdır. Bu,

iki-boyutlu MHD kanal akışı ile sonuçlanır. Yanal kanal duvarları sonsuza ka-

dar uzatıldığında, akış iki paralel levha arasında kabul edilir (Hartmann akışı).

Daha sonra, hızın ve indüklenen manyetik alanın değişimleri, dış manyetik alana

dik olan plakalar arasında sadece y koordinatina bağlı olur ve MHD akış prob-

lemi birbirine parallel plakalar arasında bir-boyutlu hale gelir. Duvarlarda hem

kayma hem de değişken iletkenliği içeren sınır koşullarına sahip olan bir- ve iki-

boyutlu MHD akış problemlerini oluşturan denklemleri çözmek için sonlu fark

yöntemi (FDM) kullanılmıştır. Sonlu farkla ayrıklaştırılmış denklemlerden elde

edilen yaklaşık sonuçlar, en genel kayma ve değişken iletken sınır koşullarına
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sahip olan birbirine paralel plakalar arasındaki bir-boyutlu MHD akışı için elde

edilen gerçek çözüm ile karşılaştırılmıştır. Öte yandan, kare bir kanal içerisindeki

iki-boyutlu MHD akışı için sonlu fark yönteminden elde edilen yaklaşık çözümle-

rin gerçek çözümlerle doğrulanması için, kaymayan ve yalıtılmış kanal duvarları

durumu göz önünde bulundurulmuş ve çözümlerin birbirleriyle uyuştukları elde

edilmiştir. Aynı zamanda, bir- ve iki-boyutlu MHD akış problemlerinin her ikisi

için de, kaymayan sınır koşulundan yüksek kayma sınır koşuluna ve yalıtılmış-

tan tam geçirgen plakalara kadar her bir özel sınır koşulu durumu için akışkan

hızının ve indüklenen manyetik alanın simulasyonları yapılmıştır. MHD akışın

iyi bilinen özellikleri ile kayma ve elektirikçe geçirgen koşullu plakaların akış ve

indüklenen manyetik alan üzerindeki etkileri gözlemlenmiştir. Sonuç olarak, uy-

gulanması kolay olan sonlu fark yöntemi; Hartmann sayısı, geçirgenlik paramet-

resi ve kayma parametresinin hem akışkan hızının hem de indüklenen manyetik

alanın üzerindeki etkisini göstermemizi sağlamıştır.

Anahtar Kelimeler: Magnetohidrodinamik Akış, Sonlu Fark Metodu, Kayma Sı-

nır Koşulu, Değişken Geçirgenlik
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NOMENCLATURE

MHD Magnetohydrodynamics

FDM Finite Difference Method

1D one-dimensional

2D two-dimensional
~V “ p0, 0, uq velocity field
~B “ p0, B0, bq magnetic field
~H “ p0, H0, hq magnetic field

µe ~H “ ~B magnetic field
~E electric field
~f force
~j electric current density

~n unit outward normal to the boundary

P pressure

Ha Hartmann number

α slip length

c conductivity parameter

µ viscosity

ν kinematic viscosity

ρ density

σ electrical conductivity

µe magnetic permeability

B0 intensity of the applied magnetic field

U0 characteristic velocity

L0 characteristic length

x, y Cartesian coordinates

h increment in the x- and y-directions
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CHAPTER 1

INTRODUCTION

The boundary value problem, or in short the BVP, is a problem which includes

ordinary or partial differential equations with specified conditions on the bound-

ary of the domain in which the problem is defined. To have a well-defined BVP,

some conditions of the unknown have to be prescribed on the boundary of the

region. Three types of boundary conditions as Dirichlet, Neumann or Robin

type boundary condition may be specified when the unknown itself, the nor-

mal derivative of the unknown or a linear combination of them are given on

the boundary, respectively. Boundary value problems are obtained as conse-

quences of some physical phenomenas in fluid dynamics, magnetohydrodynam-

ics etc. They can be identified with three types of differential equations; elliptic,

parabolic or hyperbolic. The problems considered here are of elliptic type.

Fluid dynamics is a branch of applied science that is concerned with the move-

ment of liquids or gases, that is the ’flow of a fluid’. It describes the behavior

of the fluid and it is based on two main branches which are fluid mechanics

and fluid statics. Magnetohydrodynamics (MHD) is a discipline which is arisen

from the main results of fluid mechanics and electrodynamics. It considers the

flow of an electrically conducting fluid (water, liquid metals) that are exposed

to an external magnetic field and/or an electric current [10]. So, it investigates

the influence of these external effects on the behavior of the flow of electrically

conducting fluids. Hartmann [6] who studied the MHD flow between parallel

planes introduced the study of magnetohydrodynamics and his results provided

an insight for understanding the working principles of MHD flow.

MHD has applications in almost every area of our daily life and in engineering
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such as magnetic cooling systems, magnetic refrigerators, water treatment de-

vices. Basically, there are several devices whose working principles are based on

MHD effects such as MHD pumps, generators, brakes, flow meters and blood

flow measurement. Indeed MHD is highly effective in many areas from technol-

ogy to industry. In technological applications of MHD, its utilizations like being

simple and very rugged in operation enables it to be used in technical devices.

On the other hand, MHD has many advantages for industrial applications such

as nuclear power stations, crystal growth and metallurgical process industry.

Magnetohydrodynamics has been so progressed that it is started to be used also

in astrophysics which considers planets, stars and galaxies.

In this chapter, some physical laws are introduced leading to MHD equations.

As a result of basic principles such as conservation of mass, conservation of mo-

mentum and Ampere’s law, the combination of Navier-Stokes equations of fluid

dynamics including Lorentz force and Maxwell’s equations of electromagnetism

through Ohm’s law form the governing equations of MHD flow. The derivation

of the MHD flow equations is given in the most general form in terms of the

velocity and pressure of the fluid and the induced magnetic field as problem

unknowns. Then, these full MHD equations are simplified for 1D MHD flow

between parallel plates and 2D MHD flow in rectangular channels (ducts) which

are considered and solved in the next two chapters. Then, the literature survey

on the studies related to these problems is given. Finally, the plan of the thesis

is expressed.

1.1 MHD Equations

We consider the steady, laminar, fully-developed flow of an incompressible, vis-

cous, electrically conducting fluid. The equations leading to MHD channel flow

equations are listed below with corresponding physical laws;
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∇.~V “ 0 Continuity equation (1.1)

~f ´ gradP ` µ∇2~V “ ρp~V .∇q~V Navier-Stokes equations (1.2)

~f “ ~j ˆ ~B Lorentz force (1.3)

~j “ σp ~E ` ~V ˆ ~Bq Ohm’s law (1.4)

∇ˆ ~H “ ~j Ampere’s law (1.5)

∇ˆ ~E “ ~0 Electric field is irrotational (1.6)

∇.~j “ 0 Net flux of electric current is zero (1.7)

∇. ~H “ 0 Magnetic induction is solenoidal (1.8)

with ~j, ~H, ~E, P and ~V , and µ, ρ, σ, µe are the electric current density, magnetic

field, electric field, pressure and the velocity of the fluid, and viscosity, density,

electrical conductivity and magnetic permeability of the fluid, respectively. In

the absence of electric field ~E, Ohm’s law reduces to ~j “ ∇ ˆ ~H “ σp~V ˆ ~Bq.

Taking the curl of both sides of Ohm’s law (1.4) gives

∇ˆ~j “ σ∇ˆ p ~E ` ~V ˆ ~Bq

and since ~B “ µe ~H, it becomes with ~E “ 0

∇ˆ~j “ σ∇ˆ ~E ` σµe∇ˆ p~V ˆ ~Hq “ σµe∇ˆ p~V ˆ ~Hq.

Substituting ~j “ ∇ˆ ~H by Ampere’s law (1.5), we obtain

∇ˆ p∇ˆ ~Hq “ σµe∇ˆ p~V ˆ ~Hq. (1.9)

Then, the following two vector identities are going to be used to write the latter

equation in a compact form

∇ˆ p∇ˆ ~Hq “ curlcurl ~H “ graddiv ~H ´∇2 ~H

∇ˆ p~V ˆ ~Hq “ curlp~V ˆ ~Hq “ p ~H.∇q~V ´ p~V .∇q ~H ` ~V div ~H ´ ~Hdiv~V .

Since div ~H “ 0 and div~V “ 0 from (1.8) and (1.1), respectively, Equation (1.9)

becomes the magnetic induction equation

∇2 ~H ` σµep ~H.∇q~V “ 0 (1.10)
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since ~V .∇ “ 0 for a 1D or 2D MHD channel flow with ~V “ p0, 0, uq and ~H “

p0, H0, hq, ~B “ p0, B0, bq where u and b are the channel axis velocity and the

induced magnetic field. Now, let us use the momentum equation (1.2) with the

Lorentz force. It can be rewritten by using (1.3) and (1.5) as

µepcurl ~H ˆ ~Hq ´ gradP ` µ∇2~V “ ρp~V .∇q~V . (1.11)

Differentiating both sides with respect to z gives grad
ˆ

BP

Bz

˙

“ 0 since all the

other variables are independent of the variable z. This means that
BP

Bz
is a

constant. Since ~V .∇ “ 0 as mentioned above, the Equation (1.11) becomes

µepcurl ~H ˆ ~Hq ` µ∇2~V “ gradP. (1.12)

Then, the vector form of the latter equation is
ˆ

´µeh
Bh

Bx
,´µeh

Bh

By
, µeH0

Bh

By

˙

` µ
`

0, 0,∇2u
˘

“

ˆ

BP

Bx
,
BP

By
,
BP

Bz

˙

(1.13)

with component wise equality as

BP

Bx
“ ´µeh

Bh

Bx
BP

By
“ ´µeh

Bh

By
BP

Bz
“ µeH0

Bh

By
` µ∇2u.

(1.14)

On the other hand, the magnetic induction Equation (1.10) in the vector form

implies that

∇2
p0, H0, hq ` σµe

ˆ

0, 0, H0
Bu

By

˙

“ 0. (1.15)

Finally, the z-components of the momentum Equations (1.14) and the magnetic

induction Equations (1.15) are coupled as

µeH0
Bh

By
` µ∇2u “

BP

Bz

∇2h` σµeH0
Bu

By
“ 0

(1.16)

or

µ∇2u`
B0

µe

Bb

By
“
BP

Bz
1

µe
∇2b` σB0

Bu

By
“ 0

(1.17)
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since µe ~H “ ~B, that is, µep0, H0, hq “ p0, B0, bq. These coupled MHD channel

flow equations are valid for both 1D MHD flow between parallel plates and 2D

MHD channel flow in a rectangular channel (duct) when u “ upyq, b “ bpyq and

u “ upx, yq, b “ bpx, yq, respectively.

