Development of structural model of a fighter wing.

Erdener, Özlem


Development of a dynamic flight model of a jet trainer aircraft
Gilani, Muhaned; Özgen, Serkan; Department of Aerospace Engineering (2007)
A dynamic flight model of a jet trainer aircraft is developed in MATLAB-SIMULINK. Using a six degree of freedom mathematical model, non-linear simulation is used to observe the longitudinal and lateral-directional motions of the aircraft following a pilot input. The mathematical model is in state-space form and uses aircraft stability and control derivatives calculated from the aircraft geometric and aerodynamic characteristics. The simulation takes the changes in speed and altitude into consideration due t...
Development of model for overburden removal equipment selection for surface lignite mines
Çelebi, Neş'e; Paşamehmetoğlu, Günhan; Department of Mining Engineering (1988)
Development of a test system for viscoelastic material characterization
Erol, Fulya; Özgen, Gökhan Osman; Department of Mechanical Engineering (2014)
Viscoelastic materials are used extensively as a means of vibration control and isolation in many vibrating structures. For example, damping instruments utilizing viscoelastic materials such as surface damping treatments and vibration isolators fabricated of viscoelastic materials such as machinery mounts are widely used in automotive and aerospace industries for the purpose of vibration and noise control and isolation, respectively. Viscoelastic materials, as the name implies, behave in between a purely el...
Development of a structural design methodology for filament winding composite rocket motor case
Erturan, Yakup; Gürses, Ercan; Department of Aerospace Engineering (2019)
Filament winding pressure vessels have a unique place in many areas such as space and ground applications for decades. Filament winding pressure vessels are used in products where weight is very critical. In such applications, composite winding pressure vessels have significant advantages over metal pressure vessels due to their high specific strength. In this study, it is aimed to design and analyze composite rocket motor cases produced by the filament winding method. Within the scope of the study, the dom...
Development of load distribution model and micro-geometry optimization of four-point contact ball bearings
Yılmaz, Sinan; Akkök, Metin; Department of Mechanical Engineering (2018)
The unique kinematic characteristics and load-carrying capabilities of four-point contact ball bearings make these bearings being widely used in demanding applications. Particularly, four-point contact ball bearings are preferred due to their reverse axial load carrying capability and high level of stability. In this study, micro and macro geometrical aspects of these bearings are investigated and compared with the conventional ball bearings. Once the geometry and internal kinematics of four-point contact b...
Citation Formats
Ö. Erdener, “Development of structural model of a fighter wing.,” Middle East Technical University, 2002.