Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Non-Destructive Determination of Surface Residual Stresses in Electron Beam Welded AISI 410 Martensitic Stainless Steel Using the Magnetic Barkhausen Noise Technique
Date
2025-03-01
Author
Yelbay, Hasan İlker
Gür, Cemil Hakan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
16
views
0
downloads
Cite This
Despite their excellent mechanical properties, martensitic stainless steels present significant welding challenges due to their susceptibility to cracking and forming brittle microstructures during thermal cycles. While electron beam welding offers advantages through its high energy density and precise control over conventional welding methods, the induced residual stresses remain a critical concern. This study aims to determine surface residual stresses in electron beam welded AISI 410 martensitic stainless steel using a self-developed C-scan mode Magnetic Barkhausen Noise (MBN) measurement system. A novel calibration and measurement methodology was developed to establish a quantitative relationship between MBN signals and residual stress state. The residual stresses in the welded specimens were analyzed systematically using MBN and X-ray diffraction (XRD) measurements and microstructural characterization. The results revealed a strong correlation between MBN parameters and residual stress states, showing notable variations across the weld zones, i.e., approximately +350 MPa in the heat-affected zone and −50 MPa in the base metal. The experimental findings were also validated through finite element simulations. The correlation between experimental and numerical results confirms the reliability of the proposed MBN-based methodology and system. These findings provide valuable insights for industrial applications, offering a rapid and reliable non-destructive method for residual stress assessment in critical welded components.
Subject Keywords
AISI 410 stainless steel
,
electron beam welding
,
magnetic Barkhausen noise
,
non-destructive material characterization
,
residual stress
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105001169252&origin=inward
https://hdl.handle.net/11511/114281
Journal
Metals
DOI
https://doi.org/10.3390/met15030305
Collections
Welding Technology and Nondestructive Testing Research and Application Center (KTTMM), Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. İ. Yelbay and C. H. Gür, “Non-Destructive Determination of Surface Residual Stresses in Electron Beam Welded AISI 410 Martensitic Stainless Steel Using the Magnetic Barkhausen Noise Technique,”
Metals
, vol. 15, no. 3, pp. 0–0, 2025, Accessed: 00, 2025. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105001169252&origin=inward.