Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling of coupled behavior and microcracking of multifunctional composite structures for energy storage
Date
2024-01-01
Author
Uyar, İmren
Gürses, Ercan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
67
views
0
downloads
Cite This
Addressing energy storage limitations and achieving low thrust-to-weight ratios are paramount for innovation in the aerospace and automotive industries. A promising avenue lies in the multifunctionality of structural load-carrying members, mainly by incorporating energy storage capabilities. Carbon fibers, known for their exceptional mechanical and electrical properties, are ideal candidates for multifunctional applications (Adam et al., 2018). This work proposes a framework for modeling multifunctional composite materials on the micro-scale, capable of serving as both a battery cell and a load-bearing component. It utilizes carbon fibers with high mechanical and electrical properties embedded in a polymer matrix. The microstructure simulates electrochemical-mechanical behavior during charging and discharging, emphasizing crack formation in the fibers. We employ the phase field fracture model to study crack propagation and damage evolution. This study employs finite element simulations with FENICS to investigate crack-dependent ion concentrations and stress distributions.
Subject Keywords
Electro-Chemo-Mechanical Coupling, Phase Field Approach
,
Fracture of Composites
,
Multifunctional Materials
,
Structural Batteries
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200940196&origin=inward
https://hdl.handle.net/11511/110772
DOI
https://doi.org/10.1016/j.prostr.2024.06.026
Conference Name
3rd International Workshop on Plasticity, Damage and Fracture of Engineering Materials, IWPDF 2023
Collections
Department of Aerospace Engineering, Conference / Seminar
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Uyar and E. Gürses, “Modeling of coupled behavior and microcracking of multifunctional composite structures for energy storage,” İstanbul, Türkiye, 2024, vol. 61, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200940196&origin=inward.