Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of a response surface for subsonic wing flutter
Download
Meltem Ozturkler.pdf
Date
2001
Author
Öztürkler, Meltem
Metadata
Show full item record
Item Usage Stats
54
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/11482
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of a blade to blade solver for axial turbomachinery
Bilgiç, Mustafa; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2015)
In this thesis, a blade to blade solver for axial turbomachinery is developed. Actual blade to blade surface is three dimensional but it is reduced to two dimensions. This simplification is valid only for the turbomachinery having high solidity. Two different approaches are used for the solution of the two dimensional Euler equations through blade to blade streamsurface. The first one includes the solution of the steady form of the two dimensional Euler equations. The characteristics of the steady Euler equ...
Development of solid phase microextraction for high-throughput sample preparation in laboratory analysis of prohibited substances
Gorynski, K; Boyacı, Ezel; Rodriguez-lafuente, Angel; Bojko, Barbara; Pawliszyn, Janusz (2014-01-29)
Development of a high-order navier-stokes solver for aeroacoustic predictions of wind turbine blade sections
Yalçın, Özgür; Özyörük, Yusuf; Department of Aerospace Engineering (2015)
Increased interest in renewable energy in the world has lead to research on wind turbines at a great pace. However, these turbines have come with a noise problem. The noise source of wind turbines is primarily aerodynamic noise highly related to complex, three dimensional, unsteady flow fields around them. Therefore, determination of these sources requires successful, accurate, turbulent flow solutions. In addition, because acoustic waves are non-dispersive and non-dissipative, such solutions must be carrie...
Development of a constrained layer surface damping treatment with optimized spacer geometry for plates
Ulubalcı, Barkan; Özgen, Gökhan Osman; Department of Mechanical Engineering (2019)
For aviation applications, the noise and vibration cancellation is so important that there are many damping methods and applications used in the field. In military configurations the weight and the visual elegance is not so important that even a blanket may solve the problem. In civil configurations, on the other hand, there should be a lightweight solution for vibration damping. For this reason, since shell structures are widely used on aerospace applications, it is common to use surface damping solutions ...
DEVELOPMENT OF A HAND METHOD TO ESTIMATE FUNDAMENTAL PERIODS OF STEEL ECCENTRICALLY BRACED FRAMES
Kusyilmaz, Ahmet; Topkaya, Cem (2016-12-09)
This paper describes formulation of a hand method which can be used to estimate the computed fundamental periods of vibration of steel eccentrically braced frames (EBFs). The developed method uses the Rayleigh's method as a basis and utilizes the roof drift ratio under seismic forces as a parameter. The roof drift ratio was obtained from EBF designs by considering different seismic hazard, number of stories, braced bay width, and link length to bay width ratio. A simple expression was developed to represent...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Öztürkler, “Development of a response surface for subsonic wing flutter,” Middle East Technical University, 2001.