Template-aligned Transfer Learning on Brain Decoding Problem Beyin Çözümleme Probleminde Şablon-Hizali Transfer Öǧrenme

2022-01-01
Brain decoding involves a set of methods to estimate the brain activities that correspond to the brain signals, acquired via fMRI or similar techniques. Acquisition of fMRI data is a costly and hard process. Due to this, it is important to utilize readily available fMRI data. In this study, we develop an incremental method that can do transfer learning between the available source fMRI datasets and target fMRI datasets. This method produces aligned features by calculating the generalizable relation between cognitive tasks. Also, it uses a matrix transformation that minimizes the mismatch between subjects and experimentation processes belonging to the same cognitive task. Aligned features obtained from different datasets transfer knowledge with a transfer learning algorithm and decodes the cognitive tasks on the target fMRI dataset. We observed that, the template based solution has shown on average a 18% performance increase compared to our baseline model.
30th Signal Processing and Communications Applications Conference, SIU 2022

Suggestions

Learning transferability of cognitive tasks by graph generation for brain decoding
Coşkun, Bilgin; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2021-12-10)
Brain decoding involves analyzing the cognitive states of human brain by using some statistical techniques in order to understand the relations among the cognitive states, based on neuroimaging data. A very powerful tool to acquire the brain data is functional magnetic resonance images (fMRI), which generates three-dimensional brain volume at each time instant, while a subject performs a cognitive task involving social activities, emotion processing, game playing, memory etc. However, it is very difficult a...
Important issues for brain connectivity modelling by discrete dynamic bayesian networks.
Geduk, Salih; Ulusoy, İlkay; Department of Electrical and Electronics Engineering (2020)
To understand the underlying neural mechanisms in the brain, effective connectivity among brain regions is important. Discrete Dynamic Bayesian Networks (dDBN) have been proposed to model the brain’s effective connectivity, due to its nonlinear and probabilistic nature. In modeling brain connectivity using discrete dynamic Bayesian network (dDBN), we need to make sure that the model accurately reflects the internal brain structure in spite of limited neuroimaging data. Based on the fact that there are many ...
Longitudinal data analysis with statistical and machine learning methods in neuroscience
Çakar, Serenay; Gökalp Yavuz, Fulya; Department of Statistics (2022-8)
Exploration of brain activity under different conditions has been subject to many neuroscience studies. The recent developments in cognitive studies provide the opportunity to work on neural correlates of specific cognitive processes such as working memory, decision making, response inhibition, perception, and sensation. Brain response studies constitute multidimensional, multilevel or nested data sets formed by different parts of the brain of individuals. Hence, it is of significant importance to implement...
Parallel implementation of the boundary element method for electromagnetic source imaging of the human brain
Ataseven, Yoldaş; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2005)
Human brain functions are based on the electrochemical activity and interaction of the neurons constituting the brain. Some brain diseases are characterized by abnormalities of this activity. Detection of the location and orientation of this electrical activity is called electro-magnetic source imaging (EMSI) and is of signi cant importance since it promises to serve as a powerful tool for neuroscience. Boundary Element Method (BEM) is a method applicable for EMSI on realistic head geometries that generates...
Effect of human prior knowledge on game success and comparison with reinforcement learning
Hasanoğlu, Mert.; Çakır, Murat Perit; Department of Cognitive Sciences (2019)
This study aims to find out the effect of prior knowledge on the success of humans in a non-rewarding game environment, and then to compare human performance with a reinforcement learning method in an effort to observe to what extent this method can be brought closer to human behavior and performance with the data obtained. For this purpose, different versions of a simple 2D game were used, and data were collected from 32 participants. At the end of the experiment, it is concluded that prior knowledge, such...
Citation Formats
E. Eryol and F. T. Yarman Vural, “Template-aligned Transfer Learning on Brain Decoding Problem Beyin Çözümleme Probleminde Şablon-Hizali Transfer Öǧrenme,” presented at the 30th Signal Processing and Communications Applications Conference, SIU 2022, Safranbolu, Türkiye, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138707896&origin=inward.