Now, the nondimensionalization process of the Equations (1.17) are going to be

shown by introducing the dimensionless variables as

ū “
u

U0

, b̄ “
bpσµq´1{2

U0µe
, x̄ “

x

L0

and ȳ “
y

L0

where U0 “ ´
L2
0

µ

BP

Bz
is the characteristic velocity (pipe axis velocity) and L0 is

the characteristic length (half distance between the parallel plates or one side of

the rectangular duct). So, we have the new variables

u “ ūU0, b “ U0µe
?
σµb̄, x “ x̄L0, and y “ ȳL0 (1.18)

with the new differential operators

B

Bx
“

1

L0

B

Bx̄
,

B

By
“

1

L0

B

Bȳ
,

B2

Bx2
“

1

L2
0

B2

Bx̄2
,

B2

By2
“

1

L2
0

B2

Bȳ2
. (1.19)

Substituting the dimensionless variables (1.18) and the operators (1.19) into the

Equations in (1.17), we obtain

∇2ū`
B0L0

?
σ

?
µ

Bb̄

By
“ ´1

∇2b̄`
B0L0

?
σ

?
µ

Bū

By
“ 0.

(1.20)

Hence, we can substitute u and b instead of ū and b̄ into the Equations (1.20)

to get

∇2u`Ha
Bb

By
“ ´1

∇2b`Ha
Bu

By
“ 0

(1.21)

which give the governing dimensionless 1D or 2D coupled MHD channel flow

equations. The Hartmann number Ha is defined as Ha “
B0L0

?
σ

?
µ

, and ∇2 “

B2

Bx2
`
B2

By2
is the Laplace operator. When the 1DMHD flow is considered between
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parallel plates, the velocity and the induced magnetic field are equations of y

only as ~V “ p0, 0, upyqq, ~B “ p0, B0, bpyqq and the Equations (1.21) take the

form
d2u

dy2
`Ha

db

dy
“ ´1

´ 1 ă y ă 1.

d2b

dy2
`Ha

du

dy
“ 0

(1.22)

In the 2D MHD flow, ~V “ p0, 0, upx, yqq, ~B “ p0, B0, bpx, yqq in Equations (1.21)

and the domain is the rectangular duct Ω. Thus, the 1D and 2D MHD flow

problems given in the Equations (1.22) and (1.21) are going to be solved with

the most general boundary conditions (slip and variably conducting walls)

u˘ α
du

dy
“ 0 and ˘

db

dy
`

1

c
b “ 0 at y “ ˘1 (1.23)

and

u˘ α
Bu

Bn
“ 0 and b˘ c

Bb

Bn
“ 0 on BΩ, (1.24)

respectively. Here, α is the slip length of the slipping velocity and c is the

conductivity parameter.

1.2 Literature Survey

Magnetohydrodynamics started with the investigation of Hartmann and Lazarus

[6] who studied the MHD flow between parallel planes and their results pro-

vided an insight for understanding the working principles of MHD flow. They

studied on the flow of mercury as a conducting fluid in pipes of different cross-

sections. Shercliff [12] considered the steady motion of an electrically conducting

and viscous fluid in the presence of imposed transverse magnetic field for non-

conducting walls. Also, he derived the exact solution of the problem for certain

cases and gave a theoretical view on the study of Hartmann layers for square

duct and circular pipe. Gold [5] obtained an exact solution for no-slip and non-

conducting walls in a circular pipe. Hunt and Stewartson [8] studied laminar flow

of an electrically conducting liquid in a rectangular duct under a uniform trans-

verse magnetic field. They discussed the effect of the conductivity of the walls
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like perfectly conducting walls parallel to the magnetic field and non-conducting

walls perpendicular to the field. Similarly, Temperley and Todd [17] studied

also the effects of wall conductivity on the solution of MHD duct flow by using

classical theory, but at high Hartmann numbers. Singh and Lal [13] used the

finite difference method (FDM) with Kantorovich and Crank-Nicolson methods

(for unsteady problems) to solve the MHD axial flow in a triangular pipe un-

der transverse magnetic field for small values of Hartmann number. They also

used the finite element method (FEM) in different cross-sections of a pipe such

as rectangular, triangular and circular in order to solve the MHD channel flow

problem numerically for Hartmann numbers ď 5, [14]. Then, Tezer-Sezgin and

Köksal [20] used FEM for the steady MHD flow through a rectangular pipe with

arbitrarily conducting walls for several values of Hartmann number between 5

and 100. In addition, Chutia and Deka [3] solved steady, 2-dimensional MHD

flow through a square duct under the action of transverse magnetic field with

insulated walls by using finite difference method at high Hartmann numbers up

to 500.

Later on, in the 1980’s, the boundary element method (BEM) is included to

the basic domain discretization methods such as FDM and FEM for solving the

MHD duct flow problems which discretizes only the boundary of the problem

domain. The resulting system of equations are quite small in size compared to

FEM and FDM discretized system of equations sizes. Both BEM and dual reci-

procity boundary element method (DRBEM) have been used for solving MHD

duct flow problems in different geometries with several boundary conditions.

Tezer-Sezgin [18] used BEM with constant elements for solving MHD duct flow

with moderate Hartmann numbers and similarly Carabineanu et al. [2] utilized

the BEM for solving MHD problem in a conducting medium. Besides, Liu and

Zhu [9] considered the MHD duct flow with arbitrary wall conductivity in the

presence of a transverse external magnetic field with various inclined angles by

using DRBEM.

The MHD flow problems are also investigated with the hydrodynamic slip condi-

tion at the interface between the electrically conducting fluid and the insulating

wall. There are several studies on the MHD flow problems with slipping con-
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dition. Smolentsev [15] gave the analytical solutions of the Hartmann flow and

fully-developed flow in a rectangular duct with slip condition and also analyzed

the thickness of the Hartmann and the side walls under the effect of slip condi-

tion. Rivero and Cuevas [11] used one and two-dimensional MHD flow models

with different slipping walls and gave the analytical and numerical calculations,

and also analyzed the effect of the slip length on the flow rate.

Bozkaya and Tezer-Sezgin [1] used BEM application after they derived the fun-

damental solution for the coupled convection–diffusion type equations and they

solved the MHD duct flow problems with the most general form of wall conduc-

tivities and for values of Hartmann number up to 300 [19]. Hosseinzadeh et al.

[7] considered the constant and the continuous linear boundary elements meth-

ods (BEMs) to obtain the numerical solution of the coupled equations of MHD

flow. They presented a new technique for a general boundary condition (arbi-

trary wall conductivity) at Hartmann numbers ď 105. Tao and Ni [16] obtained

two analytical solutions by solving the governing equations in the liquid and in

the walls coupled with the boundary conditions at fluid-wall interface for MHD

flow at a rectangular duct with unsymmetrical walls of arbitrary conductivity.

In this thesis, the numerical solution of the 1D and the 2D MHD flow equations

in a long pipe of rectangular cross-section have been investigated by using the

finite difference method. The problem solutions are sought when both the slip

and the conductivity boundary conditions are effective on each Hartmann and

side walls, which are not available in the literature yet by using the FDM. The

numerical solutions are obtained by using a suitable code in Matlab after the

discretization of the domain. Also, the exact solution of 1D MHD flow is derived

for the most general form of slip and variable conducting end conditions, and

the comparison of the exact solution with the numerical solutions show very

well agreement even at high Hartmann number values. A similar procedure is

used to solve the 2D MHD flow equations with FDM again for the slip and/or

variably conducting Hartmann and side walls. The influences of the slipping

and the conductivity parameters on the velocity and the induced magnetic field

are illustrated with equivelocity and the current lines for increasing values of

Hartmann number.

8



1.3 Plan of the Thesis

In Chapter 1, first of all the fundamental equations of fluid dynamics and elec-

tromechanics are introduced. Then, the equations which describe the MHD

flow in one-dimensional and two-dimensional cross-sections of the channels are

derived by using some vector identities. The non-dimensional forms of the gov-

erning equations are obtained with some dimensionless parameters. A general

literature survey on the MHD channel flow is given. In the next two chapters

the MHD channel flow problems are considered with different types of boundary

conditions as four cases according to the slip and/or variably conducting channel

walls. These cases are listed in the following table. The last Case 5 is considered

only in the 2D MHD flow.

Table 1.1: Cases of wall conditions, α “ slip length, c “ conductivity parameter.

Case 1. No-slip and insulated walls (α “ 0, c “ 0)
Case 2. No-slip but variably conducting walls (α “ 0, c varies)
Case 3. Slipping but insulated walls (α varies, c “ 0)
Case 4. Both slipping and variably conducting walls (α, c varies)
Case 5. No-slip walls, Hartmann walls are perfectly conducting

and side walls are insulated

In Chapter 2, the 1D MHD flow equations are given with the most general type

of boundary conditions which involve both the slip and the conductivity pa-

rameters. Firstly, the exact solution of the problem is obtained when both the

slip and the conductivity parameter exist on the boundary by using variation

of parameters technique. Using FDM approximations for the derivatives, a nu-

merical scheme is obtained. Then, inserting the boundary conditions into the

discretized equations for each case, a system of linear equations is deduced and

then is solved with Gaussian elimination in Matlab. Then, the numerical solu-

tions at discretized points are simulated for varying values of Hartmann number,

and slip and conductivity parameters for each case.
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In Chapter 3, we consider the 2D MHD channel flow problem for the cases

explained in the above Table 1.1. Again, FDM is used for solving the governing

equations. Then, the 2D MHD channel flow problem with the most general

boundary conditions as in Case 4 is solved by using a general scheme which covers

all the cases listed in the Table 1.1. The governing equations of the 2D MHD

channel flow problem for the boundary conditions of Case 1 are decoupled since

it becomes easier to solve the decoupled equations with this case of boundary

conditions. Indeed, the general scheme also gives the solution of the 2D MHD

flow problem of Case 1, and the numerical results obtained from both of the

coupled and decoupled equations coincide. With the FDM discretization of the

domain, both the coupled and decoupled schemes result in linear systems of

equations, that is, matrix-vector systems are obtained for the unknown velocity

and the induced magnetic field. Then, the linear systems are solved with a

suitable code in Matlab to get the solution at discretized points for each case

by choosing the values of the slipping and the conductivity parameters. Finally,

numerical results and their discussions are presented by explaining the effects of

the variable conducting and the slipping boundaries on the solution of the MHD

flow for several values of Hartmann number.

In Chapter 4, the summary of what is done in this thesis study and the general

findings are expressed.
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CHAPTER 2

1D MHD FLOW BETWEEN PARALLEL PLATES

In this chapter, the MHD flow is considered in a long pipe of rectangular cross-

section along with the z-axis under the influence of an external magnetic field

which is perpendicular to the pipe. Therefore the relevant variables, the velocity

u and the induced magnetic field b depend only on the plane coordinates x and

y when the flow reaches to fully-developed case. The flow can be considered

between two parallel plates when the sides of the pipe parallel to the applied

magnetic field are assumed to be extended to ˘ infinity (Hartmann flow). Thus,

the external magnetic field is perpendicular to the channel walls and the lateral

channel walls are at infinity. Now, the variations of the velocity u and the

induced magnetic field b are only in one coordinate variable y, and the MHD

flow problem becomes 1-dimensional between parallel plates.

