Integral manifolds of impulsive systems

Download
2002
Çelik, Derya

Suggestions

Integral manifolds of differential equations with piecewise constant argument of generalized type
Akhmet, Marat (Elsevier BV, 2007-01-15)
In this paper we introduce a general type of differential equations with piecewise constant argument (EPCAG). The existence of global integral manifolds of the quasilinear EPCAG is established when the associated linear homogeneous system has an exponential dichotomy. The smoothness of the manifolds is investigated. The existence of bounded and periodic solutions is considered. A new technique of investigation of equations with piecewise argument, based on an integral representation formula, is proposed. Ap...
Local symmetries of shapes in arbitrary dimension
Tarı, Zehra Sibel (null; 1998-12-01)
Motivated by a need to define an object-centered reference system determined by the most salient characteristics of the shape, many methods have been proposed, all of which directly or indirectly involve an axis about which the shape is locally symmetric. Recently, a function v, called `the edge strength function', has been successfully used to determine efficiently the axes of local symmetries of 2-d shapes. The level curves of v are interpreted as successively smoother versions of the initial shape bounda...
Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
Pekmen, B.; Tezer, Münevver (2012-08-01)
Differential quadrature method (DQM) is proposed to solve the one-dimensional quadratic and cubic Klein-Gordon equations, and two-dimensional sine-Gordon equation. We apply DQM in space direction and also blockwise in time direction. Initial and derivative boundary conditions are also approximated by DQM. DQM provides one to obtain numerical results with very good accuracy using considerably small number of grid points. Numerical solutions are obtained by using Gauss-Chebyshev-Lobatto (GCL) grid points in s...
Periodic Solutions of Nonlinear Systems
Akhmet, Marat (2010-01-01)
Functional Differential and Difference Equations with Applications 2013
Diblik, J.; Braverman, E.; Gyori, I.; Rogovchenko, Yu.; Ruzickova, M.; Zafer, Ağacık (2014-01-01)
Citation Formats
D. Çelik, “Integral manifolds of impulsive systems,” Middle East Technical University, 2002.