Evaluating the Applicability of a Two-dimensional Flow Model of a Highly Heterogeneous Domain to Flow and Environmental Management

Carr, Kara J.
Tu, Tongbi
Ercan, Ali
Kavvas, M. Levent
Two-dimensional simulation of highly heterogeneous domains, especially those with disparate length scales, roughness conditions, and geometries, often leads to challenges such as long computation times and numerical instability. Simulation of challenging domains is often needed to guide flood management and environmental regulation agencies in operation and potential domain modifications. This work evaluates the ability of a two-dimensional unsteady hydrodynamic model to represent long-duration transient flows over a domain with highly heterogeneous roughness, geometric characteristics, and length scales through bed roughness representation. The domain includes 13km of Cache Creek and the 14.5km(2) Cache Creek Settling Basin, which traps both sediment and mercury. Calibration under different bed roughness methods, validation, and modeling results of bathymetric modification scenarios are presented. The modeling approach's performance supports its application as a tool for management of similar domains, such as settling basins, leveed floodplains, and reservoirs. Accurate representation of flow dynamics can also inform environmental management that involves transport of sediments, nutrients, and heavy metals. This study found that a two-dimensional unsteady flow model can accurately represent long-duration transient flow in a large settling basin with highly heterogeneous characteristics without parsing of the domain or flow events simulated.


Efficient Surface Integral Equation Methods for the Analysis of Complex Metamaterial Structures
Yla-Oijala, Pasi; Ergül, Özgür Salih; Gurel, Levent; Taskinen, Matti (2009-03-27)
Two approaches, the multilevel fast multipole algorithm with sparse approximate inverse preconditioner and the surface equivalence principle algorithm, are applied to analyze complex three-dimensional metamaterial structures. The efficiency and performance of these methods are studied and discussed.
A Non-Galerkin Spatial-Domain Approach for Efficient Calculation of the Dispersion Characteristics of Microstrip Lines
Guedue, Tamer; Alatan, Lale (2008-07-11)
In the analysis of dispersion characteristics of microstrip lines, spectral domain approaches has been preferred as opposed to the spatial domain calculations since the spatial domain Green's functions corresponding to the microstrip structure require the numerical evaluation of inverse Fourier transform integrals which are computationally expensive. However as demonstrated in Bernal, J. et al, (2000), the discrete complex image representation of the spatial domain Greenpsilas functions eliminates the need ...
Mert, RazIye; Zafer, Ağacık (2011-09-01)
Time scale calculus approach allows one to treat the continuous, discrete, as well as more general systems simultaneously. In this article we use this tool to establish a necessary and sufficient condition for the oscillation of a class of second order sublinear delay dynamic equations on time scales. Some well known results in the literature are improved and extended.
Comparison of rough multi layer perceptron and rough radial basis function networks using fuzzy attributes
Vural, Hülya; Alpaslan, Ferda Nur; Department of Computer Engineering (2004)
The hybridization of soft computing methods of Radial Basis Function (RBF) neural networks, Multi Layer Perceptron (MLP) neural networks with back-propagation learning, fuzzy sets and rough sets are studied in the scope of this thesis. Conventional MLP, conventional RBF, fuzzy MLP, fuzzy RBF, rough fuzzy MLP, and rough fuzzy RBF networks are compared. In the fuzzy neural networks implemented in this thesis, the input data and the desired outputs are given fuzzy membership values as the fuzzy properties أlow...
Enhancing the accuracy of the interpolations and anterpolations in MLFMA
Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2006-01-01)
We present an efficient technique to reduce the interpolation and anterpolation (transpose interpolation) errors in the aggregation and disaggregation processes of the multilevel fast multipole algorithm (MLFMA), which is based on the sampling of the radiated and incoming fields over all possible solid angles, i.e., all directions on the sphere. The fields sampled on the sphere are subject to various operations, such as interpolation, aggregation, translation, disaggregation, anterpolation, and integration....
Citation Formats
K. J. Carr, T. Tu, A. Ercan, and M. L. Kavvas, “Evaluating the Applicability of a Two-dimensional Flow Model of a Highly Heterogeneous Domain to Flow and Environmental Management,” JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, vol. 54, no. 1, pp. 184–197, 2018, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/100610.