Figure 2.1: Hartmann flow configuration

The finite difference method (FDM) is used to solve the governing 1D MHD

equations numerically. The numerical results obtained from the FDM discretized

equations have been compared with the exact solution of the problem which is
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given in [10] when the plates have no-slip condition for the velocity of the fluid.

An accuracy of order 10´3 has been observed for both u and b when they are

compared with the exact solution even for a large Hartmann number. Further,

different type of boundary conditions such as slip velocity condition and insu-

lated and/or conducting end points (plates) are used and in this thesis, the

exact solutions are also derived for all of these cases. Thus, we were able to

compare our FDM solutions with the exact solutions for the most general cases

of the boundary conditions. As a result, the FDM have made us to be able

to understand the effect of these type of boundary conditions on the behavior

of both the velocity u and the induced magnetic field b at a small computa-

tional expense. The volumetric flow rates are also computed for all the cases of

boundary conditions considered.

2.1 Formulation of the Problem

The fully developed MHD flow between two parallel plates is reduced to one-

dimensional MHD flow when the lateral walls are assumed to be extending to

infinity. According to the geometrical configuration in Figure 2.1, both the

velocity and the induced magnetic field are in the z-direction but vary only in the

y-direction which is the distance between the plates. The governing equations

in non-dimensional form for this Hartmann flow are the coupled convection-

diffusion equations

d2u

dy2
`Ha

db

dy
“ ´1

in ´ 1 ă y ă 1

d2b

dy2
`Ha

du

dy
“ 0

(2.1)

where upyq and bpyq are the velocity and the induced magnetic field, respectively.

Ha is the Hartmann number and c is the conductivity parameter. Hartmann

number is given as Ha “ L0B0

c

σ

ρν
where L0 is the characteristic length, B0

is the intensity of the external magnetic field, σ, ρ and ν are the electrical con-

ductivity, the density and the kinematic viscosity of the fluid, respectively. The

boundary conditions for the velocity and the induced magnetic field are taken in
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the most general form as Robin’s type which contain the slipping velocity and

the variable conductivity as

u˘ α
du

dy
“ 0, ˘

db

dy
`

1

c
b “ 0 at y “ ˘1. (2.2)

Here c Ñ 0 corresponds to electrically insulating walls (plates) and c Ñ 8 to

electrically perfectly conducting walls, and α is the slip length of the slipping

velocity at the end points. Also, α “ 0 implies the no-slip boundary conditions

(non-slipping plates).

2.2 Exact Solution

The exact solution of the problem (2.1) for the case of no-slip boundary condi-

tions pα “ 0q, that is, u “ 0 at y “ ˘1 is given in [3, 11] as

upyq “ û

„

1´
coshppHaqyq

coshpyq



,

bpyq “ ´
y

Ha
` û

sinhppHaqyq

coshppHaqyq
,

(2.3)

with the characteristic magnitude of the velocity

û “
1

Ha

c` 1

cHa` tanhpHaq
. (2.4)

Next, we will consider the cases of slip but insulated walls and also slipping and

conducting walls. The exact solutions for these cases are derived below. Firstly,

the new variables U1 and U2 are defined by

U1pyq “ u` b and U2pyq “ u´ b

in order to make the Equations in (2.1) decoupled. Adding and subtracting

them gives

d2U1

dy2
`Ha

dU1

dy
“ ´1 (2.5)

d2U2

dy2
´Ha

dU2

dy
“ ´1. (2.6)

Now, the method of variation of parameters is going to be used to obtain the

unknowns U1 and U2 and then going back to the original variables u “
U1 ` U2

2
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and b “
U1 ´ U2

2
, the exact solution of the problem (2.1) with the boundary

conditions (2.2) is going to be obtained.

From the homogeneous part of the Equation (2.5), we have the characteristic

equation

r2 ` pHaqr “ 0.

So,

Uh
1 pyq “ a` f expp´pHaqyq

for some nonzero constants a and f . Thus, y1 “ a and y2 “ expp´pHaqyq

are the fundamental set of solutions and the Wronskian of them is W py1, y2q “

´apHaq expp´pHaqyq. Then, the particular solution Up
1 pyq is obtained by vari-

ation of parameters formula as

Up
1 pyq “ ´a

ż

expp´pHaqyqp´1q

´apHaq expp´pHaqyq
dy ` expp´pHaqyq

ż

ap´1q

´apHaq expp´pHaqyq
dy

Up
1 pyq “

´y

Ha
`

1

pHaq2

Hence,

U1pyq “ Uh
1 ` U

p
1 “ g ` f expp´pHaqyq ´

y

Ha

where g “ a `
1

pHaq2
. Similarly, the homogeneous part of the equation (2.6)

gives

Uh
2 pyq “ l ` d expppHaqyq

for some nonzero constants l and d. Then, the particular solution is of the form

Up
2 pyq “

y

Ha
´

1

pHaq2
.

Thus, the general solution is given by

U2pyq “ Uh
2 ` U

p
2 “ k ` d expppHaqyq `

y

Ha

where k “ l´
1

pHaq2
and f and d are constants to be determined. Finally, going

back to the original variables, we have

upyq “ m`
1

2
pf expp´pHaqyq ` d expppHaqyqq

bpyq “ l `
1

2
pf expp´pHaqyq ´ d expppHaqyqq ´

y

Ha
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wherem “
g ` k

2
and l “

g ´ k

2
. Using the boundary conditions in the Equation

(2.2), it can be easily observed that the solutions are of the following form

upyq “ ´
f ` d

2
pαpHaq sinhpHaq ` coshpHaqq `

1

2
pf expp´pHaqyq ` d expppHaqyqq

bpyq “ ´
f ´ d

2
pcoshpHaq ` cpHaq sinhpHaqq `

1

2
pf exppp´Haqyq ´ d expppHaqyqq ´

y

Ha
.

For simplicity, we can assume f “ d “ A by fixing to the same constant A.

Thus, we get

upyq “ ´A pαpHaq sinhpHaq ` coshpHaqq ` A coshppHaqyq

bpyq “ ´A sinhppHaqyq ´
y

Ha
.

Now, this form of the solutions satisfy the boundary condition for u in the

Equation (2.2) automatically and from the variable conductivity condition for b

the fixed constant A is obtained. Let us define A “ ũ. Thus, the exact solution

of the problem (2.1) with the general boundary conditions (2.2) is obtained as

upyq “ ´ũpαpHaq sinhpHaq ` coshpHaqq ` ũ coshppHaqyq (2.7)

bpyq “ ´ũ sinhppHaqyq ´
y

Ha
(2.8)

where

ũ “ ´
1

Ha

c` 1

cpHaq coshpHaq ` sinhpHaq
. (2.9)

This exact solution given by (2.7)-(2.9) for the slip velocity and variable con-

ductivity conditions on the plates is reduced to the exact solution given in [10]

for the no-slip and insulated wall conditions when α “ 0 and c “ 0 are taken.
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2.3 FDM Solution of 1D MHD Flow Equations with Different types

of Boundary Conditions

‚ Case 1.

For this case, we choose the slip length α “ 0 and the conductivity parameter

c “ 0 at the boundary points y “ ˘1. So, the problem becomes

d2u

dy2
`Ha

db

dy
“ ´1

in ´ 1 ă y ă 1

d2b

dy2
`Ha

du

dy
“ 0

with the no-slip and insulated end conditions

u “ 0, b “ 0 at y “ ˘1. (2.10)

The exact solution is given in Equations (2.3)-(2.4) for c “ 0. Using central

finite difference for the first and the second order derivatives of u and b, we get

uj`1 ´ 2uj ` uj´1
h2

`Ha
bj`1 ´ bj´1

2h
“ ´1

j “ 2, . . . , N

bj`1 ´ 2bj ` bj´1
h2

`Ha
uj`1 ´ uj´1

2h
“ 0

where h “ 1´p´1q
N

“ 2
N

is the step size and N is the number of subintervals.

Multiplying both sides of the above equations by h2 gives

uj`1 ´ 2uj ` uj´1 `
Ha

2
h pbj`1 ´ bj´1q “ ´h

2

j “ 2, . . . , N

bj`1 ´ 2bj ` bj´1 `
Ha

2
h puj`1 ´ uj´1q “ 0.

From the boundary conditions, we have

u1 “ uN`1 “ 0 and b1 “ bN`1 “ 0.

Thus, we have 2N ´ 2 unknowns u2, b2, u3, b3, . . . , uN , bN in 2N ´ 2 equations.

Then, we write these equations in matrix-vector system Ax “ z. Here, the
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coefficient matrix A with the size p2N ´ 2q ˆ p2N ´ 2q contains the step size h

and Ha in its entries as shown bellow

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´2 0 1 hHa
2

0 0 0 0 ¨ ¨ ¨ 0

0 ´2 hHa
2

1 0 0 0 0 ¨ ¨ ¨ 0

1 ´hHa
2

´2 0 1 hHa
2

0 0 ¨ ¨ ¨ 0

´hHa
2

1 0 ´2 hHa
2

1 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

0
...

...
...

...
...

...
...

... 0

0 0 ¨ ¨ ¨ 0 1 ´hHa
2

´2 0 1 hHa
2

0 0 ¨ ¨ ¨ 0 ´hHa
2

1 0 ´2 hHa
2

1

0 0 ¨ ¨ ¨ 0 0 0 1 ´hHa
2

´2 0

0 0 ¨ ¨ ¨ 0 0 0 ´hHa
2

1 0 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Also, the unknown vector x includes the velocity and the induced magnetic field

components

x “
”

u2 b2 u3 b3 ¨ ¨ ¨ uN bN

ıT

,

and the known vector z is of size 2N ´ 2 given as

z “
”

´h2 0 ´h2 0 ¨ ¨ ¨ ´h2 0
ıT

.

Then, we deduce the solution x “ A´1z by using Gaussian elimination from

Matlab which does not compute the inverse directly. The profiles of the velocity

and the induced magnetic field are drawn comparing with the exact solution.
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‚ Case 2.

For this case, we choose no-slip and variably conducting end points at y “ ˘1.

So, the problem becomes

d2u

dy2
`Ha

db

dy
“ ´1

in ´ 1 ă y ă 1

d2b

dy2
`Ha

du

dy
“ 0

and

u “ 0, ˘
db

dy
`

1

c
b “ 0 at y “ ˘1. (2.11)

The exact solution is given by Equations (2.3)-(2.4) for varying values of c.

From the boundary conditions for u, we have

u1 “ uN`1 “ 0.

But, b1 and bN`1 are not known explicitly. For the boundary conditions for b, we

use forward finite difference at the point y “ ´1 and backward finite difference

at the point y “ 1 for finding b1 and bN`1 in terms of b2 and bN , respectively.

‚ At y “ ´1:

´

ˆ

b2 ´ b1
h

˙

`
1

c
b1 “ 0 ñ b1 “

c

c` h
b2.

