Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Identification of structural design parameters from inelastic dynamic response calculations
Download
047222.pdf
Date
1995
Author
İncekara, Çetin Önder
Metadata
Show full item record
Item Usage Stats
139
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/10299
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Identification of Risk Paths in International Construction Projects Using Structural Equation Modeling
Eybpoosh, Matineh; Dikmen Toker, İrem; Birgönül, Mustafa Talat (American Society of Civil Engineers (ASCE), 2011-12-01)
The major aim of this research is to demonstrate that causal relationships exist among various risk factors that necessitate identification of risk paths, rather than individual risk factors, during risk assessment of construction projects. International construction projects have more complex risk-emergence patterns because they are affected by global and foreign country conditions and project-related factors. Identification of a network of interactive risk paths, each of which initiated from diverse vulne...
Identification of periodic autoregressive moving average models
Akgün, Burçin; Ayhan, Hüseyin Öztaş; Ula, Taylan A.; Department of Statistics (2003)
In this thesis, identification of periodically varying orders of univariate Periodic Autoregressive Moving-Average (PARMA) processes is mainly studied. The identification of the varying orders of PARMA process is carried out by generalizing the well-known Box-Jenkins techniques to a seasonwise manner. The identification of pure periodic moving-average (PMA) and pure periodic autoregressive (PAR) models are considered only. For PARMA model identification, the Periodic Autocorrelation Function (PeACF) and Per...
Identification of inertial sensor error parameters
Altınöz, Bağış; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2015)
Inertial sensors (gyroscopes and accelerometers) that are used in navigation systems have distinct error characteristics such as bias, scale factor, random walk, etc. Calibration and characterization tests are done with 2 or 3 axes rate tables in order to identify these errors. It is possible to utilize error characteristics of these devices, and the navigation accuracy is directly dependent on the accuracy of this identification process. In this thesis, inertial sensor error parameters are identified by a ...
Identification of coupled systems of stochastic differential equations in finance including investor sentiment by multivariate adaptive regression splines
Kalaycı, Betül; Weber, Gerhard Wilhelm; Department of Financial Mathematics (2017)
Stochastic Differential Equations (SDEs) rapidly become the most well-known format in which to express such diverse mathematical models under uncertainty such as financial models, neural systems, micro-economic systems, and human behaviour. They are one of the main methods to describe randomness of a dynamical model today. In a financial system, different kinds of SDEs have been elaborated to model various financial assets. On the other hand, economists have conducted research on several empirical phenomena...
Identification of a vertical hopping robot model via harmonic transfer functions
Uyanik, Ismail; Ankaralı, Mustafa Mert; Cowan, Noah J.; Saranlı, Uluç; Morgul, Omer (2016-05-01)
A common approach to understanding and controlling robotic legged locomotion is the construction and analysis of simplified mathematical models that capture essential features of locomotor behaviours. However, the representational power of such simple mathematical models is inevitably limited due to the non-linear and complex nature of biological locomotor systems. Attempting to identify and explicitly incorporate key non-linearities into the model is challenging, increases complexity, and decreases the ana...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ç. Ö. İncekara, “Identification of structural design parameters from inelastic dynamic response calculations,” Middle East Technical University, 1995.