Immobilization of glucose oxidase enzyme in conducting graft copolymers of pyrrole

Download
2001
Tirkeş, Seha

Suggestions

Immobilization of glucose isomerase in surface-modified alginate gel beads
TÜMTÜRK, HAYRETTİN; DEMİREL, Gökhan; ALTINOK, HAYDAR; AKSOY, SERPİL; Hasırcı, Nesrin (2008-04-01)
In this study, glucose isomerase enzyme was entrapped into modified and nonmodified calcium alginate gel beads. Various characteristics of free and immobilized enzymes such as the optimum pH, temperature and dependence of activity on storage and operational stability were evaluated. The optimum pH and temperature of free and immobilized glucose isomerase were found to be the same values as 7.5 and 60C, respectively. For free and immobilized enzymes, kinetic parameters were calculated as 1.79 x 10(-2) and 8....
Immobilization of tyrosinase and alcohol oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole
Yildiz, Huseyin Bekir; Sahmetlioglu, Ertugrul; Boyukbayram, Ayse Elif; Toppare, Levent Kamil; Yagci, Yusuf (Elsevier BV, 2007-08-01)
Immobilization of tyrosinase and alcohol oxidase is achieved in the copolymer of pyrrole with vinyl alcohol with thiophene side groups (PVATh-co-PPy) which is a newly synthesized conducting polymer. PVATh-co-PPy/alcohol oxidase and PVATh-co-PPy/tyrosinase electrodes are constructed by the entrapment of enzyme in conducting copolymer matrix during electrochemical copolymerization. For tyrosinase and alcohol oxidase enzymes, catechol and ethanol are used as the substrates, respectively. Kinetic parameters: ma...
Immobilization of cholesterol oxidase in a conducting copolymer of thiophene-3-yl acetic acid cholesteryl ester with pyrrole
Çırpan, Ali; Toppare, Levent Kamil; YAGCI, Y (Informa UK Limited, 2003-01-01)
Cholesterol oxidase has been immobilized in conducting copolymers of thiophene-3-yl acetic acid cholesteryl ester with pyrrole (CM/PPy) and polypyrrole (PPy) via electropolymerization. p-Toluene sulphonic acid was used as the supporting electrolyte. Kinetic parameters (V-max and K-m) and operational stability of enzyme electrodes were investigated. Surface morphology of the films was examined by scanning electron microscope.
Immobiliation of glucose oxidase and polyphenol oxidase in conducting copolymer of pyrrole functionalized polystyrene with pyrrole
Ekinci, Olçun; Toppare, Levent Kamil; Department of Chemistry (2006)
Electrochemical polymerization of pyrrole functionalized polystyrene (PStPy) with pyrrole was carried out in water-sodium dodecyl sulfate solvent-electrolyte couple. Characterization of the resulting copolymer was performed via Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and four probe conductivity measurements. Glucose oxidase and polyphenol oxidase enzymes were immobilized in polypyrrole (PPy) and conducting copolymer of pyrrole functionalized polystyrene with pyrrol...
Immobilization of invertase in conducting polypyrrole/PMMA-co-PMTM graft copolymers
Yildiz, HB; Kiralp, S; Toppare, Levent Kamil; Yagci, Y (Wiley, 2005-04-15)
In this study, invertase was immobilized in copolymer electrodes constructed. Three different types of polymethyl methacrylate-co-polymethyl thienyl methacrylate matrices were used to obtain copolymers that were characterized by FT-IR spectroscopy. Immobilization of enzymes was carried out by the entrapment of the enzyme in conducting polymer matrices during electrochemical polymerization of pyrrole through thiophene moieties of polymers. Immobilization of the enzyme was achieved by application of 1.0 V con...
Citation Formats
S. Tirkeş, “Immobilization of glucose oxidase enzyme in conducting graft copolymers of pyrrole,” Middle East Technical University, 2001.