‚ At y “ 1:

ˆ

bN`1 ´ bN
h

˙

`
1

c
bN`1 “ 0 ñ bN`1 “

c

c` h
bN .

Thus, we have again 2N ´ 2 unknowns u2, b2, u3, b3, . . . , uN , bN in 2N ´ 2 equa-

tions. Then, we write these equations in a matrix-vector system Ax “ z. Here,

the coefficient matrix A with the size p2N ´ 2q ˆ p2N ´ 2q differs from the

coefficient matrix of Case 1 only in the first two and the last two rows as
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A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´2 ´
pHaqch
2pc`hq

1 hHa
2

0 0 0 0 ¨ ¨ ¨ 0

0 c
c`h

´ 2 hHa
2

1 0 0 0 0 ¨ ¨ ¨ 0

1 ´hHa
2

´2 0 1 hHa
2

0 0 ¨ ¨ ¨ 0

´hHa
2

1 0 ´2 hHa
2

1 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

0
...

...
...

...
...

...
...

... 0

0 0 ¨ ¨ ¨ 0 1 ´hHa
2

´2 0 1 hHa
2

0 0 ¨ ¨ ¨ 0 ´hHa
2

1 0 ´2 hHa
2

1

0 0 ¨ ¨ ¨ 0 0 0 1 ´hHa
2

´2 ´
pHaqch
2pc`hq

0 0 ¨ ¨ ¨ 0 0 0 ´hHa
2

1 0 c
c`h

´ 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The unknown vector x of size 2N ´ 2 includes the velocity and the induced

magnetic field components

x “
”

u2 b2 u3 b3 ¨ ¨ ¨ uN bN

ıT

,

and the vector z is of size 2N ´ 2 given as

z “
”

´h2 0 ´h2 0 ¨ ¨ ¨ ´h2 0
ıT

.

Then, we obtain the solution x “ A´1z and the profiles of the velocity and the

induced magnetic field are drawn for several values of conductivity parameter c.

They are compared with the exact solution behaviors given in [10] and obtained

by us in Equations (2.3)-(2.4).
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‚ Case 3.

For this case, we assume the velocity slip at the insulated boundary points

y “ ˘1. So, the problem becomes

d2u

dy2
`Ha

db

dy
“ ´1

in ´ 1 ă y ă 1

d2b

dy2
`Ha

du

dy
“ 0

and with the slip condition (α is the slip length)

˘
du

dy
α ` u “ 0, b “ 0 at y “ ˘1. (2.12)

From the boundary conditions for b (insulated end points), we have

b1 “ bN`1 “ 0.

But u1 and uN`1 are not known explicitly. For obtaining the boundary condi-

tions for u, we use forward finite difference at the point y “ ´1 and the backward

finite difference at the point y “ 1 and find u1 and uN`1 in terms of u2 and uN ,

respectively.

‚ At y “ ´1:

´

´u2 ´ u1
h

¯

α ` u1 “ 0 ñ u1 “
α

α ` h
u2.

‚ At y “ 1:

´uN`1 ´ uN
h

¯

α ` uN`1 “ 0 ñ uN`1 “
α

α ` h
uN .

Thus, we have 2N ´ 2 unknowns u2, b2, u3, b3, . . . , uN , bN in 2N ´ 2 equations

similar to the previous cases. The coefficient matrix A of the system Ax “ z is

altered in its first two and last two rows corresponding to the slip and insulated

end points as
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A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

α
α`h

´ 2 0 1 hHa
2

0 0 0 0 ¨ ¨ ¨ 0

´
pHaqαh
2pα`hq

´2 hHa
2

1 0 0 0 0 ¨ ¨ ¨ 0

1 ´hHa
2

´2 0 1 hHa
2

0 0 ¨ ¨ ¨ 0

´hHa
2

1 0 ´2 hHa
2

1 0 0 ¨ ¨ ¨ 0
...

...
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

...
...

0
...

...
...

...
...

...
...

... 0

0 0 ¨ ¨ ¨ 0 1 ´hHa
2

´2 0 1 hHa
2

0 0 ¨ ¨ ¨ 0 ´hHa
2

1 0 ´2 hHa
2

1

0 0 ¨ ¨ ¨ 0 0 0 1 ´hHa
2

α
α`h

´ 2 0

0 0 ¨ ¨ ¨ 0 0 0 ´hHa
2

1 ´
pHaqαh
2pα`hq

´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The 2N ´ 2 sized unknown vector x includes the same velocity and the induced

magnetic field entries as in the previous cases since u1 and uN`1 are expressed

in terms of u2 and uN

x “
”

u2 b2 u3 b3 ¨ ¨ ¨ uN bN

ıT

,

and the known vector z is of size 2N ´ 2 given as before

z “
”

´h2 0 ´h2 0 ¨ ¨ ¨ ´h2 0
ıT

.

Then, we deduce the solution x “ A´1z and the profiles of the velocity and the

induced magnetic field are obtained. The FDM solution is in very well agreement

with the exact solution (2.7)-(2.9) for c “ 0 (insulated walls). For increasing

values of α one needs to take more points in the discretization of the interval

r´1, 1s. The slip velocity behavior is shown and discussed in the u-profiles for

increasing values of α.
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‚ Case 4.

Finally, we choose both the slip condition ˘
du

dy
α ` u “ 0 and the varying

conductivity condition ˘
db

dy
`

1

c
b “ 0 at the boundary points y “ ˘1. So, the

problem becomes

d2u

dy2
`Ha

db

dy
“ ´1

in ´ 1 ă y ă 1

d2b

dy2
`Ha

du

dy
“ 0

and

˘
du

dy
α ` u “ 0, ˘

db

dy
`

1

c
b “ 0 at y “ ˘1 (2.13)

with α the slip length and c the conductivity parameter.

From the boundary conditions for u and b, we use forward finite difference for

both
Bb

By
and

Bu

By
at the point y “ ´1 and the backward finite difference at the

point y “ 1 in (2.13) to find u1, uN`1 and b1, bN`1, respectively.

‚ At y “ ´1:

´

´u2 ´ u1
h

¯

α ` u1 “ 0 ñ u1 “
α

α ` h
u2.

´

ˆ

b2 ´ b1
h

˙

`
1

c
b1 “ 0 ñ b1 “

c

c` h
b2.

‚ At y “ 1:

´uN`1 ´ uN
h

¯

α ` uN`1 “ 0 ñ uN`1 “
α

α ` h
uN .

ˆ

bN`1 ´ bN
h

˙

`
1

c
bN`1 “ 0 ñ bN`1 “

c

c` h
bN .

The same 2N ´ 2 sized matrix-vector system is obtained with the unknowns

u2, b2, u3, b3, . . . , uN , bN . Now, the coefficient matrix with its altered rows ac-

cording to the boundary conditions becomes
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A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

α
α`h ´ 2 ´

pHaqch
2pc`hq 1 hHa

2 0 0 0 0 ¨ ¨ ¨ 0

´
pHaqαh
2pα`hq

c
c`h ´ 2 hHa

2 1 0 0 0 0 ¨ ¨ ¨ 0

1 ´hHa
2 ´2 0 1 hHa

2 0 0 ¨ ¨ ¨ 0

´hHa
2 1 0 ´2 hHa

2 1 0 0 ¨ ¨ ¨ 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0
...

...
...

...
...

...
...

... 0

0 0 ¨ ¨ ¨ 0 1 ´hHa
2 ´2 0 1 hHa

2

0 0 ¨ ¨ ¨ 0 ´hHa
2 1 0 ´2 hHa

2 1

0 0 ¨ ¨ ¨ 0 0 0 1 ´hHa
2

α
α`h ´ 2 pHaqch

2pc`hq

0 0 ¨ ¨ ¨ 0 0 0 ´hHa
2 1 pHaqαh

2pα`hq
c

c`h ´ 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Again, the unknown vector x which includes the velocity and the induced mag-

netic field components is of 2N ´ 2 size as

x “
”

u2 b2 u3 b3 ¨ ¨ ¨ uN bN

ıT

,

and the known vector z is also of size 2N ´ 2 given as

z “
”

´h2 0 ´h2 0 ¨ ¨ ¨ ´h2 0
ıT

.

The solution x “ A´1z is obtained without forming the inverse of A and the

profiles of the velocity and the induced magnetic field are drawn. The results

can be compared with the derived exact solution given in Equations (2.7) and

(2.9).
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2.4 Numerical Results and Discussion

So far, we have obtained the numerical values of the velocity u and the induced

magnetic field b by using FDM. For validating these numerical results with the

corresponding exact values, we use the so-called mesh validation (Figure 2.2)

for Ha “ 100 when the boundary conditions are taken as no-slip velocity and

insulated walls (Case 1). Here, N is the number of subintervals in the interval

´1 ď y ď 1 and it is easily seen that when N ě 128 the numerical and exact

values are getting close to each other, and they coincide when N increases in

which the well agreement is reached for N ě 256. Thus, we have observed that

the larger N gives numerical result with very good accuracy.

Figure 2.2: Case 1: Grid dependence on comparison with the exact solution,
Ha “ 100, α “ 0, c “ 0.
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Figure 2.3: Case 1: Comparison with the exact solution, Ha “ 50, N “ 256,
α “ 0, c “ 0.

Figure 2.4: Case 2: Comparison with the exact solution, Ha “ 50, N “ 4500,
α “ 0, c “ 2.
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Figure 2.5: Case 3: Comparison with the exact solution, Ha “ 50, N “ 7500,
α “ 0.1, c “ 0.

Figure 2.6: Case 4: Comparison with the exact solution, Ha “ 50, N “ 4500,
α “ 0.1, c “ 2.

In Figure 2.3 to Figure 2.6 we show the agreement of both the velocity and the

induced magnetic field with the exact solutions. For variably conducting and

slipping boundaries one needs to take quite large number of points in r´1, 1s

as can be seen in the Figures 2.4 to 2.6 for the cases 2, 3 and 4, respectively.

It is noticed that the slipping velocity condition requires the larger N than the

variably conducting boundary condition. However, when both the slip and the

conductivity are effective at the end points, the number of discretization points

reduces since the two effects balance each other (Case 4).
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‚ Case 1. No-slip and insulated pates; α “ 0, c “ 0.

Figure 2.7: Case 1: Velocity and induced magnetic field, α “ 0, c “ 0, N “ 256.

It can be observed from the Figure 2.7 that as Ha increases (increasing the

strength of the external magnetic field), the velocity magnitude decreases. (The

well-known flattening tendency of MHD flow). The same is also true for the

induced magnetic field. As Ha increases, boundary layers are seen near the end

points (near the plates) for both the velocity and the induced magnetic field.

Velocity is symmetric but the induced magnetic field is anti-symmetric with

respect to y “ 0 line. For the no-slip (α “ 0) and insulated (c=0) boundary

(end points) the agreement of FDM solution with the exact solution can be

obtained with an accuracy ε “ 10´3 using N “ 256 subintervals in r´1, 1s even

for large value of Ha as 100.

