Investigation of resonant properties of metamaterial THz filters fabricated from vanadium dioxide thin films

Download
2024-04-01
Zeyrek, Sehriban
Demirhan, Yasemin
Noori, Aileen
Tugay, Halime
Altan, Hakan
Sabah, Cumali
Aygün Özyüzer, Gülnur
Özyüzer, Lütfi
Vanadium dioxide (VO2 ) is a promising candidate for electronic and optical switching appli- cations in the terahertz frequency range due to the metal to insulator transition (MIT). In this study, the use of VO2 patterned as a metamaterial surface or coupled as a homogeneous layer with a metallic metamaterial surface on top is investigated in terms of performance. High- quality VO2 thin ¯lms were deposited on c-cut sapphire substrates by using the dc magnetron sputtering technique. A change in resistivity by a factor of 10 4 MIT in VO2 was observed allowing to investigate its use as a controllable metamaterial. The layer was patterned using a unique geometry (four-cross shaped) that operates in the THz frequency range. To understand its performance as a tunable THz ¯lter, the four-cross structure fabricated from VO2 is compared to one fabricated from Au on VO2 bare ¯lm using UV lithography and ion beam etching techniques. The spectral performances of metamaterials were assessed using THz-Time Domain Spectroscopy (THz-TDS) and results were compared with simulations based on CST Microwave Studio. Absence of the resonant e®ects in the purely developed VO2 device, while clear observation of the MIT behavior shows the strong dependency of the inductive and/or capacitive e®ects of the four-cross structure on conductivity of the surface metamaterial, which is clearly observable for the Au-based device. In the latter case, the resonant transmittance of the ¯lter can be e®ectively modulated by change in temperature.
MODERN PHYSICS LETTERS B
Citation Formats
S. Zeyrek et al., “Investigation of resonant properties of metamaterial THz filters fabricated from vanadium dioxide thin films,” MODERN PHYSICS LETTERS B, vol. 38, no. 11, pp. 2450056–2450071, 2024, Accessed: 00, 2024. [Online]. Available: https://hdl.handle.net/11511/112904.