Surface plasmon resonance theory and applications in optical sensing

Download
1995
Özdemir, şahin Kaya

Suggestions

Surface-enhanced Raman scattering spectroscopy via gold nanostars
Nalbant Esentürk, Emren (Wiley, 2009-01-01)
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS) spectroscopy. Star-shaped gold (Au) NPs were prepared in aqueous solutions by the seed-mediated growth method and tested for Raman enhancement using 2-mercaptopyridine (2-MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman en...
Surface-enhanced Raman scattering (SERS) studies on silver nanorod substrates
Sanci, Rukiye; Volkan, Mürvet (Elsevier BV, 2009-05-20)
We report the development of a novel SERS substrate prepared by the growth of silver nanorods directly on the surface of glass without using any linker molecule. Silver nanorods were prepared according to seed-mediated growth approach using cetyl-trimethyl ammonium bromide (CTAB). Nanorod preparation conditions were first optimized in solution phase and the plasmon absorption of the formed nanocrystals were monitored by UV-vis spectrometry. The most significant red shift in the longitudinal plasmon resonanc...
Surface plasmon-bulk charged particle dynamics
Mete, Ersen; Durgut, Metin; Department of Physics (1998)
Surface Wave Suppression Properties of Perforated Artificial Impedance Surfaces
Durgun, Ahmet Cemal; Birtcher, Craig R. (2013-01-01)
Surface wave suppression properties of Perforated Artificial Impedance Surfaces (PAIS) are investigated. It is shown that, by a proper choice of perforation geometry, surface wave propagation can be suppressed without the need of vias. This significantly decreases fabrication costs. It is also possible to overlap the surface wave suppression and reflection phase bands of the PAIS. Due to the rotational asymmetry of the structure, surface wave suppression is achieved in only one direction.
Surface Recombination Noise in InAs/GaSb Superlattice Photodiodes
Tansel, Tunay; Kutluer, Kutlu; Muti, Abdullah; Salihoglu, Omer; Aydinli, Atila; Turan, Raşit (2013-03-01)
The standard Schottky noise approach alone is not sufficient to describe the noise mechanism in an InAs/GaSb superlattice photodetector at reverse negative bias. The additional noise identified appears at surface activation energies below 60 meV and is inversely proportional to the reverse bias. In order to satisfactorily explain the experimental data, we hereby propose the existence of a surface recombination noise that is a function of both the frequency and bias. The calculated noise characteristics inde...
Citation Formats
ş. K. Özdemir, “Surface plasmon resonance theory and applications in optical sensing,” Middle East Technical University, 1995.