The agreement with the exact solution is defined with a tolerance ε in

max
1ďiďn

|uiFD ´ u
i
exact| ă ε and max

1ďiďn
|biFD ´ b

i
exact| ă ε.
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‚ Case 2: No-slip and variably conducting plates; α “ 0, c “ 0´ 10.

(a) Ha=5 (b) Ha=5

(c) Ha=10 (d) Ha=10

(e) Ha=50 (f) Ha “ 50

(g) Ha “ 80 (h) Ha “ 80

Figure 2.8: Case 2: Velocity and induced magnetic field, α “ 0, (a),(b) N “ 450,
(c),(d) N “ 4500, (e),(f),(g),(h) N “ 7500.
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One can notice from the Figure 2.8 that when the boundary points change from

being insulated to perfectly conducting, one needs to take more discretized points

in the interval [-1,1] to achieve the same accuracy ε “ 10´3. As Ha increases,

the velocity magnitude decreases as in the Case 1, and the flow flattens in the

channel core. With increasing Hartmann number flow exhibits thin boundary

layers near the Hartmann walls (plates). The induced magnetic field b reduces to

zero when c “ 0 at the end points trying to form boundary layers near the plates

as Ha increases. But, when c increases, the curve of b becomes perpendicular

to the end points (to the plates) y “ ˘1. This orthogonality behavior of b is

weakened with a further increase of Ha.

‚ Case 3: Insulated but slipping plates; c “ 0, α “ 0´ 0.2.

(a) (b)

Figure 2.9: Case 3: Velocity and induced magnetic field, c “ 0, (a) Ha=5,
N “ 750 (b) α “ 0.1, N “ 7500.
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Figure 2.9 shows that as α increases, the velocity magnitude increases as noticed

from Figure 2.9 (a). α increase has not much of an effect on the induced magnetic

field b. Slipping velocity slightly retards the boundary layer formation as Ha

increases which can be seen comparing Figure 2.7 and Figure 2.9 (b). Again

for the slipping velocity case at the boundary points we need more discretized

points for achieving the accuracy ε “ 10´3.

‚ Case 4: Slipping and variably conducting plates; c “ 1, 10 ; α “ 0.05, 0.1.

(a) c=1 (b) c=10

Figure 2.10: Case 4: Velocity and induced magnetic field, N “ 4500, α “ 0.1.
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(a) α “ 0.05 (b) α “ 0.1

Figure 2.11: Case 4: Velocity and induced magnetic field, c “ 2, N “ 4500.

Figure 2.10 and 2.11 show that as the slip length α is kept fixed and the conduc-

tivity parameter c increases, the velocity magnitude drops for all values of Ha.

Slip length α does not effect the behavior of induced magnetic field b for a fixed

conductivity parameter c. As c increases for a fixed α, b becomes perpendicular

to the plates (nearly perfectly conducting plates). As the slip length α is taken

fixed and the conductivity parameter c increases, the induced magnetic field

magnitude increases for small values of Ha whereas this magnetic field increase

is not seen for larger values of Ha. As the conductivity parameter c is taken

fixed and the slip length α increases, the velocity magnitude increases for small

values of Ha whereas this magnitude increase is weakened for larger values of

Hartmann number.
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2.5 Volumetric flow rate

Knowing the velocity distribution across the channel, the volumetric flow rate

can be calculated by an integration. The dimensionless flow rate computed from

the exact solution is given by [10] for the Case 1 and the Case 2 as

Q1,2 “

ż 1

´1

upyqdy “ 2û

„

1´
1

Ha
tanhpHaq



(2.14)

where û is defined in the Equation (2.4). The volumetric flow rates for the Case

3 and the Case 4 are also derived by using the exact solutions (2.7)-(2.9). Thus,

the volumetric flow rate for the most general form of the exact solution is given

as

Q3,4 “

ż 1

´1

upyqdy “ 2ũ

„

sinhpHaq

Ha
´ αHa sinhpHaq ´ coshpHaq



(2.15)

which covers all the cases, Case 1 to Case 4.

Composite Trapezoidal rule is used to find the volumetric flow rate Q from FDM

results. So, we get the approximate value of the volumetric flow rate denoted

by Qapp as

Qapp “

ż 1

´1

upyqdy “ h
N
ÿ

j“2

uj `
h

2
pu1 ` uN`1q (2.16)

where h “ 2
N

and N is the number of subintervals. Then, the results are

tabulated and compared with the exact values of Q.
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Table 2.1: Approximate and exact volumetric flow rates for Case 1 and Case 2
with N “ 4500

Case 1 (α “ 0, c “ 0) Case 2 (α “ 0, c “ 2)
Ha Qapp Q1 Qapp Q2

2 0.5373 0.5373 0.3132 0.313
5 0.32 0.32 0.0874 0.0873
10 0.18 0.18 0.0258 0.0257
20 0.095 0.095 0.007 0.007
50 0.0392 0.0392 0.0012 0.0012

Table 2.2: Approximate and exact volumetric flow rates for Case 3 and Case 4
with N “ 7500

Case 3 (α “ 0.1, c “ 0) Case 4 (α “ 0.1, c “ 2)
Ha Qapp Q3 Qapp Q4

2 0.7357 0.7373 0.4297 0.4296
5 0.5162 0.52 0.1419 0.1418
10 0.3725 0.38 0.0543 0.0543
20 0.2941 0.295 0.0216 0.0216
50 0.2379 0.2392 0.0071 0.0071

Table 2.3: Approximate volumetric flow rates for Case 3 and Case 4 with N “

7500

Ha “ 5 Ha “ 10

Case 3 (c “ 0) Case 4 (c “ 2) Case 3 (c “ 0) Case 4 (c “ 2)
α Qapp Qapp Qapp Qapp

0 0.32 0.0874 0.18 0.0258
0.05 0.4199 0.1146 0.2798 0.0401
0.1 0.5162 0.1419 0.3725 0.0543
0.2 0.7196 0.1964 0.5791 0.0829
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Table 2.4: Approximate volumetric flow rates for Case 2 and Case 4 with N “

7500

Ha “ 5

Case 2 (α “ 0) Case 4 (α “ 0.1)
c Qapp Qapp

0 0.32 0.5162
0.5 0.1391 0.2229
2 0.0874 0.1419
5 0.0739 0.1201
10 0.0691 0.1122

One can see from Table 2.1 to Table 2.4 that, the volumetric flow rates obtained

as the slip length α and the conductivity parameter c are kept fixed and Ha

increases, the volumetric flow rate decreases for each Case since velocity mag-

nitude drops. The well agreement of the FDM solution values with the exact

solution values is seen for the Cases 1 and 2. An increase in the wall conductiv-

ity decreases the volumetric flow rate. An increase in the slip length naturally

increases the volumetric flow rate since it increases the velocity magnitude.

As a conclusion we see that as Ha increases, both the velocity and the in-

duced magnetic field magnitudes decrease. As Ha increases, boundary layers are

formed near the plates (Hartmann layers). Conductivity parameter 0 ď c ă 8

gives induced magnetic field profiles between the insulated and perfectly con-

ducting plates. The increase in the slip length increases the velocity magnitude

which is weakened for large values of Ha. For a fixed slip length α, the increase

in the conductivity parameter c causes a drop in the flow but increases induced

current magnitude which is weakened for large Ha. The number of subintervals

in the FDM discretization needs to be increased for increasing values of the slip

length and the conductivity parameter.
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CHAPTER 3

2D MHD CHANNEL FLOW (MHD FLOW IN A

RECTANGULAR DUCT)

In this chapter, the MHD flow of an electrically conducting fluid is considered in

a long channel (pipe) of rectangular cross-section along with the z-axis. The fluid

is driven by a pressure gradient along the z-axis. The flow is steady, laminar,

fully-developed and is influenced by an external magnetic field applied perpen-

dicular to the channel axis. So, the velocity field ~V “ p0, 0, V q and the magnetic

field ~B “ p0, B0, Bq have only channel-axis components V and B depending only

on the plane coordinates x and y on the cross-section of the channel which is a

rectangular duct as shown in the following figure.

y

x

z

B0

flow

Figure 3.1: MHD Rectangular duct flow

The governing MHD equations derived in the first chapter and given by the

Equations (1.21) with the boundary conditions (1.24) are solved by using the
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finite difference method (FDM). Several type of boundary conditions such as slip

or no-slip velocity V px, yq and conducting, insulated or partly conducting/partly

insulated side walls for Bpx, yq are considered. The numerical solutions for each

case of boundary conditions are simulated in terms of equivelocity contours and

current lines. The effects of the slip and the wall conductivities on the behavior

of the velocity V and the induced magnetic field B are discussed. Then, the

numerical results obtained from the FDM discretized equations and the exact

solution values [4] are shown on the same figure for no-slip and insulated walls to

see the coincidence with the exact results. Also, the accuracy 10´2 is obtained

for both the velocity V and the induced magnetic field B when compared with

the available exact solution.

3.1 Problem Formulation

The steady, laminar, fully-developed flow of an incompressible, viscous, electri-

cally conducting fluid is considered in a long channel of rectangular cross-section

(duct). The pipe axis is along the z-axis and there is an external magnetic field

applied perpendicular to the y-axis. The governing equations of 2D MHD flow

in a rectangular duct are defined by

∇2V `Ha
BB

By
“ ´1

in Ω

∇2B `Ha
BV

By
“ 0

(3.1)

with the new notations V and B instead of the notations u and b given in the

Equation (1.21) for the velocity and the induced magnetic field, respectively.

Here, Ha is the Hartmann number and Ω “ t´1 ď x ď 1,´1 ď y ď 1u with the

most general type of boundary conditions

V ˘ α
BV

By
“ 0, B ˘ c1

BB

By
“ 0 when y “ ˘1

V ˘ α
BV

Bx
“ 0, B ˘ c2

BB

Bx
“ 0 when x “ ˘1.

(3.2)
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Here, the constants α, c1 and c2 are used to denote the slipping length of the

velocity and the conductivity parameters for the Hartmann walls (perpendicular

to the applied magnetic field) and the side walls (parallel to the applied magnetic

field), respectively. Thus, ck Ñ 0 corresponds to electrically insulating walls

and ck Ñ 8 to electrically perfectly conducting walls for k “ 1, 2. Also, α “ 0

indicates that we have no-slip duct walls.

3.2 FDM Solution of 2D MHD Flow Equations with Different types

of Wall Conductivities

‚ Case 1.

For the first case, we choose the conductivity parameter c1 “ c2 “ 0 and the

slipping length α “ 0 on BΩ. So, the problem (3.1) with the boundary conditions

V “ 0 and B “ 0 is going to be solved for this case. Physically, it shows the

no-slip and insulated walls.

