Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
General solution of the Schrodinger equation for some trigonometric potentials
Date
2020-05-01
Author
Alıcı, Haydar
Tanriverdi, T.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
7
views
0
downloads
Cite This
In this article, we recursively obtain the general solution of the Schrodinger equation y nu ''(x;lambda)+[lambda-nu(nu+1)v(x)]y nu(x;lambda)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y_{\nu }''(x;\lambda )+[\lambda -\nu (\nu +1)v(x)]y_{\nu }(x;\lambda )=0$$\end{document} for non negative integer values of nu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu$$\end{document} and an arbitrary values of the eigenvalue parameter lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} where v(x) is certain trigonometric potentials. The recursions are obtained from the contour integral solutions of Tanriverdi. By using these contour integral solutions the author have obtained the first few solutions when nu=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu =n$$\end{document}, a non negative integer, by means of residue calculations which becomes considerably troublesome or almost impossible for larger values of n. Therefore, the recursive procedure of the present article can be seen as a superior alternative to the method of residue calculation for deriving the general solution for arbitrary values of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} and non negative integer n. Moreover, the eigenpairs with the homogeneous Drichlet and Neumann boundary conditions are also derived from the general solution.
URI
https://hdl.handle.net/11511/115708
Journal
JOURNAL OF MATHEMATICAL CHEMISTRY
DOI
https://doi.org/10.1007/s10910-020-01120-7
Collections
Department of Mathematics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Alıcı and T. Tanriverdi, “General solution of the Schrodinger equation for some trigonometric potentials,”
JOURNAL OF MATHEMATICAL CHEMISTRY
, vol. 58, no. 5, pp. 1041–1057, 2020, Accessed: 00, 2025. [Online]. Available: https://hdl.handle.net/11511/115708.