Internal symmetry breaking in NN-interaction.

Kolat, Aydın


Pseudospin symmetry and its applications
Aydoğdu, Oktay; Sever, Ramazan; Department of Physics (2009)
The pseudospin symmetry concept is investigated by solving the Dirac equation for the exactly solvable potentials such as pseudoharmonic potential, Mie-type potential, Woods-Saxon potential and Hulthén plus ring-shaped potential with any spin-orbit coupling term $\kappa$. Nikiforov-Uvarov Method, Asymptotic Iteration Method and functional analysis method are used in the calculations. The energy eigenvalue equations of the Dirac particles are found and the corresponding radial wave functions are presented in...
Spontaneous symmetry breaking and higgs mechanism
Kahraman, Işınsu; Turan, İsmail; Department of Physics (2017)
The relevance of Higgs mechanism to nature has been verified recently by two experiments, CMS and ATLAS at Large Hadron Collider. Therefore, a detailed understanding of the mechanismis mportant more than ever.The details of Higgs potential, its stability and mass generation mechanism are going to be explored and the Higgs particle which is the quantum fluctuation of the field will be discussed within the sponteneous symmetry breaking notion. The one loop corrections to the effective potential for various toy m...
Discrete symmetries in quantum theory
Taşdan, İsmail Ufuk; Pak, Namık Kemal; Department of Physics (2015)
In this thesis, one of the most central problems of modern physics, namely the discrete symmetries, is discussed from various perspectives ranging from classical mechanics to relativistic quantum theory. The discrete symmetries, namely charge conjugation (C), parity (P), time reversal (T), which are connected by the so-called CPT Theorem are studied in detail. The anti-particles with a view to matter-anti-matter symmetry is also addressed and the anti-unitarity nature of the time reversal, as well as the CP...
Linearization instability of chiral gravity
Altas, Emel; Tekin, Bayram (American Physical Society (APS), 2018-6-27)
Carrying out an analysis of the constraints and their linearizations on a spacelike hypersurface, we show that topologically massive gravity has a linearization instability at the chiral gravity limit about AdS(3). We also calculate the symplectic structure for all the known perturbative modes (including the log-mode) for the linearized field equations and find it to be degenerate (noninvertible); hence, these modes do not approximate exact solutions and so do not belong to the linearized phase space of the...
Relativistic and nonrelativistic bound states of the isotonic oscillator by Nikiforov-Uvarov method
IKHDAİR, SAMEER; Sever, Ramazan (2011-12-01)
A nonpolynomial one-dimensional quantum potential in the form of an isotonic oscillator (harmonic oscillator with a centripetal barrier) is studied. We provide the nonrelativistic bound state energy spectrum E(n) and the wave functions psi(n)(chi) in terms of the associated Laguerre polynomials in the framework of the Nikiforov-Uvarov method. Under the spin and pseudospin symmetric limits, the analytic eigenvalues and the corresponding two-component upper-and lower-spinors of the Dirac particle are obtained...
Citation Formats
A. Kolat, “Internal symmetry breaking in NN-interaction.,” Ph.D. - Doctoral Program, Middle East Technical University, 1982.