Firstly, the substitutions Φ “ V ` B and Ψ “ V ´ B are used to make the

given equations in (3.1) decoupled. Adding and subtracting these equations, we

obtain

∇2
pV `Bq `Ha

BpV `Bq

By
“ ´1

∇2
pV ´Bq ´Ha

BpV ´Bq

By
“ ´1

which results in two decoupled convection-diffusion equations with the new vari-

ables

∇2Φ`Ha
BΦ

By
“ ´1

in Ω

∇2Ψ´Ha
BΨ

By
“ ´1

(3.3)

and the boundary conditions become

Φ “ 0 and Ψ “ 0 on BΩ. (3.4)
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Now, the Equations in (3.3) are going to be solved by using central finite differ-

ence for the Laplacian operator ∇2 and forward finite difference for
B

By
to find Φ

and Ψ, numerically. Then, the original variables (the velocity and the induced

magnetic field)

V “
Φ`Ψ

2
and B “

Φ´Ψ

2
(3.5)

can be obtained numerically. Thus, by taking equal mesh sizes in both x- and

y-directions as ∆x “ ∆y “ h, we get
Φi`1,j ´ 2Φi,j ` Φi´1,j

h2
`

Φi,j`1 ´ 2Φi,j ` Φi,j´1

h2
`Ha

Φi,j`1 ´ Φi,j

h
“´ 1

Ψi`1,j ´ 2Ψi,j `Ψi´1,j

h2
`

Ψi,j`1 ´ 2Ψi,j `Ψi,j´1

h2
´Ha

Ψi,j`1 ´Ψi,j

h
“´ 1

where i, j “ 2, . . . , N . After multiplying both sides of the above equations by

h2 and rearranging the terms, we obtain the discretized systems

Φi`1,j ´ p4` hpHaqqΦi,j ` Φi´1,j ` p1` hpHaqqΦi,j`1 ` Φi,j´1 “ ´h
2

Ψi`1,j ´ p4´ hpHaqqΨi,j `Ψi´1,j ` p1´ hpHaqqΨi,j`1 `Ψi,j´1 “ ´h
2

(3.6)

where i, j “ 2, . . . , N and N denotes the number of intervals for both of the

sides in x- and y-directions. By the scheme obtained in (3.6), one can see that

the number of resulting linear equations depends on N , and namely we have the

coefficient matrices of size M ˆM for both Φi,j and Ψi,j where M “ pN ´ 1q2.

Let C and D be these coefficient matrices for the unknown vectors Φ and Ψ

which include the unknowns Φi,j and Ψi,j, respectively.

Then, for a general N we have the following matrix-vector systems for the un-

knowns Φi,j and Ψi,j when the system (3.6) is used.

‚ For Φi,j:

We have the system

CΦ “ v

where Φ is the unknown vector of size M ˆ 1 given by

Φ “
”

Φ2,2 Φ2,3 ¨ ¨ ¨ Φ2,N ¨ ¨ ¨ ΦN,2 ΦN,3 ¨ ¨ ¨ ΦN,N

ıT

.
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The vector v of size M ˆ 1 is

v “
”

´h2 ´h2 ´h2 ¨ ¨ ¨ ´h2 ´h2
ıT

,

and the coefficient matrix C of size M ˆM is given by

C “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

A IN´1 0 0 0 0 ¨ ¨ ¨ 0

IN´1 A IN´1 0 0 0 ¨ ¨ ¨ 0

0 IN´1 A IN´1 0 0 ¨ ¨ ¨ 0

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...
...

...
...

...
... . . . . . . . . . ...

0 ¨ ¨ ¨ 0 0 0 IN´1 A IN´1

0 ¨ ¨ ¨ 0 0 0 0 IN´1 A

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where the matrix A of size pN ´ 1q ˆ pN ´ 1q for the scheme obtained in the

Equation (3.6) is given as
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A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4´ hHa 1` hHa 0 0 0 ¨ ¨ ¨ 0

1 ´4´ hHa 1` hHa 0 0 ¨ ¨ ¨ 0

0 1 ´4´ hHa 1` hHa 0 ¨ ¨ ¨ 0

...
...

...
...

...
...

...

...
...

...
...

...
...

...

0
...

...
...

...
... 0

0 ¨ ¨ ¨ 0 0 1 ´4´ hHa 1` hHa

0 ¨ ¨ ¨ 0 0 0 1 ´4´ hHa

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

when the forward finite difference is used for the first order derivatives.

‚ For Ψi,j:

We have the system

DΨ “ v

where Ψ is the unknown vector of size M ˆ 1 given by

Ψ “

”

Ψ2,2 Ψ2,3 ¨ ¨ ¨ Ψ2,N ¨ ¨ ¨ ΨN,2 ΨN,3 ¨ ¨ ¨ ΨN,N

ıT

.

The vector v of size M ˆ 1 is

v “
”

´h2 ´h2 ´h2 ¨ ¨ ¨ ´h2 ´h2
ıT

and the coefficient matrix D of size M ˆM is given by
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D “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Ã IN´1 0 0 0 0 ¨ ¨ ¨ 0

IN´1 Ã IN´1 0 0 0 ¨ ¨ ¨ 0

0 IN´1 Ã IN´1 0 0 ¨ ¨ ¨ 0

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...
...

0
...

...
... . . . . . . . . . 0

0 ¨ ¨ ¨ 0 0
... IN´1 Ã IN´1

0 ¨ ¨ ¨ 0 0 0 0 IN´1 Ã

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where the matrix Ã of size pN ´ 1q ˆ pN ´ 1q for the scheme obtained in the

Equation (3.6) is as follows

Ã “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4` hHa 1´ hHa 0 0 0 ¨ ¨ ¨ 0

1 ´4` hHa 1´ hHa 0 0 ¨ ¨ ¨ 0

0 1 ´4` hHa 1´ hHa 0 ¨ ¨ ¨ 0

...
...

...
...

...
...

...

...
...

...
...

...
...

...

0
...

...
...

...
... 0

0 ¨ ¨ ¨ 0 0 1 ´4` hHa 1´ hHa

0 ¨ ¨ ¨ 0 0 0 1 ´4` hHa

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

41



One can also use the central finite differences for both ∇2 and
B

By
to find Φ and

Ψ, numerically. Then the discretized equations become

Φi`1,j ´ 4Φi,j ` Φi´1,j ` p1`
h

2
HaqΦi,j`1 ` p1´

h

2
HaqΦi,j´1 “ ´h

2

Ψi`1,j ´ 4Ψi,j `Ψi´1,j ` p1´
h

2
HaqΨi,j`1 ` p1`

h

2
HaqΨi,j´1 “ ´h

2

(3.7)

where i, j “ 2, . . . , N . The resulting CΦ “ v and DΨ “ v systems change in

the A and Ã matrices only as

A “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4 1` hHa
2

0 0 0 0 ¨ ¨ ¨ 0

1´ hHa
2

´4 1` hHa
2

0 0 0 ¨ ¨ ¨ 0

0 1´ hHa
2

´4 1` hHa
2

0 0 ¨ ¨ ¨ 0

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...
...

0
...

...
... . . . . . . . . . 0

0 ¨ ¨ ¨ 0 0 0 1´ hHa
2

´4 1` hHa
2

0 ¨ ¨ ¨ 0 0 0 0 1 ´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and
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Ã “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4 1´ hHa
2

0 0 0 0 ¨ ¨ ¨ 0

1` hHa
2

´4 1´ hHa
2

0 0 0 ¨ ¨ ¨ 0

0 1` hHa
2

´4 1´ hHa
2

0 0 ¨ ¨ ¨ 0

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...
...

0
...

...
... . . . . . . . . . 0

0 ¨ ¨ ¨ 0 0 0 1` hHa
2

´4 1´ hHa
2

0 ¨ ¨ ¨ 0 0 0 0 1` hHa
2

´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The discretized system of equations CΦ “ v and DΨ “ v resulting from both

systems (3.6) and (3.7) are solved for Φ and Ψ vectors and then the velocity V

and the induced magnetic field B are obtained through the relation (3.5).

For the other cases of boundary conditions, we are going to solve the Equations

(3.1) as a whole with the most general boundary conditions (3.2). Firstly, dis-

cretizing the MHD equations as a whole by central finite differences for ∇2 and
B

By
we obtain

Vi`1,j ´ 2Vi,j ` Vi´1,j
h2

`
Vi,j`1 ´ 2Vi,j ` Vi,j´1

h2
`Ha

Bi,j`1 ´Bi,j´1

2h
“´ 1

Bi`1,j ´ 2Bi,j `Bi´1,j

h2
`
Bi,j`1 ´ 2Bi,j `Bi,j´1

h2
´Ha

Vi,j`1 ´ Vi,j´1
2h

“0

where N is the number of nodes taken on each side, h “
2

N
is the step size.

Multiplying each side of the above equations by h2 and rearranging the terms
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give

Vi`1,j ´ 4Vi,j ` Vi´1,j ` Vi,j`1 ` Vi,j´1 `
hpHaq

2
pBi,j`1 ´Bi,j´1q “ ´h

2

Bi`1,j ´ 4Bi,j `Bi´1,j `Bi,j`1 `Bi,j´1 `
hpHaq

2
pVi,j`1 ´ Vi,j´1q “ 0

(3.8)

where i, j “ 2, . . . , N . Also, the domain of the problem with these boundary

conditions is illustrated as follows.

x

y

0

Ω

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

V + α∂V
∂y

= 0

V + α∂V
∂x

= 0V − α∂V
∂x

= 0

V − α∂V
∂y

= 0

B + c1
∂B
∂y

= 0

B + c2
∂B
∂x

= 0B − c2
∂B
∂x

= 0

B − c1
∂B
∂y

= 0

Figure 3.2: The domain (duct) and the boundary conditions

The forward finite difference is used on the sides x “ ´1 and y “ ´1 whereas

the backward finite difference is used on the sides x “ 1 and y “ 1 in order to

define boundary values in terms of inner mesh point values. The discretization

of the square duct is shown as in the following figure.

y = 1

y = −1

x = 1x = −1

i=1
j=1

i=N+1

j=N+1

Figure 3.3: The discretization of the domain
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The approximation of mixed boundary conditions are carried as follows:

When x “ ´1, i “ 1 and j “ 1, . . . , N ` 1, we use forward FDM so that

V1,j ´ α
V2,j ´ V1,j

h
“ 0 ñ V1,j “

α

α ` h
V2,j (3.9)

B1,j ´ c2
B2,j ´B1,j

h
“ 0 ñ B1,j “

c2
c2 ` h

B2,j (3.10)

When x “ 1, i “ N ` 1 and j “ 1, . . . , N ` 1, we use backward FDM as

VN`1,j ` α
VN`1,j ´ VN,j

h
“ 0 ñ VN`1,j “

α

α ` h
VN,j (3.11)

BN`1,j ´ c2
BN`1,j ´BN,j

h
“ 0 ñ BN`1,j “

c2
c2 ` h

BN,j (3.12)

When y “ 1, j “ N ` 1 and i “ 1, . . . , N ` 1, we use backward FDM as

Vi,N`1 ` α
Vi,N`1 ´ Vi,N

h
“ 0 ñ Vi,N`1 “

α

α ` h
Vi,N (3.13)

Bi,N`1 ´ c1
Bi,N`1 ´Bi,N

h
“ 0 ñ Bi,N`1 “

c1
c1 ` h

Bi,N (3.14)

When y “ ´1, j “ 1 and i “ 1, . . . , N ` 1, we use forward FDM as

Vi,1 ´ α
Vi,2 ´ Vi,1

h
“ 0 ñ Vi,1 “

α

α ` h
Vi,2 (3.15)

Bi,1 ´ c1
Bi,2 ´Bi,1

h
“ 0 ñ Bi,1 “

c1
c1 ` h

Bi,2. (3.16)
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Then, inserting the boundary conditions given in the Equations from (3.9) to

(3.16) into the scheme (3.8) we obtain M unknowns in M equations where

M “ 2pN ´ 1q2 for a general N . Then, these equations are written in a matrix-

vector system with the coefficient matrix Q of size M ˆM . Thus, we have

Qx “ w (3.17)

where x is the unknown vector of size M ˆ 1 given by

x “
”

V2,2 B2,2 ¨ ¨ ¨V2,N B2,N ¨ ¨ ¨ VN,2 BN,2 ¨ ¨ ¨VN,N BN,N

ıT

.

