The impact of specimen size and alteration of fiber configuration on the flexural performance of high-performance concrete

2023-06-01
Şengün, Emin
Hamahang Sherzai, M.
Macit Mercan, A.
Guzelce, Aydinc
Aleessa Alam, Burhan
Ozgur Yaman, I.
This study examines the impact of fiber configuration and specimen size on the flexural performance and thus the energy absorption capacity of moderate and high-performance fiber reinforced concrete (FRC). A total of 180 specimens were produced using hooked-end steel fibers in lengths of 30-mm and 60-mm, and 54-mm long macro synthetic fibers. The specimens, in the form of small beams (75 × 75 × 320 mm3), large beams (150 × 150 × 750 mm3), and square panel specimens (600 × 600 × 100 mm3), were tested in accordance with EN14488-5 and ASTM C1609 standards. The results showed that as the amount of fibers increased, the flexural performance of FRC improved significantly, provided that precautions were taken to avoid mixing and placement issues when using higher amounts of fibers. 60-mm hooked-end steel fibers had the best performance among all the fibers tested with higher ultimate and post-cracking flexural strengths. 54-mm synthetic fibers seemed to be a cost-effective alternative with comparable energy absorption performance when compared to 30-mm hooked-end steel fibers. Small beams had a slightly higher ultimate (∼15% more) and post-cracking (∼35% more) flexural strengths than large beams, but the equivalent flexural strength ratio was not significantly affected by the specimen size. No clear relationship between fiber dosage and ultimate flexural strength was observed, but a relationship was observed between the fiber dosage and the equivalent flexural strength ratio, with R2 values ranging from 65% to 93% depending on the concrete matrix and the fiber type. The study also showed strong correlations (R2>91%) between the energy absorption capacity of plate specimens and beam specimens, suggesting that plate specimens can be used to reduce the time and effort required in testing during trial batches and product development. Finally, the use of high-performance concrete does not seem to be necessary, when the target is to improve the energy absorption capacity of FRC, particularly at low fiber volumes.
Journal of Building Engineering

Suggestions

Effect of synthetic fibers on flexural performance of normal and high performance concrete
Şengün, Emin; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-09-19)
Macro synthetic fiber incorporated concretes are increasingly used for concrete applications owing to their high energy absorption capacity, toughness and impact resistance. The aim of this study is twofold; first to investigate the effects of synthetic fibers on the flexural performance and thus the energy absorption characteristics of normal and high performance concrete (HPC), and secondly to investigate the effects of specimen size. For this experimental study, eight concrete groups were designed using ...
Effect of test methods on the performance of fiber reinforced concrete with different dosages and matrices
Hetemoğlu, Yalçın Oğuz; Yaman, İsmail Özgür; Department of Civil Engineering (2018)
Through the last few decades, the idea of adding fibers in to concrete has been quite improved, considering the significant contribution of fibers to the mechanical properties of concrete such as tensile strength, energy absorption capacity and ductility. As a result of many intensive research Fiber Reinforced Concrete (FRC) has become a high-tech material that ensures great performance yet needs efficient design and application. However, the lack of a universally accepted approach and standardized test met...
Effect of fiber type and concrete strength on the energy absorption capacity of fiber reinforced concrete plates under quasi-static bending
Mercan, Ali Macit; Yaman, İsmail Özgür; Department of Civil Engineering (2019)
With all the known solid advantages of concrete, it has also limitations in its mechanical properties, such as low ductility, tensile strength and energy absorption capacity/toughness. In order to eliminate or minimize these limitations, some developments have been worked up by introducing natural or artificial fibers into the concrete mixture. The main scope of this thesis is to observe the effect of different fiber types and dosages on the performance of two different concrete grades. Two steel fibers wit...
Effect of Synthetic Fibers on Energy Absorption Capacity of Normal and High Performance Concrete
Şengün, Emin; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-06-08)
With the increasing aim of incorporating concrete in different applications and infrastructure elements, the use of macro synthetic fiber incorporated concretes has become real popular thanks to their high energy absorption capacity, toughness and impact resistance. The aim of this study is to investigate the effects of synthetic fibers on toughness and energy absorption of normal and high performance concretes. For this experimental study, eight concrete groups were designed using synthetic fibers of vario...
Determination of the Tensile Strength of Different Fiber Reinforced Concrete Mixtures
Ardoğa, Mehmet Kemal; Alam, Burhan; Yaman, İsmail Özgür (null; 2016-09-21)
Enhancing the tensile performance of concrete is the main advantage when fibers are added to this type of building materials. This improvement is usually measured through indirect methods like bending or split-tensile tests, in a way similar to normal concrete due to the absence of a standard tensile test for such purpose. Naturally, this type of tests does not determine the real tensile strength of the fiber reinforced concrete. Hence an important parameter, that is needed in modelling and designing proces...
Citation Formats
E. Şengün, M. Hamahang Sherzai, A. Macit Mercan, A. Guzelce, B. Aleessa Alam, and I. Ozgur Yaman, “The impact of specimen size and alteration of fiber configuration on the flexural performance of high-performance concrete,” Journal of Building Engineering, vol. 68, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85149293306&origin=inward.