Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Local p + Poly-Si Passivating Contacts Realized by Direct FlexTrail Printing of Boron Ink and Selective Alkaline Etching for High Efficiency TOPCon Based Solar Cells
Date
2025-01-01
Author
Uygun, Berkay
Kluska, Sven
Polzin, Jana-Isabelle
Schube, Jörg
Jahn, Mike
Krieg, Katrin
Turan, Raşit
Nasser, Hisham
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
34
views
0
downloads
Cite This
In this work, we demonstrate the formation of local boron-doped, SiOₓ/p + poly-Si structures using wet chemical etching by direct printing of boron-ink. FlexTrail printing uses a very hollow (orders of μm for diameter) glass capillary tube filled with boron ink for printing onto silicon substrate. This process represents a mask-free approach for the formation of local TOPCon structures, enabling high-efficiency tunnel oxide passivating contact (TOPCon) solar cells. The factors influencing etch-back selectivity between intrinsic and boron-doped poly-Si were thoroughly investigated. It was determined that pre-treatment with diluted HF (1 wt%) prior to poly-Si removal in a KOH solution is the most critical step to achieve optimal etch selectivity. This treatment effectively removes the native oxide on intrinsic poly-Si while preserving the boron silicate glass (BSG) layer on p + poly-Si, facilitating the selective removal of intrinsic poly-Si and the formation of p + TOPCon structures. Line widths ranging from 24.0 to 100.5 μm on planar surfaces and 40.0–86.0 μm on textured surfaces were achieved. FlexTrail printing allows for significantly lower (and higher) feature sizes, but its fine-line potential was not fully exploited here due to alignment challenges during post-processing. Test structures with a line grid of local TOPCon structures exhibited a maximum open-circuit voltage (iVOC of 720 mV and a lowest saturation current density (JOSE) of ~90–120 fA/cm2. The developed local p + poly-Si will be integrated into high-efficiency TOPCon solar cells, where p + poly-Si will be strategically placed under the metal contact, in the near future.
Subject Keywords
FlexTrail
,
Local TOPCon
,
Selective Etch Back of Poly-Si
,
Selective TOPCon
,
TOPCon
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218173243&origin=inward
https://hdl.handle.net/11511/113966
Journal
Progress in Photovoltaics: Research and Applications
DOI
https://doi.org/10.1002/pip.3901
Collections
Department of Physics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Uygun et al., “Local p + Poly-Si Passivating Contacts Realized by Direct FlexTrail Printing of Boron Ink and Selective Alkaline Etching for High Efficiency TOPCon Based Solar Cells,”
Progress in Photovoltaics: Research and Applications
, pp. 0–0, 2025, Accessed: 00, 2025. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85218173243&origin=inward.