The vector w of size M ˆ 1 is

w “
”

´h2 0 ´h2 0 ¨ ¨ ¨ ´h2 0 ´h2 0
ıT

.

The coefficient matrix Q of sizeMˆM is a block diagonal matrix which includes

two different matrices Q1 and Q2 of sizes 2pN ´ 1q ˆ 2pN ´ 1q on the diagonal

block as shown below

Q “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Q1 I2pN´1q 0 0 0 0 ¨ ¨ ¨ 0

I2pN´1q Q2 I2pN´1q 0 0 0 ¨ ¨ ¨ 0

0 I2pN´1q Q2 I2pN´1q 0 0 ¨ ¨ ¨ 0

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...
...

0
...

...
... . . . . . . . . . 0

0 ¨ ¨ ¨ 0 0
... I2pN´1q Q2 I2pN´1q

0 ¨ ¨ ¨ 0 0 0 0 I2pN´1q Q1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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The block matrices Q1 and Q2 are the matrices including the Hartmann number

Ha, step-size h, slipping length α and the conductivity parameters c1, c2 in its

entries. In the coefficient matrix Q, we have the matrix Q1 on the first and

the last block of the diagonal and for the others the matrix Q2 is repeated on

the diagonal. The reason for having such a coefficient matrix Q is that we have

the contributions of the boundary conditions on the sides x “ ˘1 and y “ ˘1

to the discretized points which lie on the first and the last discretized line in

the domain Ω illustrated as ¨ ¨ ¨ ¨ ¨ ¨ in the Figure 3.3 whereas we have only the

contributions of the plates y “ ˘1 to the inner discretized points which lie on

the lines represented as ´ ´ ´ in the domain. For simplicity, we define some

entries in these matrices as

L “
h

2
Ha, a “

α

α ` h
, bi “

ci
ci ` h

, b̃ “ b1 ` b2

for i “ 1, 2. Then the matrices Q1 and Q2 take the form

Q1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4 ` 2a ´Lb1 1 L 0 0 0 ¨ ¨ ¨ 0 0

´La ´4 ` b̃ L 1 0 0 0 ¨ ¨ ¨ 0 0

1 ´L ´4 ` a 0 1 L 0 ¨ ¨ ¨ 0 0

´L 1 0 ´4 ` b2 L 1 0 ¨ ¨ ¨ 0 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0
... 0 1 ´L ´4 ` a 0 1 L

0 0
... 0 ´L 1 0 ´4 ` b2 L 1

0 0 ¨ ¨ ¨ 0 0 0 1 ´L ´4 ` 2a Lb1

0 0 ¨ ¨ ¨ 0 0 0 ´L 1 La ´4 ` b̃

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and
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Q2 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4` a ´Lb1 1 L 0 0 0 ¨ ¨ ¨ 0 0

´La ´4` b1 L 1 0 0 0 ¨ ¨ ¨ 0 0

1 ´L ´4 0 1 L 0 ¨ ¨ ¨ 0 0

´L 1 0 ´4 L 1 0 ¨ ¨ ¨ 0 0

... . . . . . . . . . . . . . . . . . . . . . ...
...

...
... . . . . . . . . . . . . . . . . . . . . . ...

0 0
... 0 1 ´L ´4 0 1 L

0 0
... 0 ´L 1 0 ´4 L 1

0 0 ¨ ¨ ¨ 0 0 0 1 ´L ´4` a Lb1

0 0 ¨ ¨ ¨ 0 0 0 ´L 1 La ´4` b1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, we obtain the unknown vector x at the discretized points from the

solution of the system (3.17) by using Gaussian elimination in Matlab.

Now, from the system (3.17) we can deduce the solutions for the cases 2, 3 and 4

by only changing the values of the slip length parameter α and the conductivity

parameters c1 and c2.
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‚ Case 2.

For this case, the problem (3.1) is going to be solved with no-slip and conducting

walls to see only the effect of the conductivity parameter on the behavior of

the velocity V and the induced magnetic field B. Thus, we take the following

boundary conditions from (3.2) with α “ 0

V “ 0 on BΩ

B ˘ c1
BB

By
“ 0 on y “ ˘1

B ˘ c2
BB

By
“ 0 on x “ ˘1.

For simplicity, we choose the conductivity parameters equal as c1 “ c2 “ c so

that

V “ 0 and B ˘ c
BB

Bn
“ 0 on BΩ. (3.18)

Thus, the solution of this case is obtained from the system Qx “ v for the

values α “ 0 and varying c. Then, the numerical results of discretized MHD

flow equations with the boundary conditions (3.18) are simulated for several

values of Hartmann number with reasonable values of conductivity parameter

between insulated and perfectly conducting walls.

‚ Case 3.

Next, we consider the problem (3.1) with the boundary conditions

B “ 0 on BΩ

V ˘ α
BV

By
“ 0 on y “ ˘1, x “ ˘1

(3.19)

to understand only the influence of the slipping length of the walls onto the

solution V and B.

Then, by substituting c1 “ c2 “ 0 in the entries of the coefficient matrix Q,

the numerical solution at the discretized points are obtained from the system

Qx “ v. Also, the results are shown in the next section for some values of

slipping length with varying values of Hartmann number.
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‚ Case 4.

The problem (3.1) is discussed with slipping and conducting plates (walls of

the duct). So, we solve the problem with the most general type of boundary

conditions given in (3.2). Again we use the same conductivity parameters as

c1 “ c2 “ c for varying α that

V ˘ α
BV

Bn
“ 0 and B ˘ c

BB

Bn
“ 0 on BΩ. (3.20)

Thus, the system Qx “ v is solved with the boundary conditions (3.20). We

investigate the effects of the slipping length and the wall conductivity by taking

the values of the parameters as α “ 0.1 and c “ 2. Then, the profiles of the

velocity V and the induced magnetic field B are simulated for several values of

Hartmann number.

‚ Case 5.

Finally, the MHD rectangular duct problem is considered with perfectly con-

ducting no-slip Hartmann walls (the walls perpendicular to the applied magnetic

field) and insulating no-slip side walls (the walls parallel to the applied magnetic

field), that is

V p˘1, yq “ 0, Bp˘1, yq “ 0, ´1 ď y ď 1

V px,˘1q “ 0, ˘
BB

By
|y“˘1 “ 0, ´1 ď x ď 1.

Thus, on the side walls x “ ˘1, we know the velocity and induced magnetic

field

V1,j “ VN`1,j “ 0 (3.21)

B1,j “ BN`1,j “ 0 (3.22)

for j “ 1, . . . , N ` 1. Since no-slip condition is imposed for the velocity V also

at y “ ˘1, we also have

Vi,1 “ Vi,N`1 “ 0 (3.23)

for i “ 1, . . . , N ` 1. But for the induced magnetic field B, backward finite

difference at y “ 1 and forward finite difference at y “ ´1 are used for the
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approximation of the derivative
B

By
to find the boundary values in terms of the

inner values resulting in

Bi,N`1 “ Bi,N , Bi,1 “ Bi,2 (3.24)

for i “ 1, . . . , N ` 1. Inserting these values (3.21)-(3.24) into the scheme (3.8),

we obtain M unknowns in M equations where M “ 2pN ´ 1q2 for a general N .

Then, these equations are written in a matrix-vector system with the coefficient

matrix R of size M ˆM . So, we have

Rx “ p

where x is the unknown vector of size M ˆ 1 given by

x “
”

V2,2 B2,2 ¨ ¨ ¨V2,N B2,N ¨ ¨ ¨ VN,2 BN,2 ¨ ¨ ¨VN,N BN,N

ıT

.

The vector p of size M ˆ 1 is

p “
”

´h2 ´h2 ´h2 ¨ ¨ ¨ ´h2 ´h2
ıT

,

and the coefficient matrix R of size M ˆM is given as

R “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Â I2pN´1q 0 0 0 0 ¨ ¨ ¨ 0

I2pN´1q Â I2pN´1q 0 0 0 ¨ ¨ ¨ 0

0 I2pN´1q Â I2pN´1q 0 0 ¨ ¨ ¨ 0

...
... . . . . . . . . . ...

...
...

...
...

... . . . . . . . . . ...
...

...
...

...
... . . . . . . . . . ...

0 ¨ ¨ ¨ 0 0
... I2pN´1q Â I2pN´1q

0 ¨ ¨ ¨ 0 0 0 0 I2pN´1q Â

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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where the matrix Â of size 2pN ´ 1q ˆ 2pN ´ 1q for the scheme obtained in the

equation (3.8) is

Â “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

´4 ´hHa
2

1 hHa
2

0 0 0 ¨ ¨ ¨ 0 0

0 ´3 hHa
2

1 0 0 0 ¨ ¨ ¨ 0 0

1 ´hHa
2

´4 0 1 hHa
2

0 ¨ ¨ ¨ 0 0

´hHa
2

1 0 ´4 hHa
2

1 0 ¨ ¨ ¨ 0 0

0 0
. . . . . . . . . . . . . . . . . . ...

...

...
... . . . . . . . . . . . . . . . . . . 0 0

0 0
... 0 1 ´hHa

2
´4 0 1 hHa

2

0 0 ¨ ¨ ¨ 0 ´hHa
2

1 0 ´4 hHa
2

1

0 0 ¨ ¨ ¨ 0 0 0 1 ´hHa
2

´4 hHa
2

0 0 ¨ ¨ ¨ 0 0 0 ´hHa
2

1 0 ´3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then, the system Rx “ p is solved by using Gaussian elimination from Matlab.

