SUPG formulation augmented with YZ beta shock-capturing for computing shallow-water equations

2023-02-01
Cengizci, Suleyman
Uğur, Ömür
We demonstrate that the streamline-upwind/Petrov-Galerkin (SUPG) formulation enhanced with YZ beta discontinuity-capturing, that is, the SUPG-YZ beta formulation, is an efficient and robust method for computing 2D shallow-water equations (SWEs). The SUPG-stabilized semi-discrete formulation is discretized in time by employing the backward Euler time-integration scheme. The nonlinear equation systems arising from the space and time discretizations are handled using the Newton-Raphson (N-R) method at each time step. The resulting linear equation systems are solved directly at each nonlinear iteration. Two challenging test problems are provided to examine the performance of the proposed formulation and techniques. To that end, we consider a full dam-break and a partial dam-break problem. We develop the solvers in the FEniCS environment. Test computations reveal that the SUPG-YZ beta formulation successfully eliminates spurious oscillations that cannot be captured with the SUPG-stabilized formulation alone in narrow regions where steep gradients occur.
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK

Suggestions

SUPG-YZ beta computation of chemically reactive convection-dominated nonlinear models
Cengizci, Suleyman; Uğur, Ömür; Natesan, Srinivasan (2022-09-01)
In this computational study, we deal with the stabilized finite element solutions of convection-dominated models having nonlinear reaction mechanisms. The existence of advection terms in these models causes the numerical solutions obtained by standard discretization methods to exhibit nonphysical oscillations. The Galerkin finite element method is stabilized using the Streamline-Upwind/Petrov-Galerkin formulation to avoid such spurious oscillations. The stabilized formulation is also complemented with the Y...
CBFEM-MPI: A Parallelized Version of Characteristic Basis Finite Element Method for Extraction of 3-D Interconnect Capacitances
Ozgun, Ozlem; Mittra, Raj; Kuzuoğlu, Mustafa (Institute of Electrical and Electronics Engineers (IEEE), 2009-02-01)
In this paper, we present a novel, non-iterative domain decomposition method, which has been parallelized by using the message passing interface (MPI) library, and used to efficiently extract the capacitance matrixes of 3-D interconnect structures, by employing characteristic basis functions (CBFs) in the context of the finite element method (FEM). In this method, which is Failed CBFEM-MPI, the computational domain is partitioned into a number of nonoverlapping subdomains in which the CBFs are constructed b...
Loop-based conic multivariate adaptive regression splines is a novel method for advanced construction of complex biological networks
Ayyıldız Demirci, Ezgi; Purutçuoğlu Gazi, Vilda; Weber, Gerhard Wilhelm (2018-11-01)
The Gaussian Graphical Model (GGM) and its Bayesian alternative, called, the Gaussian copula graphical model (GCGM) are two widely used approaches to construct the undirected networks of biological systems. They define the interactions between species by using the conditional dependencies of the multivariate normality assumption. However, when the system's dimension is high, the performance of the model becomes computationally demanding, and, particularly, the accuracy of GGM decreases when the observations...
Nondipolar effects in the photoionization dynamics of carbon tetrafluoride
Toffolı, Danıele; Decleva, Piero (American Physical Society (APS), 2008-12-01)
The linear combination of atomic orbitals approach to the calculation of the molecular continuum spectrum with B-spline basis functions has been applied to the calculation of the first-order nondipolar corrections to the photoelectron angular distributions from carbon tetrafluoride. Dipolar and nondipolar asymmetry parameter profiles have been calculated for every single-particle orbital ionization. A comparison with the available experimental data gives good agreement for the dipolar asymmetry parameter. N...
Model order reduction for pattern formation in reaction-diffusion systems
Karasözen, Bülent; Küçükseyhan, Tuğba; Mülayim, Gülden (null; 2017-09-22)
We compare three reduced order modelling (ROM) techniques: the proper orthogonal decomposition (POD), discrete empirical interpolation (DEIM) [2], and dynamical mode decomposition (DMD) [1] to reaction diusion equations in biology. The formation of patterns in reaction-diusion equations require highly accurate solutions in space and time and therefore require large computational time to reach the steady states. The three reduced order methods are applied to the diusive FitzHugh-Nagumo equation [3] and th...
Citation Formats
S. Cengizci and Ö. Uğur, “SUPG formulation augmented with YZ beta shock-capturing for computing shallow-water equations,” ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102359.