Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Electrically Stimulated Breast Model's Thermal Imaging Simulations
Date
2009-01-01
Author
CARLAK, HAMZA FEZA
Gençer, Nevzat Güneri
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
8
views
0
downloads
Cite This
Different tissues energy consuming values show differences from each other. Conductivity and metabolic heat source of the tissue alter whether it is healthy or not. The temperature differences of tissues take the thermal infrared imaging into very important and vital point. It was not possible to be able to detect these amounts of differences with the early instrumentation and technology. However, in recent years by the improvement of sensitivity of detectors and cameras it is now possible to sense these amounts of temperature differences. Infrared imaging has a limited performance for the breast cancer diagnosis which occurs especially due to patient moving. Nevertheless, this performance can be improved by applying low frequency currents in medical safety limits. By the help of current application, temperature differences of tissues which have different electrical and thermal properties can be increased and malignant tissue can be distinguished in the obtained thermal image. In this study, woman breast and cancerous tissue are two dimensionally modeled. By using realistic values for regular and cancerous tissue Pennes bio heat equation is solved with finite element method Simulations are implemented for different tumor locations. Whenever malignant tissue approaches to the skin surface, higher temperature differences are obtained. Imaging performance is increased with current application and tumors can be sensed at 4.5 cm depth with the modem state-of-the-art thermal infrared imagers (possess approximately 10 degrees mK sensitivity).
URI
https://hdl.handle.net/11511/100285
DOI
https://doi.org/10.1109/biyomut.2009.5130294
Conference Name
14th National Biomedical Engineering Meeting
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Effect of crosslinking on organic solvent nanofiltration performance of cellulose membranes
Konca, Kübra; Çulfaz Emecen, Pınar Zeynep; Department of Chemical Engineering (2018)
Nanofiltration is a membrane process capable of separation of small molecules and multivalent ions due to their size and/or charge. NF is mainly used in aqueous applications. However, there are many processes that can take advantages of NF in molecules separation dissolved in organic solvents. Main challenge in Organic Solvent Nanofiltration is the limited number of membranes which can withstand a wide range solvents and have stable, predictable separation performance. Cellulose is an alternative polymer th...
Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes
Hacarlioglu, P; Toppare, Levent Kamil; Yılmaz, Levent (Wiley, 2003-10-17)
The aim of this study is to determine the effect of preparation parameters on the membrane permeation mechanism and separation performances of dense homogeneous poly(bisphenol A carbonate) (PC) membranes. Blade-casting and drop-casting techniques are used for casting films from solutions with varying concentrations. Chloroform and methylene chloride are used to determine the effect of the properties of the casting solvent. Permeation measurements are done with Ar, N-2, O-2, CH4, CO2, and H, gases. The selec...
Characterization of zeolite membranes by gas permeation
Soydaş, Belma; Kalıpçılar, Halil; Department of Chemical Engineering (2009)
Zeolite membranes are attractive materials to separate gas and liquid mixtures. MFI is a widely studied zeolite type due to its ease of preparation and comparable pore size with the molecular size of many substances. In this study MFI type membranes were synthesized over porous α-Al2O3 supports and characterized with XRD, SEM and gas permeation measurements. In the first part of this study the effect of soda concentration of the synthesis solution on the membrane morphology and crystal orientation was inves...
Medical Thermal Imaging of Electrically Stimulated Woman Breast: a simulation study
Carlak, H. Feza; Gençer, Nevzat Güneri; Beşikci, Cengiz (2011-09-03)
Tissues have different electrical conductivity and metabolic energy consumption values depending on their state of health and species. Since metabolic heat generation values show differences from tissue to tissue, thermal imaging has started to play an important role in medical diagnoses. Temperature differences of healthy and cancerous tissue may be changed by means of frequency dependent current stimulation within medical safety limits, and thus, depth dependent imaging performance can be increased. In th...
Efficient molecular surface generation using level-set methods
Can, Tolga; Wang, Yuan-Fang (Elsevier BV, 2006-12-01)
Molecules interact through their surface residues. Calculation of the molecular surface of a protein structure is thus an important step for a detailed functional analysis. One of the main considerations in comparing existing methods for molecular surface computations is their speed. Most of the methods that produce satisfying results for small molecules fail to do so for large complexes. In this article, we present a level-set-based approach to compute and visualize a molecular surface at a desired resolut...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. F. CARLAK and N. G. Gençer, “Electrically Stimulated Breast Model’s Thermal Imaging Simulations,” presented at the 14th National Biomedical Engineering Meeting, İzmir, Türkiye, 2009, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100285.