Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Hybrid deep learning models with data fusion approach for electricity load forecasting
Date
2024-01-01
Author
Özen, Serkan
Yazıcı, Adnan
Atalay, Mehmet Volkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
Cite This
This study explores the application of deep learning in forecasting electricity consumption. Initially, we assess the performance of standard neural networks, such as convolutional neural networks (CNN) and long short-term memory (LSTM), along with basic methods like ARIMA and random forest, on a univariate electricity consumption data set. Subsequently, we develop hybrid models for a comprehensive multivariate data set created by merging weather and electricity data. These hybrid models demonstrate superior performance compared to individual models on the univariate data set. Our main contribution is the introduction of a novel hybrid data fusion model. This model integrates a single-model approach for univariate data, a hybrid model for multivariate data, and a linear regression model that processes the outputs from both. Our hybrid fusion model achieved an RMSE value of 0.0871 on the Chicago data set, outperforming other models such as Random Forest (0.2351), ARIMA (0.2184), CNN (0.1802), LSTM + LSTM (0.1496), and CNN + LSTM (0.1587). Additionally, our model surpassed the performance of our base transformer model. Furthermore, combining the best-performing transformer model, with a Gaussian Process model resulted in further improvement in performance. The Transformer + Gaussian model achieved an RMSE of 0.0768, compared with 0.0781 for the single transformer model. Similar trends were observed in the Pittsburgh and IHEC data sets.
Subject Keywords
data fusion
,
deep learning
,
hybrid models
,
load forecasting
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85205322836&origin=inward
https://hdl.handle.net/11511/111721
Journal
Expert Systems
DOI
https://doi.org/10.1111/exsy.13741
Collections
Department of Computer Engineering, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Özen, A. Yazıcı, and M. V. Atalay, “Hybrid deep learning models with data fusion approach for electricity load forecasting,”
Expert Systems
, pp. 0–0, 2024, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85205322836&origin=inward.