3.3 Numerical Results

The numerical values of the velocity V and the induced magnetic field B at

the mesh points are obtained from the FDM discretized equations (3.6) or (3.7)

by using forward or central differences for B{By, respectively or from the whole

discretized system (3.8) with central differences. To compare the approximate

FDM solution obtained from the scheme (3.8) with the corresponding exact

solution for the no-slip and insulated duct walls (Case 1), we use the exact

solution given in [4]. The agreement is very well for Ha “ 10 by taking only

N “ 40 intervals on each side of the duct and the convergence of FDM solution
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to the exact solution is obtained with an accuracy ε “ 10´2 where

max
i,j“1,...,N

|Vi,j ´ V
exact
i,j | ă ε and max

i,j“1,...,N
|Bi,j ´B

exact
i,j | ă ε.

One the other hand, we need to increase the value of N with an increasing

Hartmann number for obtaining accurate results at the mesh points since Ha

increase causes convection dominance in the MHD equations. So, we use N “

30, 40, 60, 80, 100 with the corresponding values of Ha “ 5, 10, 30, 50, 100. Then,

the velocity and the induced magnetic field profiles are simulated for several

values of Hartmann number in Figures 3.5 to 3.6.

Figure 3.4: Case 1: Velocity and induced magnetic field, Ha “ 10, N “ 40,
exact (solid), FDM (dashed).

Figure 3.5: Case 1: Velocity and induced magnetic field, Ha “ 50, N “ 80,
exact (solid), FDM (dashed).
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Figure 3.6: Case 1: Velocity and induced magnetic field, Ha “ 100, N “ 100,
exact (solid), FDM (dashed).

The very well agreements of the FDM and exact solution equivelocity and equal

current lines can be observed from the Figures 3.4 to 3.6 for increasing Hartmann

number values.

‚ Case 1. No-slip and insulated walls; α “ 0, c “ 0.

In Figure 3.7, the velocity and the induced magnetic field behaviors are simulated

for increasing values of Hartmann number when the duct walls are electrically

insulated but no-slip walls. It is noticed that one needs to take more number of

discretized points N as Ha increases to achieve an accuracy of ε “ 10´2. One

can notice from Figure 3.7 that as Ha increases, that is, the strength of the

induced magnetic field increases, both the velocity and the induced magnetic

field magnitudes decrease. This is the flattening tendency of MHD flow for

increasing values of Ha, [4].
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(a) Ha “ 5, N “ 30 (b) Ha “ 5, N “ 30

(c) Ha “ 10, N “ 40 (d) Ha “ 10, N “ 40

(e) Ha “ 50, N “ 80 (f) Ha “ 50, N “ 80

(g) Ha “ 100, N “ 100 (h) Ha “ 100, N “ 100

Figure 3.7: Case1: Velocity and induced magnetic field.
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As Ha increases, boundary layers are developed near the Hartmann walls (walls

perpendicular to the applied magnetic field) for both the velocity and the in-

duced magnetic field. Near the Hartmann walls the velocity drops sharply within

the boundary layers. These layers are called the Hartmann layers. From the

theory of boundary layers in MHD duct flow, the thickness of Hartmann layers

is of order 1{Ha and the thickness of side layers which are also developed as Ha

increases is of order 1{
?
Ha, [4]. The fluid becomes stagnant at the center of

the duct. Velocity is symmetric with respect to x “ 0 and y “ 0 lines and the

induced magnetic field is anti-symmetric with respect to y “ 0 line.

‚ Case 2. No-slip and variably conducting walls; α “ 0, c “ 0.5´ 10.

Figure 3.8 shows the simulation of the velocity and the induced magnetic field

for increasing values of conductivity parameter c for a fixed Hartmann number

Ha “ 10. It is seen from the figure that as the conductivity parameter c increases

the velocity magnitudes decrease whereas the induced magnetic field magnitudes

increase. But, the increase in the induced magnetic field magnitude becomes

weak when c increases. Also, the profiles of the induced magnetic field reveal that

it tries to become perpendicular to the side walls as the conductivity parameter

c increases but this orthogonality is weakened for small values of c. That is, for

c « 10 the side walls almost become electrically perfectly conducting.
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(a) c “ 0.5 (b) c “ 0.5

(c) c “ 1 (d) c “ 1

(e) c “ 5 (f) c “ 5

(g) c “ 10 (h) c “ 10

Figure 3.8: Case 2: Velocity and induced magnetic field for Ha “ 10, α “ 0.
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‚ Case 3. Insulated but slipping walls; α “ 0.01´ 0.3, c “ 0.

In Figure 3.9 the profiles of the velocity and the induced magnetic field are sim-

ulated for several values of slipping parameter α. As observed from the figure,

numerical results reveal that the velocity magnitudes increase when α increases.

This is a theoretically known behavior, [15]. On the other hand, an increase

in the slipping length causes a decrease in the induced magnetic field. As the

slipping parameter α increases, the slip on the walls increases and we see much

more slip on the Hartmann walls than on the side walls.

‚ Case 4. Slipping and variably conducting walls; α “ 0.1, c “ 2.

The velocity and the induced magnetic field are presented in Figure 3.10 for

varying values of Hartmann number Ha. One can see easily that the velocity

and the induced magnetic field magnitudes drop as Ha increases. For a small

value of Hartmann number (Ha “ 10), the slip is seen on the Hartmann walls,

which is disappeared for large values of Hartmann number (Ha “ 30, 50, 100).

Also, it is observed from the velocity profiles that we have Hartmann layers

for moderate values of Hartmann number (Ha “ 30, 50), which is very thin for

Ha “ 100 obeying the order 1{Ha. AsHa increases the core region increases and

the fluid flows near the side walls. In addition to these, the profiles of the induced

magnetic field show that the induced magnetic field becomes perpendicular to

the side walls with an increase in Ha which is weakened for small values of

Hartmann number such as Ha “ 10, 30.
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(a) α “ 0.01 (b) α “ 0.01

(c) α “ 0.1 (d) α “ 0.1

(e) α “ 0.2 (f) α “ 0.2

(g) α “ 0.3 (h) α “ 0.3

Figure 3.9: Case 3: Velocity and induced magnetic field for Ha “ 10, c “ 0.
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(a) Ha “ 10, N “ 40 (b) Ha “ 10, N “ 40

(c) Ha “ 30, N “ 60 (d) Ha “ 30, N “ 60

(e) Ha “ 50, N “ 80 (f) Ha “ 50, N “ 80

(g) Ha “ 100, N “ 100 (h) Ha “ 100, N “ 100

Figure 3.10: Case 4: Velocity and induced magnetic field for α “ 0.1, c “ 2.
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‚ Case 5. Insulated side walls (c=0) , perfectly conducting Hartmann walls

(cÑ 8), α “ 0.

Figure 3.11 shows the velocity and induced magnetic field profiles for increasing

values of Ha when the Hartmann walls are perfectly conducting but side walls

are insulated. As in the Case 1, an increase in Ha caused both the velocity and

the induced magnetic field magnitudes to decrease. For large values of Hartmann

number Ha, the velocity in the core is relatively low and it gradually increases

when it approaches to the side walls.

On the other hand, we have a reverse situation for small values of Hartmann

number Ha in which maximum velocity occurs through the center of the duct.

Since we have well conducting Hartmann walls, the induced magnetic field be-

comes perpendicular to these walls for small values of Ha. However, this be-

havior is overwhelmed with the formation of side walls when Ha increases. The

increase in Ha causes the formation of side layers for both the velocity and the

induced magnetic field.
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(a) Ha “ 5, N “ 30 (b) Ha “ 5, N “ 30

(c) Ha “ 10, N “ 40 (d) Ha “ 10, N “ 40

(e) Ha “ 50, N “ 80 (f) Ha “ 50, N “ 80

(g) Ha “ 100, N “ 100 (h) Ha “ 100, N “ 100

Figure 3.11: Case 5: Equal velocity and current lines, α “ 0
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In this chapter, the finite difference method (FDM) is used to solve the prob-

lem of 2D MHD channel flow in a square duct with different type of boundary

conditions. Thus, the numerical results make us to understand the effects of the

Hartmann number Ha, the conductivity parameter c and the slipping length α

on both of the velocity and the induced magnetic field. As a common charac-

ter of both the velocity and the induced magnetic field, it is observed that as

Ha increases, their magnitudes decrease. Also, the velocity magnitude increases

with an increasing value of slipping length α but this increase decelerates when

Hartmann number Ha increases. Furthermore, the slip diminishes with an in-

creasing values of Ha. The conductivity parameter c presents the profiles of

induced magnetic field from insulated to perfectly conducting plates. The num-

ber of discretized points taken on each side of the duct needs to be increased as

Ha increases.
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CHAPTER 4

CONCLUSION

In this thesis, the application of the finite difference method to the problems

of Hartmann flow between parallel plates and the MHD channel flow have been

investigated. The one-dimensional and also the two-dimensional, steady, fully-

developed and laminar flows of an electrically conducting fluid are solved be-

tween parallel plates and in a rectangular duct, respectively, for the fluid ve-

locity and the induced magnetic field. Mixed type boundary conditions are

considered for both the velocity and the induced magnetic field which contain

no-slip to slipping velocity and insulated to perfectly conducting induced cur-

rent wall conditions. The effects of the applied magnetic field, ranges of the slip

and conductivity values on the flow and induced current are shown in terms of

equivelocity and equal induced magnetic field lines for several values of Ha, slip

length α and conductivity constant c.

The FDM solutions of the Hartmann flow (1D MHD flow) are compared with the

exact solution obtained in this thesis for the most general velocity and induced

magnetic field boundary conditions, and the agreement is very well. On the

other hand, for the 2D MHD duct flow, the numerical results are compared with

the exact solution for the case of no-slip and insulated duct walls and the very

well agreement is again seen. The velocity and the induced magnetic field are

simulated for five cases of boundary conditions. The findings for both 1D and

2D MHD flow are as follows.

It has been observed that as Ha increases, both the velocity and the induced

magnetic field magnitudes decrease. This is the well-known flattening tendency

of MHD flow when the external magnetic field is strong. Thus, as Ha increases,
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we need to take more mesh points on the sides of the duct since the MHD equa-

tions become convection dominated. Besides, it has been noticed that as Ha

increases boundary layers are formed near the walls (Hartmann layers on the

perpendicular walls and side layers on parallel walls to the external magnetic

field). The influence of the slipping length and the conductivity constant on the

solution are analyzed by increasing values of these parameters. The increase in

the slip length causes an increase in the velocity magnitude, too, which is weak-

ened for large values of Hartmann number. The slip of the velocity on the walls

tends to diminish when Ha rises. When the slipping length is kept fixed, the

induced magnetic field magnitude increases with an increase in the conductiv-

ity parameter whereas the velocity magnitude drops. Conductivity parameter

c gives induced magnetic field profiles between the insulated and the perfectly

conducting walls. Consequently, we see that the well-known characteristics of

the MHD flow are caught and the effects of slip and variable conductivity of the

walls are very well depicted with the numerical results obtained easily from the

FDM at a cheap expense.
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