Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Comparative assessment of multi-objective optimization of hybrid energy storage system considering grid balancing
Date
2023-08-01
Author
Rasool, Muhammad Haseeb
Taylan, Onur
Perwez, Usama
Batunlu, Canras
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
104
views
0
downloads
Cite This
With the accelerated transition towards affordable and clean energy sources, the energy sector is undergoing a structural transformation that has resulted in a further increase in the complexity of energy system planning with rapid changes in techno-economic, environmental, reliability and social constraints. This signifies the consideration of purpose-driven multi-objective functions depending upon the functionality and applicability of the model. However, most of the studies adopt conventional bi-objective optimization either involving techno-economic, reliability and grid balancing parameters but there is a lack of comparative assessment of multi-objective optimization sizing for grid-interactive hybrid renewable energy system (HRES) consisting of short and long-term, battery and pumped hydro storage (PHS), energy storage systems (ESS). This study presents a comparative multi-objective framework to assess bi- and tri-objective function sizing techniques under grid balancing and non-balancing modes, to understand the scope and adaptivity of the modeling process for large-scale grid-interactive HRES. The analysis of results shows that the non-balancing mode underestimates the cost of energy (COE) by 18–30% compared to the grid balancing mode due to smaller decision variable space while long-term ESS dominance is vital for the reduction of grid burden compared to short-term ESS. In terms of configuration, a hybrid ESS system, 0.22MWh battery, 18.1MWh PHS, and 5.4MWPV capacity, is the best optimal configuration in grid balancing mode with the COE, EEI and EII equal to 0.09 $/kWh, 7.5% and 10.5% respectively, whereas higher grid energy mismatch is induced by non-balancing mode with the overestimation of EEI and EII indexes up to 30% and 33% respectively. The environmental analysis shows that the carbon emissions avoided (CEA) are underestimated by 59.1% with the non-consideration of grid balancing. This signifies that the adaptive optimization model improves the design and planning process of grid-interactive HRES by capturing larger uncertainties related to COE, grid balancing, and CEA with changes in the system and ESS sizing. Overall, this analysis provides a purpose-driven perspective to energy modelers and policymakers for the energy system modeling process of grid-interactive HRES.
URI
https://doi.org/10.1016/j.renene.2023.119107
https://hdl.handle.net/11511/104978
Journal
RENEWABLE ENERGY
DOI
https://doi.org/10.1016/j.renene.2023.119107
Collections
Department of Mechanical Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. H. Rasool, O. Taylan, U. Perwez, and C. Batunlu, “Comparative assessment of multi-objective optimization of hybrid energy storage system considering grid balancing,”
RENEWABLE ENERGY
, vol. 216, pp. 1–20, 2023, Accessed: 00, 2023. [Online]. Available: https://doi.org/10.1016/j.renene.2023.119107.