Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Connection preserving conformal diffeomorphisms of spheres
Download
119101.pdf
Date
2002
Author
Pamuk (Taşkın), Semra
Metadata
Show full item record
Item Usage Stats
81
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/13187
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Invariant subspaces of collectively compact sets of linear operators
Alpay, Safak; Misirlioglu, Tunc (Springer Science and Business Media LLC, 2008-01-01)
In this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in alg Gamma satisfies Berger-Wang formula, where Gamma is a complete chain of subspaces of X.
Local symmetries of shapes in arbitrary dimension
Tarı, Zehra Sibel (null; 1998-12-01)
Motivated by a need to define an object-centered reference system determined by the most salient characteristics of the shape, many methods have been proposed, all of which directly or indirectly involve an axis about which the shape is locally symmetric. Recently, a function v, called `the edge strength function', has been successfully used to determine efficiently the axes of local symmetries of 2-d shapes. The level curves of v are interpreted as successively smoother versions of the initial shape bounda...
Structure Preserving Integration and Model Order Reduction of Skew Gradient Reaction Diffusion Systems
Karasözen, Bülent; Küçükseyhan, Tuğba (2015-09-14)
Invariant Metrics and Squeezing Functions on Bounded Domains
Ökten, Ahmed Yekta; Yazıcı, Özcan; Department of Mathematics (2021-8)
In this thesis we will study the biholomorphically invariant objects called squeezing functions. They are closely releated to invariant metrics on bounded domains and describe how much a domain looks like the unit ball looking on a fixed point. In the main part of this thesis, we will give our results on squeezing functions on planar domains. In particular, our main result provides an alternative proof for the explicit formulas of squeezing functions on annuli. Also, we survey results on boundary behaviour ...
Invariant densities and mean ergodicity of Markov operators
Emelyanov, Eduard (2003-01-01)
We prove that a, Markov operator T on L-1 has an invariant density if and only if there exists a density f that satisfies lim sup(n-->infinity) parallel toT(n) f-fparallel to infinity) parallel toP(n)f - wparallel to < 2 for every density f. Corresponding results hold for strongly continuous semigroups.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Pamuk (Taşkın), “Connection preserving conformal diffeomorphisms of spheres,” M.S. - Master of Science, Middle East Technical University, 2002.